
SAT and SMT Solving

Sarah Winkler

SS 2018

Department of Computer Science

University of Innsbruck

http://cl-informatik.uibk.ac.at/teaching/ss18/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Outline

Summary of Last Week

Unsatisfiable Cores

Algorithm by Fu and Malik

Unsatisfiable Cores in Practice

1

Summary of Last Week

Maximum Satisfiability

Consider CNF formulas χ and ϕ as sets of clauses.

Definitions

I maxSAT(ϕ) is maximal |ψ| such that ψ ⊆ ϕ and
∧

C∈ψ C satisfiable

I pmaxSAT(ϕ, χ) is maximal |ψ| such that ψ ⊆ ϕ and χ ∧
∧

C∈ψ C satisfiable

Definitions

given weights wC ∈ Z for all C ∈ ϕ,

I maxSATw (ϕ) is maximal
∑

C∈ψ wC such that ψ ⊆ ϕ and
∧

C∈ψ C satisfiable

I pmaxSATw (ϕ, χ) is maximal
∑

C∈ψ wC such that ψ ⊆ ϕ and χ ∧
∧

C∈ψ C

satisfiable

Definition

minUNSAT(ϕ) is minimal |ψ| such that ψ ⊆ ϕ and
∧

C∈ψ ¬C is satisfiable

Lemma
|ϕ| = |minUNSAT(ϕ)|+ |maxSAT(ϕ)| 2

Branch & Bound

Idea

I gets list of clauses ϕ as input return minUNSAT(ϕ)

I explores assignments in depth-first search

Notation

I ϕx is formula ϕ with all occurrences of x replaced by T

I ϕx is formula ϕ with all occurrences of x F

I for list of clauses ϕ, function simp(ϕ)

I replace ¬T by F and ¬F by T

I drops all clauses which contain T

I removes F from all remaining clauses

I � denotes empty clause and #empty(ϕ) number of empty clauses in ϕ

3

Algorithm (Branch & Bound)

function BnB(ϕ, UB)

ϕ = simp(ϕ)

if ϕ contains only empty clauses then

return #empty(ϕ)

if #empty(ϕ) > UB then

return UB

x = selectVariable(ϕ)

UB := min(UB, BnB(ϕx, UB))

return min(UB, BnB(ϕx, UB))

Theorem

BnB(ϕ, |ϕ|) = minUNSAT(ϕ)

4

Binary Search

Idea

I gets list of clauses ϕ as input and returns minUNSAT(ϕ)

I repeatedly call SAT solver in binary search fashion

Definitions

I cardinality constraint is ∑
x∈X

x ./ N

where ./ is =, <, >, 6, or >, X is set of propositional variables, and N ∈ N
I valuation v satisfies

∑
x∈X x ./ N iff k ./ N

where k is number of variables x ∈ X such that v(x) = T

Remark

cardinality constraints are expressible in CNF

5

Algorithm (Binary Search)

function BinarySearch({C1, . . . ,Cm})
ϕ := {C1 ∨ b1, . . . ,Cm ∨ bm}
return search(ϕ,0,m)

function search(ϕ, L, U)

if L > U then

return U

mid :=b U+L
2 c

if SAT(ϕ ∧ CNF(
∑m

i=1 bi 6 mid)) then

return search(ϕ, L, mid)

else

return search(ϕ, mid + 1, U)

b1, . . . , bm are fresh variables

Theorem

BinarySearch(ϕ) = minUNSAT(ϕ)

6

Unsatisfiable Cores

Definitions

for unsatisfiable CNF formula ϕ given as set of clauses

I ψ ⊆ ϕ such that
∧

C∈ψ C is unsatisfiable is unsatisfiable core (UC) of ϕ

I minimal unsatisfiable core ψ is UC such that every subset of ψ is satisfiable

I MUC (minimum unsatisfiable core) is UC such that |ψ| is minimal

Example

ϕ = {¬x , x ∨ z , ¬y ∨ ¬z , x , y ∨ ¬z}

unsatisfiable cores are

I ϕ

I { ¬x , x ∨ z , ¬y ∨ ¬z , y ∨ ¬z } minimal

I { ¬x , x } minimal and MUC

Remark

MUC is always minimal unsatisfiable core

7

Example

ϕ = {C1, . . . ,C6}

C1 : x1 ∨ ¬x3 C2 : x2 C3 : ¬x2 ∨ x3

C4 : ¬x2 ∨ ¬x3 C5 : x2 ∨ x3 C6 : ¬x1 ∨ x2 ∨ ¬x3

ϕ has 9 unsatisfiable cores:

C3C2

C1

C6 C5

C4

UC1 = {C1,C2,C3,C4,C5,C6}
UC2 = {C1,C2,C3,C4,C5}
UC3 = {C1,C2,C3,C4,C6}
UC4 = {C1,C3,C4,C5,C6}
UC5 = {C2,C3,C4,C5,C6}
UC6 = {C1,C2,C3,C4}
UC7 = {C2,C3,C4,C5}
UC8 = {C2,C3,C4,C6}
UC9 = {C2,C3,C4} minimal and MUC

8

Application: FPGA Routing

Field Programmable Gate Arrays (FPGAs)

I can simulate microprocessors but faster for special

tasks (from complex combinatorics to mere logic)

I logic blocks connected by “routing channels”

I “routing”: determine which channels are used for what

Example (Encoding Routing Requirements)

I consider connections a, b, c, d , e of 2 bits each

I liveness: want to route > 1 bit of a, b, c, d , e

I 2 routing channels of 2 tracks each

I exclusivity: each channel has only 2 tracks

I unsatisfiable: UCs indicate problems

a0 ∨ a1 • • • ¬a0∨¬b0 • • ¬c0∨¬d0 • •
b0 ∨ b1 • • • ¬a0∨¬c0 • • ¬c0 ∨¬e0 • •
c0 ∨ c1 • • • • ¬b0∨¬c0 • • ¬d0∨¬e0 • •
d0 ∨ d1 • • • ¬a1∨¬b1 • • ¬c1∨¬d1 • •
e0 ∨ e1 • • • ¬a1∨¬c1 • • ¬c1 ∨¬e1 • •

¬b1∨¬c1 • • ¬d1∨¬e1 • •

routing channel 2

ro
u

ti
n

g
ch

an
n

el
1

a
a

b

b

c
c

d

d
e

e

UC1: channel 1 capacity exceeded

UC2: channel 2 capacity exceeded

UC3: c is overconstrained

UC4: c is overconstrained 9

Finding Minimal Unsatisfiable Cores by Resolution

Idea

I repeatedly pick clause C from ϕ and check satisfiability:

if ϕ \ {C} is satisfiable, keep C , otherwise drop C

I SAT solvers can give resolution proof if conflict detected:
use resolution graphs for more efficient implementation of this idea

Example (Resolution Graph)

(non-minimal) unsatisfiable core

¬x2

¬x1 ∨ ¬x3

¬x1 ∨ x3

¬x3 ∨ x2

x1 ∨ x2 ∨ ¬x4

x1 ∨ x2 ∨ x4

x1 ∨ ¬x2 ∨ x4

x1 ∨ x3 ∨ x5

¬x2 ∨ x5

¬x1

¬x1 ∨ x2

x2 ∨ ¬x4

x1 ∨ x4

x1 ∨ x2

x2

�

10

Definition (Resolution Graph)

directed acyclic graph G = (V ,E) is resolution graph for set of clauses ϕ if

1. V = Vi] Vc is set of clauses and Vi = ϕ,

2. Vi nodes have no incoming edges, initial nodes

3. there is exactly one node � without outgoing edges,

4. ∀C ∈ Vc ∃ edges D → C , D ′ → C such that C is resolvent of D and D ′, and

5. there are no other edges.

