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Summary of Last Week



Definition (Implication Graph)

For derivation ‖ F =⇒∗B M ‖ F ′ implication graph is constructed as follows:

I add node labelled l for every decision literal l in M
I repeat until there is no change:

if ∃ clause l1 ∨ . . . lm ∨ l ′ in F ′ such that there are already nodes lc1 , . . . , l
c
m

I add node l ′ if not yet present

I add edges lci → l ′ for all 1 6 i 6 m if not yet present
I if ∃ clause l ′1 ∨ · · · ∨ l ′k in F ′ such that there are nodes l ′c1 , . . . , l

′c
k

I add conflict node labeled C

I add edges l ′ci → C

Definitions

I cut of implication graph has at least all decision literals on the left, and at

least the conflict node on the right
I literal l in implication graph is unique implication point (UIP) if all paths

from last decision literal to conflict node go through l

Lemma

if edges intersected by cut are l1 → l ′1, . . . , lk → l ′k then F ′ � lc1 ∨ lck 2



Backjump Clauses by Resolution

I set C0 to conflict clause
I let l be last assigned literal such that lc is in C0

I while l is no decision literal:

I Ci+1 is resolvent of Ci and clause D that led to assignment of l

I let l be last assigned literal such that lc is in Ci+1

Observation

every Ci corresponds to cut in implication graph
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Definition (DPLL with Learning and Restarts)

DPLL with learning and restarts R extends system B by following three rules:

I learn M ‖ F =⇒ M ‖ F , C
if F � C and all atoms of C occur in M or F

I forget M ‖ F , C =⇒ M ‖ F
if F � C

I restart M ‖ F =⇒ ‖ F

Theorem (Termination)

any derivation ‖ F =⇒R S1 =⇒R S2 =⇒R . . . is finite if

I it contains no infinite subderivation of learn and forget steps, and

I restart is applied with increasing periodicity

Theorem (Correctness)

for ‖ F =⇒R S1 =⇒R S2 =⇒R . . . =⇒R Sn with final state Sn:

I if Sn = FailState then F is unsatisfiable

I if Sn = M ‖ F ′ then F is satisfiable and M � F
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Maximum Satisfiability



maxSAT

maxSAT Problem

input: propositional formula ϕ in CNF

output: valuation α such that α satisfies maximal number of clauses in ϕ

αϕ

maxSAT solver

(q ∨ ¬r) ∧ (¬q ∨ r) ∧ p ∧ ¬p ∧
(¬p ∨ r) ∧ (¬p ∨ ¬r ∨ q)

α(p) = α(q) = α(r) = T

Terminology

I optimization problem P asks to find “best” solution among all solutions

I maxSAT encoding transforms optimization problem P into formula ϕ such

that “best” solution to P is obtained from maxSAT solution to ϕ
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Remark

many real world problems have optimization component

Examples

I find shortest path/execution to goal state

I planning, model checking

I find smallest explanation

I debugging, configuration, . . .

I find least resource-consuming schedule

I scheduling, logistics, . . .

I find most probable explanation

I probabilistic inference, . . .
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Variants of Maximal Satisfiability

Consider CNF formula ϕ as set of clauses, denote number of clauses by |ϕ|.

Maximal Satisfiability (maxSAT)

instance: CNF formula ϕ
question: what is maximal |ψ| such that ψ ⊆ ϕ and

∧
C∈ψ C is satisfiable?

Partial Maximal Satisfiability (pmaxSAT)

instance: CNF formulas χ and ϕ
question: what is maximal |ψ| such that ψ ⊆ ϕ and χ ∧

∧
C∈ψ C is satisfiable?

