
SAT and SMT Solving

Sarah Winkler

SS 2018

Department of Computer Science

University of Innsbruck

http://cl-informatik.uibk.ac.at/teaching/ss18/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Outline

Summary of Last Week

Nelson-Oppen Combination Method

1

Summary of Last Week

Definition (Bit Vector Theory)

I variable xk is list of length k of propositional variables xk−1 . . . x2x1x0

I constant nk is bit list of length k

I formulas built according to grammar

formula := (formula ∨ formula) | (formula ∧ formula) | (¬formula) | atom
atom := term rel term | true | false

rel := = | 6= | >u | >s | >u | >s

term := (term binop term) | (unop term) | var | constant | term[i :j] |
(formula ? term : term)

binop := + | − | × | ÷u | ÷s | %u | %s | � | �u | �s | & | | | ˆ| ::

unop :=∼| −

I axioms are equality axioms plus rules for arithmetic/comparison/bitwise

operations on bit vectors of length k

I solution assigns bit list of length k to variables xk

2

Remarks

I theory is decidable because carrier is finite

I common decision procedures use translation to SAT (bit blasting)

I eager: no DPLL(T), bit-blast entire formula to SAT problem

I lazy: second SAT solver as BV theory solver, bit-blast only BV atoms

I solvers heavily rely on preprocessing via rewriting

Definition (Bit Blasting: Formulas)
bit blasting transformation B transforms BV formula into propositional formula:

B(ϕ ∨ ψ) = B(ϕ) ∨ B(ψ)

B(ϕ ∧ ψ) = B(ϕ) ∧ B(ψ)

B(¬ϕ) = ¬B(ϕ)

B(t1 rel t2) = Br (u1 rel u2) ∧ ϕ1 ∧ ϕ2 if Bt(t1) = (u1, ϕ1) and Bt(t2) = (u2, ϕ2)

bit blasting Bt for term t

returns (result u, side condition ϕ)

Br transforms atom into propositional formula

3

Definition (Bit Blasting: Atoms)

for bit vectors xk and yk set

I equality

Br (xk = yk) = (xk ↔ yk) ∧ · · · ∧ (x1 ↔ y1) ∧ (x0 ↔ y0)

I inequality

Br (xk 6= yk) = (xk ⊕ yk) ∨ · · · ∨ (x1 ⊕ y1) ∨ (x0 ⊕ y0)

I unsigned greater-than or equal

Br (x1 >u y1) = y0 → x0

Br (xk+1 >u yk+1) = (xk ∧¬yk)∨ ((xk ↔ yk)∧B(x[k − 1:0] > y[k − 1:0]))

I unsigned greater-than

B(xk >u yk) = B(xk > yk) ∧ B(xk 6= yk)

4

Definition (Bit Blasting: Bitwise Operations)

for bit vectors xk and yk use fresh variable zk and set

I bitwise and

Bt(xk&yk) = (zk , ϕ) ϕ =
k−1∧
i=0

zi ↔ (xi ∧ yi)

I bitwise or

Bt(xk |yk) = (zk , ϕ) ϕ =
k−1∧
i=0

zi ↔ (xi ∨ yi)

I bitwise exclusive or

Bt(xk ˆ yk) = (zk , ϕ) ϕ =
k−1∧
i=0

zi ↔ (xi ⊕ yi)

I bitwise negation

Bt(−xk) = (zk , ϕ) ϕ =
k−1∧
i=0

zi ↔ ¬xi

5

Definition (Bit Blasting: Addition and Subtraction)

I addition

Bt(xk + yk) = (sk , ϕ)

where
ϕ = (c0 ↔ x0 ∧ y0) ∧ (s0 ↔ x0 ⊕ y0) ∧

k−1∧
i=1

(ci ↔ min2(xi , yi , ci−1)) ∧ (si ↔ xi ⊕ yi ⊕ ci−1)

for fresh variables sk and ck and min2(a, b, d) = (a ∧ b) ∨ (a ∧ d) ∨ (b ∧ d)

