SAT and SMT Solving

Sarah Winkler

SS 2018

Department of Computer Science University of Innsbruck

- Summary of Last Week
- Unsatisfiable Cores
- Algorithm by Fu and Malik
- Unsatisfiable Cores in Practice

Summary of Last Week

Maximum Satisfiability

Consider CNF formulas χ and φ as sets of clauses.

Definitions

- ▶ maxSAT(φ) is maximal $|\psi|$ such that $\psi \subseteq \varphi$ and $\bigwedge_{C \in \psi} C$ satisfiable
- ▶ pmaxSAT(φ, χ) is maximal $|\psi|$ such that $\psi \subseteq \varphi$ and $\chi \land \bigwedge_{C \in \psi} C$ satisfiable

Definitions

given weights $w_C \in \mathbb{Z}$ for all $C \in \varphi$,

- maxSAT_w(φ) is maximal $\sum_{C \in \psi} w_C$ such that $\psi \subseteq \varphi$ and $\bigwedge_{C \in \psi} C$ satisfiable
- ▶ pmaxSAT_w(φ, χ) is maximal $\sum_{C \in \psi} w_C$ such that $\psi \subseteq \varphi$ and $\chi \land \bigwedge_{C \in \psi} C$ satisfiable

Definition

minUNSAT(φ) is minimal $|\psi|$ such that $\psi \subseteq \varphi$ and $\bigwedge_{C \in \psi} \neg C$ is satisfiable

Lemma

$$|\varphi| = |\min \text{UNSAT}(\varphi)| + |\max \text{SAT}(\varphi)|$$
 2

Idea

- gets list of clauses φ as input return minUNSAT(φ)
- explores assignments in depth-first search

Notation

- φ_x is formula φ with all occurrences of x replaced by T
- $\varphi_{\overline{x}}$ is formula φ with all occurrences of $x \in F$
- ▶ for list of clauses φ , function $simp(\varphi)$
 - replace $\neg T$ by F and $\neg F$ by T
 - drops all clauses which contain T
 - ▶ removes *F* from all remaining clauses
- \blacktriangleright $\ \square$ denotes empty clause and $\#\texttt{empty}(\varphi)$ number of empty clauses in φ

Algorithm (Branch & Bound)

```
function BnB(\varphi, UB)

\varphi = simp(\varphi)

if \varphi contains only empty clauses then

return #empty(\varphi)

if #empty(\varphi) \ge UB then

return UB

x = selectVariable(\varphi)

UB := min(UB, BnB(\varphi_x, UB))

return min(UB, BnB(\varphi_{\overline{x}}, UB))
```

Theorem

 $BnB(\varphi, |\varphi|) = minUNSAT(\varphi)$

Idea

- gets list of clauses φ as input and returns minUNSAT(φ)
- ▶ repeatedly call SAT solver in binary search fashion

Definitions

cardinality constraint is

$$\sum_{x\in X}x\bowtie N$$

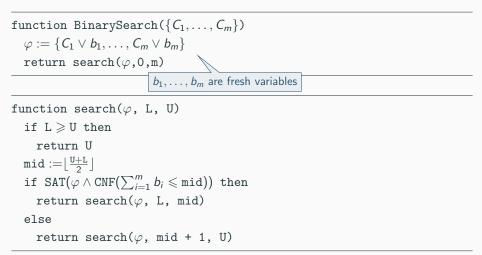
where \bowtie is =, <, >, \leqslant , or \geqslant , X is set of propositional variables, and $N \in \mathbb{N}$

▶ valuation v satisfies $\sum_{x \in X} x \bowtie N$ iff $k \bowtie N$ where k is number of variables $x \in X$ such that v(x) = T

Remark

cardinality constraints are expressible in CNF

Algorithm (Binary Search)



Theorem

 $BinarySearch(\varphi) = minUNSAT(\varphi)$

Unsatisfiable Cores

Definitions

for unsatisfiable CNF formula φ given as set of clauses

- ▶ $\psi \subseteq \varphi$ such that $\bigwedge_{C \in \psi} C$ is unsatisfiable is unsatisfiable core (UC) of φ
- \blacktriangleright minimal unsatisfiable core ψ is UC such that every subset of ψ is satisfiable
- $\blacktriangleright\,$ MUC (minimum unsatisfiable core) is UC such that $|\psi|$ is minimal