Example

ϕ = { 6 ∨ 2, 6 ∨ 2, 2 ∨ 1, 1, 6 ∨ 8, 6 ∨ 8,
2 ∨ 4, 4 ∨ 5, 7 ∨ 5, 7 ∨ 5, 3, 5 ∨ 3 }

χ = { 1 ∨ 2, 2 ∨ 3, 5 ∨ 1, 3 }

I maxSAT(ϕ) = 10, e.g. for valuation 1 2 3 4 5 6 7 8
I pmaxSAT(χ, ϕ) = 8, e.g. for valuation 1 2 3 4 5 6 7 8
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Weighted Maximal Satisfiability (maxSATw)

instance: CNF formula ϕ with weight wC ∈ Z for all C ∈ ϕ
question: what is maximal

∑
C∈ψ wC for ψ ⊆ ϕ and

∧
C∈ψ C satisfiable?

Weighted Partial Maximal Satisfiability (pmaxSATw)

instance: CNF formulas ϕ and χ, with weight wC ∈ Z for all C ∈ ϕ
question: what is maximal

∑
C∈ψ wC for ψ ⊆ ϕ and χ ∧

∧
C∈ψ C satisfiable?

Notation

I write maxSAT(ϕ) and maxSATw (ϕ) for solution to (weighted) maximal

satisfiability problem for ϕ
I write pmaxSAT(χ, ϕ) and pmaxSATw (χ, ϕ) for solution to (weighted) partial

maximal satisfiability problem for hard clauses χ and soft clauses ϕ

Example

ϕ = {(¬x , 2), (y , 4), (¬x ∨ ¬y , 5)}
χ = {x}

I maxSATw (ϕ) = 11 e.g. for valuation v(x) = F and v(y) = T
I pmaxSATw (χ, ϕ) = 5, e.g. for valuation v(x) = T and v(y) = F 8



Minimum Unsatisfiability (minUNSAT)

instance: CNF formula ϕ

question: what is minimal |ψ| such that ψ ⊆ ϕ and
∧

C∈ψ ¬C is satisfiable?

Notation

write minUNSAT(ϕ) for solution to minimal unsatisfiability problem for ϕ

Lemma
|ϕ| = |minUNSAT(ϕ)|+ |maxSAT(ϕ)|

Example

ϕ = {¬x , x ∨ y , ¬y ∨ ¬z , x , y ∨ ¬z}

using v(x) = v(y) = T and v(z) = F have

I maxSAT(ϕ) = 4
I minUNSAT(ϕ) = 1

Remark

maxSAT and minUNSAT are equivalent 9



Application: Automotive Configuration (1)

Manufacturer’s Constraints on Components

component family components limit

engine E1,E2,E3 = 1
gearbox G1,G2,G3 = 1
control unit C1, . . . ,C5 = 1
dashboard D1, . . . ,D4 = 1

navigation system N1,N2,N3 6 1
air conditioner AC1,AC2,AC3 6 1
alarm system AS1,AS2 6 1
radio R1, . . . ,R5 6 1

Component families with limitations

premise conclusion

G1 E1 ∨ E2

N1 ∨ N2 D1

N3 D2 ∨ D3

AC1 ∨ AC3 D1 ∨ D2

AS1 D2 ∨ D3

R1 ∨ R2 ∨ R5 D1 ∨ D4

Component dependencies

Encoding

I for every component c use variable xc which is assigned T iff c is used
I require manufacturer’s constraints ϕcar by adding respective clauses

Problem 1: Validity of Configuration

I is desired configuration valid? SAT encoding

e.g. E1 ∧ G1 ∧ C5 ∧ (D2 ∨ D3) X E3 ∧ G1 ∧ C5 ∧ D2 ∨ AC1 7 10



Application: Automotive Configuration (2)

Problem 2: Maximization of Chosen Components

I find maximal valid subset of configuration c1, . . . , cn partial maxSAT

I possibly with priorities pi for component ci weighted partial maxSAT

ϕcar︸︷︷︸
hard clauses

∧ xc1 ∧ · · · ∧ xcn︸ ︷︷ ︸
soft clauses

Problem 3: Minimization of Costs

I given cost qi for each component ci , find cheapest valid configuration

weighted partial maxSAT encoding

ϕcar︸︷︷︸
hard clauses

∧ (c1,−q1) ∧ · · · ∧ (cn,−qn)︸ ︷︷ ︸
soft clauses

Result

collaboration with BMW: evaluated on configuration formulas of 2013 product line
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Algorithms for Maximum

