SAT and SMT Solving

Sarah Winkler
SS 2018

Department of Computer Science
University of Innsbruck

http://cl-informatik.uibk.ac.at/teaching/ss18/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

@ Summary of Last Week

@ Nelson-Oppen Combination Method

Summary of Last Week

Definition (Bit Vector Theory)
» variable x, is list of length k of propositional variables x,_1...xxx1X0
» constant ny is bit list of length k

» formulas built according to grammar

formula := (formula \/ formula) | (formula A formula) | (—formula) | atom
atom := term rel term | true | false
rel .= =|#£ |2, 25| >u | >s
term := (term binop term) | (unop term) | var | constant | term[ij] |
(formula ? term : term)
binop :=+ | — | X [y | +s | You | Yos | <[>0 [>s [&[] 7]

unop :=~| —

> axioms are equality axioms plus rules for arithmetic/comparison /bitwise
operations on bit vectors of length k

» solution assigns bit list of length k to variables xx

Remarks

» theory is decidable because carrier is finite
» common decision procedures use translation to SAT (bit blasting)

» eager: no DPLL(T), bit-blast entire formula to SAT problem

» lazy: second SAT solver as BV theory solver, bit-blast only BV atoms
» solvers heavily rely on preprocessing via rewriting

Definition (Bit Blasting: Formulas)
bit blasting transformation B transforms BV formula into propositional formula:

B(QD v ¢) - B() v B(w) bit blasting B; for term t
B(p A9 B(¢) AB(¥) returns (result u, side condition ¢)

=
B(~p) = -B(¢) 7
) =

(fl rel t> (Ul rel U2) N1 Apy if Bt(tl) = (U1,<p1) and Bt(tz) = (Ug,tpz)

B, transforms atom into propositional formula

Definition (Bit Blasting: Atoms)
for bit vectors xx and yy set
» equality
B/(xk =yk) = (k © Yk) A Alxa > y1) A (X0 < yo)
» inequality
B(xk Zyk) = (xk ®yk) V-V (xa @ y1) V (%0 @ yo)
» unsigned greater-than or equal
B,(x1 =, y1) =Y =7 X0
B,(Xk+1 20 yk+1) = (Xk A\ ﬁyk) V ((Xk — yk) AN B(X[k = 10] > y[k = 10]))
» unsigned greater-than

B(xx >y yk) = B(xk = yi) A B(xk # y«)

Definition (Bit Blasting: Bitwise Operations)

for bit vectors xx and y, use fresh variable z; and set

» bitwise and

k—1
Bi(xk&yk) = (zi,0) 9= [\ zi e (xiAyi)
i=0
» bitwise or
k—1
Bi(xklyx) = (zi,0) 0= N\ z & (x V)
i=0
» bitwise exclusive or
k—1
B:(xk “¥4) = (z1,0) o= N\ z o (x@y)
i=0
» bitwise negation
k—1

Bi(—xk) = (z,0) o= Nz e

Definition (Bit Blasting: Addition and Subtraction)

» addition

- le :
B:(xx + yk) = (sk,) ripple-carry adder

Cy are carry bits
where . v

¢ =(co <> x0 A yo) A (S0 > X0 D yo) A
k—1
/\ (C,‘ <~ min2(x,-,y,-, C,'_1)) A (S,' XDy D C,'_1)
i=1
for fresh variables s, and cx and min2(a, b,d) = (aAb)V (aAd)V (bAd)
» unary minus
Bt(—Xk) = Bt(N Xk + lk)

» subtraction

B:(xk +yk) = Be(xx + (—y«)

Nelson-Oppen Combination Method

How to Be Lazy

SMT solver

candidate model

\
|
|
|
:
|

—— > SAT solver [T-solver] !
abstract :

|

|

|

|

|

|

1

Unsat explanation

How to Be Lazy

SMT solver

candidate model

\
|
|
|
l
|

—— > SAT solver [T-solver] !
abstract :

|

|

|

|

|

|

1

o —
: Unsat explanation l
l sat
Theory T T-solving method

» equality logic equality graphs v
» equality + uninterpreted functions (EUF) congruence closure v
» linear arithmetic (LRA and LIA) DPLL(T) Simplex (+ cuts) v
» bitvectors (BV) bit-blasting v

