
SAT and SMT Solving

Sarah Winkler

SS 2018

Department of Computer Science

University of Innsbruck

http://cl-informatik.uibk.ac.at/teaching/ss18/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Outline

Summary of Last Week

Maximum Satisfiability

Algorithms for Maximum Satisfiability

1

Summary of Last Week

Definition (Implication Graph)

For derivation ‖ F =⇒∗B M ‖ F ′ implication graph is constructed as follows:

I add node labelled l for every decision literal l in M
I repeat until there is no change:

if ∃ clause l1 ∨ . . . lm ∨ l ′ in F ′ such that there are already nodes lc1 , . . . , l
c
m

I add node l ′ if not yet present

I add edges lci → l ′ for all 1 6 i 6 m if not yet present
I if ∃ clause l ′1 ∨ · · · ∨ l ′k in F ′ such that there are nodes l ′c1 , . . . , l

′c
k

I add conflict node labeled C

I add edges l ′ci → C

Definitions

I cut of implication graph has at least all decision literals on the left, and at

least the conflict node on the right
I literal l in implication graph is unique implication point (UIP) if all paths

from last decision literal to conflict node go through l

Lemma

if edges intersected by cut are l1 → l ′1, . . . , lk → l ′k then F ′ � lc1 ∨ lck 2

Backjump Clauses by Resolution

I set C0 to conflict clause
I let l be last assigned literal such that lc is in C0

I while l is no decision literal:

I Ci+1 is resolvent of Ci and clause D that led to assignment of l

I let l be last assigned literal such that lc is in Ci+1

Observation

every Ci corresponds to cut in implication graph

3

Definition (DPLL with Learning and Restarts)

DPLL with learning and restarts R extends system B by following three rules:

I learn M ‖ F =⇒ M ‖ F , C
if F � C and all atoms of C occur in M or F

I forget M ‖ F , C =⇒ M ‖ F
if F � C

I restart M ‖ F =⇒ ‖ F

Theorem (Termination)

any derivation ‖ F =⇒R S1 =⇒R S2 =⇒R . . . is finite if

I it contains no infinite subderivation of learn and forget steps, and

I restart is applied with increasing periodicity

Theorem (Correctness)

for ‖ F =⇒R S1 =⇒R S2 =⇒R . . . =⇒R Sn with final state Sn:

I if Sn = FailState then F is unsatisfiable

I if Sn = M ‖ F ′ then F is satisfiable and M � F
4

Maximum Satisfiability

maxSAT

maxSAT Problem

input: propositional formula ϕ in CNF

output: valuation α such that α satisfies maximal number of clauses in ϕ

αϕ

maxSAT solver

(q ∨ ¬r) ∧ (¬q ∨ r) ∧ p ∧ ¬p ∧
(¬p ∨ r) ∧ (¬p ∨ ¬r ∨ q)

α(p) = α(q) = α(r) = T

Terminology

I optimization problem P asks to find “best” solution among all solutions

I maxSAT encoding transforms optimization problem P into formula ϕ such

that “best” solution to P is obtained from maxSAT solution to ϕ

5

Remark

many real world problems have optimization component

Examples

I find shortest path/execution to goal state

I planning, model checking

I find smallest explanation

I debugging, configuration, . . .

I find least resource-consuming schedule

I scheduling, logistics, . . .

I find most probable explanation

I probabilistic inference, . . .

6

Variants of Maximal Satisfiability

Consider CNF formula ϕ as set of clauses, denote number of clauses by |ϕ|.

Maximal Satisfiability (maxSAT)

instance: CNF formula ϕ
question: what is maximal |ψ| such that ψ ⊆ ϕ and

∧
C∈ψ C is satisfiable?

Partial Maximal Satisfiability (pmaxSAT)

instance: CNF formulas χ and ϕ
question: what is maximal |ψ| such that ψ ⊆ ϕ and χ ∧

∧
C∈ψ C is satisfiable?

