SAT and SMT Solving

Sarah Winkler
SS 2018
Department of Computer Science
University of Innsbruck

Outline

- Summary of Last Week
- Simplex Algorithm

Summary of Last Week

Definition (DPLL(T) systems)

- basic system \mathcal{B} :
- full system \mathcal{F} :
unit propagate, decide, fail, T-backjump, T-propagate \mathcal{B} plus T-learn, T-forget, and restart

Theorem (Correctness)

For derivation with final state S_{n} :

$$
\| F \quad \Longrightarrow_{\mathcal{F}} \quad S_{1} \quad \Longrightarrow_{\mathcal{F}} \quad S_{2} \quad \Longrightarrow_{\mathcal{F}} \quad \ldots \quad \Longrightarrow_{\mathcal{F}} \quad S_{n}
$$

- if $S_{n}=$ FailState then F is T-unsatisfiable
- if $S_{n}=M \| F^{\prime}$ and M is T-consistent then F is T-satisfiable and $M \vDash_{T} F$

Theorem (Termination)

「: $\| F \Longrightarrow{ }_{\mathcal{F}}^{*} S_{0} \Longrightarrow{ }_{\mathcal{F}}^{*} S_{1} \Longrightarrow{ }_{\mathcal{F}}^{*} \ldots$ is finite if

- there is no infinite sub-derivation of only T-learn and T-forget steps, and
- for every sub-derivation $S_{i} \xlongequal{\text { restart }}{ }_{\mathcal{F}} S_{i+1} \Longrightarrow{ }_{\mathcal{F}}^{*} S_{j} \xlongequal{\text { restart }}{ }_{\mathcal{F}} S_{j+1} \Longrightarrow{ }_{\mathcal{F}}^{*} S_{k}$ with no restart steps in $S_{i+1} \Longrightarrow{ }_{\mathcal{F}}^{*} S_{j}$ and $S_{j+1} \Longrightarrow{ }_{\mathcal{F}}^{*} S_{k}$:
- there are more \mathcal{B}-steps in $S_{j} \Longrightarrow_{\mathcal{F}}^{*} S_{k}$ than in $S_{i} \Longrightarrow_{\mathcal{F}}^{*} S_{j}$, or
- a clause is learned in $S_{j} \Longrightarrow{ }_{\mathcal{F}}^{*} S_{k}$ that is never forgotten in Γ

Congruence Closure

Input: set of equations E and equation $s \approx t$, both without variables Output: \quad valid $\left(E \vDash_{T} s \approx t\right)$ or invalid $\left(E \not \forall_{T} s \approx t\right)$

1 build congruence classes
(a) put different subterms of terms in $E \cup\{s \approx t\}$ in separate sets
(b) merge sets $\left\{\ldots, t_{1}, \ldots\right\}$ and $\left\{\ldots, t_{2}, \ldots\right\}$ for all $t_{1} \approx t_{2}$ in E
(c) merge sets $\left\{\ldots, f\left(t_{1}, \ldots, t_{n}\right), \ldots\right\}$ and $\left\{\ldots, f\left(u_{1}, \ldots, u_{n}\right), \ldots\right\}$
if t_{i} and u_{i} belong to same set for all $1 \leqslant i \leqslant n$, repeatedly
1 if s and t belong to same set then return valid else return invalid

Deciding Satisfiability of EUF Conjunctions

- consider EUF conjunction φ with free variables x_{1}, \ldots, x_{n}
- split φ into positive and negative literals