How to Be Lazy

SMT solver

candidate model

¥ T] SAT solver [?] i

F(x +1) < f(y) A

xX+1>yA Unsat explanation
glx) #c
Theory T T-solving method
» equality logic equality graphs v
» equality + uninterpreted functions (EUF) congruence closure v
» linear arithmetic (LRA and LIA) DPLL(T) Simplex (+ cuts) v
» bitvectors (BV) bit-blasting v

Theory combinations

How to Be Lazy

SMT solver

candidate model

| EUF solver

¥ l—b> SAT solver
i 2Lstiect LRA solver
|

Fx +1) < f(y) A

x+1>2yA unsat explanation
glx) #c
Theory T T-solving method
» equality logic equality graphs v
» equality + uninterpreted functions (EUF) congruence closure v
» linear arithmetic (LRA and LIA) DPLL(T) Simplex (+ cuts) v
» Dbitvectors (BV) bit-blasting v

Theory combinations

How to Be Lazy

SMT solver

candidate model

| EUF solver
¥ m’ SAT solver
fx+1) < f(y) A LRA solver
|

x+1>2yA unsat explanation
g(x) #c l
sat
Theory T T-solving method
» equality logic equality graphs v
» equality + uninterpreted functions (EUF) congruence closure v
» linear arithmetic (LRA and LIA) DPLL(T) Simplex (+ cuts) v
» Dbitvectors (BV) bit-blasting v
Theory combinations Nelson-Oppen method

Definitions

» (first-order) theory consists of
» signature X: set of function and predicate symbols
» axioms T: set of sentences in first-order logic in which only
function and predicate symbols of ¥ appear

Definitions

» (first-order) theory consists of
» signature X: set of function and predicate symbols

» axioms T: set of sentences in first-order logic in which only
function and predicate symbols of ¥ appear
> theory is stably infinite if every satisfiable quantifier-free formula has
model with infinite carrier set

Definitions

» (first-order) theory consists of
» signature X: set of function and predicate symbols
» axioms T: set of sentences in first-order logic in which only
function and predicate symbols of ¥ appear
> theory is stably infinite if every satisfiable quantifier-free formula has
model with infinite carrier set

Examples

» equality + uninterpreted functions (EUF) is stably infinite

Definitions

» (first-order) theory consists of
» signature X: set of function and predicate symbols
» axioms T: set of sentences in first-order logic in which only
function and predicate symbols of ¥ appear
> theory is stably infinite if every satisfiable quantifier-free formula has
model with infinite carrier set

Examples

» equality + uninterpreted functions (EUF) is stably infinite
» linear integer arithmetic (LIA) is stably infinite

Definitions

» (first-order) theory consists of
» signature X: set of function and predicate symbols

» axioms T: set of sentences in first-order logic in which only
function and predicate symbols of ¥ appear
> theory is stably infinite if every satisfiable quantifier-free formula has
model with infinite carrier set

Examples

» equality + uninterpreted functions (EUF) is stably infinite
» linear integer arithmetic (LIA) is stably infinite
» theory T = (X, A) with ¥ = {a, b,=} and

A={Vx (x=aV x=Db)} is not stably infinite

Definitions

» (first-order) theory consists of
» signature X: set of function and predicate symbols

» axioms T: set of sentences in first-order logic in which only
function and predicate symbols of ¥ appear
> theory is stably infinite if every satisfiable quantifier-free formula has
model with infinite carrier set

Definition
theory combination T @ T, of two theories

» T7 over signature ¥
» T, over signature ¥,

has signature X1 U X5 and axioms T1 U T»