Example

ϕ = { 6 ∨ 2, 6 ∨ 2, 2 ∨ 1, 1, 6 ∨ 8, 6 ∨ 8,
2 ∨ 4, 4 ∨ 5, 7 ∨ 5, 7 ∨ 5, 3, 5 ∨ 3 }

χ = { 1 ∨ 2, 2 ∨ 3, 5 ∨ 1, 3 }

I maxSAT(ϕ) = 10, e.g. for valuation 1 2 3 4 5 6 7 8
I pmaxSAT(χ, ϕ) = 8, e.g. for valuation 1 2 3 4 5 6 7 8

7

Weighted Maximal Satisfiability (maxSATw)

instance: CNF formula ϕ with weight wC ∈ Z for all C ∈ ϕ
question: what is maximal

∑
C∈ψ wC for ψ ⊆ ϕ and

∧
C∈ψ C satisfiable?

Weighted Partial Maximal Satisfiability (pmaxSATw)

instance: CNF formulas ϕ and χ, with weight wC ∈ Z for all C ∈ ϕ
question: what is maximal

∑
C∈ψ wC for ψ ⊆ ϕ and χ ∧

∧
C∈ψ C satisfiable?

Notation

I write maxSAT(ϕ) and maxSATw (ϕ) for solution to (weighted) maximal

satisfiability problem for ϕ
I write pmaxSAT(χ, ϕ) and pmaxSATw (χ, ϕ) for solution to (weighted) partial

maximal satisfiability problem for hard clauses χ and soft clauses ϕ

Example

ϕ = {(¬x , 2), (y , 4), (¬x ∨ ¬y , 5)}
χ = {x}

I maxSATw (ϕ) = 11 e.g. for valuation v(x) = F and v(y) = T
I pmaxSATw (χ, ϕ) = 5, e.g. for valuation v(x) = T and v(y) = F 8

Minimum Unsatisfiability (minUNSAT)

instance: CNF formula ϕ

question: what is minimal |ψ| such that ψ ⊆ ϕ and
∧

C∈ψ ¬C is satisfiable?

Notation

write minUNSAT(ϕ) for solution to minimal unsatisfiability problem for ϕ

Lemma
|ϕ| = |minUNSAT(ϕ)|+ |maxSAT(ϕ)|

Example

ϕ = {¬x , x ∨ y , ¬y ∨ ¬z , x , y ∨ ¬z}

using v(x) = v(y) = T and v(z) = F have

I maxSAT(ϕ) = 4
I minUNSAT(ϕ) = 1

Remark

maxSAT and minUNSAT are equivalent 9

Application: Automotive Configuration (1)

Manufacturer’s Constraints on Components

component family components limit

engine E1,E2,E3 = 1
gearbox G1,G2,G3 = 1
control unit C1, . . . ,C5 = 1
dashboard D1, . . . ,D4 = 1

navigation system N1,N2,N3 6 1
air conditioner AC1,AC2,AC3 6 1
alarm system AS1,AS2 6 1
radio R1, . . . ,R5 6 1

Component families with limitations

premise conclusion

G1 E1 ∨ E2

N1 ∨ N2 D1

N3 D2 ∨ D3

AC1 ∨ AC3 D1 ∨ D2

AS1 D2 ∨ D3

R1 ∨ R2 ∨ R5 D1 ∨ D4

Component dependencies

Encoding

I for every component c use variable xc which is assigned T iff c is used
I require manufacturer’s constraints ϕcar by adding respective clauses

Problem 1: Validity of Configuration

I is desired configuration valid? SAT encoding

e.g. E1 ∧ G1 ∧ C5 ∧ (D2 ∨ D3) X E3 ∧ G1 ∧ C5 ∧ D2 ∨ AC1 7 10

Application: Automotive Configuration (2)

Problem 2: Maximization of Chosen Components

I find maximal valid subset of configuration c1, . . . , cn partial maxSAT

I possibly with priorities pi for component ci weighted partial maxSAT

ϕcar︸︷︷︸
hard clauses

∧ xc1 ∧ · · · ∧ xcn︸ ︷︷ ︸
soft clauses

Problem 3: Minimization of Costs

I given cost qi for each component ci , find cheapest valid configuration

weighted partial maxSAT encoding

ϕcar︸︷︷︸
hard clauses

∧ (c1,−q1) ∧ · · · ∧ (cn,−qn)︸ ︷︷ ︸
soft clauses

Result

collaboration with BMW: evaluated on configuration formulas of 2013 product line
11