Example

 $\varphi = \{\neg x, \qquad x \lor z, \qquad \neg y \lor \neg z, \qquad x, \qquad y \lor \neg z\}$

unsatisfiable cores are

$$\varphi$$

$$\{ \neg x, x \lor z, \neg y \lor \neg z, y \lor \neg z \}$$

$$\{ \neg x, x \}$$

minimal minimal and MUC

Remark

MUC is always minimal unsatisfiable core

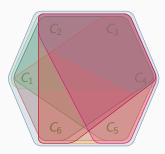
Example

$$\varphi = \{C_1, \dots, C_6\}$$

$$C_1: x_1 \lor \neg x_3 \qquad C_2: x_2 \qquad C_3: \neg x_2 \lor x_3$$

$$C_4: \neg x_2 \lor \neg x_3 \qquad C_5: x_2 \lor x_3 \qquad C_6: \neg x_1 \lor x_2 \lor \neg x_3$$

φ has 9 unsatisfiable cores:



$$UC_{1} = \{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}\}$$
$$UC_{2} = \{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}\}$$
$$UC_{3} = \{C_{1}, C_{2}, C_{3}, C_{4}, C_{6}\}$$
$$UC_{4} = \{C_{1}, C_{3}, C_{4}, C_{5}, C_{6}\}$$
$$UC_{5} = \{C_{2}, C_{3}, C_{4}, C_{5}, C_{6}\}$$
$$UC_{6} = \{C_{1}, C_{2}, C_{3}, C_{4}\}$$
$$UC_{7} = \{C_{2}, C_{3}, C_{4}, C_{5}\}$$
$$UC_{8} = \{C_{2}, C_{3}, C_{4}, C_{6}\}$$
$$UC_{9} = \{C_{2}, C_{3}, C_{4}\}$$

minimal and MUC

Application: FPGA Routing

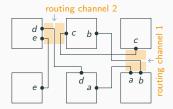
Field Programmable Gate Arrays (FPGAs)

- can simulate microprocessors but faster for special tasks (from complex combinatorics to mere logic)
- logic blocks connected by "routing channels"
- "routing": determine which channels are used for what

Example (Encoding Routing Requirements)

- ▶ consider connections *a*, *b*, *c*, *d*, *e* of 2 bits each
- ▶ liveness: want to route ≥ 1 bit of a, b, c, d, e
- 2 routing channels of 2 tracks each
- exclusivity: each channel has only 2 tracks
- unsatisfiable: UCs indicate problems

$a_0 \lor a_1 \bullet \bullet \bullet$	$\neg a_0 \lor \neg b_0 \bullet \bullet$	$\neg c_0 \lor \neg d_0 \bullet \bullet$
$b_0 \lor b_1 \bullet \bullet \bullet$	$\neg a_0 \lor \neg c_0 \bullet \bullet$	$\neg c_0 \lor \neg e_0 \bullet \bullet$
$c_0 \vee c_1 \bullet \bullet \bullet \bullet$	$\neg b_0 \lor \neg c_0 \bullet \bullet$	$\neg d_0 \lor \neg e_0 \bullet \bullet$
$d_0 \lor d_1 \bullet \bullet \bullet$	$\neg a_1 \lor \neg b_1 \bullet \bullet$	$\neg c_1 \lor \neg d_1 \bullet \bullet$
$e_0 \lor e_1 \bullet \bullet \bullet$	$\neg a_1 \lor \neg c_1 \bullet \bullet$	$\neg c_1 \lor \neg e_1 \bullet \bullet$
	$\neg b_1 \lor \neg c_1 \bullet \bullet$	$\neg d_1 \lor \neg e_1 \bullet \bullet$