Notation

I ReachG (C) is set of nodes reachable from C in G

I ReachEG (C) is set of edges reachable from C in G

I BReach(C) is set of nodes backwards reachable from C in G

I N is V \ N for any set of nodes N

11

Algorithm minUnsatCore(ϕ)

Input: unsatisfiable formula ϕ
Output: minimal unsatisfiable core of ϕ

build refutation graph G = (Vi] Vc ,E) for ϕ
while ∃ unmarked clause in Vi do

C ← unmarked clause in Vi

if SAT(ReachG (C)) then . subgraph without C satisfiable?
mark C . C is UC member

else
build refutation graph G ′ = (V ′

i] V ′
c ,E

′) for ReachG (C)
Vi ← Vi \ {C} and Vc ← V ′

c ∪ (Vc \ ReachG (C))
E ← E ′ ∪ (E \ ReachEG (C))
G ← (Vi ∪ Vc ,E)
G ← G |BReachG (�) . restrict to nodes with path to �

return Vi

Theorem

if ϕ unsatisfiable then minUnsatCore(ϕ) is minimal unsatisfiable core of ϕ

12

Example

¬x2

¬x1 ∨ ¬x3C2

¬x1 ∨ x3

¬x3 ∨ x2

x1 ∨ x2 ∨ ¬x4

x1 ∨ x2 ∨ x4

C1

C3

C4

C5

C6

¬x1 ∨ x2

x2 ∨ ¬x4

¬x1D1

D2

D4

x1 ∨ ¬x2 ∨ x4C7

x1 ∨ x4

x1 ∨ x2

x2

�

D3

D5

D6

D7

x1 ∨ x2F1

x2F2

�F3

minUnsatCore(ϕ)

I pick C7

I ReachG (C7) = {C7,D3,D5,D6,D7}, so Re(C7,G) = {C1, . . . ,C6,D1,D2,D4}
I check SAT(ReachG (C7))
I unsatisfiable: get new resolution graph G7 for ϕ ∪ {D1,D2,D4}
I construct resolution graph G ′ for ϕ by adding edges from G to G7

I set G to G ′ restricted to BReachG ′(�)
I after 5 more loop iterations: return {C1,C3, . . . ,C6}

re-use relevant resolvents:

fewer steps to �

13

Bounds for Maximum Satisfiability

Definition

if ϕ = C1 ∧ · · · ∧ Cm is CNF formula then blocked formula

ϕB = (C1 ∨ b1) ∧ · · · ∧ (Cm ∨ bm)

for fresh variables b1, . . . , bm

Lemma (Lower Bound)

Let v satisfy ϕB and BT = {bi | v(bi) = T}. Then maxSAT(ϕ) > |ϕ| − |BT|

Lemma (Upper Bound)

If ϕ contains k disjoint unsatisfiable cores then maxSAT(ϕ) 6 |ϕ| − k

Example (Upper Bound)

¬x1 ∨ ¬x2 ¬x1 ∨ x2

x1

¬x3 ∨ x4

x3

¬x3 ∨ ¬x4

x4 ∨ x5

¬x4 ∨ x5 ¬x1 ∨ ¬x5

x1 ∨ ¬x5 ∨ x6

x5 ∨ ¬x6

x7

¬x7 ∨ x8

¬x7 ∨ ¬x8 ∨ x6

¬x7 ∨ ¬x8 ∨ ¬x6

¬x1 ∨ ¬x3

¬x1 ∨ x8

¬x9 ∨ x2

unsatisfiable cores

maxSAT(ϕ) = 13 6 18− 4

14

Algorithm by Fu and Malik

Algorithm by Fu and Malik

Definition (Partial minUNSAT)

pminUNSAT(χ, ϕ) is minimal |ψ| such that ψ ⊆ ϕ and χ ∧
∧

C∈ψ ¬C satisfiable

Lemma
|ϕ| = |pminUNSAT(χ, ϕ)|+ |pmaxSAT(χ, ϕ)|

Idea

I maximal satisfying valuation falsifies at least one clause in unsatisfiable core

I repeatedly call SAT solver on relaxed formula excluding unsatisfiable core

until resulting formula is satisfiable

I returns pminUNSAT for hard clauses χ, soft clauses ϕ

15

Algorithm FuMalik(χ, ϕ)