I unary minus

Bt(−xk) = Bt(∼ xk + 1k)

I subtraction

Bt(xk + yk) = Bt(xk + (−yk)

ripple-carry adder:

ck are carry bits

6

Nelson-Oppen Combination Method

How to Be Lazy

SAT solver

unsat

sat

T -solver

candidate model

explanation

candidate model

explanation

EUF solver

LRA solver

T -solver

ϕ
abstract

SMT solver

f(x + 1) < f(y) ∧
x + 1 > y ∧

g(x) 6= c

Theory T T -solving method

I equality logic equality graphs X
I equality + uninterpreted functions (EUF) congruence closure X
I linear arithmetic (LRA and LIA) DPLL(T) Simplex (+ cuts) X
I bitvectors (BV) bit-blasting X

Theory combinations

Nelson-Oppen method

7

How to Be Lazy

SAT solver

unsat

sat

T -solver

candidate model

explanation

candidate model

explanation

EUF solver

LRA solver

T -solver

ϕ
abstract

SMT solver

f(x + 1) < f(y) ∧
x + 1 > y ∧

g(x) 6= c

Theory T T -solving method

I equality logic equality graphs X
I equality + uninterpreted functions (EUF) congruence closure X
I linear arithmetic (LRA and LIA) DPLL(T) Simplex (+ cuts) X
I bitvectors (BV) bit-blasting X

Theory combinations

Nelson-Oppen method

7

How to Be Lazy

SAT solver

unsat

sat

?

candidate model

explanation

candidate model

explanation

EUF solver

LRA solver

T -solver

ϕ
abstract

SMT solver

f(x + 1) < f(y) ∧
x + 1 > y ∧

g(x) 6= c

Theory T T -solving method

I equality logic equality graphs X
I equality + uninterpreted functions (EUF) congruence closure X
I linear arithmetic (LRA and LIA) DPLL(T) Simplex (+ cuts) X
I bitvectors (BV) bit-blasting X

Theory combinations

Nelson-Oppen method

7

How to Be Lazy

SAT solver

unsat

sat

candidate model

explanation

EUF solver

LRA solver

T -solver

ϕ
abstract

SMT solver

f(x + 1) < f(y) ∧
x + 1 > y ∧

g(x) 6= c

Theory T T -solving method

I equality logic equality graphs X
I equality + uninterpreted functions (EUF) congruence closure X
I linear arithmetic (LRA and LIA) DPLL(T) Simplex (+ cuts) X
I bitvectors (BV) bit-blasting X

Theory combinations

Nelson-Oppen method

7

How to Be Lazy

SAT solver

unsat

sat

candidate model

explanation

EUF solver

LRA solver

T -solver

ϕ
abstract

SMT solver

f(x + 1) < f(y) ∧
x + 1 > y ∧

g(x) 6= c

Theory T T -solving method

I equality logic equality graphs X
I equality + uninterpreted functions (EUF) congruence closure X
I linear arithmetic (LRA and LIA) DPLL(T) Simplex (+ cuts) X
I bitvectors (BV) bit-blasting X