@ Nelson-Oppen Combination Method

e Nondeterministic Version

Example

combination of linear arithmetic and uninterpreted functions:

xzy Ny—z>2x A f(f(y) —f(x)) #f(z) A z>0

10

Example

combination of linear arithmetic and uninterpreted functions:

xzy Ny—z>2x A f(f(y) —f(x)) #f(z) A z>0

Assumptions

two stably infinite theories

> 77 over signature ¥
» T, over signature ¥,

10

Example

combination of linear arithmetic and uninterpreted functions:

xzy Ny—z>2x A f(f(y) —f(x)) #f(z) A z>0

Assumptions

two stably infinite theories

> 77 over signature ¥
» T, over signature ¥,

such that

> Zlﬁ22:{:}

10

Example

combination of linear arithmetic and uninterpreted functions:

xzy Ny—z>2x A f(f(y) —f(x)) #f(z) A z>0

Assumptions

two stably infinite theories

» T7 over signature ¥
» T, over signature ¥,

such that

> Y1NYXy= {:}
» Ti-satisfiability of quantifier-free X ;1-formulas is decidable
> T,-satisfiability of quantifier-free ¥ ,-formulas is decidable

10

Nelson-Oppen Method: Nondeterministic Version

Input
Output

quantifier-free conjunction ¢ in theory combination T3 & T,

satisfiable or unsatisfiable

11

Nelson-Oppen Method: Nondeterministic Version

Input

quantifier-free conjunction ¢ in theory combination T3 & T,

Output satisfiable or unsatisfiable

purification

w = o1 Ay for Xi-formula ¢; and X,-formula ¢,

11

Example

formula ¢ in combination of LIA and EUF:

1<x A x<2 A f(x)#f(1) A f(x) #£1(2)

12

Example

formula ¢ in combination of LIA and EUF:

1<x A x<2 A f(x) £F(1) A f(x) % f(2)

12

Example

formula ¢ in combination of LIA and EUF:

1<x A x<2 A f(x)#£f(y) A(x)#£f(2) A y=1

12

Example

formula ¢ in combination of LIA and EUF:

1<x A x<2 A f(x)#£f(y) Af(x)#£f(2) Ay=1

12

Example

formula ¢ in combination of LIA and EUF:

1<x A x<2 A f(x)#£f(y) AM(x)#£f(z) N y=1 A z=2

12

Example

formula ¢ in combination of LIA and EUF:

1<x Ax<2Ay=1A2z=2AfTXx)#f(y) A f(x) #f(2)
¥1 P2

12

Nelson-Oppen Method: Nondeterministic Version

Input quantifier-free conjunction ¢ in theory combination 77 & T;

Output satisfiable or unsatisfiable
purification
w = o1 Ay for Xi-formula ¢; and X,-formula ¢,

guess
» Vs set of shared variables in ¢; and ¢,

13

Nelson-Oppen Method: Nondeterministic Version

Input quantifier-free conjunction ¢ in theory combination 77 & T;

Output satisfiable or unsatisfiable
purification
w = o1 Ay for Xi-formula ¢; and X,-formula ¢,

guess
» Vs set of shared variables in ¢; and ¢,

» guess equivalence relation E on V

13

Nelson-Oppen Method: Nondeterministic Version

Input quantifier-free conjunction ¢ in theory combination 77 & T;

Output satisfiable or unsatisfiable
purification
w = o1 Ay for Xi-formula ¢; and X,-formula ¢,

guess
» V is set of shared variables in @1 and 2
» guess equivalence relation E on V
» arrangement a(V, E) is formula

/\x:y/\ /\ XF#y

xEy —(xEy)

13

Example

formula ¢ in combination of LIA and EUF:

1<x A x<2Ay=1A2z=2AfTXx)#1f(y) A f(x) #f(2)
$1 P2

» V={xy,z}

14

Example

formula ¢ in combination of LIA and EUF:

1<x A x<2Ay=1A2z=2AfTXx)#1f(y) A f(x) #f(2)
$1 P2

» V={xy,z}

» b5 different equivalence relations E:
{{x,y,2}}
{{x vk {z}}
{{x, 2}, {y}}
{{x} Ay, 23}
{{x} vk Az}

14

Nelson-Oppen Method: Nondeterministic Version

Input quantifier-free conjunction ¢ in theory combination 77 & T;

Output satisfiable or unsatisfiable
purification

w = o1 Ay for Xi-formula ¢; and X,-formula ¢,
guess and check
» V is set of shared variables in @1 and 2
» guess equivalence relation E on V
» arrangement a(V/, E) is formula
/\ x=y A /\ XF#y
xEy ~(xEy)