$$
\varphi=(\bigwedge P) \wedge(\bigwedge \neg N)
$$

- determine satisfiability

$$
\begin{array}{rlrl}
\varphi= & (\bigwedge P) \wedge(\bigwedge \neg N) & \text { unsatisfiable } & \\
& \Longleftrightarrow \exists x_{1} \ldots x_{n} \cdot(\bigwedge P) \wedge(\bigwedge \neg N) \text { unsatisfiable } & \\
& \Longleftrightarrow(\bigwedge \widehat{P}) \wedge(\bigwedge \neg \widehat{N}) & \text { unsatisfiable } & \text { skolemization } \\
& \Longleftrightarrow \neg((\bigwedge \widehat{P}) \wedge(\bigwedge \neg \widehat{N})) & \text { valid } & \varphi \text { unsat iff } \neg \varphi \text { valid } \\
& \Longleftrightarrow \bigwedge \widehat{P} \rightarrow \bigvee \widehat{N} & \text { valid } & \text { deMorgan } \\
& \Longleftrightarrow \exists s \approx t \text { in } \widehat{N} \text { such that } \bigwedge \widehat{P} \rightarrow s \approx t \text { valid } & \text { semantics of } \vee \\
& \Longleftrightarrow \exists s \approx t \text { in } \widehat{N} \text { such that } \bigwedge \widehat{P} \vDash_{T} s \approx t & \text { semantics of } \vDash
\end{array}
$$

Simplex Algorithm

Effects and Side Effects

- guaranteed to solve all your real arithmetic problems
- encountering Simplex can cause initial dizzyness
- in rare cases solving systems of linear inequalities can become addictive

Definition (Theory of Linear Arithmetic over C)

- for variables x_{1}, \ldots, x_{n}, formulas built according to grammar

$$
\varphi::=\varphi \wedge \varphi|t=t| t<t \mid t \leqslant t
$$

$$
t::=a_{1} x_{1}+\cdots+a_{n} x_{n}+b \quad \text { for } a_{1}, \ldots, a_{n}, b \in \text { in carrier } C
$$

- axioms are equality axioms plus calculation rules of arithmetic over C
- solution assigns values in C to x_{1}, \ldots, x_{n}

Definitions

- Linear Real Arithmetic (LRA) uses carrier $C=\mathbb{R}$
- Linear Integer Arithmetic (LIA) uses carrier $C=\mathbb{Z}$

Example

- $x+y+z=2 \wedge z>y \wedge y>-1$
is satisfiable in LRA and LIA, e.g. with $v(x)=v(y)=0$ and $v(z)=2$
- $x<3 \wedge 2 x>4$
is unsatisfiable in LIA but satisfiable in LRA, e.g. with $v(x)=2.5$

Satisfiability Problem for Linear Arithmetic

- integers (LIA):
- reals (LRA) or rationals:

NP-complete polynomial

Simplex algorithm

Some History

exponential worst-case complexity

1947 Danzig proposed Simplex algorithm to solve optimization problem:

$$
\text { maximize } c(\vec{x}) \quad \text { such that } \quad A \vec{x} \leqslant b \text { and } \vec{x} \geqslant 0
$$

for linear objective function c, matrix A, vector b, and vector of variables \vec{x}

- also known as linear programming

1979 Khachiyan proposed polynomial version based on ellipsoid method
1984 Karmakar proposed polynomial version based on interior points method
2000- SMT solvers use $\operatorname{DPLL}(T)$ version to solve satisfiability problem

$$
A \vec{x} \leqslant b
$$

Problem Input (General Form)

- m equalities

$$
a_{1} x_{1}+\ldots a_{n} x_{n}=0
$$

- (optional) lower and upper bounds on variables

$$
I_{i} \leqslant x_{i} \leqslant u_{i}
$$

Lemma

any $L R A$ problem without $<$ can be turned into equisatisfiable general form

Example

$$
\begin{aligned}
& x-y \geqslant-1 \quad-x+y-s_{1}=0 \quad s_{1} \leqslant 1 \\
& y \leqslant 4 \quad \Longrightarrow \\
& y-s_{2}=0 \quad s_{2} \leqslant 4 \\
& x+y \geqslant 6 \quad \Longrightarrow \quad-x-y-s_{3}=0 \quad s_{3} \leqslant-6 \\
& 3 x-y \leqslant 7 \quad 3 x-y-s_{4}=0 \quad s_{4} \leqslant 7
\end{aligned}
$$

- $s_{1}, s_{2}, s_{3}, s_{4}$ are slack variables
- x, y are problem variables

Representation

- represent equalities using $m \times(n+m)$ matrix A

$$
\begin{aligned}
-x+y-s_{1}=0 & s_{1} \leqslant 1 \\
y-s_{2}=0 & s_{2} \leqslant 4 \\
-x-y-s_{3}=0 & s_{3} \leqslant-6 \\
3 x-y-s_{4}=0 & s_{4} \leqslant 7
\end{aligned} \quad \Longrightarrow \quad\left(\begin{array}{rrrrrr}
-1 & 1 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 \\
-1 & -1 & 0 & 0 & -1 & 0 \\
3 & -1 & 0 & 0 & 0 & -1
\end{array}\right) \begin{aligned}
& s_{1} \leqslant 1 \\
& s_{2} \leqslant 4 \\
& s_{3} \leqslant-6 \\
& s_{4} \leqslant 7
\end{aligned}
$$

- simplified matrix presentation

$$
\begin{array}{ll}
& \begin{array}{cc}
x & y \\
s_{1} \\
\text { basic variables } \rightarrow & s_{2} \\
s_{3} \\
s_{4}
\end{array}\left(\begin{array}{rr}
-1 & 1 \\
0 & 1 \\
-1 & -1 \\
3 & -1
\end{array}\right)
\end{array}
$$

Notation

- simplified matrix is tableau
- B is set of basic variables (in tableau listed vertically)
- N is set of non-basic variables (in tableau listed horizontally)

DPLL(T) Simplex Algorithm

Input:
Output:
conjunction of LRA literals φ without $<$
satisfiable or unsatisfiable

1 transform φ into general form and construct tableau
2 fix order on variables and assign 0 to each variable
3 if all basic variables satisfy their bounds then return satisfiable
4 let $x_{i} \in B$ be variable that violates its bounds
5 search for suitable variable $x_{j} \in N$ for pivoting with x_{i}
6 return unsatisfiable if search unsuccessful
7 perform pivot operation on x_{i} and x_{j}
9 update assignment
10 go to step 3

Simplex, Visually

- constraints

$$
\begin{gathered}
x-y \geqslant-1 \\
y \leqslant 4 \\
x+y \geqslant 6 \\
3 x-y \leqslant 7
\end{gathered}
$$

- solution space
- Simplex solution search

Example

	tableau	constraints	assignment					
	$s_{2} \quad s_{1}$							
S_{3}	$\left(\begin{array}{rr}-2 & 1 \\ 1 & 1\end{array}\right)$	$s_{1} \leqslant 1$	x	y	S_{1}	S_{2}	S_{3}	S_{4}
x	$\left(\begin{array}{rr}1 & -1 \\ 1 & 0\end{array}\right.$	$s_{2} \leqslant 4$	3	4	1	4	-7	7
y	$\left(\begin{array}{ll}1 & 0\end{array}\right.$	$s_{3} \leqslant-6$						
s_{4}	$\left(\begin{array}{ll}2 & -1\end{array}\right)$	$s_{4} \leqslant 7$						

1 Iteration 1

- s_{3} violates its bounds
- decreasing s_{3} requires to increase x or y (both suitable since they have no upper bound)
- pivot s_{3} with y :

$$
\begin{aligned}
y & =-x-s_{3} \\
s_{2} & =-x-s_{3}
\end{aligned}
$$

$$
\begin{aligned}
& s_{1}=-2 x-s_{3} \\
& s_{4}=4 x+s_{3}
\end{aligned}
$$

- update assignment

$$
\begin{array}{lrl}
s_{3}=s_{3}-6=-6 & y & =6 \\
s_{1} & =6 & s_{2}=6
\end{array} \quad s_{4}=-6
$$

PL (T) Simplex Algorithm

$$
\begin{gather*}
A \vec{x}_{N}=\vec{x}_{B} \tag{1}\\
-\infty \leqslant I_{i} \leqslant x_{i} \leqslant u_{i} \leqslant+\infty \tag{2}
\end{gather*}
$$

Invariant

- (1) is satisfied and (2) holds for all nonbasic variables

Pivoting

- swap basic x_{i} and non-basic x_{j}, so $i \in B$ and $j \in N$

$$
x_{i}=\sum_{k \in N} A_{i k} x_{k} \quad \Longrightarrow \quad x_{j}=\frac{1}{A_{i j}}\left(x_{i}-\sum_{k \in N-\{j\}} A_{i k} x_{k}\right)
$$

- new tableau A^{\prime} consists of (\star) and $A_{B-\{i\}} \vec{X}_{N}=\vec{x}_{B-\{i\}}$ with (\star) substituted

Update

- assignment of x_{i} is updated to previously violated bound I_{i} or u_{i},
- assignment of x_{k} is recomputed using (\star) and A^{\prime} for all $k \in B-\{i\} \cup\{j\}$

DPLL(T) Simplex Algorithm

$$
\begin{gather*}
A \vec{x}_{N}=\vec{x}_{B} \tag{1}\\
-\infty \leqslant l_{i} \leqslant x_{i} \leqslant u_{i} \leqslant+\infty \tag{2}
\end{gather*}
$$

Suitability

- basic variable x_{i} violates lower and/or upper bound
- pick nonbasic variable x_{j} such that
- if $x_{i}<l_{i}: A_{i j}>0$ and $x_{j}<u_{j}$ or $A_{i j}<0$ and $x_{j}>l_{j}$
- if $x_{i}>u_{i}: A_{i j}>0$ and $x_{j}>l_{j}$ or $A_{i j}<0$ and $x_{j}<u_{j}$

Observation

- problem is unsatisfiable if no suitable pivot exists

Bland's Rule

- pick lexicographically smallest (i, j) that is suitable pivot
- guarantees termination

How to Treat Strict Inequalities

replace in LRA formula φ every strict inequality

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}<b
$$

by non-strict inequality

$$
a_{1} x_{1}+\cdots+a_{n} x_{n} \leqslant b-\delta
$$

to obtain formula φ_{δ} in LRA without $<$, and treat δ symbolically during Simplex algorithm

Lemma
φ is satisfiable $\Longleftrightarrow \exists$ rational number $\delta>0$ such that φ_{δ} is satisfiable

Application: Motion Planning for Robots

- robots needs to plan motions to place objects correctly
- instance of constraint based planning
- encoding
- fix number of time slots t_{1}, \ldots, t_{n}
- action variable a_{i} for time t_{i} encodes which action performed at time t_{i} (one action per time)
- actions require precondition and imply postcondition
- use arithmetic to minimize path

Neil T. Dantam, Zachary K. Kingston, Swarat Chaudhuri, and Lydia E. Kavraki. Incremental Task and Motion Planning: A Constraint-Based Approach.
In: The International Journal of Robotics Research, 2018.

(Almost) Everything is Better With Arithmetic

LRA and LIA admit more efficient encodings of

- n-queens
- Sudoku
- graph coloring
- Minesweeper
- travelling salesperson
- rabbit problem
- planning problems
- scheduling problems
- component configuration problems
- everything with cardinality constraints

Bibliography

Bruno Dutertre and Leonardo de Moura.
A Fast Linear-Arithmetic Solver for DPLL(T).
In Proc. of International Conference on Computer Aided Verification, pp. 81-94, 2006.
国
Bruno Dutertre and Leonardo de Moura Integrating Simplex with DPLL(T)
Technical Report SRI-CSL-06-01, SRI International, 2006