Satisfiability



Branch & Bound

Idea

I gets list of clauses ϕ as input return minUNSAT(ϕ)

I explores assignments in depth-first search

Ingredients

I UB is minimal number of unsatisfied clauses found so far (best solution)

I ϕx is formula ϕ with all occurrences of x replaced by T

I ϕx is formula ϕ with all occurrences of x replaced by F

I for list of clauses ϕ, function simp(ϕ)

I replace ¬T by F and ¬F by T

I drops all clauses which contain T

I removes F from all remaining clauses

I � denotes empty clause and #empty(ϕ) number of empty clauses in ϕ

Example

ϕ = y ∨ ¬F , x ∨ y ∨ F , F , x ∨ ¬y ∨ T , x ∨ ¬z
simp(ϕ) = x ∨ y , �, x ∨ ¬z 12



Algorithm (Branch & Bound)

function BnB(ϕ, UB)

ϕ = simp(ϕ)

if ϕ contains only empty clauses then

return #empty(ϕ)

if #empty(ϕ) > UB then

return UB

x = selectVariable(ϕ)

UB := min(UB, BnB(ϕx, UB))

return min(UB, BnB(ϕx, UB))

I number of clauses falsified by any valuation is 6 |ϕ|
I start by calling BnB(ϕ, |ϕ|)
I idea: #empty(ϕ) is number of clauses falsified by current valuation
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Example

I ϕ = x , ¬x ∨ y , z ∨ ¬y , x ∨ z , x ∨ y , ¬y
I call BnB(ϕ, 6)

I simp(ϕ) = ϕ

I ϕx = T, ¬T ∨ y , z ∨ ¬y , T ∨ z , T ∨ y , ¬y
simp(ϕx) = y , z ∨ ¬y , ¬y

I ϕxy = T, z ∨ ¬T, ¬T
simp(ϕxy ) = z ,�

I ϕxyz = T, �
simp(ϕxyz) = �

I ϕxyz = F, �
simp(ϕxyz) = �, �

I ϕxy = F, z ∨ ¬F, ¬F
simp(ϕxy ) = �

I ϕx = F, ¬F ∨ y , z ∨ ¬y , F ∨ z , F ∨ y , ¬y
simp(ϕx) = �, z ∨ ¬y , z , y , ¬y

I minUNSAT(ϕ) = 1, maxSAT(ϕ) = 5

I v(x) = v(y) = v(z) = T

BnB(ϕ, 6) = 1

0 > 6

x

BnB(ϕx , 6) = 1

0 > 6

y

BnB(ϕxy , 3) = 1

1 > 6

z

BnB(ϕxyz , 6) = 1

T

BnB(ϕxyz , 1) = 2

F

T

BnB(ϕxy , 1) = 1

F

T

BnB(ϕx , 1) = 1

1 > 1

F
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Algorithm (Branch & Bound, improved)

function BnB’(ϕ, UB)

ϕ = simp(ϕ)

if ϕ contains only empty clauses then

return #empty(ϕ)

LB = #empty(ϕ) + underapproximate(ϕ)

if LB > UB then

return UB

x = selectVariable(ϕ)

UB = min(UB, BnB’(ϕx, UB))

return min(UB, BnB’(ϕx, UB))

Underapproximation (Wallace and Freuder)

I ic(x) is number of unit clauses x in ϕ inconsistency count

I underapproximate(ϕ) =
∑

x in ϕ min(ic(x), ic(¬x))

Theorem

BnB(ϕ, |ϕ|) = BnB’(ϕ, |ϕ|) = minUNSAT(ϕ) 15



Binary Search

Idea

I gets list of clauses ϕ as input and returns minUNSAT(ϕ)

I repeatedly call SAT solver in binary search fashion

Example

Suppose given formula with 18 clauses. Can we satisfy . . .

more than 9 clauses?

more than 4?

more than 2?