» if o1 AV, E) is Ty-satisfiable and @p A a(V, E) is Ty-satisfiable
then return satisfiable else return unsatisfiable

Example

formula ¢ in combination of LIA and EUF:

1<x Ax<2Ay=1A2z=2AfTXx)#f(y) A f(x) #f(2)
$1 P2

» V={xy,z}
» b5 different equivalence relations E:
{{x,y,z}} ©1 A a(V, E) is unsatisfiable
{{x vk {z}}
{{x, 2}, {y}}
{{x} Ay, 23}
{{x} vk Az}

16

Example

formula ¢ in combination of LIA and EUF:

I1<Sx Ax<S2Ay=1Az=2Af1(x)#f(y) A f(x) #f(2)
©1 ©2

» V={xy,z}

» b5 different equivalence relations E:
{{x,y,z}} ©1 A oV, E) is unsatisfiable
{{x, vy}, {z}} @2 A a(V, E) is unsatisfiable
{{x,z}, {v}}
{{x} Ay, 23}
{3 vt {21}

16

Example

formula ¢ in combination of LIA and EUF:

1<x A x<2Ay=1A2z=2AfXx)#1(y) A f(x) #f(2)
¥1 Y2

» V={xy,z}

» b5 different equivalence relations E:

{{x,y,z}} 01 A a(V, E) is unsatisfiable
{{x v} {z}} w2 A a(V, E) is unsatisfiable
{2y} w2 A a(V, E) is unsatisfiable

{x3: Ay, 23}
{3 Avh Az}

16

Example

formula ¢ in combination of LIA and EUF:

1<x Ax<2Ay=1A2z=2Af1Xx)#1f(y) A

f(x) # (2)

®1 ©2
» V={xy,z}

» b5 different equivalence relations E:

{{x,y,z}} 01 A a(V, E) is unsatisfiable
{{x v} {z}} w2 AoV, E) is unsatisfiable
{{x, 2z}, {y}} @2 A a(V, E) is unsatisfiable
{3y, 23} @1 A a(V, E) is unsatisfiable

b vk {2}

16

Example

formula ¢ in combination of LIA and EUF:

1<x Ax<2Ay=1A2z=2AfTx)#1f(y) A

f(x) # (2)

®1 ©2
» V={xy,z}

» b5 different equivalence relations E:

{{x,y,z}} 01 A a(V, E) is unsatisfiable
{{x v} {z}} w2 AoV, E) is unsatisfiable
{{x, 2z}, {y}} @2 A a(V, E) is unsatisfiable
{3y, 23} @1 A a(V, E) is unsatisfiable
{{x} v} {z}} w1 A a(V, E) is unsatisfiable

16

Example

formula ¢ in combination of LIA and EUF:

1<x Ax<2Ay=1A2z=2Af1KX)#£1f(y) A

f(x) # (2)

®1 ©2
» V={xy,2z}

» b5 different equivalence relations E:

{{x,y,z}} 01 A a(V, E) is unsatisfiable
{{x v} {z}} w2 AoV, E) is unsatisfiable
{{x, 2z}, {y}} @2 A a(V, E) is unsatisfiable
{3y, 23} @1 A a(V, E) is unsatisfiable
{{x} v} {z}} w1 A a(V, E) is unsatisfiable

» (¢ is unsatisfiable

16

@ Nelson-Oppen Combination Method

o Deterministic Version

17

Definition

theory T is convex if

n

F Er \/u,-:v,- implies (FETui=v; forsomel<i<n)
i=1

V quantifier-free conjunctive formula F and variables vy, ..., up, v1,..., Vp

18

Definition

theory T is convex if

n
F Er \/u,-:v,- implies (FETui=v; forsomel<i<n)
i=1
V quantifier-free conjunctive formula F and variables vy, ..., up, v1,..., Vp
Example

» linear arithmetic over integers (LIA) is not convex:
1<x<2ANy=1ANz=2 Fr x=y V x=zZ

18

Definition

theory T is convex if

n
F Er \/u,-:v,- implies (FETui=v; forsomel<i<n)
i=1
V quantifier-free conjunctive formula F and variables vy, ..., up, v1,..., Vp
Example