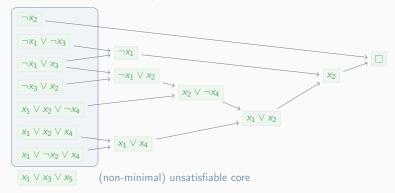


UC₁: channel 1 capacity exceeded UC₂: channel 2 capacity exceeded UC₃: c is overconstrained UC₄: c is overconstrained

Finding Minimal Unsatisfiable Cores by Resolution

Idea

- repeatedly pick clause C from φ and check satisfiability:
 if φ \ {C} is satisfiable, keep C, otherwise drop C
- SAT solvers can give resolution proof if conflict detected: use resolution graphs for more efficient implementation of this idea



Example (Resolution Graph)

Definition (Resolution Graph)

directed acyclic graph G = (V, E) is resolution graph for set of clauses φ if

- 1. $V = V_i \uplus V_c$ is set of clauses and $V_i = \varphi$,
- 2. V_i nodes have no incoming edges,

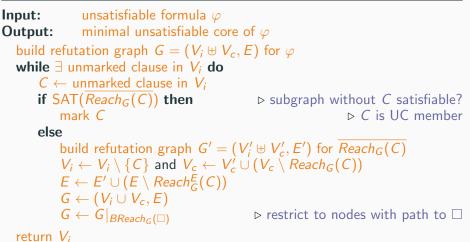
initial nodes

- 3. there is exactly one node \Box without outgoing edges,
- 4. $\forall C \in V_c \exists$ edges $D \to C$, $D' \to C$ such that C is resolvent of D and D', and
- 5. there are no other edges.

Notation

- $Reach_G(C)$ is set of nodes reachable from C in G
- $Reach_G^E(C)$ is set of edges reachable from C in G
- ▶ BReach(C) is set of nodes backwards reachable from C in G
- \overline{N} is $V \setminus N$ for any set of nodes N

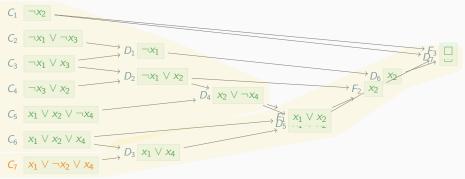
Algorithm minUnsatCore(φ)



Theorem

if φ unsatisfiable then minUnsatCore($\varphi)$ is minimal unsatisfiable core of φ

Example



minUnsatCore(φ)

► pick C₇

re-use relevant resolvents: fewer steps to \Box

- $Reach_G(C_7) = \{C_7, D_3, D_5, D_6, D_7\}$, so $\overline{Re(C_7, G)} = \{C_1, \dots, C_6, D_1, D_2, D_4\}$
- check SAT(Reach_G(C₇))
- ▶ unsatisfiable: get new resolution graph G_7 for $\varphi \cup \{D_1, D_2, D_4\}$
- ▶ construct resolution graph G' for φ by adding edges from G to G_7
- ▶ set G to G' restricted to $BReach_{G'}(\Box)$
- after 5 more loop iterations: return $\{C_1, C_3, \ldots, C_6\}$

Bounds for Maximum Satisfiability

Definition

if $\varphi = C_1 \land \dots \land C_m$ is CNF formula then blocked formula $\varphi_B = (C_1 \lor b_1) \land \dots \land (C_m \lor b_m)$

for fresh variables b_1, \ldots, b_m

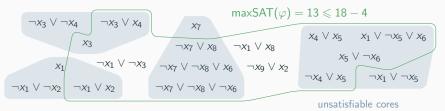
Lemma (Lower Bound)

Let v satisfy φ_B and $B_T = \{b_i \mid v(b_i) = T\}$. Then maxSAT $(\varphi) \ge |\varphi| - |B_T|$

Lemma (Upper Bound)

If φ contains k disjoint unsatisfiable cores then $\max SAT(\varphi) \leqslant |\varphi| - k$

Example (Upper Bound)



Algorithm by Fu and Malik

Definition (Partial minUNSAT)

pminUNSAT (χ, φ) is minimal $|\psi|$ such that $\psi \subseteq \varphi$ and $\chi \land \bigwedge_{C \in \psi} \neg C$ satisfiable

