SAT and **SMT** Solving

Sarah Winkler

SS 2018

Department of Computer Science University of Innsbruck

Outline

- Summary of Last Week
- Maximum Satisfiability
- Algorithms for Maximum Satisfiability

Summary of Last Week

Definition (Implication Graph)

For derivation $|| F \implies_{\mathcal{B}}^* M || F'$ implication graph is constructed as follows:

- ▶ add node labelled / for every decision literal / in M
- ▶ repeat until there is no change:

if \exists clause $l_1 \lor \ldots l_m \lor l'$ in F' such that there are already nodes l_1^c, \ldots, l_m^c

- ▶ add node /' if not yet present
- ▶ add edges $l_i^c \rightarrow l'$ for all $1 \leqslant i \leqslant m$ if not yet present
- ▶ if \exists clause $l'_1 \lor \cdots \lor l'_k$ in F' such that there are nodes $l'_1 \circ \cdots \circ l'_k \circ l'_k \circ \cdots \circ l'_k \circ l'_k \circ \cdots \circ l'_k \circ$
 - add conflict node labeled C
 - ▶ add edges $l_i^{\prime c} \rightarrow C$

Definitions

- cut of implication graph has at least all decision literals on the left, and at least the conflict node on the right
- ▶ literal / in implication graph is unique implication point (UIP) if all paths from last decision literal to conflict node go through /

Lemma

if edges intersected by cut are $l_1 \to l'_1, \dots, l_k \to l'_k$ then $F' \models l_1^c \lor l_k^c$

Backjump Clauses by Resolution

- \triangleright set C_0 to conflict clause
- ▶ let I be last assigned literal such that I^c is in C_0
- while I is no decision literal:
 - $ightharpoonup C_{i+1}$ is resolvent of C_i and clause D that led to assignment of I
 - ▶ let l be last assigned literal such that l^c is in C_{i+1}

Observation

every C_i corresponds to cut in implication graph

Definition (DPLL with Learning and Restarts)

DPLL with learning and restarts $\mathcal R$ extends system $\mathcal B$ by following three rules:

- ▶ learn $M \parallel F \implies M \parallel F, C$ if $F \vDash C$ and all atoms of C occur in M or F
- ► forget $M \parallel F, C \implies M \parallel F$ if $F \models C$
- ▶ restart $M \parallel F \implies \parallel F$

Definition (DPLL with Learning and Restarts)

DPLL with learning and restarts $\mathcal R$ extends system $\mathcal B$ by following three rules:

- ▶ learn $M \parallel F \implies M \parallel F, C$ if $F \vDash C$ and all atoms of C occur in M or F
- ► forget $M \parallel F, C \implies M \parallel F$ if $F \models C$
- ▶ restart $M \parallel F \implies \parallel F$

Theorem (Termination)

any derivation $\parallel F \implies_{\mathcal{R}} S_1 \implies_{\mathcal{R}} S_2 \implies_{\mathcal{R}} \dots$ is finite if

- ▶ it contains no infinite subderivation of learn and forget steps, and
- restart is applied with increasing periodicity

Definition (DPLL with Learning and Restarts)

DPLL with learning and restarts $\mathcal R$ extends system $\mathcal B$ by following three rules:

- ▶ learn $M \parallel F \implies M \parallel F, C$ if $F \models C$ and all atoms of C occur in M or F
- ► forget $M \parallel F, C \implies M \parallel F$ if $F \models C$
- ▶ restart $M \parallel F \implies \parallel F$

Theorem (Termination)

any derivation $\parallel F \implies_{\mathcal{R}} S_1 \implies_{\mathcal{R}} S_2 \implies_{\mathcal{R}} \dots$ is finite if

- ▶ it contains no infinite subderivation of learn and forget steps, and
- restart is applied with increasing periodicity

Theorem (Correctness)

for $\parallel F \implies_{\mathcal{R}} S_1 \implies_{\mathcal{R}} S_2 \implies_{\mathcal{R}} \dots \implies_{\mathcal{R}} S_n$ with final state S_n :

- ightharpoonup if $S_n = FailState$ then F is unsatisfiable
- ▶ if $S_n = M \parallel F'$ then F is satisfiable and $M \models F$

Maximum Satisfiability

maxSAT Problem

input: propositional formula φ in CNF

output: valuation α such that α satisfies maximal number of clauses in φ

maxSAT Problem

input: propositional formula φ in CNF

output: valuation α such that α satisfies maximal number of clauses in φ

maxSAT Problem

input: propositional formula φ in CNF

output: valuation lpha such that lpha satisfies maximal number of clauses in arphi

Terminology

▶ optimization problem *P* asks to find "best" solution among all solutions

maxSAT Problem

input: propositional formula φ in CNF

output: valuation lpha such that lpha satisfies maximal number of clauses in arphi

Terminology

- optimization problem P asks to find "best" solution among all solutions
- ightharpoonup maxSAT encoding transforms optimization problem P into formula φ such that "best" solution to P is obtained from maxSAT solution to φ

Remark

many real world problems have optimization component

- find shortest path/execution to goal state
 - planning, model checking
- find smallest explanation
 - debugging, configuration, . . .
- ▶ find least resource-consuming schedule
 - scheduling, logistics, . . .
- find most probable explanation
 - probabilistic inference, . . .

Consider CNF formula φ as set of clauses, denote number of clauses by $|\varphi|$.

Consider CNF formula φ as set of clauses, denote number of clauses by $|\varphi|$.

Maximal Satisfiability (maxSAT)

instance:

CNF formula φ

question: what is maximal $|\psi|$ such that $\psi \subseteq \varphi$ and $\bigwedge_{C \in \psi} C$ is satisfiable?

Consider CNF formula φ as set of clauses, denote number of clauses by $|\varphi|$.

Maximal Satisfiability (maxSAT)

instance: CNF formula φ

question: what is maximal $|\psi|$ such that $\psi \subseteq \varphi$ and $\bigwedge_{C \in \psi} C$ is satisfiable?

Example

$$\varphi = \{ \begin{array}{llll} 6 \vee 2, & & \overline{\underline{6}} \vee 2, & & \overline{\underline{2}} \vee 1, & & \overline{\underline{1}}, & & \overline{\underline{6}} \vee 8, & & \underline{\underline{6}} \vee \overline{8}, \\ 2 \vee 4, & & \overline{4} \vee 5, & & 7 \vee 5, & & \overline{7} \vee 5, & & \overline{3}, & & \overline{\underline{5}} \vee 3 \end{array} \}$$

▶ maxSAT(φ) = 10, e.g. for valuation $\overline{1}$ 2 $\overline{3}$ 4 5 6 $\overline{7}$ 8

Consider CNF formula φ as set of clauses, denote number of clauses by $|\varphi|$.

Maximal Satisfiability (maxSAT)

instance: CNF formula φ

question: what is maximal $|\psi|$ such that $\psi \subseteq \varphi$ and $\bigwedge_{C \in \psi} C$ is satisfiable?

Partial Maximal Satisfiability (pmaxSAT)

instance: CNF formulas χ and φ

question: what is maximal $|\psi|$ such that $\psi \subseteq \varphi$ and $\chi \land \bigwedge_{C \in \psi} C$ is satisfiable?

Example

$$\varphi = \{ \begin{array}{llll} 6 \vee 2, & & \overline{\underline{6}} \vee 2, & & \overline{\underline{2}} \vee 1, & & \overline{\underline{1}}, & & \overline{\underline{6}} \vee 8, & & \underline{\underline{6}} \vee \overline{8}, \\ 2 \vee 4, & & \overline{4} \vee 5, & & 7 \vee 5, & & \overline{7} \vee 5, & & \overline{\overline{3}}, & & \overline{\underline{5}} \vee \overline{3} \end{array} \}$$

▶ maxSAT(φ) = 10, e.g. for valuation $\overline{1}$ 2 $\overline{3}$ 4 5 6 $\overline{7}$ 8

Consider CNF formula φ as set of clauses, denote number of clauses by $|\varphi|$.

Maximal Satisfiability (maxSAT)

instance: CNF formula φ

question: what is maximal $|\psi|$ such that $\psi \subseteq \varphi$ and $\bigwedge_{C \in \psi} C$ is satisfiable?

Partial Maximal Satisfiability (pmaxSAT)

instance: CNF formulas χ and φ

question: what is maximal $|\psi|$ such that $\psi \subseteq \varphi$ and $\chi \land \bigwedge_{C \in \psi} C$ is satisfiable?

$$\varphi = \{ \begin{array}{llll} 6 \lor 2, & \overline{6} \lor 2, & \overline{2} \lor 1, & \overline{1}, & \overline{6} \lor 8, & \underline{6} \lor \overline{8}, \\ 2 \lor 4, & \overline{4} \lor 5, & 7 \lor 5, & \overline{7} \lor 5, & \overline{3}, & \overline{5} \lor 3 \end{array} \}$$

$$\chi = \{ \overline{1} \lor 2, & \overline{2} \lor \overline{3}, & \overline{5} \lor 1, & 3 \}$$

- ightharpoonup maxSAT(φ) = 10, e.g. for valuation $\overline{1}$ 2 $\overline{3}$ 4 5 6 $\overline{7}$ 8
- pmaxSAT $(\chi, \varphi) = 8$, e.g. for valuation $\overline{1} \, \overline{2} \, 34 \, \overline{5} \, 678$

instance: CNF formula φ with weight $w_C \in \mathbb{Z}$ for all $C \in \varphi$

question: what is maximal $\sum_{C \in \psi} w_C$ for $\psi \subseteq \varphi$ and $\bigwedge_{C \in \psi} C$ satisfiable?

instance: CNF formula φ with weight $w_C \in \mathbb{Z}$ for all $C \in \varphi$

question: what is maximal $\sum_{C \in \psi} w_C$ for $\psi \subseteq \varphi$ and $\bigwedge_{C \in \psi} C$ satisfiable?

instance: CNF formula φ with weight $w_C \in \mathbb{Z}$ for all $C \in \varphi$

question: what is maximal $\sum_{C \in \psi} w_C$ for $\psi \subseteq \varphi$ and $\bigwedge_{C \in \psi} C$ satisfiable?