» linear arithmetic over integers (LIA) is not convex:
1<x<2ANy=1ANz=2 Fr x=y V x=zZ

holds but none of
1<x<2 AN y=
1<x<2 AN y=

18

Definition

theory T is convex if

n
F Er \/u,-:v,- implies (FETui=v; forsomel<i<n)
i=1
V quantifier-free conjunctive formula F and variables vy, ..., up, v1,..., Vp
Example

» linear arithmetic over integers (LIA) is not convex:
1<x<2ANy=1ANz=2 Fr x=y V x=zZ

holds but none of
1<x<2 AN y=
1<x<2 AN y=

» linear arithmetic over rationals and reals (LRA) is convex

18

Definition

theory T is convex if

n
F Er \/u,-:v,- implies (FETui=v; forsomel<i<n)
i=1
V quantifier-free conjunctive formula F and variables vy, ..., up, v1,..., Vp
Example

» linear arithmetic over integers (LIA) is not convex:
1<x<2ANy=1ANz=2 Fr x=y V x=zZ

holds but none of
1<x<2 AN y=
1<x<2 AN y=

Fr x=y
Fr x=z

» linear arithmetic over rationals and reals (LRA) is convex
» equality logic with uninterpreted functions (EUF) is convex

18

Example
combination of LRA and EUF:

xz2y Ny—z=x AN f(f(y)—f(x)) #f(z) A z>0

purification

p1: X2y Ny—z2x ANwi=wr—w3 AN z=>0
w2 f(wr) #f(z) AN wo =1f(y) A wz =1(x)

19

Example
combination of LRA and EUF:

xzy Ny—z=2x A f(f(y) —f(x)) #f(z) A z=0
purification
pr1: xZ2y Ny—z2x ANwp=wa—w3 N 220
p2: f(w1) #f(z) A wa=1(y) A ws=f(x)
implied equalities between shared variables

E:

19

Example
combination of LRA and EUF:

xzy Ny—z=2x A f(f(y) —f(x)) #f(z) A z=0

purification

p1: X2y Ny—z2x ANwi=wr—w3 AN z=>0
p2: f(w) £f(2) A wo =1(y) A wz =f(x)

implied equalities between shared variables

E:

test satisfiability of o1 A E

19

Example
combination of LRA and EUF:

xzy Ny—z=2x A f(f(y) —f(x)) #f(z) A z=0

purification
p1: X2y Ny—z2x ANwi=wr—w3 AN z=>0
p2: f(w) £f(2) A wo =1(y) A wz =f(x)
implied equalities between shared variables
E: x=y
test satisfiability of o1 A E

pv1 N E = x=y

19

Example
combination of LRA and EUF:

xzy Ny—z=2x A f(f(y) —f(x)) #f(z) A z=0

purification
p1: X2y Ny—z2x ANwi=wr—w3 AN z=>0
pa: f(w1) #f(z2) A w2 =F(y) A wsz ="f(x)
implied equalities between shared variables

E: x=y AN wo=wj3

test satisfiability of ¢» A E

(,02/\E — Wy = W3

19

Example

combination of LRA and EUF:
xzy Ny—z=2x A f(f(y) —f(x)) #f(z) A z=0
purification

p1: X2y Ny—z2x ANwi=wr—w3 AN z=>0
p2: f(w) £f(2) A wo =1(y) A wz =f(x)

implied equalities between shared variables
E: x=y ANw=w3 AN z=wm

test satisfiability of o1 A E

v N E = z=w

19

Example
combination of LRA and EUF:

xzy Ny—z=2x A f(f(y) —f(x)) #f(z) A z=0
purification
pr1: xZ2y Ny—z2x ANwp=wa—w3 N 220
p2: f(w1) #f(z) A wa=1(y) A ws=f(x)
implied equalities between shared variables

