SAT and SMT Solving

Sarah Winkler
SS 2018

Department of Computer Science
University of Innsbruck

http://cl-informatik.uibk.ac.at/teaching/ss18/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

@ Summary of Last Week
@ Maximum Satisfiability

@ Algorithms for Maximum Satisfiability

Summary of Last Week

Definition (Implication Graph)
For derivation || F =% M || F’ implication graph is constructed as follows:

» add node labelled / for every decision literal [in M
» repeat until there is no change:
if I clause h V... I,V I"in F/ such that there are already nodes If,.
» add node I’ if not yet present
» add edges I — I’ for all 1 < i < m if not yet present
» if I clause /{ V--- VI, in F’ such that there are nodes €, ..., [
» add conflict node labeled C
» add edges I/ = C

/C

ey

Definitions

» cut of implication graph has at least all decision literals on the left, and at
least the conflict node on the right

» literal / in implication graph is unique implication point (UIP) if all paths
from last decision literal to conflict node go through /

Lemma

if edges intersected by cut are h — I, ..., [k — I} then F' =I5/ I¢

Backjump Clauses by Resolution

» set Cp to conflict clause
» let / be last assigned literal such that /¢ is in Gy
» while / is no decision literal:

» (i1 is resolvent of C; and clause D that led to assignment of /
» let / be last assigned literal such that /€ is in Ciiq

Observation

every C; corresponds to cut in implication graph

Definition (DPLL with Learning and Restarts)
DPLL with learning and restarts R extends system B by following three rules:

> learn M|F = M|F,C
if FE C and all atoms of C occur in M or F

» forget M|F,C = M]|F
if FEC

> restart MI|F = |[F

Theorem (Termination)

any derivation |F —xr S =g S =g ...Isfiniteif
» it contains no infinite subderivation of learn and forget steps, and
» restart is applied with increasing periodicity

Theorem (Correctness)
for | F =g S5 =r S =x ... =>r S, with final state S,,:

» if S, = FailState then F is unsatisfiable
» ifS,= M| F' then F is satisfiable and M E F

Maximum Satisfiability

maxSAT Problem
input: propositional formula ¢ in CNF
output: valuation « such that « satisfies maximal number of clauses in ¢

©
(@V=r)A(=qVr)ApA=pA
(~pV r)A(mpV-rVa)

maxSAT solver

Terminology
» optimization problem P asks to find “best” solution among all solutions
» maxSAT encoding transforms optimization problem P into formula ¢ such
that "best” solution to P is obtained from maxSAT solution to ¢

Remark

many real world problems have optimization component

Examples

» find shortest path/execution to goal state
» planning, model checking

» find smallest explanation
» debugging, configuration, ...

» find least resource-consuming schedule
» scheduling, logistics, ...

» find most probable explanation
» probabilistic inference, ...

Variants of Maximal Satisfiability

Consider CNF formula ¢ as set of clauses, denote number of clauses by |¢|.
Maximal Satisfiability (maxSAT)

instance: CNF formula ¢
question: what is maximal |«| such that ©» € ¢ and /\ .., C is satisfiable?

Partial Maximal Satisfiability (pmaxSAT)

instance: CNF formulas y and ¢
question: what is maximal 1] such that ¢ C ¢ and x A A, C is satisfiable?
Example
p={6V2, 6V2 2V1, 1, 6V 8, 6V 8,
2V 4, 4vV5, 7V5, 7V5, 3 5Vv3}
x={1Vv2, 2V 3, 5V 1, 3}

» maxSAT(p) = 10, e.g. for valuation 12345678
» pmaxSAT(x,) =8, e.g. for valuation 12345678

Weighted Maximal Satisfiability (maxSAT)
instance: CNF formula ¢ with weight we € Z for all C € ¢
question: what is maximal)~ wc for 9 C ¢ and /\ ., C satisfiable?

Weighted Partial Maximal Satisfiability (pmaxSAT ,)

instance: CNF formulas ¢ and v, with weight we € Z for all C € ¢
question: what is maximal ZCew we for ¥ C ¢ and y A /\Cew C satisfiable?
Notation

> write maxSAT () and maxSAT ,(¢) for solution to (weighted) maximal
satisfiability problem for

> write pmaxSAT(x,) and pmaxSAT (v,) for solution to (weighted) partial
maximal satisfiability problem for hard clauses y and soft clauses ¢

Example
¥ = {(_‘Xa 2)7 ()/7 4)? (_‘X\/_‘y'/ 5)}
x = {x}

» maxSAT,,(p) = 11 e.g. for valuation v(x) = F and v(y) =
» pmaxSAT, (x,) =5, e.g. for valuation v(x) =T and v(y) F

Minimum Unsatisfiability (minUNSAT)
instance: CNF formula ¢
question: what is minimal |¢/| such that ¢» C ¢ and A\, —C is satisfiable?