Lemma

 $|\varphi| = |\mathsf{pminUNSAT}(\chi, \varphi)| + |\mathsf{pmaxSAT}(\chi, \varphi)|$

Idea

- maximal satisfying valuation falsifies at least one clause in unsatisfiable core
- repeatedly call SAT solver on relaxed formula excluding unsatisfiable core until resulting formula is satisfiable
- ▶ returns pminUNSAT for hard clauses χ , soft clauses φ

Algorithm FuMalik(χ , φ)

```
Input:
             clause set \varphi and satisfiable clause set \chi
Output: minUNSAT(\chi, \varphi)
   cost \leftarrow 0
   while \neg \mathsf{SAT}(\chi \cup \varphi) do
         UC \leftarrow unsatCore(\chi \cup \varphi)
         B \leftarrow \emptyset
         for C \in UC \cap \varphi do
               b \leftarrow new blocking variable
               \varphi \leftarrow \varphi \setminus \{C\} \cup \{C \lor b\}
               B \leftarrow B \cup \{b\}
         \chi \leftarrow \chi \cup \text{CNF}(\sum_{b \in B} b = 1)
         cost \leftarrow cost + 1
   return cost
```

▷ loop over soft clauses in core

 \triangleright cardinality constraint is hard

Theorem

 $\mathsf{FuMalik}(\chi,\varphi) = \mathsf{pminUNSAT}(\chi,\varphi)$

Example

- ▶ unsatisfiable core: $\neg x_1 \lor \neg x_2$, $\neg x_1 \lor x_2$, x_1 $\chi = \chi \cup \mathsf{CNF}(b_1 + b_2 + b_3 = 1)$ cost = 1
- unsatisfiable core: $\neg x_3 \lor x_4, x_3, \neg x_3 \lor \neg x_4$ $\chi = \chi \cup CNF(c_1 + c_2 + c_3 = 1)$ cost = 2
- unsatisfiable core: x_7 , $\neg x_7 \lor x_8$, $\neg x_7 \lor \neg x_8 \lor x_6$, $\neg x_7 \lor \neg x_8 \lor \neg x_6$ $\chi = \chi \cup \mathsf{CNF}(d_1 + d_2 + d_3 + d_4 = 1)$ cost = 3
- ▶ unsatisfiable core: $\neg x_1 \lor x_3$, $\neg x_7 \lor x_2$, $x_7 \lor x_2$, $x_1 \lor \neg x_2$, $\neg x_1 \lor \neg x_3$ $\chi = \chi \cup \mathsf{CNF}(e_1 = 1)$ cost = 4
- ▶ satisfiable: $v(x_1) = v(x_2) = v(x_3) = v(x_5) = v(x_7) = T$ and $v(x_i) = F$ otherwise
- pminUNSAT $(\chi, \varphi) = 4$ and pmaxSAT $(\chi, \varphi) = 12$

Unsatisfiable Cores in Practice

from z3 import *

```
x1,x2,x3 = Bool("x1"), Bool("x2"), Bool("x3")
phi = [ Or(Not(x1), Not(x2)), Or(Not(x1), x2),\
    Or(Not(x1), x3), x1, Or(Not(x3), x2)]
```

```
solver = Solver()
solver.set(unsat_core=True)
```

```
# assert clauses in phi with names phi0 ... phi4
for i,c in enumerate(phi):
   solver.assert_and_track(c, "phi" + str(i))
```

```
if solver.check() == z3.unsat:
    uc = solver.unsat_core()
    print(uc) # [phi0, phi1, phi3]
```


Nachum Dershowitz, Ziyad Hanna, and Alexander Nadel. **A Scalable Algorithm for Minimal Unsatisfiable Core Extraction.** Proc. Theory and Applications of Satisfiability Testing, pp. 36–41, 2006.

Yoonna Oh, Maher Mneimneh, Zaher Andraus, Karem Sakallah, and Igor Markov **AMUSE: A Minimally-Unsatisfiable Subformula Extractor.** Proc. 41st Design Automation Conference, pp. 518–523, 2004.

Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT problem. In Proc. Theory and Applications of Satisfiability Testing, pp. 252–265, 2006