Theory combinations Nelson-Oppen method
7

Definitions

I (first-order) theory consists of

I signature Σ: set of function and predicate symbols

I axioms T : set of sentences in first-order logic in which only

function and predicate symbols of Σ appear

I theory is stably infinite if every satisfiable quantifier-free formula has

model with infinite carrier set

Examples

I equality + uninterpreted functions (EUF) is stably infinite

I linear integer arithmetic (LIA) is stably infinite

I theory T = (Σ,A) with Σ = {a, b,=} and

A = { ∀x (x = a ∨ x = b) } is not stably infinite

8

Definitions

I (first-order) theory consists of

I signature Σ: set of function and predicate symbols

I axioms T : set of sentences in first-order logic in which only

function and predicate symbols of Σ appear

I theory is stably infinite if every satisfiable quantifier-free formula has

model with infinite carrier set

Examples

I equality + uninterpreted functions (EUF) is stably infinite

I linear integer arithmetic (LIA) is stably infinite

I theory T = (Σ,A) with Σ = {a, b,=} and

A = { ∀x (x = a ∨ x = b) } is not stably infinite

8

Definitions

I (first-order) theory consists of

I signature Σ: set of function and predicate symbols

I axioms T : set of sentences in first-order logic in which only

function and predicate symbols of Σ appear

I theory is stably infinite if every satisfiable quantifier-free formula has

model with infinite carrier set

Examples

I equality + uninterpreted functions (EUF) is stably infinite

I linear integer arithmetic (LIA) is stably infinite

I theory T = (Σ,A) with Σ = {a, b,=} and

A = { ∀x (x = a ∨ x = b) } is not stably infinite

8

Definitions

I (first-order) theory consists of

I signature Σ: set of function and predicate symbols

I axioms T : set of sentences in first-order logic in which only

function and predicate symbols of Σ appear

I theory is stably infinite if every satisfiable quantifier-free formula has

model with infinite carrier set

Examples

I equality + uninterpreted functions (EUF) is stably infinite

I linear integer arithmetic (LIA) is stably infinite

I theory T = (Σ,A) with Σ = {a, b,=} and

A = { ∀x (x = a ∨ x = b) } is not stably infinite

8

Definitions

I (first-order) theory consists of

I signature Σ: set of function and predicate symbols

I axioms T : set of sentences in first-order logic in which only

function and predicate symbols of Σ appear

I theory is stably infinite if every satisfiable quantifier-free formula has

model with infinite carrier set

Examples

I equality + uninterpreted functions (EUF) is stably infinite

I linear integer arithmetic (LIA) is stably infinite

I theory T = (Σ,A) with Σ = {a, b,=} and

A = { ∀x (x = a ∨ x = b) } is not stably infinite

8

Definitions

I (first-order) theory consists of

I signature Σ: set of function and predicate symbols

I axioms T : set of sentences in first-order logic in which only

function and predicate symbols of Σ appear

I theory is stably infinite if every satisfiable quantifier-free formula has

model with infinite carrier set

Definition

theory combination T1 ⊕ T2 of two theories

I T1 over signature Σ1

I T2 over signature Σ2

has signature Σ1 ∪ Σ2 and axioms T1 ∪ T2

8

Outline

Summary of Last Week

Nelson-Oppen Combination Method

Nondeterministic Version

Deterministic Version

9

Example

combination of linear arithmetic and uninterpreted functions:

x > y ∧ y − z > x ∧ f(f(y)− f(x)) 6= f(z) ∧ z > 0

Assumptions

two stably infinite theories

I T1 over signature Σ1

I T2 over signature Σ2

such that

I Σ1 ∩ Σ2 = {=}

I T1-satisfiability of quantifier-free Σ1-formulas is decidable

I T2-satisfiability of quantifier-free Σ2-formulas is decidable

10

Example

combination of linear arithmetic and uninterpreted functions:

x > y ∧ y − z > x ∧ f(f(y)− f(x)) 6= f(z) ∧ z > 0

Assumptions

two stably infinite theories

I T1 over signature Σ1

I T2 over signature Σ2

such that

I Σ1 ∩ Σ2 = {=}

I T1-satisfiability of quantifier-free Σ1-formulas is decidable

I T2-satisfiability of quantifier-free Σ2-formulas is decidable

10

Example

combination of linear arithmetic and uninterpreted functions:

x > y ∧ y − z > x ∧ f(f(y)− f(x)) 6= f(z) ∧ z > 0

Assumptions

two stably infinite theories

I T1 over signature Σ1

I T2 over signature Σ2

such that

I Σ1 ∩ Σ2 = {=}

I T1-satisfiability of quantifier-free Σ1-formulas is decidable

I T2-satisfiability of quantifier-free Σ2-formulas is decidable

10

Example

combination of linear arithmetic and uninterpreted functions:

x > y ∧ y − z > x ∧ f(f(y)− f(x)) 6= f(z) ∧ z > 0

Assumptions

two stably infinite theories

I T1 over signature Σ1

I T2 over signature Σ2

such that

I Σ1 ∩ Σ2 = {=}
I T1-satisfiability of quantifier-free Σ1-formulas is decidable

I T2-satisfiability of quantifier-free Σ2-formulas is decidable

10

Nelson-Oppen Method: Nondeterministic Version

Input quantifier-free conjunction ϕ in theory combination T1 ⊕ T2

Output satisfiable or unsatisfiable

1 purification

ϕ ≈ ϕ1 ∧ ϕ2 for Σ1-formula ϕ1 and Σ2-formula ϕ2

2 guess

and check

I V is set of shared variables in ϕ1 and ϕ2

I guess equivalence relation E on V

I arrangement α(V ,E) is formula∧
x E y

x = y ∧
∧

¬(x E y)

x 6= y

I if ϕ1 ∧ α(V ,E) is T1-satisfiable and ϕ2 ∧ α(V ,E) is T2-satisfiable

then return satisfiable else return unsatisfiable

11

Nelson-Oppen Method: Nondeterministic Version

Input quantifier-free conjunction ϕ in theory combination T1 ⊕ T2

Output satisfiable or unsatisfiable

1 purification

ϕ ≈ ϕ1 ∧ ϕ2 for Σ1-formula ϕ1 and Σ2-formula ϕ2

2 guess

and check

I V is set of shared variables in ϕ1 and ϕ2

I guess equivalence relation E on V

I arrangement α(V ,E) is formula∧
x E y

x = y ∧
∧

¬(x E y)

x 6= y

I if ϕ1 ∧ α(V ,E) is T1-satisfiable and ϕ2 ∧ α(V ,E) is T2-satisfiable

then return satisfiable else return unsatisfiable

11

Example

formula ϕ in combination of LIA and EUF:

1 6 x ∧ x 6 2 ∧ f(x) 6= f(1) ∧ f(x) 6= f(2)

∧ y = 1 ∧ z = 2

I V = {x , y , z}

I 5 different equivalence relations E :

1 {{x , y , z}}

ϕ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}}

ϕ2 ∧ α(V ,E) is unsatisfiable

3 {{x , z}, {y}}

ϕ2 ∧ α(V ,E) is unsatisfiable

4 {{x}, {y , z}}

ϕ1 ∧ α(V ,E) is unsatisfiable

5 {{x}, {y}, {z}}

ϕ1 ∧ α(V ,E) is unsatisfiable

I ϕ is unsatisfiable

12

Example

formula ϕ in combination of LIA and EUF:

1 6 x ∧ x 6 2 ∧ f(x) 6= f(1) ∧ f(x) 6= f(2)

∧ y = 1 ∧ z = 2

I V = {x , y , z}

I 5 different equivalence relations E :

1 {{x , y , z}}

ϕ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}}

ϕ2 ∧ α(V ,E) is unsatisfiable

3 {{x , z}, {y}}

ϕ2 ∧ α(V ,E) is unsatisfiable

4 {{x}, {y , z}}

ϕ1 ∧ α(V ,E) is unsatisfiable

5 {{x}, {y}, {z}}

ϕ1 ∧ α(V ,E) is unsatisfiable

I ϕ is unsatisfiable

12

Example

formula ϕ in combination of LIA and EUF:

1 6 x ∧ x 6 2 ∧ f(x) 6= f(y) ∧ f(x) 6= f(2) ∧ y = 1

∧ z = 2

I V = {x , y , z}

I 5 different equivalence relations E :

1 {{x , y , z}}

ϕ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}}

ϕ2 ∧ α(V ,E) is unsatisfiable

3 {{x , z}, {y}}

ϕ2 ∧ α(V ,E) is unsatisfiable

4 {{x}, {y , z}}

ϕ1 ∧ α(V ,E) is unsatisfiable

5 {{x}, {y}, {z}}

ϕ1 ∧ α(V ,E) is unsatisfiable

I ϕ is unsatisfiable

12

Example

formula ϕ in combination of LIA and EUF:

1 6 x ∧ x 6 2 ∧ f(x) 6= f(y) ∧ f(x) 6= f(2) ∧ y = 1

∧ z = 2

I V = {x , y , z}

I 5 different equivalence relations E :

1 {{x , y , z}}

ϕ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}}

ϕ2 ∧ α(V ,E) is unsatisfiable

3 {{x , z}, {y}}

ϕ2 ∧ α(V ,E) is unsatisfiable

4 {{x}, {y , z}}

ϕ1 ∧ α(V ,E) is unsatisfiable

5 {{x}, {y}, {z}}

ϕ1 ∧ α(V ,E) is unsatisfiable

I ϕ is unsatisfiable

12

Example

formula ϕ in combination of LIA and EUF:

1 6 x ∧ x 6 2 ∧ f(x) 6= f(y) ∧ f(x) 6= f(z) ∧ y = 1 ∧ z = 2

I V = {x , y , z}

I 5 different equivalence relations E :

1 {{x , y , z}}

ϕ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}}

ϕ2 ∧ α(V ,E) is unsatisfiable

3 {{x , z}, {y}}

ϕ2 ∧ α(V ,E) is unsatisfiable

4 {{x}, {y , z}}

ϕ1 ∧ α(V ,E) is unsatisfiable

5 {{x}, {y}, {z}}

ϕ1 ∧ α(V ,E) is unsatisfiable

I ϕ is unsatisfiable

12

Example

formula ϕ in combination of LIA and EUF:

1 6 x ∧ x 6 2 ∧ y = 1 ∧ z = 2︸ ︷︷ ︸
ϕ1

∧ f(x) 6= f(y) ∧ f(x) 6= f(z)︸ ︷︷ ︸
ϕ2

I V = {x , y , z}

I 5 different equivalence relations E :

1 {{x , y , z}}

ϕ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}}

ϕ2 ∧ α(V ,E) is unsatisfiable

3 {{x , z}, {y}}

ϕ2 ∧ α(V ,E) is unsatisfiable

4 {{x}, {y , z}}

ϕ1 ∧ α(V ,E) is unsatisfiable

5 {{x}, {y}, {z}}

ϕ1 ∧ α(V ,E) is unsatisfiable

I ϕ is unsatisfiable

12

Nelson-Oppen Method: Nondeterministic Version

Input quantifier-free conjunction ϕ in theory combination T1 ⊕ T2

Output satisfiable or unsatisfiable

1 purification

ϕ ≈ ϕ1 ∧ ϕ2 for Σ1-formula ϕ1 and Σ2-formula ϕ2

2 guess

and check

I V is set of shared variables in ϕ1 and ϕ2

I guess equivalence relation E on V

I arrangement α(V ,E) is formula∧
x E y

x = y ∧
∧

¬(x E y)

x 6= y

I if ϕ1 ∧ α(V ,E) is T1-satisfiable and ϕ2 ∧ α(V ,E) is T2-satisfiable

then return satisfiable else return unsatisfiable

13

Nelson-Oppen Method: Nondeterministic Version

Input quantifier-free conjunction ϕ in theory combination T1 ⊕ T2

Output satisfiable or unsatisfiable

1 purification

ϕ ≈ ϕ1 ∧ ϕ2 for Σ1-formula ϕ1 and Σ2-formula ϕ2

2 guess

and check

I V is set of shared variables in ϕ1 and ϕ2

I guess equivalence relation E on V

I arrangement α(V ,E) is formula∧
x E y

x = y ∧
∧

¬(x E y)

x 6= y

I if ϕ1 ∧ α(V ,E) is T1-satisfiable and ϕ2 ∧ α(V ,E) is T2-satisfiable

then return satisfiable else return unsatisfiable

13

Nelson-Oppen Method: Nondeterministic Version

Input quantifier-free conjunction ϕ in theory combination T1 ⊕ T2

Output satisfiable or unsatisfiable

1 purification

ϕ ≈ ϕ1 ∧ ϕ2 for Σ1-formula ϕ1 and Σ2-formula ϕ2

2 guess

and check

I V is set of shared variables in ϕ1 and ϕ2

I guess equivalence relation E on V

I arrangement α(V ,E) is formula∧
x E y

x = y ∧
∧

¬(x E y)