Notation

write minUNSAT () for solution to minimal unsatisfiability problem for ¢

Lemma
|| = IminUNSAT ()| + |maxSAT (¢)|
Example
© = {—x, xVy, -y V oz, X, yV -z}

using v(x) = v(y) =T and v(z) = F have

> maxSAT(p) =4
» minUNSAT(p) =1

Remark
maxSAT and minUNSAT are equivalent

utomotive Configuration (1)

Manufacturer’s Constraints on Components

component family components limit premise conclusion
engine Ei,EE5 =1 G EVE
gearbox G1, Gy, Gy =1 N1V Na Dy
control unit G,....,G =1 N3 D> Vv D3
dashboard Di,...,Dy =1 AGVAG D1V D,
navigation system Ni, Noy N3 <1 R \/Aéglv R g2 x g3
air conditioner AC,AG,AG <1 1V g\ G 1 =
alarm system AS,AS, <1 Component dependencies
radio Ri,....,Rs <1

Component families with limitations
Encoding
» for every component ¢ use variable x. which is assigned T iff ¢ is used
» require manufacturer’s constraints .., by adding respective clauses
Problem 1: Validity of Configuration

» s desired configuration valid? SAT encoding
e.g. El/\Gl/\C5/\(D2\/D3)\/ EENGIANCGADVAG X 10

Application: Automotive Configuration (2)

Problem 2: Maximization of Chosen Components

» find maximal valid subset of configuration ¢, ..., ¢, partial maxSAT
» possibly with priorities p; for component ¢; weighted partial maxSAT

Pear N Xg N N X,
~— —_—

hard clauses soft clauses

Problem 3: Minimization of Costs

» given cost g; for each component ¢;, find cheapest valid configuration
weighted partial maxSAT encoding

car A (€1,=q1) A=+ A(Cny —Gn)
~—
hard clauses soft clauses

Result

collaboration with BMW: evaluated on configuration formulas of 2013 product line
11

Algorithms for Maximum
Satisfiability

Branch & Bound

Idea

> gets list of clauses ¢ as input return minUNSAT ()
» explores assignments in depth-first search

Ingredients

» UB is minimal number of unsatisfied clauses found so far (best solution)
» . is formula ¢ with all occurrences of x replaced by T
» 5 is formula ¢ with all occurrences of x replaced by F
» for list of clauses ¢, function simp(y)
» replace =T by F and =F by T
» drops all clauses which contain T

» removes F from all remaining clauses

» [denotes empty clause and #emnpty(¢) number of empty clauses in ¢
Example
p=yV-F, xVyVF, F, xV-ayV T, xV -z

simp(p) = xVy, O, xV -z 12

Algorithm (Branch & Bound)

function BnB(p, UB)

@ = simp(p)

if ¢ contains only empty clauses then
return #empty ()

if #empty(y) > UB then
return UB

x = selectVariable(y)

UB := min(UB, BnB(yp,, UB))

return min(UB, BnB(yx, UB))

» number of clauses falsified by any valuation is < ||
» start by calling BnB(p, |p])
» idea: #empty(p) is number of clauses falsified by current valuation

13

Example

Y=x, xVy,zV-y, xVz, xVy, y
call BnB(p, 6)
simp(p) = ¢

ox=T,-TVy, zV-y, TVz TVy, -y
simp(px) =y, zV -y, 7y

©Oxy :T, Z\/—|T, =T

simp(px) = z,0

Pxyz =T, U
simp(prz) = O
(pxyf S F7 D

simp(tpxyf) - D7 O
oxy =F, zVv =F, =F
simp(pxy) =0

B
pex=F, -FVy, zV-y, FVz FVy, 7y

simp(px) =0, zV -y, z, ¥, 7y
minUNSAT(p) = 1, maxSAT(p) =5

v(x) = v(y) = v(z) =T

BnB(xz. 6) = 1

F

BnB((yyz,1) =2 5

Algorithm (Branch & Bound, improved)

function BnB’ (¢, UB)

@ = simp(yp)

if ¢ contains only empty clauses then
return #empty ()

LB = #empty(yp) + underapproximate(p)

if LB > UB then
return UB

x = selectVariable(yp)

UB = min(UB, BnB’ (y,, UB))

return min(UB, BnB’ (yx, UB))

Underapproximation (Wallace and Freuder)
> ic(x) is number of unit clauses x in ¢ inconsistency count
> underapproximate(;)::E:Xin¢rHM(k(X)JC(ﬁX))

Theorem
BnB(¢p, |¢|) = BnB’ (¢, |¢|) = minUNSAT(¢) 15

Binary Search

Idea

> gets list of clauses ¢ as input and returns minUNSAT ()
> repeatedly call SAT solver in binary search fashion

Example
Suppose given formula with 18 clauses. Can we satisfy . ..

more than 9 clauses?

more than 47 more than 147
more than 27 more than 77 e .
no, yes no, yes

-+ more than 57 more than 8?

16

Cardinality Constraints

Definitions
» cardinality constraint has form)" _, x b1 N where pais =, <, >, <, or >,
X is set of propositional variables and N € N
» valuation v satisfies), x> N iff k> N
where k is number of variables x € X such that v(x) =T

Remarks
» cardinality constraints are expressible in CNF
» enumerate all possible subsets 02X
» BDDs O(N - |X]|)
» sorting networks O(IX] - log?(1X]))
» write CNF(}_ .y x > N) for CNF encoding
» cardinality constraints occur very frequently! (n-queens, Minesweeper, . ..)
Example

» x+y+z=1satisfied by v(x) =v(y)=F, v(z) =T
> x;+Xxo+ -+ xg < 3 satisfied by v(xy) =--- =v(xg) =F 17

Algorithm (Binary Search)

function BinarySearch({Ci,...,Cp})
0 ={CGVby,...,CpV bp}
return search(y,0,m) \k\

T

)
b1, ..., b, are fresh variables

function search(yp, L, U)
if L > U then
return U
mid ::L%j
if SAT(p ACNF(}." , b; < mid)) then
return search(y, L, mid)
else

return search(y, mid + 1, U)

Theorem
BinarySearch(y) = minUNSAT(y)

18

Example

e={6V2Vhb, 6V2Vh, 2V 1V bz, 1V by, 6V 8V bs,
6V8Vbs, 2V4V by, 4V5\Vbg, TV5Vby, TV5YV b,
éVbn, §V3Vb12}

» L=0,U=12,mid=6 SAT(p ACNF(>_ 7", b; < 6))? v

» L=0U=6,mid=3 SAT(¢ ACNF(D ;" bi < 3))7 v

» L=0,U=3 mid=1 SAT(p ACNF(D_T, b < 1))? X

» L=2,U=3 mid=2 SAT(o ACNF(>_, bi < 2))? v

> Lh=s2 =2 return 2

Cardinality Constraints in Z3

from z3 import *

xs = [Bool("x"+str(i)) for i in range (0,10)]
ys = [Bool("y"+str(i)) for i in range (0,10)]
def sum(ps):

return reduce(lambda s,x: s + If(x, 1, 0), ps, 0)

solver = Solver()

solver.add(sum(xs) == 5, sum(ys) > 3, sum(ys) <= 4)

if solver.check() == sat:
model = solver.model()
for i in range(0,10):
print xs[i], "=", modell[xs[il], ys[i], "=", modell[ys[il]

20

Complexity

Definition

FPN" is class of functions computable in polynomial time with access to NP oracle

Theorem

maxSAT is FPNP -complete

Remarks

» FPNP allows polynomial number of oracle calls (which is e.g. SAT solver)
» other members of FPN? are travelling salesperson and Knapsack

21

Literature

@ Rouven Walter, Christoph Zengler and Wolfgang Kiichlin.
Applications of MaxSAT in Automotive Configuration.
Proc. International Configuration Workshop 2013, pp. 21-28, 2013.

@ André Abramé and Djamal Habet.
ahmaxsat: Description and Evaluation of a Branch and Bound Max-SAT Solver.
Journal on Satisfiability, Boolean Modeling and Computation 9, pp. 89-128, 2015.

@ Chu-Min Li and Felip Manya.
MaxSAT, hard and soft constraints.
In: Handbook of Satisfiability, I0S Press, pp. 613—631, 2009.

B zhaohui Fu and Sharad Malik.
On solving the partial MAX-SAT problem.
In Proc. Theory and Applications of Satisfiability Testing, pp. 252-265, 2006

22

	lecture 3
	Summary of Last Week
	Maximum Satisfiability
	Algorithms for Maximum Satisfiability
	Branch and Bound
	Binary Search