E: x=y ANw=w3 AN z=wm

test satisfiability of ¢» A E

o N E = L

19

Example
combination of LRA and EUF:

xzy Ny—z=2x A f(f(y) —f(x)) #f(z) A z=0
purification
pr: xz2y Ny—z2x Awi=w—w3 A z=>0
p2: f(w1) #f(z) A wa=1(y) A ws=f(x)
implied equalities between shared variables
E: x=y ANw=w3 AN z=wm
test satisfiability of ¢» A E

o N E = L

unsatisfiable

19

Nelson-Oppen Method: Deterministic Version

Input

Output

quantifier-free conjunction ¢ in combination T; & T»
of convex theories T1 and T»

satisfiable or unsatisfiable

20

Nelson-Oppen Method: Deterministic Version

Input

quantifier-free conjunction ¢ in combination T; & T»
of convex theories T1 and T»

Output satisfiable or unsatisfiable

purification @ & 1 Ao for Xi-formula 1 and X-formula o2

20

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction ¢ in combination T; & T»
of convex theories T1 and T»

Output satisfiable or unsatisfiable

purification ¢ ~ @1 A @y for Xi-formula ;1 and Xp-formula o2
V/: set of shared variables in 1 and 5
E: already discovered equalities between variables in V

20

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction ¢ in combination T; & T»
of convex theories T1 and T»

Output satisfiable or unsatisfiable

purification ¢ ~ @1 A @y for Xi-formula ;1 and Xp-formula o2
V' set of shared variables in 1 and ¢

E: already discovered equalities between variables in V
test satisfiability of ¢; A £ (and add implied equations)

20

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction ¢ in combination T; & T»
of convex theories T1 and T»

Output satisfiable or unsatisfiable

purification ¢ ~ @1 A @y for Xi-formula ;1 and Xp-formula o2
V' set of shared variables in 1 and ¢

E: already discovered equalities between variables in V
test satisfiability of ¢; A £ (and add implied equations)

» if o1 A E is Ti-unsatisfiable then return unsatisfiable

20

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction ¢ in combination T; & T»
of convex theories T1 and T»

Output satisfiable or unsatisfiable

purification ¢ ~ @1 A @y for Xi-formula ;1 and Xp-formula o2
V' set of shared variables in 1 and ¢

E: already discovered equalities between variables in V
test satisfiability of ¢; A £ (and add implied equations)

» if o1 A E is Ty-unsatisfiable then return unsatisfiable

> else add new implied equalities to E

20

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction ¢ in combination T; & T»
of convex theories T1 and T»

Output satisfiable or unsatisfiable

purification ¢ ~ @1 A @y for Xi-formula ;1 and Xp-formula o2
V' set of shared variables in 1 and ¢
E: already discovered equalities between variables in V
test satisfiability of 1 A E (and add implied equations)
» if o1 A E is Ty-unsatisfiable then return unsatisfiable
> else add new implied equalities to E
test satisfiability of ¢» A £ (and add implied equations)

20

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction ¢ in combination T; & T»
of convex theories T1 and T»

Output satisfiable or unsatisfiable

purification ¢ ~ @1 A @y for Xi-formula ;1 and Xp-formula o2
V' set of shared variables in 1 and ¢
E: already discovered equalities between variables in V
test satisfiability of 1 A E (and add implied equations)
» if o1 A E is Ty-unsatisfiable then return unsatisfiable
> else add new implied equalities to E
test satisfiability of ¢» A £ (and add implied equations)
> if o A E is Tr-unsatisfiable then return unsatisfiable

20

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction ¢ in combination T; & T»
of convex theories T1 and T»

Output satisfiable or unsatisfiable

purification ¢ ~ @1 A @y for Xi-formula ;1 and Xp-formula o2
V' set of shared variables in 1 and ¢
E: already discovered equalities between variables in V
test satisfiability of 1 A E (and add implied equations)
» if o1 A E is Ty-unsatisfiable then return unsatisfiable
> else add new implied equalities to E
test satisfiability of ¢» A £ (and add implied equations)
> if o A E is Tp-unsatisfiable then return unsatisfiable
> else add new implied equalities to E

20

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction ¢ in combination T; & T»
of convex theories T1 and T»

Output satisfiable or unsatisfiable

purification ¢ ~ @1 A @y for Xi-formula ;1 and Xp-formula o2
V' set of shared variables in 1 and ¢
E: already discovered equalities between variables in V
test satisfiability of 1 A E (and add implied equations)
» if o1 A E is Ty-unsatisfiable then return unsatisfiable
> else add new implied equalities to E
test satisfiability of @2 A E (and add implied equations)
> if o A E is Tp-unsatisfiable then return unsatisfiable
> else add new implied equalities to E
if E has been extended in steps | or J then go to step

20

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction ¢ in combination T; & T»
of convex theories T1 and T»

Output satisfiable or unsatisfiable

purification ¢ ~ @1 A @y for Xi-formula ;1 and Xp-formula o2
V' set of shared variables in 1 and ¢
E: already discovered equalities between variables in V
test satisfiability of 1 A E (and add implied equations)
» if o1 A E is Ty-unsatisfiable then return unsatisfiable
> else add new implied equalities to E
test satisfiability of @2 A E (and add implied equations)
> if o A E is Tp-unsatisfiable then return unsatisfiable
> else add new implied equalities to E
if E has been extended in steps | or J then go to step
else return satisfiable

20

Remark

Nelson-Oppen decision procedure can be extended to non-convex theories:

case-splitting for implied disjunction of equalities

Example
combination of LIA and EUF:

1<x A x<2 A f(x)#f(1) A f(x)#1(2)

purification p1: 1<Xx A Xx<2Awp=1A w=2

pa: f(x) # f(wi) A f(x) # f(w)

21

Remark

Nelson-Oppen decision procedure can be extended to non-convex theories:

case-splitting for implied disjunction of equalities

Example
combination of LIA and EUF:

1<x A x<2 A f(x)#f(1) A f(x)#1(2)

purification p1: 1<Xx A Xx<2Awp=1A w=2
@2: f(x)# f(w1) A f(x)# f(w2)

implied equalities between shared variables

E:

21

Remark

Nelson-Oppen decision procedure can be extended to non-convex theories:

case-splitting for implied disjunction of equalities

Example
combination of LIA and EUF:

1<x A x<2 A f(x)#f(1) A f(x)#1(2)

purification p1: 1<Xx A Xx<2Awp=1A w=2
pa: f(x) # f(w) A F(x) # f(w)

implied equalities between shared variables
E:

test satisfiability of o1 A E ”

Remark

Nelson-Oppen decision procedure can be extended to non-convex theories:

case-splitting for implied disjunction of equalities

Example
combination of LIA and EUF:

1<x A x<2 A f(x)#f(1) A f(x)#1(2)
purification P1: I1<Xx A X2 A wmp=1A wp=2
p2: F(x) # f(w1) A f(x) # f(w2)
implied equalities between shared variables
E:

test satisfiability of o1 A E — x=w; V x=w» ”

Remark

Nelson-Oppen decision procedure can be extended to non-convex theories:

case-splitting for implied disjunction of equalities

Example
combination of LIA and EUF:

1<x A x<2 A f(x)#f(1) A f(x)#1(2)
purification P1: I1<Xx A X2 A wmp=1A wp=2
p2: F(x) # f(w1) A f(x) # f(w2)
implied equalities between shared variables
E: x=w

test satisfiability of o1 A E — x=w; V x=w» ”

Remark

Nelson-Oppen decision procedure can be extended to non-convex theories:

case-splitting for implied disjunction of equalities

Example
combination of LIA and EUF:

1<x A x<2 A f(x)#f(1) A f(x)#1(2)
purification P1: I1<Xx A X2 A wmp=1A wp=2
p2: F(x) # f(w1) A f(x) # f(w2)
implied equalities between shared variables
E: x=w

test satisfiability of o AN E — L ”

Remark

Nelson-Oppen decision procedure can be extended to non-convex theories:

case-splitting for implied disjunction of equalities

Example
combination of LIA and EUF:

1<x A x<2 A f(x)#f(1) A f(x)#1(2)
purification P1: I1<Xx A X2 A wmp=1A wp=2
p2: F(x) # f(w1) A f(x) # f(w2)
implied equalities between shared variables
E: x=w

test satisfiability of o AN E — L ”

Remark

Nelson-Oppen decision procedure can be extended to non-convex theories:

case-splitting for implied disjunction of equalities

Example
combination of LIA and EUF:

1<x A x<2 A f(x)#f(1) A f(x)#1(2)
purification P1: I1<Xx A X2 A wmp=1A wp=2
p2: F(x) # f(w1) A f(x) # f(w2)
implied equalities between shared variables
E: x=w

test satisfiability of o AN E — L ”

Application: Checking Program Equivalence

Relevance of Program Equivalence

correctness of compiler optimizations, regression testing, software verification

22

Application: Checking Program Equivalence

Relevance of Program Equivalence

correctness of compiler optimizations, regression testing, software verification

Example (Are the following two programs equivalent?)

int one(int x){

unsigned z = x & (-1); int two(int x){
unsigned y = z * 2; return foo(x) + (x << 1);
return foo(z) + y; }

}

22

Application: Checking Program Equivalence

Relevance of Program Equivalence

correctness of compiler optimizations, regression testing, software verification

Example (Are the following two programs equivalent?)

int one(int x){

unsigned z = x & (-1); int two(int x){
unsigned y = z * 2; return foo(x) + (x << 1);
return foo(z) + y; }

}
Assert non-equivalence by SMT encoding:
ones; = fOO(Z32) + Y32 N 232 = X32 & (—1)32 A\ Y32 = 232 X 232 A\
twos, = fOO(X32) + (X32 <K 132) A
ones; # twos;

22

Application: Checking Program Equivalence

Relevance of Program Equivalence

correctness of compiler optimizations, regression testing, software verification

Example (Are the following two programs equivalent?)

int one(int x){

unsigned z = x & (-1); int two(int x){
unsigned y = z * 2; return foo(x) + (x << 1);
return foo(z) + y; }

} ’ uninterpreted functions‘
Assert non—equivalen%y SMT encoding:
onez = foo(z32) +y32 Azzp = x32 & (—1)5, Ayse = 232 X 232 A

twos, = fOO(X32) + (X32 < 132) A
ones; # twos;

22

Application: Checking Program Equivalence

Relevance of Program Equivalence

correctness of compiler optimizations, regression testing, software verification

Example (Are the following two programs equivalent?)

int one(int x){

unsigned z = x & (-1); int two(int x){
unsigned y = z * 2; return foo(x) + (x << 1);
return foo(z) + y; }

} ’ uninterpreted functions‘
Assert non—equivalen%y SMT encoding:

ones; = foo(z32) + y32 A 230 = X320 & (—1)3, Ay = z32 X 235 A
twos, = fOO(X32) 4 (X32 < 132) A
ones; # twos;

Remarks

» useful to combine BV and EUF theories

22

Application: Checking Program Equivalence

Relevance of Program Equivalence

correctness of compiler optimizations, regression testing, software verification

Example (Are the following two programs equivalent?)

int one(int x){

unsigned z = x & (-1); int two(int x){
unsigned y = z * 2; return foo(x) + (x << 1);
return foo(z) + y; }

} ’ uninterpreted functions‘
Assert non—equivalen%y SMT encoding:
ones; = fOO(Z32) + Y32 N 232 = X32 & (—1)32 A\ Y32 = 232 X 232 A\
twos, = fOO(X32) 4 (X32 < 132) A\
ones; # twos;

Remarks

» useful to combine BV and EUF theories
» checking equivalence of programs with loops is more challenging

22

Bibliography

@ Greg Nelson and Derek C. Oppen
Simplification by Cooperating Decision Procedures
ACM Transactions on Programming Languages and Systems 2(1), pp 245-257, 1979.

D Nuno P. Lopes and José Monteiro.

Automatic equivalence checking of programs with uninterpreted functions and integer
arithmetic.

International Journal on Software Tools for Technology Transfer 18(4), pp 359-374, 2016.

23

http://dx.doi.org/10.1145/357073.357079
http://dx.doi.org/10.1145/357073.357079
http://dx.doi.org/10.1145/357073.357079
https://doi.org/10.1007/s10009-015-0366-1
https://doi.org/10.1007/s10009-015-0366-1
https://doi.org/10.1007/s10009-015-0366-1
https://doi.org/10.1007/s10009-015-0366-1
https://doi.org/10.1007/s10009-015-0366-1

	lecture 10
	Summary of Last Week
	Nelson-Oppen Combination Method
	Nondeterministic Version
	Deterministic Version