x 6= y

I if ϕ1 ∧ α(V ,E) is T1-satisfiable and ϕ2 ∧ α(V ,E) is T2-satisfiable

then return satisfiable else return unsatisfiable

13

Example

formula ϕ in combination of LIA and EUF:

1 6 x ∧ x 6 2 ∧ y = 1 ∧ z = 2︸ ︷︷ ︸
ϕ1

∧ f(x) 6= f(y) ∧ f(x) 6= f(z)︸ ︷︷ ︸
ϕ2

I V = {x , y , z}

I 5 different equivalence relations E :

1 {{x , y , z}}

ϕ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}}

ϕ2 ∧ α(V ,E) is unsatisfiable

3 {{x , z}, {y}}

ϕ2 ∧ α(V ,E) is unsatisfiable

4 {{x}, {y , z}}

ϕ1 ∧ α(V ,E) is unsatisfiable

5 {{x}, {y}, {z}}

ϕ1 ∧ α(V ,E) is unsatisfiable

I ϕ is unsatisfiable

14

Example

formula ϕ in combination of LIA and EUF:

1 6 x ∧ x 6 2 ∧ y = 1 ∧ z = 2︸ ︷︷ ︸
ϕ1

∧ f(x) 6= f(y) ∧ f(x) 6= f(z)︸ ︷︷ ︸
ϕ2

I V = {x , y , z}

I 5 different equivalence relations E :

1 {{x , y , z}}

ϕ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}}

ϕ2 ∧ α(V ,E) is unsatisfiable

3 {{x , z}, {y}}

ϕ2 ∧ α(V ,E) is unsatisfiable

4 {{x}, {y , z}}

ϕ1 ∧ α(V ,E) is unsatisfiable

5 {{x}, {y}, {z}}

ϕ1 ∧ α(V ,E) is unsatisfiable

I ϕ is unsatisfiable

14

Nelson-Oppen Method: Nondeterministic Version

Input quantifier-free conjunction ϕ in theory combination T1 ⊕ T2

Output satisfiable or unsatisfiable

1 purification

ϕ ≈ ϕ1 ∧ ϕ2 for Σ1-formula ϕ1 and Σ2-formula ϕ2

2 guess and check

I V is set of shared variables in ϕ1 and ϕ2

I guess equivalence relation E on V

I arrangement α(V ,E) is formula∧
x E y

x = y ∧
∧

¬(x E y)

x 6= y

I if ϕ1 ∧ α(V ,E) is T1-satisfiable and ϕ2 ∧ α(V ,E) is T2-satisfiable

then return satisfiable else return unsatisfiable
15

Example

formula ϕ in combination of LIA and EUF:

1 6 x ∧ x 6 2 ∧ y = 1 ∧ z = 2︸ ︷︷ ︸
ϕ1

∧ f(x) 6= f(y) ∧ f(x) 6= f(z)︸ ︷︷ ︸
ϕ2

I V = {x , y , z}

I 5 different equivalence relations E :

1 {{x , y , z}} ϕ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}}

ϕ2 ∧ α(V ,E) is unsatisfiable

3 {{x , z}, {y}}

ϕ2 ∧ α(V ,E) is unsatisfiable

4 {{x}, {y , z}}

ϕ1 ∧ α(V ,E) is unsatisfiable

5 {{x}, {y}, {z}}

ϕ1 ∧ α(V ,E) is unsatisfiable

I ϕ is unsatisfiable

16

Example

formula ϕ in combination of LIA and EUF:

1 6 x ∧ x 6 2 ∧ y = 1 ∧ z = 2︸ ︷︷ ︸
ϕ1

∧ f(x) 6= f(y) ