
SAT and SMT Solving

Sarah Winkler

SS 2018

Department of Computer Science

University of Innsbruck

http://cl-informatik.uibk.ac.at/teaching/ss18/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Outline

Summary of Last Week

Simplex Algorithm

1

Summary of Last Week

Definition (DPLL(T) systems)

I basic system B: unit propagate, decide, fail, T -backjump, T -propagate

I full system F : B plus T -learn, T -forget, and restart

Theorem (Correctness)

For derivation with final state Sn:

‖ F =⇒F S1 =⇒F S2 =⇒F . . . =⇒F Sn

I if Sn = FailState then F is T -unsatisfiable

I if Sn = M ‖ F ′ and M is T -consistent then F is T -satisfiable and M �T F

Theorem (Termination)

Γ: ‖ F =⇒∗F S0 =⇒∗F S1 =⇒∗F . . . is finite if

I there is no infinite sub-derivation of only T -learn and T-forget steps, and

I for every sub-derivation Si
restart
=⇒F Si+1 =⇒∗F Sj

restart
=⇒F Sj+1 =⇒∗F Sk with no

restart steps in Si+1 =⇒∗F Sj and Sj+1 =⇒∗F Sk :

I there are more B-steps in Sj =⇒∗F Sk than in Si =⇒∗F Sj , or

I a clause is learned in Sj =⇒∗F Sk that is never forgotten in Γ 2

Congruence Closure

Input: set of equations E and equation s ≈ t, both without variables

Output: valid (E �T s ≈ t) or invalid (E 6�T s ≈ t)

1 build congruence classes

(a) put different subterms of terms in E ∪ {s ≈ t} in separate sets

(b) merge sets {. . . , t1, . . . } and {. . . , t2, . . . } for all t1 ≈ t2 in E

(c) merge sets {. . . , f (t1, . . . , tn), . . . } and {. . . , f (u1, . . . , un), . . . }
if ti and ui belong to same set for all 1 6 i 6 n, repeatedly

1 if s and t belong to same set then return valid else return invalid

3

Deciding Satisfiability of EUF Conjunctions

I consider EUF conjunction ϕ with free variables x1, . . . , xn
I split ϕ into positive and negative literals

ϕ =
(∧

P
)
∧
(∧
¬N
)

I determine satisfiability

ϕ = (
∧
P) ∧ (

∧
¬N) unsatisfiable

⇐⇒ ∃x1 . . . xn.(
∧

P)∧(
∧
¬N)unsatisfiable

⇐⇒ (
∧
P̂) ∧ (

∧
¬N̂) unsatisfiable skolemization

⇐⇒ ¬
(

(
∧
P̂) ∧ (

∧
¬N̂)

)
valid ϕ unsat iff ¬ϕ valid

⇐⇒
∧
P̂ →

∨
N̂ valid deMorgan

⇐⇒ ∃ s ≈ t in N̂ such that
∧
P̂ → s ≈ t valid semantics of ∨

⇐⇒ ∃ s ≈ t in N̂ such that
∧
P̂ �T s ≈ t semantics of �

4

Simplex Algorithm

Effects and Side Effects

I guaranteed to solve all your real arithmetic problems

I encountering Simplex can cause initial dizzyness

I in rare cases solving systems of linear inequalities can become addictive

5

Definition (Theory of Linear Arithmetic over C)

I for variables x1, . . . , xn, formulas built according to grammar

ϕ ::= ϕ ∧ ϕ | t = t | t < t | t 6 t

t ::= a1x1 + · · ·+ anxn + b for a1, . . . , an, b ∈ in carrier C

I axioms are equality axioms plus calculation rules of arithmetic over C

I solution assigns values in C to x1, . . . , xn

Definitions

I Linear Real Arithmetic (LRA) uses carrier C = R
I Linear Integer Arithmetic (LIA) uses carrier C = Z

Example

I x + y + z = 2 ∧ z > y ∧ y > −1
is satisfiable in LRA and LIA, e.g. with v(x) = v(y) = 0 and v(z) = 2

I x < 3 ∧ 2x > 4
is unsatisfiable in LIA but satisfiable in LRA, e.g. with v(x) = 2.5 6

Satisfiability Problem for Linear Arithmetic

I integers (LIA): NP-complete

I reals (LRA) or rationals: polynomial Simplex algorithm

Some History

1947 Danzig proposed Simplex algorithm to solve optimization problem:

maximize c(~x) such that A~x 6 b and ~x > 0

for linear objective function c , matrix A, vector b, and vector of variables ~x

I also known as linear programming

1979 Khachiyan proposed polynomial version based on ellipsoid method

1984 Karmakar proposed polynomial version based on interior points method

2000- SMT solvers use DPLL(T) version to solve satisfiability problem

A~x 6 b

exponential worst-case complexity

7

Problem Input (General Form)

I m equalities
a1x1 + . . . anxn = 0

I (optional) lower and upper bounds on variables

li 6 xi 6 ui

Lemma

any LRA problem without < can be turned into equisatisfiable general form

Example

x − y > −1

y 6 4

x + y > 6

3x − y 6 7

=⇒

−x + y − s1 = 0 s1 6 1

y − s2 = 0 s2 6 4

−x − y − s3 = 0 s3 6 −6

3x − y − s4 = 0 s4 6 7

slack variables

I s1, s2, s3, s4 are slack variables

I x , y are problem variables 8

Representation

I represent equalities using m × (n + m) matrix A

−x + y − s1 = 0 s1 6 1

y − s2 = 0 s2 6 4

−x − y − s3 = 0 s3 6 −6

3x − y − s4 = 0 s4 6 7

=⇒


− 1 1 −1 0 0 0

0 1 0 −1 0 0

− 1 − 1 0 0 −1 0

3 − 1 0 0 0 −1


s1 6 1

s2 6 4

s3 6 −6

s4 6 7

I simplified matrix presentation

x y ← nonbasic variables

basic variables →
s1

s2

s3

s4

−1 1
0 1
−1 −1

3 −1


Notation

I simplified matrix is tableau

I B is set of basic variables (in tableau listed vertically)

I N is set of non-basic variables (in tableau listed horizontally) 9

DPLL(T) Simplex Algorithm

Input: conjunction of LRA literals ϕ without <

Output: satisfiable or unsatisfiable

1 transform ϕ into general form and construct tableau

2 fix order on variables and assign 0 to each variable

3 if all basic variables satisfy their bounds then return satisfiable

4 let xi ∈ B be variable that violates its bounds

5 search for suitable variable xj ∈ N for pivoting with xi

6 return unsatisfiable if search unsuccessful

7 perform pivot operation on xi and xj

9 update assignment

10 go to step 3

10

Simplex, Visually

I constraints

x − y > −1

y 6 4

x + y > 6

3x − y 6 7

I solution space

I Simplex solution search

1 2 3 4 5 6

1

2

3

4

5

6

11

Example

tableau constraints assignment

s3

x

y

s4


s2 s1

− 2 1

1 − 1

1 0

2 − 1


s1 6 1

s2 6 4

s3 6 − 6

s4 6 7

x y s1 s2 s3 s4

3 4 1 4 − 7 7

1 Iteration 1

I s3 violates its bounds

I decreasing s3 requires to increase x or y
(both suitable since they have no upper bound)

I pivot s3 with y :
y = −x − s3 s1 = −2x − s3

s2 = −x − s3 s4 = 4x + s3

I update assignment
s3 = s3 − 6 = −6 y = 6
s1 = 6 s2 = 6 s4 = −6

2 Iteration 2

I s2 violates its bounds

I decreasing s2 requires to increase x or s3:

x suitable since unbounded, but s3 not suitable as already at bound!

I pivot s2 with x :
x = −s2 − s3 s1 = −2x − s3 = 2s2 + s3

y = −x − s3 = s2 s4 = 4x + s3 = −4s2 − 3s3

I update assignment
s2 = s2 − 2 = 4 x = 2
s1 = 2 y = 4 s4 = 2

3 Iteration 3

I s1 violates its bounds

I decreasing s1 requires to decrease s2 or s3

(both suitable since they have no lower bound)

I pivot s1 with s3:
s3 = s1 − 2s2 x = −s1 + s2

y = s2 s4 = −s1 + 2s2

I update assignment
s1 = s1 − 1 = 1 s3 = −7
x = 3 y = 4 s4 = 7

4 Iteration 4

I all variables satisfy their bounds

12

DPLL(T) Simplex Algorithm

A~xN = ~xB (1)

−∞ 6li 6 xi 6 ui 6 +∞ (2)

xj

xi



Aij

.


non-basic ~xN

b
as

ic
~ x B

Invariant

I (1) is satisfied and (2) holds for all nonbasic variables

Pivoting

I swap basic xi and non-basic xj , so i ∈ B and j ∈ N

xi =
∑
k∈N

Aikxk =⇒ xj =
1

Aij

xi −
∑

k∈N−{j}

Aikxk

 (?)

I new tableau A′ consists of (?) and AB−{i}~xN = ~xB−{i} with (?) substituted

Update

I assignment of xi is updated to previously violated bound li or ui ,

I assignment of xk is recomputed using (?) and A′ for all k ∈ B − {i} ∪ {j}
13

DPLL(T) Simplex Algorithm

A~xN = ~xB (1)

−∞ 6li 6 xi 6 ui 6 +∞ (2)

Suitability

I basic variable xi violates lower and/or upper bound

I pick nonbasic variable xj such that

I if xi < li : Aij > 0 and xj < uj or Aij < 0 and xj > lj
I if xi > ui : Aij > 0 and xj > lj or Aij < 0 and xj < uj

Observation

I problem is unsatisfiable if no suitable pivot exists

Bland’s Rule

I pick lexicographically smallest (i , j) that is suitable pivot

I guarantees termination

14

How to Treat Strict Inequalities

replace in LRA formula ϕ every strict inequality

a1x1 + · · ·+ anxn < b

by non-strict inequality

a1x1 + · · ·+ anxn 6 b − δ

to obtain formula ϕδ in LRA without <, and treat δ symbolically during Simplex

algorithm

Lemma

ϕ is satisfiable ⇐⇒ ∃ rational number δ > 0 such that ϕδ is satisfiable

15

Application: Motion Planning for Robots

I robots needs to plan motions

to place objects correctly

I instance of constraint based planning

I encoding

I fix number of time slots t1, . . . , tn
I action variable ai for time ti encodes

which action performed at time ti
(one action per time)

I actions require precondition and imply

postcondition

I use arithmetic to minimize path

Neil T. Dantam, Zachary K. Kingston, Swarat Chaudhuri, and Lydia E. Kavraki.

Incremental Task and Motion Planning: A Constraint-Based Approach.
In: The International Journal of Robotics Research, 2018.

16

http://journals.sagepub.com/doi/10.1177/0278364918761570

(Almost) Everything is Better With Arithmetic

LRA and LIA admit more efficient encodings of

I n-queens

I Sudoku

I graph coloring

I Minesweeper

I travelling salesperson

I rabbit problem

I planning problems

I scheduling problems

I component configuration problems

I everything with cardinality constraints

I . . .

17

Bibliography

Bruno Dutertre and Leonardo de Moura.

A Fast Linear-Arithmetic Solver for DPLL(T).
In Proc. of International Conference on Computer Aided Verification, pp. 81–94, 2006.

Bruno Dutertre and Leonardo de Moura

Integrating Simplex with DPLL(T)
Technical Report SRI–CSL–06–01, SRI International, 2006

18

https://link.springer.com/chapter/10.1007/11817963_11
http://yices.csl.sri.com/papers/sri-csl-06-01.pdf

	lecture 7
	Summary of Last Week
	Simplex Algorithm