Example

$$\varphi = \{ (\neg x, 2), \qquad (y, 4), \qquad (\neg x \lor \neg y, 5) \}$$

ightharpoonup maxSAT_w(φ) =

instance: CNF formula φ with weight $w_C \in \mathbb{Z}$ for all $C \in \varphi$

question: what is maximal $\sum_{C \in \psi} w_C$ for $\psi \subseteq \varphi$ and $\bigwedge_{C \in \psi} C$ satisfiable?

Example

$$\varphi = \{ (\neg x, 2), \qquad (y, 4), \qquad (\neg x \lor \neg y, 5) \}$$

▶ \max SAT $_w(\varphi) = 11$ e.g. for valuation v(x) = F and v(y) = T

instance: CNF formula φ with weight $w_C \in \mathbb{Z}$ for all $C \in \varphi$

question: what is maximal $\sum_{C \in \psi} w_C$ for $\psi \subseteq \varphi$ and $\bigwedge_{C \in \psi} C$ satisfiable?

Weighted Partial Maximal Satisfiability (pmaxSAT_w)

instance: CNF formulas φ and χ , with weight $w_C \in \mathbb{Z}$ for all $C \in \varphi$

question: what is maximal $\sum_{C \in \psi} w_C$ for $\psi \subseteq \varphi$ and $\chi \land \bigwedge_{C \in \psi} C$ satisfiable?

Example

$$\varphi = \{ (\neg x, 2), \qquad (y, 4), \qquad (\neg x \lor \neg y, 5) \}$$

$$x \}$$

▶ maxSAT_w(φ) = 11 e.g. for valuation v(x) = F and v(y) = T

instance: CNF formula φ with weight $w_C \in \mathbb{Z}$ for all $C \in \varphi$

question: what is maximal $\sum_{C \in \psi} w_C$ for $\psi \subseteq \varphi$ and $\bigwedge_{C \in \psi} C$ satisfiable?

Weighted Partial Maximal Satisfiability (pmaxSAT_w)

instance: CNF formulas φ and χ , with weight $w_C \in \mathbb{Z}$ for all $C \in \varphi$

question: what is maximal $\sum_{C \in \psi} w_C$ for $\psi \subseteq \varphi$ and $\chi \land \bigwedge_{C \in \psi} C$ satisfiable?

$$\varphi = \{(\neg x, 2), \qquad (y, 4), \qquad (\neg x \lor \neg y, 5)\}$$

$$\chi = \{x\}$$

- ightharpoonup maxSAT_w(φ) = 11 e.g. for valuation v(x) = F and v(y) = T
- ightharpoonup pmaxSAT_w $(\chi, \varphi) =$

instance: CNF formula φ with weight $w_C \in \mathbb{Z}$ for all $C \in \varphi$

question: what is maximal $\sum_{C \in \psi} w_C$ for $\psi \subseteq \varphi$ and $\bigwedge_{C \in \psi} C$ satisfiable?

Weighted Partial Maximal Satisfiability (pmaxSAT_w)

instance: CNF formulas φ and χ , with weight $w_C \in \mathbb{Z}$ for all $C \in \varphi$ question: what is maximal $\sum_{C \in \psi} w_C$ for $\psi \subseteq \varphi$ and $\chi \land \bigwedge_{C \in \psi} C$ satisfiable?

$$\varphi = \{(\neg x, 2), \qquad (y, 4), \qquad (\neg x \lor \neg y, 5)\}$$
$$\chi = \{x\}$$

- ▶ $\max SAT_w(\varphi) = 11$ e.g. for valuation v(x) = F and v(y) = T
- ▶ pmaxSAT_w $(\chi, \varphi) = 5$, e.g. for valuation v(x) = T and v(y) = F

instance: CNF formula φ with weight $w_C \in \mathbb{Z}$ for all $C \in \varphi$

question: what is maximal $\sum_{C \in \psi} w_C$ for $\psi \subseteq \varphi$ and $\bigwedge_{C \in \psi} C$ satisfiable?

Weighted Partial Maximal Satisfiability (pmaxSAT_w)

instance: CNF formulas φ and χ , with weight $w_C \in \mathbb{Z}$ for all $C \in \varphi$ question: what is maximal $\sum_{C \in \psi} w_C$ for $\psi \subseteq \varphi$ and $\chi \land \bigwedge_{C \in \psi} C$ satisfiable?

Notation

write $\max SAT(\varphi)$ and $\max SAT_w(\varphi)$ for solution to (weighted) maximal satisfiability problem for φ

$$\varphi = \{(\neg x, 2), \qquad (y, 4), \qquad (\neg x \lor \neg y, 5)\}$$

$$\chi = \{x\}$$

- ightharpoonup maxSAT_w(φ) = 11 e.g. for valuation v(x) = F and v(y) = T
- ▶ pmaxSAT_w $(\chi, \varphi) = 5$, e.g. for valuation v(x) = T and v(y) = F

Weighted Maximal Satisfiability (maxSATw)

instance: CNF formula φ with weight $w_C \in \mathbb{Z}$ for all $C \in \varphi$

question: what is maximal $\sum_{C \in \psi} w_C$ for $\psi \subseteq \varphi$ and $\bigwedge_{C \in \psi} C$ satisfiable?

Weighted Partial Maximal Satisfiability (pmaxSAT_w)

instance: CNF formulas φ and χ , with weight $w_C \in \mathbb{Z}$ for all $C \in \varphi$ question: what is maximal $\sum_{C \in \psi} w_C$ for $\psi \subseteq \varphi$ and $\chi \land \bigwedge_{C \in \psi} C$ satisfiable?

Notation

- write $\max SAT(\varphi)$ and $\max SAT_w(\varphi)$ for solution to (weighted) maximal satisfiability problem for φ
- write $\operatorname{pmaxSAT}(\chi,\varphi)$ and $\operatorname{pmaxSAT}_w(\chi,\varphi)$ for solution to (weighted) partial maximal satisfiability problem for hard clauses χ and soft clauses φ

$$\varphi = \{(\neg x, 2), \qquad (y, 4), \qquad (\neg x \lor \neg y, 5)\}$$

$$\chi = \{x\}$$

- ▶ $\max SAT_w(\varphi) = 11$ e.g. for valuation v(x) = F and v(y) = T
- ▶ pmaxSAT_w $(\chi, \varphi) = 5$, e.g. for valuation v(x) = T and v(y) = F

instance: CNF formula φ

question: what is minimal $|\psi|$ such that $\psi \subseteq \varphi$ and $\bigwedge_{C \in \psi} \neg C$ is satisfiable?

instance: CNF formula φ

question: what is minimal $|\psi|$ such that $\psi \subseteq \varphi$ and $\bigwedge_{C \in \psi} \neg C$ is satisfiable?

Notation

write $\min \mathsf{UNSAT}(\varphi)$ for solution to minimal unsatisfiability problem for φ

instance: CNF formula φ

question: what is minimal $|\psi|$ such that $\psi \subseteq \varphi$ and $\bigwedge_{C \in \psi} \neg C$ is satisfiable?

Notation

write $\min \text{UNSAT}(\varphi)$ for solution to minimal unsatisfiability problem for φ

Lemma

$$|\varphi| = |\mathsf{minUNSAT}(\varphi)| + |\mathsf{maxSAT}(\varphi)|$$

instance: CNF formula φ

question: what is minimal $|\psi|$ such that $\psi \subseteq \varphi$ and $\bigwedge_{C \in \psi} \neg C$ is satisfiable?

Notation

write $\min \text{UNSAT}(\varphi)$ for solution to minimal unsatisfiability problem for φ

Lemma

$$|\varphi| = |\mathsf{minUNSAT}(\varphi)| + |\mathsf{maxSAT}(\varphi)|$$

$$\varphi = \{ \neg x, \qquad x \lor y, \qquad \neg y \lor \neg z, \qquad x, \qquad y \lor \neg z \}$$

▶
$$\max SAT(\varphi) =$$

instance: CNF formula φ

question: what is minimal $|\psi|$ such that $\psi \subseteq \varphi$ and $\bigwedge_{C \in \psi} \neg C$ is satisfiable?

Notation

write $\min \text{UNSAT}(\varphi)$ for solution to minimal unsatisfiability problem for φ

Lemma

$$|\varphi| = |\mathsf{minUNSAT}(\varphi)| + |\mathsf{maxSAT}(\varphi)|$$

Example

$$\varphi = \{ \neg x, \qquad x \lor y, \qquad \neg y \lor \neg z, \qquad x, \qquad y \lor \neg z \}$$

using v(x) = v(y) = T and v(z) = F have

▶ $\max SAT(\varphi) = 4$

instance: CNF formula φ

question: what is minimal $|\psi|$ such that $\psi \subseteq \varphi$ and $\bigwedge_{C \in \psi} \neg C$ is satisfiable?

Notation

write $\min \text{UNSAT}(\varphi)$ for solution to minimal unsatisfiability problem for φ

Lemma

$$|\varphi| = |\mathsf{minUNSAT}(\varphi)| + |\mathsf{maxSAT}(\varphi)|$$

Example

$$\varphi = \{ \neg x, \qquad x \lor y, \qquad \neg y \lor \neg z, \qquad x, \qquad y \lor \neg z \}$$

using v(x) = v(y) = T and v(z) = F have

- ▶ $\max SAT(\varphi) = 4$
- ▶ $minUNSAT(\varphi) =$

instance: CNF formula φ

question: what is minimal $|\psi|$ such that $\psi \subseteq \varphi$ and $\bigwedge_{C \in \psi} \neg C$ is satisfiable?

