SAT and SMT Solving

Sarah Winkler

SS 2018

Department of Computer Science University of Innsbruck

- Summary of Last Week
- Simplex Algorithm

Summary of Last Week

Definition (DPLL(T) systems)

- ▶ basic system B: unit propagate, decide, fail, T-backjump, T-propagate
- ▶ full system \mathcal{F} : \mathcal{B} plus T-learn, T-forget, and restart

Theorem (Correctness)

For derivation with final state S_n :

$$\| F \implies_{\mathcal{F}} S_1 \implies_{\mathcal{F}} S_2 \implies_{\mathcal{F}} \ldots \implies_{\mathcal{F}} S_n$$

• if
$$S_n = \text{FailState then } F$$
 is T -unsatisfiable

▶ if $S_n = M \parallel F'$ and M is T-consistent then F is T-satisfiable and $M \vDash_T F$

Theorem (Termination)

- $\Gamma: \quad \| F \Longrightarrow_{\mathcal{F}}^* S_0 \Longrightarrow_{\mathcal{F}}^* S_1 \Longrightarrow_{\mathcal{F}}^* \dots \text{ is finite if }$
 - ► there is no infinite sub-derivation of only *T*-learn and *T*-forget steps, and
 - ► for every sub-derivation $S_i \xrightarrow{restart} S_{i+1} \Longrightarrow_{\mathcal{F}}^* S_j \xrightarrow{restart} S_{j+1} \Longrightarrow_{\mathcal{F}}^* S_k$ with no restart steps in $S_{i+1} \Longrightarrow_{\mathcal{F}}^* S_j$ and $S_{j+1} \Longrightarrow_{\mathcal{F}}^* S_k$:
 - there are more \mathcal{B} -steps in $S_j \Longrightarrow_{\mathcal{F}}^* S_k$ than in $S_i \Longrightarrow_{\mathcal{F}}^* S_j$, or
 - a clause is learned in $S_j \Longrightarrow_{\mathcal{F}}^* S_k$ that is never forgotten in Γ

Congruence Closure

Input: set of equations *E* and equation $s \approx t$, both without variables Output: valid ($E \vDash_T s \approx t$) or invalid ($E \nvDash_T s \approx t$)

build congruence classes
(a) put different subterms of terms in E ∪ {s ≈ t} in separate sets
(b) merge sets {..., t₁,...} and {..., t₂,...} for all t₁ ≈ t₂ in E

- (c) merge sets $\{\ldots, f(t_1, \ldots, t_n), \ldots\}$ and $\{\ldots, f(u_1, \ldots, u_n), \ldots\}$ if t_i and u_i belong to same set for all $1 \leq i \leq n$, repeatedly
- 1 if s and t belong to same set then return valid else return invalid

Deciding Satisfiability of EUF Conjunctions

- consider EUF conjunction φ with free variables x_1, \ldots, x_n
- \blacktriangleright split φ into positive and negative literals

$$\varphi = \left(\bigwedge P\right) \land \left(\bigwedge \neg N\right)$$

determine satisfiability

 $\varphi = (\Lambda P) \land (\Lambda \neg N)$ unsatisfiable $\iff \exists x_1 \dots x_n (\land P) \land (\land \neg N)$ unsatisfiable $\iff (\Lambda \hat{P}) \land (\Lambda \neg \hat{N})$ unsatisfiable skolemization $\iff \neg \left(\left(\bigwedge \widehat{P} \right) \land \left(\bigwedge \neg \widehat{N} \right) \right)$ valid φ unsat iff $\neg \varphi$ valid $\iff \bigwedge \widehat{P} \to \bigvee \widehat{N}$ valid deMorgan $\iff \exists s \approx t \text{ in } \widehat{N} \text{ such that } \bigwedge \widehat{P} \rightarrow s \approx t \text{ valid}$ semantics of \vee $\iff \exists s \approx t \text{ in } \widehat{N} \text{ such that } \bigwedge \widehat{P} \vDash_{\mathcal{T}} s \approx t$ semantics of \models

Simplex Algorithm

Effects and Side Effects

- guaranteed to solve all your real arithmetic problems
- encountering Simplex can cause initial dizzyness
- ▶ in rare cases solving systems of linear inequalities can become addictive

Definition (Theory of Linear Arithmetic over C)

• for variables x_1, \ldots, x_n , formulas built according to grammar

$$\begin{split} \varphi &:= \varphi \land \varphi \mid t = t \mid t < t \mid t \leqslant t \\ t &:= a_1 x_1 + \dots + a_n x_n + b \quad \text{for } a_1, \dots, a_n, b \in \text{in carrier } C \end{split}$$

- ▶ axioms are equality axioms plus calculation rules of arithmetic over C
- solution assigns values in C to x_1, \ldots, x_n

Definitions

- ▶ Linear Real Arithmetic (LRA) uses carrier $C = \mathbb{R}$
- ▶ Linear Integer Arithmetic (LIA) uses carrier $C = \mathbb{Z}$

Example

- $x + y + z = 2 \land z > y \land y > -1$ is satisfiable in LRA and LIA, e.g. with v(x) = v(y) = 0 and v(z) = 2
- ► $x < 3 \land 2x > 4$ is unsatisfiable in LIA but satisfiable in LRA, e.g. with v(x) = 2.5

Satisfiability Problem for Linear Arithmetic

- ► integers (LIA):
- reals (LRA) or rationals: polynomial

NP-complete

Simplex algorithm

Some History

exponential worst-case complexity

1947 Danzig proposed Simplex algorithm to solve optimization problem:

maximize $c(\vec{x})$ such that $A\vec{x} \leqslant b$ and $\vec{x} \ge 0$

for linear objective function c, matrix A, vector b, and vector of variables \vec{x}

- also known as linear programming
- 1979 Khachiyan proposed polynomial version based on ellipsoid method
- 1984 Karmakar proposed polynomial version based on interior points method
- **2000** SMT solvers use DPLL(T) version to solve satisfiability problem

$$A\vec{x} \leqslant b$$

Problem Input (General Form)

▶ *m* equalities

 $a_1x_1+\ldots a_nx_n=0$

▶ (optional) lower and upper bounds on variables

 $I_i \leq x_i \leq u_i$

Lemma

any LRA problem without < can be turned into equisatisfiable general form

Example

$x - y \ge -1$		$-x+y-\mathbf{s_1}=0$	$s_1 \leqslant 1$	
<i>y</i> ≤ 4	\Rightarrow	$y - s_2 = 0$	$s_2 \leqslant 4$	slack variables
$x + y \ge 6$		$-x-y-s_3=0$	<i>s</i> ₃ ≤ −6	SIACK VALIADICS
$3x - y \leq 7$		$3x - y - \mathbf{s_4} = 0$	<u>s</u> ₄	

- s_1, s_2, s_3, s_4 are slack variables
- ► *x*, *y* are problem variables

Representation

• represent equalities using $m \times (n + m)$ matrix A

$$\begin{array}{cccccccc} -x+y-s_1=0 & s_1\leqslant 1 \\ y-s_2=0 & s_2\leqslant 4 \\ -x-y-s_3=0 & s_3\leqslant -6 \\ 3x-y-s_4=0 & s_4\leqslant 7 \end{array} \implies \begin{pmatrix} -1 & 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 0 \\ -1 & -1 & 0 & 0 & -1 & 0 \\ 3 & -1 & 0 & 0 & 0 & -1 \end{pmatrix} \begin{array}{c} s_1\leqslant 1 \\ s_2\leqslant 4 \\ s_3\leqslant -6 \\ s_4\leqslant 7 \end{array}$$

simplified matrix presentation

basic variables
$$\rightarrow$$

$$\begin{array}{c}
x \quad y \\
s_1 \\
s_2 \\
s_3 \\
s_4 \\
s_4 \\
\end{array} \begin{pmatrix}
-1 & 1 \\
0 & 1 \\
-1 & -1 \\
3 & -1 \\
\end{array} \qquad \leftarrow \text{ nonbasic variables}$$

Notation

- simplified matrix is tableau
- ► *B* is set of basic variables (in tableau listed vertically)
- ► *N* is set of non-basic variables (in tableau listed horizontally)

DPLL(T) Simplex Algorithm

- 1 transform φ into general form and construct tableau
- 2 fix order on variables and assign 0 to each variable
- ³ if all basic variables satisfy their bounds then return satisfiable
- 4 let $x_i \in B$ be variable that violates its bounds
- search for suitable variable $x_j \in N$ for pivoting with x_i
- 6 return unsatisfiable if search unsuccessful
- 7 perform pivot operation on x_i and x_j
- update assignment
- 10 go to step 3

Simplex, Visually

 $x - y \ge -1$ $y \le 4$ $x + y \ge 6$ $3x - y \le 7$

- solution space
- Simplex solution search

Example

1 Iteration 1

- ▶ *s*₃ violates its bounds
- decreasing s₃ requires to increase x or y (both suitable since they have no upper bound)
- ▶ pivot *s*₃ with *y*:

$$y = -x - s_3$$

 $s_2 = -x - s_3$
 $s_4 = 4x + s_3$

update assignment

$$s_3 = s_3 - 6 = -6$$
 $y = 6$
 $s_1 = 6$ $s_2 = 6$ $s_4 = -6$ 12

$\mbox{DPLL}(\mathcal{T})$ Simplex Algorithm

non-basic \vec{x}_N

 $A\vec{x}_N = \vec{x}_B \tag{1}$ $-\infty \leqslant l_i \leqslant x_i \leqslant u_i \leqslant +\infty \tag{2}$

Invariant

▶ (1) is satisfied and (2) holds for all nonbasic variables

Pivoting

▶ swap basic x_i and non-basic x_j , so $i \in B$ and $j \in N$

$$x_i = \sum_{k \in N} A_{ik} x_k \implies x_j = \frac{1}{A_{ij}} \left(x_i - \sum_{k \in N - \{j\}} A_{ik} x_k \right)$$
 (*)

▶ new tableau A' consists of (*) and $A_{B-\{i\}}\vec{x}_N = \vec{x}_{B-\{i\}}$ with (*) substituted

Update

- assignment of x_i is updated to previously violated bound l_i or u_i ,
- ▶ assignment of x_k is recomputed using (*) and A' for all $k \in B \{i\} \cup \{j\}$ 13

$\mbox{DPLL}(\mathcal{T})$ Simplex Algorithm

$$A\vec{x}_{N} = \vec{x}_{B}$$
(1)
$$-\infty \leq l_{i} \leq x_{i} \leq u_{i} \leq +\infty$$
(2)

Suitability

- ▶ basic variable *x_i* violates lower and/or upper bound
- pick nonbasic variable x_j such that
 - if $x_i < l_i$: $A_{ij} > 0$ and $x_j < u_j$ or $A_{ij} < 0$ and $x_j > l_j$
 - if $x_i > u_i$: $A_{ij} > 0$ and $x_j > l_j$ or $A_{ij} < 0$ and $x_j < u_j$

Observation

problem is unsatisfiable if no suitable pivot exists

Bland's Rule

- pick lexicographically smallest (i, j) that is suitable pivot
- guarantees termination

How to Treat Strict Inequalities

replace in LRA formula φ every strict inequality

 $a_1x_1 + \cdots + a_nx_n < b$

by non-strict inequality

$$a_1x_1+\cdots+a_nx_n\leqslant b-\delta$$

to obtain formula φ_δ in LRA without <, and treat δ symbolically during Simplex algorithm

Lemma

 φ is satisfiable $\iff \exists$ rational number $\delta > 0$ such that φ_{δ} is satisfiable

Application: Motion Planning for Robots

- robots needs to plan motions to place objects correctly
- ▶ instance of *constraint based planning*
- encoding
 - fix number of time slots t_1, \ldots, t_n
 - action variable a_i for time t_i encodes which action performed at time t_i (one action per time)
 - actions require precondition and imply postcondition
 - use arithmetic to minimize path

Neil T. Dantam, Zachary K. Kingston, Swarat Chaudhuri, and Lydia E. Kavraki. Incremental Task and Motion Planning: A Constraint-Based Approach. In: The International Journal of Robotics Research, 2018.

LRA and LIA admit more efficient encodings of

- ▶ *n*-queens
- Sudoku
- graph coloring
- Minesweeper
- travelling salesperson
- rabbit problem
- planning problems
- scheduling problems
- component configuration problems
- everything with cardinality constraints

• ...

Bruno Dutertre and Leonardo de Moura. A Fast Linear-Arithmetic Solver for DPLL(T).

In Proc. of International Conference on Computer Aided Verification, pp. 81-94, 2006.

Bruno Dutertre and Leonardo de Moura Integrating Simplex with DPLL(T) Technical Report SRI–CSL–06–01, SRI International, 2006