Algorithms for Maximum

Satisfiability

Branch & Bound

Idea

I gets list of clauses ϕ as input return minUNSAT(ϕ)

I explores assignments in depth-first search

Ingredients

I UB is minimal number of unsatisfied clauses found so far (best solution)

I ϕx is formula ϕ with all occurrences of x replaced by T

I ϕx is formula ϕ with all occurrences of x replaced by F

I for list of clauses ϕ, function simp(ϕ)

I replace ¬T by F and ¬F by T

I drops all clauses which contain T

I removes F from all remaining clauses

I � denotes empty clause and #empty(ϕ) number of empty clauses in ϕ

Example

ϕ = y ∨ ¬F , x ∨ y ∨ F , F , x ∨ ¬y ∨ T , x ∨ ¬z
simp(ϕ) = x ∨ y , �, x ∨ ¬z 12

Algorithm (Branch & Bound)

function BnB(ϕ, UB)

ϕ = simp(ϕ)

if ϕ contains only empty clauses then

return #empty(ϕ)

if #empty(ϕ) > UB then

return UB

x = selectVariable(ϕ)

UB := min(UB, BnB(ϕx, UB))

return min(UB, BnB(ϕx, UB))

I number of clauses falsified by any valuation is 6 |ϕ|
I start by calling BnB(ϕ, |ϕ|)
I idea: #empty(ϕ) is number of clauses falsified by current valuation

13

Example

I ϕ = x , ¬x ∨ y , z ∨ ¬y , x ∨ z , x ∨ y , ¬y
I call BnB(ϕ, 6)

I simp(ϕ) = ϕ

I ϕx = T, ¬T ∨ y , z ∨ ¬y , T ∨ z , T ∨ y , ¬y
simp(ϕx) = y , z ∨ ¬y , ¬y

I ϕxy = T, z ∨ ¬T, ¬T
simp(ϕxy) = z ,�

I ϕxyz = T, �
simp(ϕxyz) = �

I ϕxyz = F, �
simp(ϕxyz) = �, �

I ϕxy = F, z ∨ ¬F, ¬F
simp(ϕxy) = �

I ϕx = F, ¬F ∨ y , z ∨ ¬y , F ∨ z , F ∨ y , ¬y
simp(ϕx) = �, z ∨ ¬y , z , y , ¬y

I minUNSAT(ϕ) = 1, maxSAT(ϕ) = 5

I v(x) = v(y) = v(z) = T

BnB(ϕ, 6) = 1

0 > 6

x

BnB(ϕx , 6) = 1

0 > 6

y

BnB(ϕxy , 3) = 1

1 > 6

z

BnB(ϕxyz , 6) = 1

T

BnB(ϕxyz , 1) = 2

F

T

BnB(ϕxy , 1) = 1

F

T

BnB(ϕx , 1) = 1

1 > 1

F

14

Algorithm (Branch & Bound, improved)

function BnB’(ϕ, UB)

ϕ = simp(ϕ)

if ϕ contains only empty clauses then

return #empty(ϕ)

LB = #empty(ϕ) + underapproximate(ϕ)

if LB > UB then

return UB

x = selectVariable(ϕ)

UB = min(UB, BnB’(ϕx, UB))

return min(UB, BnB’(ϕx, UB))

Underapproximation (Wallace and Freuder)

I ic(x) is number of unit clauses x in ϕ inconsistency count

I underapproximate(ϕ) =
∑

x in ϕ min(ic(x), ic(¬x))

Theorem

BnB(ϕ, |ϕ|) = BnB’(ϕ, |ϕ|) = minUNSAT(ϕ) 15

Binary Search

Idea

I gets list of clauses ϕ as input and returns minUNSAT(ϕ)

I repeatedly call SAT solver in binary search fashion

Example

Suppose given formula with 18 clauses. Can we satisfy . . .

more than 9 clauses?

more than 4?

more than 2?

. . .

no

. . .

yes

no

more than 7?

more than 5?

. . .

no

. . .

yes

no

more than 8?

8

no

9

yes

yes

yes

no

more than 14?