. . .

no

. . .

yes

no

more than 7?

more than 5?

. . .

no

. . .

yes

no

more than 8?

8

no

9

yes

yes

yes

no

more than 14?

. . .

no

. . .

yes

yes
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Cardinality Constraints

Definitions

I cardinality constraint has form
∑

x∈X x ./ N where ./ is =, <, >, 6, or >,

X is set of propositional variables and N ∈ N
I valuation v satisfies

∑
x∈X x ./ N iff k ./ N

where k is number of variables x ∈ X such that v(x) = T

Remarks

I cardinality constraints are expressible in CNF

I enumerate all possible subsets O(2|X |)

I BDDs O(N · |X |)
I sorting networks O(|X | · log2(|X |))

I write CNF(
∑

x∈X x ./ N) for CNF encoding

I cardinality constraints occur very frequently! (n-queens, Minesweeper, . . . )

Example

I x + y + z = 1 satisfied by v(x) = v(y) = F, v(z) = T

I x1 + x2 + · · ·+ x8 6 3 satisfied by v(x1) = · · · = v(x8) = F 17



Algorithm (Binary Search)

function BinarySearch({C1, . . . ,Cm})
ϕ := {C1 ∨ b1, . . . ,Cm ∨ bm}
return search(ϕ,0,m)

function search(ϕ, L, U)

if L > U then

return U

mid :=b U+L
2 c

if SAT(ϕ ∧ CNF(
∑m

i=1 bi 6 mid)) then

return search(ϕ, L, mid)

else

return search(ϕ, mid + 1, U)

b1, . . . , bm are fresh variables

Theorem

BinarySearch(ϕ) = minUNSAT(ϕ)
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Example

ϕ = { 6 ∨ 2 ∨ b1, 6 ∨ 2 ∨ b2, 2 ∨ 1 ∨ b3, 1 ∨ b4, 6 ∨ 8 ∨ b5,

6 ∨ 8 ∨ b6, 2 ∨ 4 ∨ b7, 4 ∨ 5 ∨ b8, 7 ∨ 5 ∨ b9, 7 ∨ 5 ∨ b10,

3 ∨ b11, 5 ∨ 3 ∨ b12 }

I L = 0, U = 12, mid = 6 SAT(ϕ ∧ CNF(
∑m

i=1 bi 6 6))? X
I L = 0, U = 6, mid = 3 SAT(ϕ ∧ CNF(

∑m
i=1 bi 6 3))? X

I L = 0, U = 3, mid = 1 SAT(ϕ ∧ CNF(
∑m

i=1 bi 6 1))? 7

I L = 2, U = 3, mid = 2 SAT(ϕ ∧ CNF(
∑m

i=1 bi 6 2))? X
I L = 2, U = 2 return 2
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Cardinality Constraints in Z3

from z3 import *

xs = [ Bool("x"+str(i)) for i in range (0,10)]

ys = [ Bool("y"+str(i)) for i in range (0,10)]

def sum(ps):

return reduce(lambda s,x: s + If(x, 1, 0), ps, 0)

solver = Solver()

solver.add(sum(xs) == 5, sum(ys) > 3, sum(ys) <= 4)

if solver.check() == sat:

model = solver.model()

for i in range(0,10):

print xs[i], "=", model[xs[i]], ys[i], "=", model[ys[i]]
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Complexity

Definition

FPNP is class of functions computable in polynomial time with access to NP oracle

Theorem

maxSAT is FPNP-complete

Remarks

I FPNP allows polynomial number of oracle calls (which is e.g. SAT solver)

I other members of FPNP are travelling salesperson and Knapsack
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