SAT and SMT Solving

Sarah Winkler
SS 2018
Department of Computer Science
University of Innsbruck

Outline

- Summary of Last Week
- Maximum Satisfiability
- Algorithms for Maximum Satisfiability

Summary of Last Week

Definition (Implication Graph)

For derivation $\left\|F \quad \Longrightarrow{ }_{\mathcal{B}}^{*} M\right\| F^{\prime}$ implication graph is constructed as follows:

- add node labelled / for every decision literal / in M
- repeat until there is no change:
if \exists clause $I_{1} \vee \ldots I_{m} \vee I^{\prime}$ in F^{\prime} such that there are already nodes $I_{1}^{c}, \ldots, I_{m}^{c}$
- add node I^{\prime} if not yet present
- add edges $I_{i}^{c} \rightarrow I^{\prime}$ for all $1 \leqslant i \leqslant m$ if not yet present
- if \exists clause $I_{1}^{\prime} \vee \cdots \vee I_{k}^{\prime}$ in F^{\prime} such that there are nodes $I_{1}^{\prime c}, \ldots, I_{k}^{\prime c}$
- add conflict node labeled C
- add edges $l_{i}^{c} \rightarrow C$

Definitions

- cut of implication graph has at least all decision literals on the left, and at least the conflict node on the right
- literal / in implication graph is unique implication point (UIP) if all paths from last decision literal to conflict node go through /

Lemma

if edges intersected by cut are $I_{1} \rightarrow I_{1}^{\prime}, \ldots, I_{k} \rightarrow I_{k}^{\prime}$ then $F^{\prime} \vDash I_{1}^{c} \vee I_{k}^{c}$

Backjump Clauses by Resolution

- set C_{0} to conflict clause
- let I be last assigned literal such that I^{c} is in C_{0}
- while I is no decision literal:
- C_{i+1} is resolvent of C_{i} and clause D that led to assignment of I
- let / be last assigned literal such that I^{C} is in C_{i+1}

Observation

every C_{i} corresponds to cut in implication graph

Definition (DPLL with Learning and Restarts)

DPLL with learning and restarts \mathcal{R} extends system \mathcal{B} by following three rules:

- learn $\quad M\|F \Longrightarrow M\| F, C$
if $F \vDash C$ and all atoms of C occur in M or F
- forget
if $F \vDash C$
- restart

$$
M\|F, C \quad \Longrightarrow \quad M\| F
$$

Theorem (Termination)

any derivation $\| F \quad \Longrightarrow_{\mathcal{R}} \quad S_{1} \quad \Longrightarrow_{\mathcal{R}} \quad S_{2} \quad \Longrightarrow_{\mathcal{R}} \quad \ldots$ is finite if

- it contains no infinite subderivation of learn and forget steps, and
- restart is applied with increasing periodicity

Theorem (Correctness)

for $\| F \quad \Longrightarrow_{\mathcal{R}} \quad S_{1} \Longrightarrow_{\mathcal{R}} \quad S_{2} \quad \Longrightarrow_{\mathcal{R}} \ldots \Longrightarrow_{\mathcal{R}} \quad S_{n}$ with final state S_{n} :

- if $S_{n}=$ FailState then F is unsatisfiable
- if $S_{n}=M \| F^{\prime}$ then F is satisfiable and $M \vDash F$

Maximum Satisfiability

maxSAT

maxSAT Problem

input:
output:
propositional formula φ in CNF valuation α such that α satisfies maximal number of clauses in φ

Terminology

- optimization problem P asks to find "best" solution among all solutions
- maxSAT encoding transforms optimization problem P into formula φ such that "best" solution to P is obtained from maxSAT solution to φ

Remark

many real world problems have optimization component

Examples

- find shortest path/execution to goal state
- planning, model checking
- find smallest explanation
- debugging, configuration, ...
- find least resource-consuming schedule
- scheduling, logistics, ...
- find most probable explanation
- probabilistic inference, ...

Variants of Maximal Satisfiability

Consider CNF formula φ as set of clauses, denote number of clauses by $|\varphi|$.

Maximal Satisfiability (maxSAT)

instance:	CNF formula φ
question:	what is maximal $\|\psi\|$ such that $\psi \subseteq \varphi$ and $\bigwedge_{C \in \psi} C$ is satisfiable?

Partial Maximal Satisfiability (pmaxSAT)

instance: \quad CNF formulas χ and φ
question: \quad what is maximal $|\psi|$ such that $\psi \subseteq \varphi$ and $\chi \wedge \bigwedge_{C \in \psi} C$ is satisfiable?

Example

$$
\begin{array}{lllll}
\varphi=\left\{\begin{array}{llll}
6 \vee 2, & \overline{6} \vee 2, & \overline{2} \vee 1, & \overline{1}, \\
2 \vee 4, & \overline{4} \vee 5, & 7 \vee 5, & \overline{7} \vee 5,
\end{array} \overline{\frac{6}{3} \vee 8,}\right. & \frac{6}{5} \vee \overline{8}, \\
\chi=\{\overline{1} \vee 2, & \overline{2} \vee \overline{3}, & \overline{5} \vee 1, & 3\} &
\end{array}
$$

- $\operatorname{maxSAT}(\varphi)=10$, egg. for valuation $\overline{1} 2 \overline{3} 456 \overline{7} 8$
- pmaxSAT $(\chi, \varphi)=8$, egg. for valuation $\overline{1} \overline{2} 34 \overline{5} 678$

Weighted Maximal Satisfiability ($\operatorname{maxSAT}_{w}$)

instance: \quad CNF formula φ with weight $w_{C} \in \mathbb{Z}$ for all $C \in \varphi$ question: what is maximal $\sum_{C \in \psi} w_{C}$ for $\psi \subseteq \varphi$ and $\bigwedge_{C \in \psi} C$ satisfiable?

Weighted Partial Maximal Satisfiability (pmaxSAT ${ }_{w}$)

instance: \quad CNF formulas φ and χ, with weight $w_{C} \in \mathbb{Z}$ for all $C \in \varphi$ question: what is maximal $\sum_{C \in \psi} w_{C}$ for $\psi \subseteq \varphi$ and $\chi \wedge \wedge_{C \in \psi} C$ satisfiable?

Notation

- write maxSAT (φ) and $\operatorname{maxSAT}_{w}(\varphi)$ for solution to (weighted) maximal satisfiability problem for φ
- write pmaxSAT (χ, φ) and pmaxSAT (χ, φ) for solution to (weighted) partial maximal satisfiability problem for hard clauses χ and soft clauses φ

Example

$$
\begin{aligned}
& \varphi=\{(\neg x, 2), \quad(y, 4), \quad(\neg x \vee \neg y, 5)\} \\
& \chi=\{x\}
\end{aligned}
$$

- $\operatorname{maxSAT}_{w}(\varphi)=11$ e.g. for valuation $v(x)=\mathrm{F}$ and $v(y)=\mathrm{T}$
- pmaxSAT $w(\chi, \varphi)=5$, e.g. for valuation $v(x)=\mathrm{T}$ and $v(y)=\mathrm{F}$

Minimum Unsatisfiability (minUNSAT)

instance: CNF formula φ
question: what is minimal $|\psi|$ such that $\psi \subseteq \varphi$ and $\bigwedge_{C \in \psi} \neg C$ is satisfiable?

Notation

write $\operatorname{minUNSAT}(\varphi)$ for solution to minimal unsatisfiability problem for φ
Lemma

$$
|\varphi|=|\min \operatorname{UNSAT}(\varphi)|+|\operatorname{maxSAT}(\varphi)|
$$

Example

$$
\varphi=\{\neg x, \quad x \vee y, \quad \neg y \vee \neg z, \quad x, \quad y \vee \neg z\}
$$

using $v(x)=v(y)=\mathrm{T}$ and $v(z)=\mathrm{F}$ have

- $\operatorname{maxSAT}(\varphi)=4$
- minUNSAT $(\varphi)=1$

Remark

Application: Automotive Configuration (1)