Input: clause set ϕ and satisfiable clause set χ
Output: minUNSAT(χ, ϕ)

cost ← 0
while ¬SAT(χ ∪ ϕ) do

UC ← unsatCore(χ ∪ ϕ)
B ← ∅
for C ∈ UC ∩ ϕ do . loop over soft clauses in core

b ← new blocking variable
ϕ← ϕ \ {C} ∪ {C ∨ b}
B ← B ∪ {b}

χ← χ ∪ CNF(
∑

b∈B b = 1) . cardinality constraint is hard
cost ← cost + 1

return cost

Theorem

FuMalik(χ, ϕ) = pminUNSAT(χ, ϕ)

16

Example

χ : ¬x1 ∨ x3 ¬x7 ∨ x2 x7 ∨ x2 x1 ∨ ¬x2

ϕ : ¬x1 ∨ ¬x2 ∨ b1 ¬x1 ∨ x2 ∨ b2 ¬x1 ∨ x7 x1 ∨ b3

¬x3 ∨ x4 ∨ c1 x3 ∨ c2 ¬x3 ∨ ¬x4 ∨ c3 x4 ∨ x5

¬x4 ∨ x5 x1 ∨ ¬x5 ∨ x6 x5 ∨ ¬x6 x7 ∨ d1

¬x7 ∨ x8 ∨ d2 ¬x7 ∨ ¬x8 ∨ x6 ∨ d3 ¬x7 ∨ ¬x8 ∨ ¬x6 ∨ d4 ¬x1 ∨ ¬x3 ∨ e1

I unsatisfiable core: ¬x1 ∨ ¬x2, ¬x1 ∨ x2, x1

χ = χ ∪ CNF(b1 + b2 + b3 = 1)
cost = 1

I unsatisfiable core: ¬x3 ∨ x4, x3,¬x3 ∨ ¬x4

χ = χ ∪ CNF(c1 + c2 + c3 = 1)
cost = 2

I unsatisfiable core: x7, ¬x7 ∨ x8, ¬x7 ∨ ¬x8 ∨ x6, ¬x7 ∨ ¬x8 ∨ ¬x6

χ = χ ∪ CNF(d1 + d2 + d3 + d4 = 1)
cost = 3

I unsatisfiable core: ¬x1 ∨ x3, ¬x7 ∨ x2, x7 ∨ x2, x1 ∨ ¬x2, ¬x1 ∨ ¬x3

χ = χ ∪ CNF(e1 = 1)
cost = 4

I satisfiable: v(x1) = v(x2) = v(x3) = v(x5) = v(x7) = T and v(xi) = F otherwise

I pminUNSAT(χ, ϕ) = 4 and pmaxSAT(χ, ϕ) = 12 17

Unsatisfiable Cores in Practice

Unsatisfiable Cores in z3

from z3 import *

x1,x2,x3 = Bool("x1"), Bool("x2"), Bool("x3")

phi = [Or(Not(x1), Not(x2)), Or(Not(x1), x2),\

Or(Not(x1), x3), x1, Or(Not(x3), x2)]

solver = Solver()

solver.set(unsat_core=True)

assert clauses in phi with names phi0 ... phi4

for i,c in enumerate(phi):

solver.assert_and_track(c, "phi" + str(i))

if solver.check() == z3.unsat:

uc = solver.unsat_core()

print(uc) # [phi0, phi1, phi3]
18

Literature

Nachum Dershowitz, Ziyad Hanna, and Alexander Nadel.

A Scalable Algorithm for Minimal Unsatisfiable Core Extraction.
Proc. Theory and Applications of Satisfiability Testing, pp. 36–41, 2006.

Yoonna Oh, Maher Mneimneh, Zaher Andraus, Karem Sakallah, and Igor Markov

AMUSE: A Minimally-Unsatisfiable Subformula Extractor.
Proc. 41st Design Automation Conference, pp. 518–523, 2004.

Zhaohui Fu and Sharad Malik.

On solving the partial MAX-SAT problem.
In Proc. Theory and Applications of Satisfiability Testing, pp. 252–265, 2006

19

	lecture 4
	Summary of Last Week
	Unsatisfiable Cores
	Algorithm by Fu and Malik
	Unsatisfiable Cores in Practice