Notation

write $\min \text{UNSAT}(\varphi)$ for solution to minimal unsatisfiability problem for φ

Lemma

$$|\varphi| = |\mathsf{minUNSAT}(\varphi)| + |\mathsf{maxSAT}(\varphi)|$$

Example

$$\varphi = \{ \neg x, \qquad x \lor y, \qquad \neg y \lor \neg z, \qquad x, \qquad y \lor \neg z \}$$

using v(x) = v(y) = T and v(z) = F have

- ▶ $\max SAT(\varphi) = 4$
- ▶ $minUNSAT(\varphi) = 1$

instance: CNF formula φ

question: what is minimal $|\psi|$ such that $\psi\subseteq\varphi$ and $\bigwedge_{C\in\psi}\neg C$ is satisfiable?

Notation

write $\mathsf{minUNSAT}(\varphi)$ for solution to minimal unsatisfiability problem for φ

Lemma

$$|\varphi| = |\mathsf{minUNSAT}(\varphi)| + |\mathsf{maxSAT}(\varphi)|$$

Example

$$\varphi = \{\neg x, \qquad x \lor y, \qquad \neg y \lor \neg z, \qquad x, \qquad y \lor \neg z\}$$

using v(x) = v(y) = T and v(z) = F have

- ▶ $minUNSAT(\varphi) =$

Remark

maxSAT and minUNSAT are equivalent

Manufacturer's Constraints on Components

component family	components
engine	E_1, E_2, E_3
gearbox	G_1, G_2, G_3
control unit	C_1,\ldots,C_5
dashboard	D_1,\ldots,D_4
navigation system	N_1, N_2, N_3
air conditioner	AC_1, AC_2, AC_3
alarm system	AS_1, AS_2
radio	R_1,\ldots,R_5

Manufacturer's Constraints on Components

component family	components limit
engine	$E_1, E_2, E_3 = 1$
gearbox	$G_1, G_2, G_3 = 1$
control unit	$C_1, \ldots, C_5 = 1$
dashboard	$D_1, \ldots, D_4 = 1$
navigation system air conditioner alarm system radio	$egin{array}{ll} N_1, N_2, N_3 & \leqslant 1 \ AC_1, AC_2, AC_3 & \leqslant 1 \ AS_1, AS_2 & \leqslant 1 \ R_1, \dots, R_5 & \leqslant 1 \ \end{array}$

Component families with limitations

Manufacturer's Constraints on Components

component family	components limit	pr
engine gearbox control unit dashboard	$E_1, E_2, E_3 = 1$ $G_1, G_2, G_3 = 1$ $C_1, \dots, C_5 = 1$ $D_1, \dots, D_4 = 1$	N_1 AC_1
navigation system air conditioner alarm system radio	$N_1, N_2, N_3 \leqslant 1$ $AC_1, AC_2, AC_3 \leqslant 1$ $AS_1, AS_2 \leqslant 1$ $R_1, \dots, R_5 \leqslant 1$	$\frac{R_1 \vee}{Comp}$

Component families with limitations

premise	conclusion	
premise	CONCIUSION	
G_1	$E_1 \vee E_2$	
$N_1 \vee N_2$	D_1	
N_3	$D_2 \vee D_3$	
$AC_1 \vee AC_3$	$D_1 \vee D_2$	
AS_1	$D_2 \vee D_3$	
$R_1 \vee R_2 \vee R_5$	$D_1 \vee D_4$	
Component dependencies		

Manufacturer's Constraints on Components

component family	components limit
engine	$E_1, E_2, E_3 = 1$
gearbox	$G_1, G_2, G_3 = 1$
control unit	$C_1, \ldots, C_5 = 1$
dashboard	$D_1,\ldots,D_4=1$
navigation system	$N_1, N_2, N_3 \leqslant 1$
air conditioner	$AC_1, AC_2, AC_3 \leq 1$
alarm system	$AS_1, AS_2 \leqslant 1$
radio	$R_1,\ldots,R_5 \leqslant 1$

premise	conclusion	
G_1	$E_1 \vee E_2$	
$N_1 \vee N_2$	D_1	
N_3	$D_2 \vee D_3$	
$AC_1 \vee AC_3$	$D_1 \vee D_2$	
AS_1	$D_2 \vee D_3$	
$R_1 \vee R_2 \vee R_5$	$D_1 \vee D_4$	
Component dependencies		

. .

Component families with limitations

Encoding

- for every component c use variable x_c which is assigned T iff c is used
- lacktriangleright require manufacturer's constraints $arphi_{\mathsf{car}}$ by adding respective clauses

Manufacturer's Constraints on Components

components limit
$E_1, E_2, E_3 = 1$
$G_1, G_2, G_3 = 1$
$C_1, \ldots, C_5 = 1$
$D_1,\ldots,D_4=1$
$N_1, N_2, N_3 \leqslant 1$
$AC_1, AC_2, AC_3 \leq 1$
$AS_1, AS_2 \leqslant 1$
$R_1,\ldots,R_5\leqslant 1$

premise	conclusion	
G_1	$E_1 \vee E_2$	
$N_1 \vee N_2$	D_1	
N_3	$D_2 \vee D_3$	
$AC_1 \vee AC_3$	$D_1 \vee D_2$	
AS_1	$D_2 \vee D_3$	
$R_1 \vee R_2 \vee R_5$	$D_1 \vee D_4$	
Component dependencies		

Component families with limitations

Encoding

- for every component c use variable x_c which is assigned T iff c is used
- lacktriangle require manufacturer's constraints $arphi_{\mathsf{car}}$ by adding respective clauses

Problem 1: Validity of Configuration

▶ is desired configuration valid?

SAT encoding

Manufacturer's Constraints on Components

component family	components limit	
engine gearbox control unit dashboard	$E_1, E_2, E_3 = 1 G_1, G_2, G_3 = 1 C_1, \dots, C_5 = 1 D_1, \dots, D_4 = 1$	A
navigation system air conditioner alarm system radio	$N_1, N_2, N_3 \leqslant 1 \ AC_1, AC_2, AC_3 \leqslant 1 \ AS_1, AS_2 \leqslant 1 \ R_1, \dots, R_5 \leqslant 1$	$\frac{R_1}{Com}$

premise	conclusion
G_1	$E_1 \vee E_2$
$N_1 \vee N_2$	D_1
N_3	$D_2 \vee D_3$
$AC_1 \vee AC_3$	$D_1 \vee D_2$
AS_1	$D_2 \vee D_3$
$R_1 \vee R_2 \vee R_5$	$D_1 \vee D_4$
Component de	nondoncios

Component dependencies

Component families with limitations

Encoding

- for every component c use variable x_c which is assigned T iff c is used
- \blacktriangleright require manufacturer's constraints φ_{car} by adding respective clauses

Problem 1: Validity of Configuration

▶ is desired configuration valid? e.g. $E_1 \wedge G_1 \wedge C_5 \wedge (D_2 \vee D_3) \checkmark$ SAT encoding

$$E_3 \wedge G_1 \wedge C_5 \wedge D_2 \vee AC_1 \times$$

Problem 2: Maximization of Chosen Components

▶ find maximal valid subset of configuration c_1, \ldots, c_n

partial maxSAT

Problem 2: Maximization of Chosen Components

▶ find maximal valid subset of configuration $c_1, ..., c_n$

partial maxSAT

$$\underbrace{\varphi_{\mathsf{car}}}_{\mathsf{hard\ clauses}} \land \underbrace{\chi_{c_1} \land \cdots \land \chi_{c_n}}_{\mathsf{soft\ clauses}}$$

component family	choice	result
engine	E_1	E_1
gearbox	G_2	G_2
control unit	C_2	C_2
dashboard	$D_1 \vee D_3$	D_1
navigation system	N_2	N_2
air conditioner	AC_1	AC_1
alarm system	AS_1	_
radio	R_2	R_2

Problem 2: Maximization of Chosen Components

- ▶ find maximal valid subset of configuration $c_1, ..., c_n$ partial maxSAT
- ightharpoonup possibly with priorities p_i for component c_i weighted partial maxSAT

$$\underbrace{\varphi_{\mathsf{car}}}_{\mathsf{hard \ clauses}} \land \underbrace{\left(x_{c_1}, p_1\right) \land \dots \land \left(x_{c_n}, p_n\right)}_{\mathsf{soft \ clauses}}$$

component family	choice	result
engine	E_1	E_1
gearbox	G_2	G_2
control unit	C_2	C_2
dashboard	$D_1 \vee D_3$	D_1
navigation system	N_2	N_2
air conditioner	AC_1	AC_1
alarm system	AS_1	_
radio	R_2	R_2

Problem 2: Maximization of Chosen Components

- ▶ find maximal valid subset of configuration $c_1, ..., c_n$ partial maxSAT
- lacktriangle possibly with priorities p_i for component c_i weighted partial maxSAT

$$\varphi_{\text{car}} \wedge \underbrace{(x_{c_1}, p_1) \wedge \cdots \wedge (x_{c_n}, p_n)}_{\text{soft clauses}}$$

Problem 2: Maximization of Chosen Components

- ▶ find maximal valid subset of configuration $c_1, ..., c_n$ partial maxSAT
- ightharpoonup possibly with priorities p_i for component c_i weighted partial maxSAT

$$\underbrace{\varphi_{\mathsf{car}}}_{\mathsf{hard \ clauses}} \land \underbrace{\left(\mathsf{x}_{\mathit{c}_{1}}, p_{1}\right) \land \dots \land \left(\mathsf{x}_{\mathit{c}_{n}}, p_{n}\right)}_{\mathsf{soft \ clauses}}$$

Problem 3: Minimization of Costs

lacktriangleright given cost q_i for each component c_i , find cheapest valid configuration weighted partial maxSAT encoding

$$\varphi_{\mathsf{car}} \wedge \underbrace{(c_1, -q_1) \wedge \dots \wedge (c_n, -q_n)}_{\mathsf{soft clauses}}$$