Manufacturer's Constraints on Components

component family	components limit
engine	$E_{1}, E_{2}, E_{3}=1$
gearbox	$G_{1}, G_{2}, G_{3}=1$
control unit	$C_{1}, \ldots, C_{5}=1$
dashboard	$D_{1}, \ldots, D_{4}=1$
navigation system	$N_{1}, N_{2}, N_{3} \leqslant 1$
air conditioner	$A C_{1}, A C_{2}, A C_{3} \leqslant 1$
alarm system	$A S_{1}, A S_{2} \leqslant 1$
radio	$R_{1}, \ldots, R_{5} \leqslant 1$

premise	conclusion
G_{1}	$E_{1} \vee E_{2}$
$N_{1} \vee N_{2}$	D_{1}
N_{3}	$D_{2} \vee D_{3}$
$A C_{1} \vee A C_{3}$	$D_{1} \vee D_{2}$
$A S_{1}$	$D_{2} \vee D_{3}$
$R_{1} \vee R_{2} \vee R_{5}$	$D_{1} \vee D_{4}$

Component dependencies

Component families with limitations

Encoding

- for every component c use variable x_{c} which is assigned T iff c is used
- require manufacturer's constraints $\varphi_{\text {car }}$ by adding respective clauses

Problem 1: Validity of Configuration

- is desired configuration valid?
e.g. $E_{1} \wedge G_{1} \wedge C_{5} \wedge\left(D_{2} \vee D_{3}\right) \checkmark$ $E_{3} \wedge G_{1} \wedge C_{5} \wedge D_{2} \vee A C_{1} \wedge$

Application: Automotive Configuration (2)

Problem 2: Maximization of Chosen Components

- find maximal valid subset of configuration c_{1}, \ldots, c_{n} partial maxSAT
- possibly with priorities p_{i} for component c_{i} weighted partial maxSAT

Problem 3: Minimization of Costs

- given cost q_{i} for each component c_{i}, find cheapest valid configuration weighted partial maxSAT encoding

Result

collaboration with BMW: evaluated on configuration formulas of 2013 product line

Algorithms for Maximum
Satisfiability

Branch \& Bound

Idea

- gets list of clauses φ as input return minUNSAT (φ)
- explores assignments in depth-first search

Ingredients

- UB is minimal number of unsatisfied clauses found so far (best solution)
- φ_{x} is formula φ with all occurrences of x replaced by \top
- $\varphi_{\bar{x}}$ is formula φ with all occurrences of x replaced by F
- for list of clauses φ, function $\operatorname{simp}(\varphi)$
- replace $\neg \mathrm{T}$ by F and $\neg \mathrm{F}$ by T
- drops all clauses which contain T
- removes F from all remaining clauses
- \square denotes empty clause and $\# \operatorname{empty}(\varphi)$ number of empty clauses in φ

Example

$$
\begin{aligned}
\varphi & =y \vee \neg F, & & x \vee y \vee F, & F, & x \vee \neg y \vee T,
\end{aligned}
$$

Algorithm (Branch \& Bound)

```
function }\operatorname{BnB}(\varphi,UB
    \varphi = \operatorname { s i m p } ( \varphi )
    if \varphi contains only empty clauses then
        return #empty(\varphi)
    if #empty (\varphi)\geqslant UB then
        return UB
    x = selectVariable(\varphi)
    UB := min(UB, BnB( }\mp@subsup{\varphi}{x}{},\textrm{UB})
    return min(UB, BnB( }\mp@subsup{\varphi}{\overline{x}}{},\textrm{UB})
```

- number of clauses falsified by any valuation is $\leqslant|\varphi|$
- start by calling $\operatorname{BnB}(\varphi,|\varphi|)$
- idea: \#empty (φ) is number of clauses falsified by current valuation

Example

- $\varphi=x, \neg x \vee y, z \vee \neg y, x \vee z, x \vee y, \neg y$
- call $\operatorname{BnB}(\varphi, 6)$
- $\operatorname{simp}(\varphi)=\varphi$

$\operatorname{BnB}\left(\varphi_{x}, 6\right)=1 \quad \operatorname{BnB}\left(\varphi_{\bar{x}}, 1\right)=1$

