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Summary of Last Week



Definition (DPLL(T ) systems)

I basic system B: unit propagate, decide, fail, T -backjump, T -propagate

I full system F : B plus T -learn, T -forget, and restart

Theorem (Correctness)

For derivation with final state Sn:

‖ F =⇒F S1 =⇒F S2 =⇒F . . . =⇒F Sn

I if Sn = FailState then F is T -unsatisfiable

I if Sn = M ‖ F ′ and M is T -consistent then F is T -satisfiable and M �T F

Theorem (Termination)

Γ: ‖ F =⇒∗F S0 =⇒∗F S1 =⇒∗F . . . is finite if

I there is no infinite sub-derivation of only T -learn and T-forget steps, and

I for every sub-derivation Si
restart
=⇒F Si+1 =⇒∗F Sj

restart
=⇒F Sj+1 =⇒∗F Sk with no

restart steps in Si+1 =⇒∗F Sj and Sj+1 =⇒∗F Sk :

I there are more B-steps in Sj =⇒∗F Sk than in Si =⇒∗F Sj , or

I a clause is learned in Sj =⇒∗F Sk that is never forgotten in Γ 2



Congruence Closure

Input: set of equations E and equation s ≈ t, both without variables

Output: valid (E �T s ≈ t) or invalid (E 6�T s ≈ t)

1 build congruence classes

(a) put different subterms of terms in E ∪ {s ≈ t} in separate sets

(b) merge sets {. . . , t1, . . . } and {. . . , t2, . . . } for all t1 ≈ t2 in E

(c) merge sets {. . . , f (t1, . . . , tn), . . . } and {. . . , f (u1, . . . , un), . . . }
if ti and ui belong to same set for all 1 6 i 6 n, repeatedly

1 if s and t belong to same set then return valid else return invalid
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Deciding Satisfiability of EUF Conjunctions

I consider EUF conjunction ϕ with free variables x1, . . . , xn
I split ϕ into positive and negative literals

ϕ =
(∧

P
)
∧
(∧
¬N
)

I determine satisfiability

ϕ = (
∧
P) ∧ (

∧
¬N) unsatisfiable

⇐⇒ ∃x1 . . . xn.(
∧

P)∧(
∧
¬N)unsatisfiable

⇐⇒ (
∧
P̂) ∧ (

∧
¬N̂) unsatisfiable skolemization

⇐⇒ ¬
(

(
∧
P̂) ∧ (

∧
¬N̂)

)
valid ϕ unsat iff ¬ϕ valid

⇐⇒
∧
P̂ →

∨
N̂ valid deMorgan

⇐⇒ ∃ s ≈ t in N̂ such that
∧
P̂ → s ≈ t valid semantics of ∨

⇐⇒ ∃ s ≈ t in N̂ such that
∧
P̂ �T s ≈ t semantics of �
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Simplex Algorithm



Effects and Side Effects

I guaranteed to solve all your real arithmetic problems

I encountering Simplex can cause initial dizzyness

I in rare cases solving systems of linear inequalities can become addictive
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Definition (Theory of Linear Arithmetic over C)

I for variables x1, . . . , xn, formulas built according to grammar

ϕ ::= ϕ ∧ ϕ | t = t | t < t | t 6 t

t ::= a1x1 + · · ·+ anxn + b for a1, . . . , an, b ∈ in carrier C

I axioms are equality axioms plus calculation rules of arithmetic over C

I solution assigns values in C to x1, . . . , xn

Definitions

I Linear Real Arithmetic (LRA) uses carrier C = R
I Linear Integer Arithmetic (LIA) uses carrier C = Z

Example

I x + y + z = 2 ∧ z > y ∧ y > −1
is satisfiable in LRA and LIA, e.g. with v(x) = v(y) = 0 and v(z) = 2

I x < 3 ∧ 2x > 4
is unsatisfiable in LIA but satisfiable in LRA, e.g. with v(x) = 2.5 6



Satisfiability Problem for Linear Arithmetic

I integers (LIA): NP-complete

I reals (LRA) or rationals: polynomial Simplex algorithm

Some History

1947 Danzig proposed Simplex algorithm to solve optimization problem:

maximize c(~x) such that A~x 6 b and ~x > 0

for linear objective function c , matrix A, vector b, and vector of variables ~x

I also known as linear programming

1979 Khachiyan proposed polynomial version based on ellipsoid method

1984 Karmakar proposed polynomial version based on interior points method

2000- SMT solvers use DPLL(T ) version to solve satisfiability problem

A~x 6 b

exponential worst-case complexity
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Problem Input (General Form)

I m equalities
a1x1 + . . . anxn = 0

I (optional) lower and upper bounds on variables

li 6 xi 6 ui

Lemma

any LRA problem without < can be turned into equisatisfiable general form

Example

x − y > −1

y 6 4

x + y > 6

3x − y 6 7

=⇒

−x + y − s1 = 0 s1 6 1

y − s2 = 0 s2 6 4

−x − y − s3 = 0 s3 6 −6

3x − y − s4 = 0 s4 6 7

slack variables

I s1, s2, s3, s4 are slack variables

I x , y are problem variables 8



Representation

I represent equalities using m × (n + m) matrix A

−x + y − s1 = 0 s1 6 1

y − s2 = 0 s2 6 4

−x − y − s3 = 0 s3 6 −6

3x − y − s4 = 0 s4 6 7

=⇒


− 1 1 −1 0 0 0

0 1 0 −1 0 0

− 1 − 1 0 0 −1 0

3 − 1 0 0 0 −1


s1 6 1

s2 6 4

s3 6 −6

s4 6 7

I simplified matrix presentation

x y ← nonbasic variables

basic variables →
s1

s2

s3

s4

−1 1
0 1
−1 −1

3 −1


Notation

I simplified matrix is tableau

I B is set of basic variables (in tableau listed vertically)

I N is set of non-basic variables (in tableau listed horizontally) 9



DPLL(T ) Simplex Algorithm

Input: conjunction of LRA literals ϕ without <

Output: satisfiable or unsatisfiable

1 transform ϕ into general form and construct tableau

2 fix order on variables and assign 0 to each variable

3 if all basic variables satisfy their bounds then return satisfiable

4 let xi ∈ B be variable that violates its bounds

5 search for suitable variable xj ∈ N for pivoting with xi

6 return unsatisfiable if search unsuccessful

7 perform pivot operation on xi and xj

9 update assignment

10 go to step 3
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Simplex, Visually

I constraints

x − y > −1

y 6 4

x + y > 6

3x − y 6 7

I solution space

I Simplex solution search

1 2 3 4 5 6

1

2

3

4

5

6
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Example

tableau constraints assignment

s3

x

y

s4


s2 s1

− 2 1

1 − 1

1 0

2 − 1


s1 6 1

s2 6 4

s3 6 − 6

s4 6 7

x y s1 s2 s3 s4

3 4 1 4 − 7 7

1 Iteration 1

I s3 violates its bounds

I decreasing s3 requires to increase x or y
(both suitable since they have no upper bound)

I pivot s3 with y :
y = −x − s3 s1 = −2x − s3

s2 = −x − s3 s4 = 4x + s3

I update assignment
s3 = s3 − 6 = −6 y = 6
s1 = 6 s2 = 6 s4 = −6

2 Iteration 2

I s2 violates its bounds

I decreasing s2 requires to increase x or s3:

x suitable since unbounded, but s3 not suitable as already at bound!

I pivot s2 with x :
x = −s2 − s3 s1 = −2x − s3 = 2s2 + s3

y = −x − s3 = s2 s4 = 4x + s3 = −4s2 − 3s3

I update assignment
s2 = s2 − 2 = 4 x = 2
s1 = 2 y = 4 s4 = 2

3 Iteration 3

I s1 violates its bounds

I decreasing s1 requires to decrease s2 or s3

(both suitable since they have no lower bound)

I pivot s1 with s3:
s3 = s1 − 2s2 x = −s1 + s2

y = s2 s4 = −s1 + 2s2

I update assignment
s1 = s1 − 1 = 1 s3 = −7
x = 3 y = 4 s4 = 7

4 Iteration 4

I all variables satisfy their bounds
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DPLL(T ) Simplex Algorithm

A~xN = ~xB (1)

−∞ 6li 6 xi 6 ui 6 +∞ (2)

xj

xi

 . . . . . .

Aij

. . . . . .


non-basic ~xN

b
as

ic
~ x B

Invariant

I (1) is satisfied and (2) holds for all nonbasic variables

Pivoting

I swap basic xi and non-basic xj , so i ∈ B and j ∈ N

xi =
∑
k∈N

Aikxk =⇒ xj =
1

Aij

xi −
∑

k∈N−{j}

Aikxk

 (?)

I new tableau A′ consists of (?) and AB−{i}~xN = ~xB−{i} with (?) substituted

Update

I assignment of xi is updated to previously violated bound li or ui ,

I assignment of xk is recomputed using (?) and A′ for all k ∈ B − {i} ∪ {j}
13



DPLL(T ) Simplex Algorithm

A~xN = ~xB (1)

−∞ 6li 6 xi 6 ui 6 +∞ (2)

Suitability

I basic variable xi violates lower and/or upper bound

I pick nonbasic variable xj such that

I if xi < li : Aij > 0 and xj < uj or Aij < 0 and xj > lj
I if xi > ui : Aij > 0 and xj > lj or Aij < 0 and xj < uj

Observation

I problem is unsatisfiable if no suitable pivot exists

Bland’s Rule

I pick lexicographically smallest (i , j) that is suitable pivot

I guarantees termination
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How to Treat Strict Inequalities

replace in LRA formula ϕ every strict inequality

a1x1 + · · ·+ anxn < b

by non-strict inequality

a1x1 + · · ·+ anxn 6 b − δ

to obtain formula ϕδ in LRA without <, and treat δ symbolically during Simplex

algorithm

Lemma

ϕ is satisfiable ⇐⇒ ∃ rational number δ > 0 such that ϕδ is satisfiable
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Application: Motion Planning for Robots

I robots needs to plan motions

to place objects correctly

I instance of constraint based planning

I encoding

I fix number of time slots t1, . . . , tn
I action variable ai for time ti encodes

which action performed at time ti
(one action per time)

I actions require precondition and imply

postcondition

I use arithmetic to minimize path

Neil T. Dantam, Zachary K. Kingston, Swarat Chaudhuri, and Lydia E. Kavraki.

Incremental Task and Motion Planning: A Constraint-Based Approach.
In: The International Journal of Robotics Research, 2018.
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(Almost) Everything is Better With Arithmetic

LRA and LIA admit more efficient encodings of

I n-queens

I Sudoku

I graph coloring

I Minesweeper

I travelling salesperson

I rabbit problem

I planning problems

I scheduling problems

I component configuration problems

I everything with cardinality constraints

I . . .
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