Problem 2: Maximization of Chosen Components

- ▶ find maximal valid subset of configuration $c_1, ..., c_n$ partial maxSAT
- ightharpoonup possibly with priorities p_i for component c_i weighted partial maxSAT

$$\underbrace{\varphi_{\mathsf{car}}}_{\mathsf{hard \ clauses}} \land \underbrace{\left(\mathsf{x}_{\mathit{c}_{1}}, p_{1}\right) \land \dots \land \left(\mathsf{x}_{\mathit{c}_{n}}, p_{n}\right)}_{\mathsf{soft \ clauses}}$$

Problem 3: Minimization of Costs

lacktriangleright given cost q_i for each component c_i , find cheapest valid configuration weighted partial maxSAT encoding

$$\varphi_{\mathsf{car}} \wedge \underbrace{(c_1, -q_1) \wedge \cdots \wedge (c_n, -q_n)}_{\mathsf{soft clauses}}$$

Result

collaboration with BMW: evaluated on configuration formulas of 2013 product line

Algorithms for Maximum

Satisfiability

Idea

 $\qquad \qquad \text{gets list of clauses } \varphi \text{ as input return } \min \text{UNSAT}(\varphi)$

Idea

- $\qquad \qquad \text{gets list of clauses } \varphi \text{ as input return } \min \text{UNSAT}(\varphi)$
- explores assignments in depth-first search

Idea

- lacktriangle gets list of clauses φ as input return minUNSAT (φ)
- explores assignments in depth-first search

Ingredients

▶ UB is minimal number of unsatisfied clauses found so far (best solution)

Idea

- gets list of clauses φ as input return minUNSAT (φ)
- explores assignments in depth-first search

Ingredients

- ▶ UB is minimal number of unsatisfied clauses found so far (best solution)
- \triangleright φ_{x} is formula φ with all occurrences of x replaced by T
- $ightharpoonup \varphi_{\overline{x}}$ is formula φ with all occurrences of x replaced by F

Idea

- gets list of clauses φ as input return minUNSAT (φ)
- explores assignments in depth-first search

Ingredients

- ▶ UB is minimal number of unsatisfied clauses found so far (best solution)
- \triangleright φ_x is formula φ with all occurrences of x replaced by T
- $ightharpoonup \varphi_{\overline{x}}$ is formula φ with all occurrences of x replaced by F
- for list of clauses φ , function $simp(\varphi)$
 - ightharpoonup replace $\neg T$ by F and $\neg F$ by T
 - drops all clauses which contain T
 - removes F from all remaining clauses

Idea

- lacktriangle gets list of clauses φ as input return minUNSAT (φ)
- explores assignments in depth-first search

Ingredients

- ▶ UB is minimal number of unsatisfied clauses found so far (best solution)
- $ightharpoonup \varphi_x$ is formula φ with all occurrences of x replaced by T
- $ightharpoonup arphi_{\overline{x}}$ is formula arphi with all occurrences of x replaced by F
- for list of clauses φ , function $simp(\varphi)$
 - ▶ replace ¬T by F and ¬F by T
 - drops all clauses which contain T
 - removes F from all remaining clauses

$$\varphi = y \vee \neg F, \qquad x \vee y \vee F, \qquad F, \qquad x \vee \neg y \vee T, \qquad x \vee \neg z$$

$$\mathrm{simp}(\varphi) = \qquad \qquad x \vee y, \qquad \qquad \Box, \qquad \qquad x \vee \neg z$$

Idea

- lacktriangle gets list of clauses φ as input return minUNSAT (φ)
- explores assignments in depth-first search

Ingredients

- ▶ UB is minimal number of unsatisfied clauses found so far (best solution)
- $\triangleright \quad \varphi_x$ is formula φ with all occurrences of x replaced by T
- $ightharpoonup arphi_{\overline{X}}$ is formula arphi with all occurrences of x replaced by F
- for list of clauses φ , function $simp(\varphi)$
 - ightharpoonup replace $\neg T$ by F and $\neg F$ by T
 - drops all clauses which contain T
 - removes F from all remaining clauses
- ightharpoonup denotes empty clause and $\# ext{empty}(\varphi)$ number of empty clauses in φ

$$\varphi = y \vee \neg F, \qquad x \vee y \vee F, \qquad F, \qquad x \vee \neg y \vee T, \qquad x \vee \neg z$$

$$\mathrm{simp}(\varphi) = \qquad \qquad x \vee y, \qquad \qquad \Box, \qquad \qquad x \vee \neg z$$

```
function \operatorname{BnB}(\varphi, \operatorname{UB})
\varphi = \operatorname{simp}(\varphi)
if \varphi contains only empty clauses then return \#\operatorname{empty}(\varphi)
if \#\operatorname{empty}(\varphi) \geqslant \operatorname{UB} then return \operatorname{UB}
\mathbf{x} = \operatorname{selectVariable}(\varphi)
\operatorname{UB} := \min(\operatorname{UB}, \operatorname{BnB}(\varphi_{\mathbf{x}}, \operatorname{UB}))
return \min(\operatorname{UB}, \operatorname{BnB}(\varphi_{\overline{\mathbf{x}}}, \operatorname{UB}))
```

```
function \operatorname{BnB}(\varphi, \operatorname{UB})
\varphi = \operatorname{simp}(\varphi)
if \varphi contains only empty clauses then return \#\operatorname{empty}(\varphi)
if \#\operatorname{empty}(\varphi) \geqslant \operatorname{UB} then return \operatorname{UB}
\mathbf{x} = \operatorname{selectVariable}(\varphi)
\operatorname{UB} := \min(\operatorname{UB}, \operatorname{BnB}(\varphi_{\mathbf{x}}, \operatorname{UB}))
\operatorname{return} \min(\operatorname{UB}, \operatorname{BnB}(\varphi_{\mathbf{x}}, \operatorname{UB}))
```

lacktriangle number of clauses falsified by any valuation is $\leqslant |arphi|$

```
function \operatorname{BnB}(\varphi, \operatorname{UB})
\varphi = \operatorname{simp}(\varphi)
if \varphi contains only empty clauses then return \#\operatorname{empty}(\varphi)
if \#\operatorname{empty}(\varphi) \geqslant \operatorname{UB} then return \operatorname{UB}
x = \operatorname{selectVariable}(\varphi)
\operatorname{UB} := \min(\operatorname{UB}, \operatorname{BnB}(\varphi_x, \operatorname{UB}))
return \min(\operatorname{UB}, \operatorname{BnB}(\varphi_{\overline{x}}, \operatorname{UB}))
```

- lacktriangleright number of clauses falsified by any valuation is $\leqslant |\varphi|$
- ▶ start by calling BnB(φ , $|\varphi|$)

```
function \operatorname{BnB}(\varphi, \operatorname{UB})
\varphi = \operatorname{simp}(\varphi)
if \varphi contains only empty clauses then return \#\operatorname{empty}(\varphi)
if \#\operatorname{empty}(\varphi) \geqslant \operatorname{UB} then return \operatorname{UB}
\mathbf{x} = \operatorname{selectVariable}(\varphi)
\operatorname{UB} := \min(\operatorname{UB}, \operatorname{BnB}(\varphi_{\mathbf{x}}, \operatorname{UB}))
return \min(\operatorname{UB}, \operatorname{BnB}(\varphi_{\overline{\mathbf{x}}}, \operatorname{UB}))
```

- lacktriangleright number of clauses falsified by any valuation is $\leqslant |\varphi|$
- ▶ start by calling BnB(φ , $|\varphi|$)
- ightharpoonup idea: $\# ext{empty}(\varphi)$ is number of clauses falsified by current valuation

- ▶ call BnB(φ , 6)

- ightharpoonup call BnB(φ , 6)
- ightharpoonup $ext{simp}(arphi) = arphi$

 $\mathtt{BnB}(arphi,6)$

- ▶ call BnB(φ , 6)
- $\blacktriangleright \quad \text{simp}(\varphi) = \varphi$

- ightharpoonup call BnB(φ , 6)
- $\blacktriangleright \quad \text{simp}(\varphi) = \varphi$

- $\qquad \qquad \varphi = x, \ \neg x \lor y, \ z \lor \neg y, \ x \lor z, \ x \lor y, \ \neg y$
- ightharpoonup call BnB(φ , 6)
- $\blacktriangleright \quad \text{simp}(\varphi) = \varphi$

- $\qquad \qquad \varphi = x, \ \neg x \lor y, \ z \lor \neg y, \ x \lor z, \ x \lor y, \ \neg y$
- \triangleright call BnB(φ , 6)
- $\blacktriangleright \quad \text{simp}(\varphi) = \varphi$

- \triangleright call BnB(φ , 6)
- $\blacktriangleright \quad \text{simp}(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \, \neg \mathsf{T} \vee y, \, z \vee \neg y, \, \mathsf{T} \vee z, \, \mathsf{T} \vee y, \, \neg y \\ \operatorname{simp}(\varphi_x) = y, \, z \vee \neg y, \, \neg y$

- ▶ call BnB(φ , 6)
- $\blacktriangleright \quad \text{simp}(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \, \neg \mathsf{T} \vee y, \, z \vee \neg y, \, \mathsf{T} \vee z, \, \mathsf{T} \vee y, \, \neg y \\ \operatorname{simp}(\varphi_x) = y, \, z \vee \neg y, \, \neg y$

- ightharpoonup call BnB(φ , 6)
- $\blacktriangleright \quad \text{simp}(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \, \neg \mathsf{T} \vee y, \, z \vee \neg y, \, \mathsf{T} \vee z, \, \mathsf{T} \vee y, \, \neg y \\ \operatorname{simp}(\varphi_x) = y, \, z \vee \neg y, \, \neg y$

- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- ▶ call BnB(φ , 6)
- $\blacktriangleright \quad \text{simp}(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\mathsf{simp}(\varphi_x) = y, \ z \lor \neg y, \ \neg y$

- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- $\blacktriangleright \quad \text{simp}(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\mathsf{simp}(\varphi_x) = y, \ z \lor \neg y, \ \neg y$

- $\qquad \qquad \varphi = x, \ \neg x \lor y, \ z \lor \neg y, \ x \lor z, \ x \lor y, \ \neg y$
- \triangleright call BnB(φ , 6)
- $\blacktriangleright \quad \text{simp}(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\mathsf{simp}(\varphi_x) = y, \ z \lor \neg y, \ \neg y$
- $\varphi_{xy} = \mathsf{T}, \ z \vee \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$

- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- $\blacktriangleright \quad \text{simp}(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \, \neg \mathsf{T} \vee y, \, z \vee \neg y, \, \mathsf{T} \vee z, \, \mathsf{T} \vee y, \, \neg y \\ \operatorname{simp}(\varphi_x) = y, \, z \vee \neg y, \, \neg y$
- $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$

- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- $\blacktriangleright \quad \text{simp}(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \, \neg \mathsf{T} \vee y, \, z \vee \neg y, \, \mathsf{T} \vee z, \, \mathsf{T} \vee y, \, \neg y \\ \operatorname{simp}(\varphi_x) = y, \, z \vee \neg y, \, \neg y$
- $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$

- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- $\blacktriangleright \quad \text{simp}(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\operatorname{simp}(\varphi_x) = y, \ z \lor \neg y, \ \neg y$
- $\varphi_{xy} = \mathsf{T}, \ z \vee \neg \mathsf{T}, \ \neg T$ $\operatorname{simp}(\varphi_{xy}) = z, \square$
- $ightharpoonup \varphi_{xyz} = \mathsf{T}, \ \Box$

- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- ightharpoonup call BnB(φ , 6)
- $ightharpoonup simp(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\operatorname{simp}(\varphi_x) = y, \ z \lor \neg y, \ \neg y$
- $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$
- $\varphi_{xyz} \equiv \mathsf{T}, \square$

- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- $ightharpoonup simp(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\mathsf{simp}(\varphi_x) = y, \ z \lor \neg y, \ \neg y$
- $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$
- $\varphi_{\mathsf{x}\mathsf{y}\mathsf{z}} = \mathsf{T}, \ \Box \\ \mathsf{simp}(\varphi_{\mathsf{x}\mathsf{y}\mathsf{z}}) = \Box$

- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- ightharpoonup simp $(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \, \neg \mathsf{T} \vee y, \, z \vee \neg y, \, \mathsf{T} \vee z, \, \mathsf{T} \vee y, \, \neg y$ $\operatorname{simp}(\varphi_x) = y, \, z \vee \neg y, \, \neg y$
- $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$
- $\varphi_{xyz} = \mathsf{T}, \ \Box$ $\operatorname{simp}(\varphi_{xyz}) = \Box$

- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- $ightharpoonup simp(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\mathsf{simp}(\varphi_x) = y, \ z \lor \neg y, \ \neg y$
- $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$
- $\varphi_{xyz} = \mathsf{T}, \ \Box$ $\mathsf{simp}(\varphi_{xyz}) = \Box$
- $ightharpoonup \varphi_{xy\overline{z}} = \mathsf{F}, \ \Box$

- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- ightharpoonup simp $(\varphi) = \varphi$
- $\qquad \varphi_{\mathsf{x}} = \mathsf{T}, \, \neg \mathsf{T} \vee \mathsf{y}, \, \mathsf{z} \vee \neg \mathsf{y}, \, \mathsf{T} \vee \mathsf{z}, \, \mathsf{T} \vee \mathsf{y}, \, \neg \mathsf{y}$
- $simp(\varphi_x) = y, \ z \lor \neg y, \ \neg y$ $\blacktriangleright \ \varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$
- $\varphi_{xy} = 1, 2 \vee \neg 1, \neg 7$ $\operatorname{simp}(\varphi_{xy}) = z, \square$
- $\varphi_{xyz} = \mathsf{T}, \ \Box$ $\mathsf{simp}(\varphi_{xyz}) = \Box$
- $ightharpoonup \varphi_{xy\overline{z}} = \mathsf{F}, \ \Box$

- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- ightharpoonup simp $(\varphi) = \varphi$
- $\qquad \qquad \varphi_x = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$
- $\text{simp}(\varphi_{\scriptscriptstyle X}) = y, \; z \vee \neg y, \; \neg y$
- $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$
- $\varphi_{xyz} = \mathsf{T}, \ \Box$ $\mathsf{simp}(\varphi_{xvz}) = \Box$
- $\varphi_{xy\overline{z}} = \mathsf{F}, \ \Box$ $\mathsf{simp}(\varphi_{xv\overline{z}}) = \Box, \ \Box$

- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- ightharpoonup simp $(\varphi) = \varphi$
- $\qquad \varphi_{x} = T, \neg T \lor y, \ z \lor \neg y, \ T \lor z, \ T \lor y, \ \neg y$
- $\text{simp}(\varphi_{\scriptscriptstyle X}) = y, \ z \vee \neg y, \ \neg y$
- $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$
- $\varphi_{xyz} = \mathsf{T}, \ \Box$ $\operatorname{simp}(\varphi_{xyz}) = \Box$
- $\varphi_{xy\overline{z}} = \mathsf{F}, \ \square \\
 \operatorname{simp}(\varphi_{xv\overline{z}}) = \square, \ \square$

- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- ightharpoonup simp $(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \, \neg \mathsf{T} \vee y, \, z \vee \neg y, \, \mathsf{T} \vee z, \, \mathsf{T} \vee y, \, \neg y$ $\operatorname{simp}(\varphi_x) = y, \, z \vee \neg y, \, \neg y$
- $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$
- $\varphi_{xyz} = \mathsf{T}, \ \Box$ $\operatorname{simp}(\varphi_{xyz}) = \Box$
- $\varphi_{xy\overline{z}} = \mathsf{F}, \ \Box$ $\operatorname{simp}(\varphi_{xv\overline{z}}) = \Box, \ \Box$

- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- ightharpoonup simp $(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \, \neg \mathsf{T} \vee y, \, z \vee \neg y, \, \mathsf{T} \vee z, \, \mathsf{T} \vee y, \, \neg y$ $\mathsf{simp}(\varphi_x) = y, \, z \vee \neg y, \, \neg y$
- $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$
- extstyle ext
- $\varphi_{xy\overline{z}} = F, \square$ $\operatorname{simp}(\varphi_{xy\overline{z}}) = \square, \square$

- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- ightharpoonup simp $(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\mathsf{simp}(\varphi_x) = y, \ z \lor \neg y, \ \neg y$
- $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$
- $\varphi_{xy} = 1, 2 \vee \neg 1, \neg 7$ $\operatorname{simp}(\varphi_{xy}) = z, \square$
- $\varphi_{xyz} = \mathsf{T}, \ \Box$ $\mathsf{simp}(\varphi_{xyz}) = \Box$
- $\text{simp}(\varphi_{\textit{xy}\overline{\textit{z}}}) = \square, \ \square$

- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- ightharpoonup simp $(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\mathsf{simp}(\varphi_x) = y, \ z \lor \neg y, \ \neg y$
- $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$
- $\varphi_{xyz} = \mathsf{T}, \ \Box$ $\operatorname{simp}(\varphi_{xyz}) = \Box$
- $\operatorname{simp}(\varphi_{xy\overline{z}}) = \square, \square$
- $\varphi_{x\overline{y}} = \mathsf{F}, \ z \lor \neg \mathsf{F}, \ \neg \mathsf{F}$ $\mathsf{simp}(\varphi_{x\overline{y}}) = \square$

- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- ightharpoonup simp $(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \, \neg \mathsf{T} \vee y, \, z \vee \neg y, \, \mathsf{T} \vee z, \, \mathsf{T} \vee y, \, \neg y$ $\mathsf{simp}(\varphi_x) = y, \, z \vee \neg y, \, \neg y$
- $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$
- $\varphi_{xyz} = \mathsf{T}, \ \Box$ $\operatorname{simp}(\varphi_{xyz}) = \Box$
- $\varphi_{xy\overline{z}} = F, \square$ $\operatorname{simp}(\varphi_{xy\overline{z}}) = \square, \square$
- $\varphi_{x\overline{y}} = \mathsf{F}, \ z \vee \neg \mathsf{F}, \ \neg \mathsf{F}$ $\operatorname{simp}(\varphi_{x\overline{y}}) = \square$

- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- ightharpoonup simp $(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\mathsf{simp}(\varphi_x) = y, \ z \lor \neg y, \ \neg y$
- $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$
- $\varphi_{xyz} = \mathsf{T}, \ \Box$ $\mathsf{simp}(\varphi_{xyz}) = \Box$
- $\operatorname{simp}(\varphi_{xy\overline{z}}) = \square, \square$
- $\varphi_{x\overline{y}} = \mathsf{F}, \ z \lor \neg \mathsf{F}, \ \neg \mathsf{F}$ $\mathsf{simp}(\varphi_{x\overline{y}}) = \square$

 $BnB(\varphi_{xyz}, 6) = 1$ $BnB(\varphi_{xy\overline{z}}, 1) = 2$

- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- \triangleright simp $(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \ \neg \mathsf{T} \lor \mathsf{y}, \ \mathsf{z} \lor \neg \mathsf{y}, \ \mathsf{T} \lor \mathsf{z}, \ \mathsf{T} \lor \mathsf{y}, \ \neg \mathsf{y}$ $simp(\varphi_x) = v, z \vee \neg v, \neg v$
- $\varphi_{xy} = \mathsf{T}, \ z \vee \neg \mathsf{T}, \ \neg T$ $simp(\varphi_{xv}) = z, \square$
- $ightharpoonup \varphi_{xvz} = \mathsf{T}, \ \Box$ $simp(\varphi_{xvz}) = \square$
- $\triangleright \quad \varphi_{xy\overline{z}} = \mathsf{F}, \ \square$ $simp(\varphi_{xv\bar{z}}) = \square, \square$
- $\Phi_{x\overline{y}} = F, z \vee \neg F, \neg F$ $simp(\varphi_{x\overline{v}}) = \square$

- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- \triangleright simp $(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \ \neg \mathsf{T} \lor \mathsf{y}, \ \mathsf{z} \lor \neg \mathsf{y}, \ \mathsf{T} \lor \mathsf{z}, \ \mathsf{T} \lor \mathsf{y}, \ \neg \mathsf{y}$ $simp(\varphi_x) = v, z \vee \neg v, \neg v$
- $\varphi_{xy} = \mathsf{T}, \ z \vee \neg \mathsf{T}, \ \neg T$ $simp(\varphi_{xv}) = z, \square$
- $ightharpoonup \varphi_{xvz} = \mathsf{T}, \ \Box$ $simp(\varphi_{xvz}) = \square$
- $\triangleright \quad \varphi_{xy\overline{z}} = \mathsf{F}, \ \square$ $simp(\varphi_{xv\overline{z}}) = \square, \square$
- $\Phi_{x\overline{y}} = F, z \vee \neg F, \neg F$ $simp(\varphi_{x\overline{v}}) = \square$

- $\varphi = X, \neg X \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- ightharpoonup simp $(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\mathsf{simp}(\varphi_x) = y, \ z \lor \neg y, \ \neg y$
- $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T \\ \mathsf{simp}(\varphi_{xy}) = z, \square$
- $\varphi_{xyz} = \mathsf{T}, \ \Box$ $\operatorname{simp}(\varphi_{xyz}) = \Box$
- $\varphi_{xy\overline{z}} = \mathsf{F}, \ \Box$ $\mathsf{simp}(\varphi_{xy\overline{z}}) = \Box, \ \Box$
- $\varphi_{x\overline{y}} = \mathsf{F}, \ z \vee \neg \mathsf{F}, \ \neg \mathsf{F}$ $\operatorname{simp}(\varphi_{x\overline{y}}) = \square$
- $\varphi_{\overline{x}} = \mathsf{F}, \ \neg \mathsf{F} \lor y, \ z \lor \neg y, \ \mathsf{F} \lor z, \ \mathsf{F} \lor y, \ \neg y \\ \mathsf{simp}(\varphi_{x}) = \Box, \ z \lor \neg y, \ z, \ y, \ \neg y \\ \downarrow \mathsf{Simp}(\varphi_{xy}) = \Box$

$$BnB(\varphi_{xvz}, 6) = 1$$
 $BnB(\varphi_{xv\overline{z}}, 1) = 2$

- $\varphi = X, \neg X \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- $ightharpoonup ext{simp}(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \, \neg \mathsf{T} \vee y, \, z \vee \neg y, \, \mathsf{T} \vee z, \, \mathsf{T} \vee y, \, \neg y$ $\mathsf{simp}(\varphi_x) = y, \, z \vee \neg y, \, \neg y$
- $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$
- $\varphi_{xyz} = \mathsf{T}, \ \Box \\ \mathsf{simp}(\varphi_{xyz}) = \Box$
- $\varphi_{xy\overline{z}} = \mathsf{F}, \ \Box$ $\mathsf{simp}(\varphi_{xy\overline{z}}) = \Box, \ \Box$
- $\varphi_{x\overline{y}} = \mathsf{F}, \ z \lor \neg \mathsf{F}, \ \neg \mathsf{F}$ $\mathsf{simp}(\varphi_{x\overline{y}}) = \square$

- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- \triangleright simp $(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \ \neg \mathsf{T} \lor \mathsf{y}, \ \mathsf{z} \lor \neg \mathsf{y}, \ \mathsf{T} \lor \mathsf{z}, \ \mathsf{T} \lor \mathsf{y}, \ \neg \mathsf{y}$ $simp(\varphi_x) = v, z \vee \neg v, \neg v$
- $\varphi_{xy} = \mathsf{T}, \ z \vee \neg \mathsf{T}, \ \neg T$ $simp(\varphi_{xv}) = z, \square$
- $ightharpoonup \varphi_{xvz} = \mathsf{T}, \ \Box$ $simp(\varphi_{xvz}) = \square$
- $\triangleright \quad \varphi_{xy\overline{z}} = \mathsf{F}, \ \square$ $simp(\varphi_{xv\bar{z}}) = \square, \square$
- $\Phi_{x\overline{y}} = F, z \vee \neg F, \neg F$
 - $simp(\varphi_{x\overline{v}}) = \square$
- $\qquad \qquad \varphi_{\overline{x}} = \mathsf{F}, \ \neg \mathsf{F} \lor y, \ z \lor \neg y, \ \mathsf{F} \lor z, \ \mathsf{F} \lor y, \ \neg y \\ \\ \frac{\mathsf{BnB}(\varphi_{\mathsf{x}\overline{y}}, 3)}{\mathsf{BnB}(\varphi_{\mathsf{x}\overline{y}}, 3)} = 1 \quad \\ \frac{\mathsf{BnB}(\varphi_{\mathsf{x}\overline{y}}, 1)}{\mathsf{BnB}(\varphi_{\mathsf{x}\overline{y}}, 3)} = 1 \quad \\ \frac{\mathsf{BnB}(\varphi_{\mathsf{x}\overline{y}}, 3)}{\mathsf{BnB}(\varphi_{\mathsf{x}\overline{y}}, 3)} = 1 \quad \\ \frac{\mathsf{BnB}(\varphi_{\mathsf{x}\overline{y}}, 3)}{\mathsf{BnB}(\varphi_{\mathsf{x}\overline{$ $simp(\varphi_x) = \square, z \vee \neg y, z, y, \neg y$

 $1 \geqslant 6$

- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- ightharpoonup simp(arphi)=arphi
- $\varphi_x = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\mathsf{simp}(\varphi_x) = y, \ z \lor \neg y, \ \neg y$
- $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$
- $\varphi_{xyz} = \mathsf{T}, \ \Box$ $\operatorname{simp}(\varphi_{xyz}) = \Box$
- $\text{simp}(\varphi_{\mathsf{x}\mathsf{y}\overline{\mathsf{z}}}) = \square, \ \square$
- $\varphi_{x\overline{y}} = \mathsf{F}, \ z \lor \neg \mathsf{F}, \ \neg \mathsf{F}$ $\mathsf{simp}(\varphi_{x\overline{y}}) = \square$

 $1 \geqslant 6$

- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- ightharpoonup simp $(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\mathsf{simp}(\varphi_x) = y, \ z \lor \neg y, \ \neg y$
- $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$
- $\varphi_{\mathsf{x}\mathsf{y}\mathsf{z}} = \mathsf{T}, \ \Box \\ \mathsf{simp}(\varphi_{\mathsf{x}\mathsf{y}\mathsf{z}}) = \Box$
- $\varphi_{xy\overline{z}} = \mathsf{F}, \ \Box$ $\mathsf{simp}(\varphi_{xy\overline{z}}) = \Box, \ \Box$
- $\varphi_{x\overline{y}} = \mathsf{F}, \ z \lor \neg \mathsf{F}, \ \neg \mathsf{F}$ $\mathsf{simp}(\varphi_{x\overline{y}}) = \square$
- ightharpoonup minUNSAT $(\varphi)=1$, maxSAT $(\varphi)=5$

Z

 $1 \geqslant 6$

 $BnB(\varphi_{xvz}, 6) = 1$ $BnB(\varphi_{xv\overline{z}}, 1) = 2$

- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- ▶ call BnB(φ , 6)
- ightharpoonup simp $(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\mathsf{simp}(\varphi_x) = y, \ z \lor \neg y, \ \neg y$
- $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$
- $\varphi_{xyz} = \mathsf{T}, \ \Box$ $\mathsf{simp}(\varphi_{xyz}) = \Box$
- $\varphi_{xy\overline{z}} = \mathsf{F}, \ \Box$ $\mathsf{simp}(\varphi_{xy\overline{z}}) = \Box, \ \Box$
- $\varphi_{x\overline{y}} = F, \ z \lor \neg F, \ \neg F$ $\operatorname{simp}(\varphi_{x\overline{y}}) = \square$
- $simp(\varphi_x) = \square, \ z \lor \neg y, \ z, \ y, \ \neg y$
- $\qquad \mathsf{minUNSAT}(\varphi) = 1, \ \mathsf{maxSAT}(\varphi) = 5$
- $V(x) = V(y) = V(z) = \mathsf{T}$

 $1 \geqslant 6$

 $BnB(\varphi_{xyz}, 6) = 1$ $BnB(\varphi_{xy\overline{z}}, 1) = 2$

```
function BnB'(\varphi, UB)
\varphi = \text{simp}(\varphi)
if \varphi contains only empty clauses then return \#\text{empty}(\varphi)
LB = \#\text{empty}(\varphi) + \text{underapproximate}(\varphi)
if LB \geqslant UB then return UB
x = \text{selectVariable}(\varphi)
UB = \min(UB, BnB'(\varphi_x, UB))
return \min(UB, BnB'(\varphi_x, UB))
```

```
function BnB'(\varphi, UB)
\varphi = \text{simp}(\varphi)
if \varphi contains only empty clauses then return \#\text{empty}(\varphi)
LB = \#\text{empty}(\varphi) + \text{underapproximate}(\varphi)
if LB \geqslant UB then return UB
x = \text{selectVariable}(\varphi)
UB = \min(UB, BnB'(\varphi_x, UB))
return \min(UB, BnB'(\varphi_{\overline{x}}, UB))
```

Underapproximation (Wallace and Freuder)

ightharpoonup ic(x) is number of unit clauses x in φ

inconsistency count

```
function BnB'(\varphi, UB)
\varphi = \operatorname{simp}(\varphi)
if \varphi contains only empty clauses then return \#\operatorname{empty}(\varphi)
\operatorname{LB} = \#\operatorname{empty}(\varphi) + \operatorname{underapproximate}(\varphi)
if \operatorname{LB} \geqslant \operatorname{UB} then return \operatorname{UB}
\mathsf{x} = \operatorname{selectVariable}(\varphi)
\operatorname{UB} = \min(\operatorname{UB}, \operatorname{BnB}'(\varphi_\mathsf{x}, \operatorname{UB}))
return \min(\operatorname{UB}, \operatorname{BnB}'(\varphi_{\overline{\mathsf{x}}}, \operatorname{UB}))
```

Underapproximation (Wallace and Freuder)

- ightharpoonup ic(x) is number of unit clauses x in φ
- $underapproximate(\varphi) = \sum_{x \text{ in } \varphi} min(ic(x), ic(\neg x))$

inconsistency count

```
function BnB'(\varphi, UB)
\varphi = \operatorname{simp}(\varphi)
if \varphi contains only empty clauses then return \#\operatorname{empty}(\varphi)
LB = \#\operatorname{empty}(\varphi) + underapproximate(\varphi)
if LB \geqslant UB then return UB
\mathbf{x} = \operatorname{selectVariable}(\varphi)
UB = \min(\operatorname{UB}, \operatorname{BnB}'(\varphi_{\mathbf{x}}, \operatorname{UB}))
return \min(\operatorname{UB}, \operatorname{BnB}'(\varphi_{\overline{\mathbf{x}}}, \operatorname{UB}))
```

Underapproximation (Wallace and Freuder)

- ightharpoonup ic(x) is number of unit clauses x in φ
- underapproximate(φ) = $\sum_{x \text{ in } \varphi} \min(\text{ic}(x), \text{ic}(\neg x))$

Theorem

$$\mathtt{BnB}(arphi,|arphi|)=\mathtt{BnB'}(arphi,|arphi|)=\mathsf{minUNSAT}(arphi)$$

inconsistency count

Binary Search

Idea

• gets list of clauses φ as input and returns minUNSAT(φ)

Binary Search

Idea

- lacktriangle gets list of clauses φ as input and returns minUNSAT (φ)
- repeatedly call SAT solver in binary search fashion

Binary Search

Idea

- $lackbox{ gets list of clauses } \varphi$ as input and returns $\min \mathsf{UNSAT}(\varphi)$
- repeatedly call SAT solver in binary search fashion

Example

Suppose given formula with 18 clauses. Can we satisfy ...

Definitions

▶ cardinality constraint has form $\sum_{x \in X} x \bowtie N$ where \bowtie is =, <, >, \leqslant , or \geqslant , X is set of propositional variables and $N \in \mathbb{N}$

Definitions

▶ cardinality constraint has form $\sum_{x \in X} x \bowtie N$ where \bowtie is =, <, >, \leqslant , or \geqslant , X is set of propositional variables and $N \in \mathbb{N}$

- ► x + y + z = 1
- ▶ $x_1 + x_2 + \cdots + x_8 \leq 3$

Definitions

- ▶ cardinality constraint has form $\sum_{x \in X} x \bowtie N$ where \bowtie is =, <, >, \leqslant , or \geqslant , X is set of propositional variables and $N \in \mathbb{N}$
- ▶ valuation v satisfies $\sum_{x \in X} x \bowtie N$ iff $k \bowtie N$ where k is number of variables $x \in X$ such that v(x) = T

- \blacktriangleright x + y + z = 1 satisfied by $v(x) = v(y) = \mathsf{F}, \ v(z) = \mathsf{T}$
- $x_1 + x_2 + \cdots + x_8 \leqslant 3$ satisfied by $v(x_1) = \cdots = v(x_8) = \mathsf{F}$

Definitions

- ▶ cardinality constraint has form $\sum_{x \in X} x \bowtie N$ where \bowtie is =, <, >, \leqslant , or \geqslant , X is set of propositional variables and $N \in \mathbb{N}$
- ▶ valuation v satisfies $\sum_{x \in X} x \bowtie N$ iff $k \bowtie N$ where k is number of variables $x \in X$ such that v(x) = T

Remarks

cardinality constraints are expressible in CNF

- \blacktriangleright x + y + z = 1 satisfied by $v(x) = v(y) = \mathsf{F}, \ v(z) = \mathsf{T}$
- $x_1 + x_2 + \cdots + x_8 \le 3$ satisfied by $v(x_1) = \cdots = v(x_8) = F$

Definitions

- ▶ cardinality constraint has form $\sum_{x \in X} x \bowtie N$ where \bowtie is =, <, >, \leqslant , or \geqslant , X is set of propositional variables and $N \in \mathbb{N}$
- ▶ valuation v satisfies $\sum_{x \in X} x \bowtie N$ iff $k \bowtie N$ where k is number of variables $x \in X$ such that v(x) = T

Remarks

- cardinality constraints are expressible in CNF
 - enumerate all possible subsets

 $\mathcal{O}(2^{|X|})$

- \blacktriangleright x+y+z=1 satisfied by $v(x)=v(y)=\mathsf{F},\ v(z)=\mathsf{T}$
- $x_1 + x_2 + \cdots + x_8 \le 3$ satisfied by $v(x_1) = \cdots = v(x_8) = F$

Definitions

- ▶ cardinality constraint has form $\sum_{x \in X} x \bowtie N$ where \bowtie is =, <, >, \leqslant , or \geqslant , X is set of propositional variables and $N \in \mathbb{N}$
- ▶ valuation v satisfies $\sum_{x \in X} x \bowtie N$ iff $k \bowtie N$ where k is number of variables $x \in X$ such that v(x) = T

Remarks

- cardinality constraints are expressible in CNF
 - enumerate all possible subsets
 - ▶ BDDs

 $\mathcal{O}(2^{|X|})$

 $\mathcal{O}(N \cdot |X|)$

O(I)

- \triangleright x + y + z = 1 satisfied by $v(x) = v(y) = \mathsf{F}, \ v(z) = \mathsf{T}$
- $x_1 + x_2 + \cdots + x_8 \leqslant 3$ satisfied by $v(x_1) = \cdots = v(x_8) = F$

Definitions

- ▶ cardinality constraint has form $\sum_{x \in X} x \bowtie N$ where \bowtie is =, <, >, \leqslant , or \geqslant , X is set of propositional variables and $N \in \mathbb{N}$
- ▶ valuation v satisfies $\sum_{x \in X} x \bowtie N$ iff $k \bowtie N$ where k is number of variables $x \in X$ such that v(x) = T

Remarks

- cardinality constraints are expressible in CNF
 - enumerate all possible subsets
 - BDDs
 - sorting networks

- $\mathcal{O}(2^{|X|})$
- $\mathcal{O}(N \cdot |X|)$
- $\mathcal{O}(|X| \cdot \log^2(|X|))$

- \blacktriangleright x + y + z = 1 satisfied by $v(x) = v(y) = \mathsf{F}, \ v(z) = \mathsf{T}$
- $x_1 + x_2 + \cdots + x_8 \le 3$ satisfied by $v(x_1) = \cdots = v(x_8) = F$

Definitions

- ▶ cardinality constraint has form $\sum_{x \in X} x \bowtie N$ where \bowtie is =, <, >, \leqslant , or \geqslant , X is set of propositional variables and $N \in \mathbb{N}$
- ▶ valuation v satisfies $\sum_{x \in X} x \bowtie N$ iff $k \bowtie N$ where k is number of variables $x \in X$ such that v(x) = T

Remarks

- cardinality constraints are expressible in CNF
 - enumerate all possible subsets
 - ▶ BDDs
 - sorting networks
 - Soliting networks
- write $CNF(\sum_{x \in X} x \bowtie N)$ for CNF encoding

Example

- \blacktriangleright x+y+z=1 satisfied by $v(x)=v(y)=\mathsf{F},\ v(z)=\mathsf{T}$
- $x_1 + x_2 + \cdots + x_8 \le 3$ satisfied by $v(x_1) = \cdots = v(x_8) = F$

 $\mathcal{O}(2^{|X|})$

 $\mathcal{O}(N \cdot |X|)$

 $\mathcal{O}(|X| \cdot \log^2(|X|))$

Definitions

- ▶ cardinality constraint has form $\sum_{x \in X} x \bowtie N$ where \bowtie is =, <, >, \leqslant , or \geqslant , X is set of propositional variables and $N \in \mathbb{N}$
- ▶ valuation v satisfies $\sum_{x \in X} x \bowtie N$ iff $k \bowtie N$ where k is number of variables $x \in X$ such that v(x) = T

Remarks

- cardinality constraints are expressible in CNF
 - enumerate all possible subsets
 - ▶ BDDs
 - sorting networks
- write $CNF(\sum_{x \in X} x \bowtie N)$ for CNF encoding
- cardinality constraints occur very frequently! (*n*-queens, Minesweeper, . . .)