- $\varphi_{x}=\mathrm{T}, \neg \mathrm{T} \vee y, z \vee \neg y, \mathrm{~T} \vee z, \mathrm{~T} \vee y, \neg y$ $\operatorname{simp}\left(\varphi_{x}\right)=y, z \vee \neg y, \neg y$
- $\varphi_{x y}=\mathrm{T}, z \vee \neg \mathrm{~T}, \neg T$
$\operatorname{simp}\left(\varphi_{x y}\right)=z, \square$
- $\varphi_{x y z}=\mathrm{T}, \square$ $\operatorname{simp}\left(\varphi_{x y z}\right)=\square$
- $\varphi_{x y \bar{z}}=\mathrm{F}, \square$ $\operatorname{simp}\left(\varphi_{x y \bar{z}}\right)=\square, \square$
- $\varphi_{x \bar{y}}=\mathrm{F}, z \vee \neg \mathrm{~F}, \neg \mathrm{~F}$ $\operatorname{simp}\left(\varphi_{\times \bar{y}}\right)=\square$
- $\varphi_{\bar{x}}=\mathrm{F}, \neg \mathrm{F} \vee y, z \vee \neg y, \mathrm{~F} \vee z, \mathrm{~F} \vee y, \neg y \operatorname{BnB}\left(\varphi_{x y}, 3\right)=1 \quad \operatorname{BnB}\left(\varphi_{x \bar{y}}, 1\right)=1$ $\operatorname{simp}\left(\varphi_{x}\right)=\square, z \vee \neg y, z, y, \neg y$
- $\operatorname{minUNSAT}(\varphi)=1, \operatorname{maxSAT}(\varphi)=5$
- $v(x)=v(y)=v(z)=\mathrm{T}$

Algorithm (Branch \& Bound, improved)

```
function BnB'( }\varphi\mathrm{ , UB)
\varphi = \operatorname { s i m p } ( \varphi )
if \varphi contains only empty clauses then
    return #empty(\varphi)
LB = #empty(\varphi) + underapproximate( }\varphi
if LB\geqslantUB then
    return UB
x = selectVariable( }\varphi\mathrm{ )
UB = min(UB, BnB'( }\mp@subsup{\varphi}{x}{},\textrm{UB})
return min(UB, BnB'( }\mp@subsup{\varphi}{\overline{x}}{},\textrm{UB})
```


Underapproximation (Wallace and Freuder)

- ic (x) is number of unit clauses x in φ
inconsistency count
- underapproximate $(\varphi)=\sum_{x \text { in } \varphi} \min (\mathrm{ic}(x)$, ic $(\neg x))$

Theorem

$\operatorname{BnB}(\varphi,|\varphi|)=\operatorname{BnB}^{\prime}(\varphi,|\varphi|)=\operatorname{minUNSAT}(\varphi)$

Binary Search

Idea

- gets list of clauses φ as input and returns minUNSAT (φ)
- repeatedly call SAT solver in binary search fashion

Example

Suppose given formula with 18 clauses. Can we satisfy ...

Cardinality Constraints

Definitions

- cardinality constraint has form $\sum_{x \in X} X \bowtie N$ where \bowtie is $=,<,>, \leqslant$, or \geqslant, X is set of propositional variables and $N \in \mathbb{N}$
- valuation v satisfies $\sum_{x \in X} X \bowtie N$ iff $k \bowtie N$ where k is number of variables $x \in X$ such that $v(x)=T$

Remarks

- cardinality constraints are expressible in CNF
- enumerate all possible subsets
- BDDs
- sorting networks
- write $\operatorname{CNF}\left(\sum_{x \in X} x \bowtie N\right)$ for CNF encoding
- cardinality constraints occur very frequently! (n-queens, Minesweeper, ...)

Example

- $x+y+z=1$ satisfied by $v(x)=v(y)=F, v(z)=\mathrm{T}$
- $x_{1}+x_{2}+\cdots+x_{8} \leqslant 3$ satisfied by $v\left(x_{1}\right)=\cdots=v\left(x_{8}\right)=F$

Algorithm (Binary Search)

```
function BinarySearch({ { , ,., C C } )
    \varphi:={\mp@subsup{C}{1}{}\vee\mp@subsup{b}{1}{},\ldots,\mp@subsup{C}{m}{}\vee\mp@subsup{b}{m}{}}
    return search(\varphi,0,m)
        b},\ldots,\mp@subsup{b}{m}{}\mathrm{ are fresh variables
function search( }\varphi,L,U
    if L\geqslantU then
        return U
    mid:=\\frac{U+L}{2}\rfloor
    if SAT}(\varphi\wedge\operatorname{CNF}(\mp@subsup{\sum}{i=1}{m}\mp@subsup{b}{i}{}\leqslantmid)) the
        return search( }\varphi,\textrm{L},\textrm{mid}
    else
        return search( }\varphi,\operatorname{mid}+1,U
```