. . .

no

. . .

yes

yes

16

Cardinality Constraints

Definitions

I cardinality constraint has form
∑

x∈X x ./ N where ./ is =, <, >, 6, or >,

X is set of propositional variables and N ∈ N
I valuation v satisfies

∑
x∈X x ./ N iff k ./ N

where k is number of variables x ∈ X such that v(x) = T

Remarks

I cardinality constraints are expressible in CNF

I enumerate all possible subsets O(2|X |)

I BDDs O(N · |X |)
I sorting networks O(|X | · log2(|X |))

I write CNF(
∑

x∈X x ./ N) for CNF encoding

I cardinality constraints occur very frequently! (n-queens, Minesweeper, . . .)

Example

I x + y + z = 1 satisfied by v(x) = v(y) = F, v(z) = T

I x1 + x2 + · · ·+ x8 6 3 satisfied by v(x1) = · · · = v(x8) = F 17

Algorithm (Binary Search)

function BinarySearch({C1, . . . ,Cm})
ϕ := {C1 ∨ b1, . . . ,Cm ∨ bm}
return search(ϕ,0,m)

function search(ϕ, L, U)

if L > U then

return U

mid :=b U+L
2 c

if SAT(ϕ ∧ CNF(
∑m

i=1 bi 6 mid)) then

return search(ϕ, L, mid)

else

return search(ϕ, mid + 1, U)

b1, . . . , bm are fresh variables

Theorem

BinarySearch(ϕ) = minUNSAT(ϕ)

18

Example

ϕ = { 6 ∨ 2 ∨ b1, 6 ∨ 2 ∨ b2, 2 ∨ 1 ∨ b3, 1 ∨ b4, 6 ∨ 8 ∨ b5,

6 ∨ 8 ∨ b6, 2 ∨ 4 ∨ b7, 4 ∨ 5 ∨ b8, 7 ∨ 5 ∨ b9, 7 ∨ 5 ∨ b10,

3 ∨ b11, 5 ∨ 3 ∨ b12 }

I L = 0, U = 12, mid = 6 SAT(ϕ ∧ CNF(
∑m

i=1 bi 6 6))? X
I L = 0, U = 6, mid = 3 SAT(ϕ ∧ CNF(

∑m
i=1 bi 6 3))? X

I L = 0, U = 3, mid = 1 SAT(ϕ ∧ CNF(
∑m

i=1 bi 6 1))? 7

I L = 2, U = 3, mid = 2 SAT(ϕ ∧ CNF(
∑m

i=1 bi 6 2))? X
I L = 2, U = 2 return 2

19

Cardinality Constraints in Z3

from z3 import *

xs = [Bool("x"+str(i)) for i in range (0,10)]

ys = [Bool("y"+str(i)) for i in range (0,10)]

def sum(ps):

return reduce(lambda s,x: s + If(x, 1, 0), ps, 0)

solver = Solver()

solver.add(sum(xs) == 5, sum(ys) > 3, sum(ys) <= 4)

if solver.check() == sat:

model = solver.model()

for i in range(0,10):

print xs[i], "=", model[xs[i]], ys[i], "=", model[ys[i]]

20

Complexity

Definition

FPNP is class of functions computable in polynomial time with access to NP oracle

Theorem

maxSAT is FPNP-complete

Remarks

I FPNP allows polynomial number of oracle calls (which is e.g. SAT solver)

I other members of FPNP are travelling salesperson and Knapsack

21

Literature

Rouven Walter, Christoph Zengler and Wolfgang Küchlin.

Applications of MaxSAT in Automotive Configuration.
Proc. International Configuration Workshop 2013, pp. 21-28, 2013.

André Abramé and Djamal Habet.

ahmaxsat: Description and Evaluation of a Branch and Bound Max-SAT Solver.
Journal on Satisfiability, Boolean Modeling and Computation 9, pp. 89–128, 2015.

Chu-Min Li and Felip Manyà.

MaxSAT, hard and soft constraints.
In: Handbook of Satisfiability, IOS Press, pp. 613–631, 2009.

Zhaohui Fu and Sharad Malik.

On solving the partial MAX-SAT problem.
In Proc. Theory and Applications of Satisfiability Testing, pp. 252–265, 2006

22

	lecture 3
	Summary of Last Week
	Maximum Satisfiability
	Algorithms for Maximum Satisfiability
	Branch and Bound
	Binary Search