Example

- \triangleright x + y + z = 1 satisfied by v(x) = v(y) = F, v(z) = T
- $x_1 + x_2 + \cdots + x_8 \le 3$ satisfied by $v(x_1) = \cdots = v(x_8) = F$

 $\mathcal{O}(2^{|X|})$

 $\mathcal{O}(N \cdot |X|)$

 $\mathcal{O}(|X| \cdot \log^2(|X|))$

```
function BinarySearch(\{C_1, \ldots, C_m\})
  \varphi := \{C_1 \vee b_1, \dots, C_m \vee b_m\}
  return search(\varphi,0,m)
function search(\varphi, L, U)
  if L \geqslant U then
     return U
  mid := |\frac{U+L}{2}|
  if SAT(\varphi \wedge CNF(\sum_{i=1}^{m} b_i \leqslant mid)) then
     return search(\varphi, L, mid)
  else
     return search(\varphi, mid + 1, U)
```

```
function BinarySearch(\{C_1, \ldots, C_m\})
  \varphi := \{C_1 \vee b_1, \ldots, C_m \vee b_m\}
  return search(\varphi,0,m)
                               b_1, \ldots, b_m are fresh variables
function search(\varphi, L, U)
  if L \geqslant U then
     return U
  mid := |\frac{U+L}{2}|
  if SAT(\varphi \wedge CNF(\sum_{i=1}^{m} b_i \leqslant mid)) then
     return search(\varphi, L, mid)
  else
     return search(\varphi, mid + 1, U)
```

```
function BinarySearch(\{C_1, \ldots, C_m\})
  \varphi := \{C_1 \vee b_1, \ldots, C_m \vee b_m\}
  return search(\varphi,0,m)
                               b_1, \ldots, b_m are fresh variables
function search(\varphi, L, U)
  if L \geqslant U then
     return U
  mid := |\frac{U+L}{2}|
  if SAT(\varphi \wedge CNF(\sum_{i=1}^{m} b_i \leqslant mid)) then
     return search(\varphi, L, mid)
  else
     return search(\varphi, mid + 1, U)
```

```
function BinarySearch(\{C_1, \ldots, C_m\})
  \varphi := \{C_1 \vee b_1, \dots, C_m \vee b_m\}
  return search(\varphi,0,m)
                              b_1, \ldots, b_m are fresh variables
function search(\varphi, L, U)
  if L \geqslant U then
     return U
  mid := |\frac{U+L}{2}|
  if SAT(\varphi \wedge CNF(\sum_{i=1}^{m} b_i \leqslant mid)) then
     return search(\varphi, L, mid)
  else
     return search(\varphi, mid + 1, U)
```

```
function BinarySearch(\{C_1, \ldots, C_m\})
  \varphi := \{C_1 \vee b_1, \dots, C_m \vee b_m\}
  return search(\varphi,0,m)
                              b_1, \ldots, b_m are fresh variables
function search(\varphi, L, U)
  if L \geqslant U then
     return U
  mid := |\frac{U+L}{2}|
  if SAT(\varphi \wedge CNF(\sum_{i=1}^{m} b_i \leqslant mid)) then
     return search(\varphi, L, mid)
  else
     return search(\varphi, mid + 1, U)
```

```
function BinarySearch(\{C_1,\ldots,C_m\})
  \varphi := \{C_1 \vee b_1, \dots, C_m \vee b_m\}
  return search(\varphi,0,m)
                              b_1, \ldots, b_m are fresh variables
function search(\varphi, L, U)
  if L \geqslant U then
     return U
  mid := |\frac{U+L}{2}|
  if SAT(\varphi \wedge CNF(\sum_{i=1}^{m} b_i \leqslant mid)) then
     return search(\varphi, L, mid)
  else
     return search(\varphi, mid + 1, U)
```

Theorem

 $BinarySearch(\varphi) = minUNSAT(\varphi)$

$$\begin{split} \varphi &= \{ \ 6 \lor 2 \lor b_1, \quad \overline{6} \lor 2 \lor b_2, \qquad \overline{2} \lor 1 \lor b_3, \quad \overline{1} \lor b_4, \qquad \overline{6} \lor 8 \lor b_5, \\ & 6 \lor \overline{8} \lor b_6, \quad 2 \lor 4 \lor b_7, \qquad \overline{4} \lor 5 \lor b_8, \quad 7 \lor 5 \lor b_9, \quad \overline{7} \lor 5 \lor b_{10}, \\ & \overline{3} \lor b_{11}, \qquad \overline{5} \lor 3 \lor b_{12} \ \} \end{split}$$

$$\begin{split} \varphi &= \{ \ 6 \lor 2 \lor b_1, \quad \overline{6} \lor 2 \lor b_2, \qquad \overline{2} \lor 1 \lor b_3, \quad \overline{1} \lor b_4, \qquad \overline{6} \lor 8 \lor b_5, \\ & 6 \lor \overline{8} \lor b_6, \quad 2 \lor 4 \lor b_7, \qquad \overline{4} \lor 5 \lor b_8, \quad 7 \lor 5 \lor b_9, \quad \overline{7} \lor 5 \lor b_{10}, \\ & \overline{3} \lor b_{11}, \qquad \overline{5} \lor 3 \lor b_{12} \ \} \end{split}$$

▶ L = 0, U = 12, mid = 6 SAT
$$(\varphi \land CNF(\sum_{i=1}^{m} b_i \leqslant 6))$$
?

$$\begin{split} \varphi &= \{ \ 6 \lor 2 \lor b_1, \quad \overline{6} \lor 2 \lor b_2, \qquad \overline{2} \lor 1 \lor b_3, \quad \overline{1} \lor b_4, \qquad \overline{6} \lor 8 \lor b_5, \\ & 6 \lor \overline{8} \lor b_6, \quad 2 \lor 4 \lor b_7, \qquad \overline{4} \lor 5 \lor b_8, \quad 7 \lor 5 \lor b_9, \quad \overline{7} \lor 5 \lor b_{10}, \\ & \overline{3} \lor b_{11}, \qquad \overline{5} \lor 3 \lor b_{12} \ \} \end{split}$$

▶ L = 0, U = 12, mid = 6 SAT
$$(\varphi \land CNF(\sum_{i=1}^{m} b_i \leqslant 6))$$
? ✓

▶ L = 0, U = 6, mid = 3 SAT
$$(\varphi \land CNF(\sum_{i=1}^m b_i \leqslant 3))$$
?

$$\begin{split} \varphi &= \{ \ 6 \lor 2 \lor b_1, \quad \overline{6} \lor 2 \lor b_2, \qquad \overline{2} \lor 1 \lor b_3, \quad \overline{1} \lor b_4, \qquad \overline{6} \lor 8 \lor b_5, \\ & 6 \lor \overline{8} \lor b_6, \quad 2 \lor 4 \lor b_7, \qquad \overline{4} \lor 5 \lor b_8, \quad 7 \lor 5 \lor b_9, \quad \overline{7} \lor 5 \lor b_{10}, \\ & \overline{3} \lor b_{11}, \qquad \overline{5} \lor 3 \lor b_{12} \ \} \end{split}$$

- ▶ L = 0, U = 12, mid = 6 SAT $(\varphi \land CNF(\sum_{i=1}^{m} b_i \leqslant 6))$? ✓
- ▶ L = 0, U = 6, mid = 3 $SAT(\varphi \land CNF(\sum_{i=1}^{m} b_i \leqslant 3))$?
- ▶ L = 0, U = 3, mid = 1 SAT $(\varphi \land CNF(\sum_{i=1}^m b_i \leqslant 1))$?

19

$$\varphi = \{ 6 \lor 2 \lor b_1, \quad \overline{6} \lor 2 \lor b_2, \qquad \overline{2} \lor 1 \lor b_3, \quad \overline{1} \lor b_4, \qquad \overline{6} \lor 8 \lor b_5,$$

$$6 \lor \overline{8} \lor b_6, \quad 2 \lor 4 \lor b_7, \qquad \overline{4} \lor 5 \lor b_8, \quad 7 \lor 5 \lor b_9, \quad \overline{7} \lor 5 \lor b_{10},$$

$$\overline{3} \lor b_{11}, \qquad \overline{5} \lor 3 \lor b_{12} \}$$

▶ L = 0, U = 12, mid = 6 $SAT(\varphi \land CNF(\sum_{i=1}^{m} b_i \leqslant 6))$?
↓ L = 0, U = 6, mid = 3 $SAT(\varphi \land CNF(\sum_{i=1}^{m} b_i \leqslant 3))$?
↓ L = 0, U = 3, mid = 1 $SAT(\varphi \land CNF(\sum_{i=1}^{m} b_i \leqslant 1))$?
↓ L = 2, U = 3, mid = 2 $SAT(\varphi \land CNF(\sum_{i=1}^{m} b_i \leqslant 2))$?
↓ L = 2, U = 2 $SAT(\varphi \land CNF(\sum_{i=1}^{m} b_i \leqslant 2))$?

19

```
from z3 import *
xs = [Bool("x"+str(i)) for i in range (0,10)]
ys = [Bool("y"+str(i)) for i in range (0,10)]
def sum(ps):
 return reduce(lambda s,x: s + If(x, 1, 0), ps, 0)
solver = Solver()
solver.add(sum(xs) == 5, sum(ys) > 3, sum(ys) <= 4)
if solver.check() == sat:
 model = solver.model()
 for i in range(0,10):
   print xs[i], "=", model[xs[i]], ys[i], "=", model[ys[i]]
```

Complexity

Definition

FP^{NP} is class of functions computable in polynomial time with access to NP oracle

Complexity

Definition

 FP^NP is class of functions computable in polynomial time with access to NP oracle

Theorem

maxSAT *is* FP^{NP}-complete

Complexity

Definition

FP^{NP} is class of functions computable in polynomial time with access to NP oracle

Theorem

maxSAT is FP^{NP}-complete

Remarks

- ► FP^{NP} allows polynomial number of oracle calls (which is e.g. SAT solver)
- ▶ other members of FP^{NP} are travelling salesperson and Knapsack

Literature

Rouven Walter, Christoph Zengler and Wolfgang Küchlin.

Applications of MaxSAT in Automotive Configuration.

Proc. International Configuration Workshop 2013, pp. 21-28, 2013.

André Abramé and Djamal Habet.

ahmaxsat: Description and Evaluation of a Branch and Bound Max-SAT Solver. Journal on Satisfiability, Boolean Modeling and Computation 9, pp. 89–128, 2015.

Chu-Min Li and Felip Manyà.

MaxSAT, hard and soft constraints.

In: Handbook of Satisfiability, IOS Press, pp. 613-631, 2009.

Zhaohui Fu and Sharad Malik.

On solving the partial MAX-SAT problem.

In Proc. Theory and Applications of Satisfiability Testing, pp. 252-265, 2006