Theorem

$\operatorname{BinarySearch}(\varphi)=\operatorname{minUNSAT}(\varphi)$

Example

$$
\begin{aligned}
\varphi=\left\{\begin{array}{llll}
6 \vee 2 \vee b_{1}, & \overline{6} \vee 2 \vee b_{2}, & \overline{2} \vee 1 \vee b_{3}, & \overline{1} \vee b_{4}, \\
& \overline{6} \vee 8 \vee b_{5}, \\
& 6 \vee \overline{8} \vee b_{6}, & 2 \vee 4 \vee b_{7}, & \overline{4} \vee 5 \vee b_{8}, \\
& 7 \vee 5 \vee b_{9}, & \overline{7} \vee 5 \vee b_{10}, \\
& \overline{3} \vee b_{11}, & \left.\overline{5} \vee 3 \vee b_{12}\right\} &
\end{array}\right. &
\end{aligned}
$$

- $\mathrm{L}=0, \mathrm{U}=12, \mathrm{mid}=6$
- $\mathrm{L}=0, \mathrm{U}=6, \mathrm{mid}=3$
- $\mathrm{L}=0, \mathrm{U}=3, \operatorname{mid}=1$
- $\mathrm{L}=2, \mathrm{U}=3, \mathrm{mid}=2$
- $\mathrm{L}=2, \mathrm{U}=2$
$\operatorname{SAT}\left(\varphi \wedge \operatorname{CNF}\left(\sum_{i=1}^{m} b_{i} \leqslant 6\right)\right) ?$
$\operatorname{SAT}\left(\varphi \wedge \operatorname{CNF}\left(\sum_{i=1}^{m} b_{i} \leqslant 3\right)\right) ?$
$\operatorname{SAT}\left(\varphi \wedge \operatorname{CNF}\left(\sum_{i=1}^{m} b_{i} \leqslant 1\right)\right) ?$
$\operatorname{SAT}\left(\varphi \wedge \operatorname{CNF}\left(\sum_{i=1}^{m} b_{i} \leqslant 2\right)\right) ?$
return 2

Cardinality Constraints in Z3

from z3 import *

```
xs = [ Bool("x"+str(i)) for i in range (0,10)]
ys = [ Bool("y"+str(i)) for i in range (0,10)]
```

def sum(ps):
return reduce(lambda $s, x: s+\operatorname{If}(x, 1,0), \mathrm{ps}, 0)$
solver = Solver()
solver.add(sum(xs) == 5, sum(ys) > 3, sum(ys) <= 4)
if solver.check() == sat:
model $=$ solver.model()
for i in range $(0,10)$:
print xs[i], "=", model[xs[i]], ys[i], "=", model[ys[i]]

Complexity

Definition

$F P^{N P}$ is class of functions computable in polynomial time with access to NP oracle

Theorem

maxSAT is $\mathrm{FP}^{\mathrm{NP}}$-complete

Remarks

- FP ${ }^{\text {NP }}$ allows polynomial number of oracle calls (which is e.g. SAT solver)
- other members of $\mathrm{FP}^{\mathrm{NP}}$ are travelling salesperson and Knapsack

Literature

宣
Rouven Walter, Christoph Zengler and Wolfgang Küchlin.
Applications of MaxSAT in Automotive Configuration.
Proc. International Configuration Workshop 2013, pp. 21-28, 2013.
André Abramé and Djamal Habet.
ahmaxsat: Description and Evaluation of a Branch and Bound Max-SAT Solver.
Journal on Satisfiability, Boolean Modeling and Computation 9, pp. 89-128, 2015.
R Chu-Min Li and Felip Manyà.
MaxSAT, hard and soft constraints.
In: Handbook of Satisfiability, IOS Press, pp. 613-631, 2009.
-
Zhaohui Fu and Sharad Malik.
On solving the partial MAX-SAT problem.
In Proc. Theory and Applications of Satisfiability Testing, pp. 252-265, 2006

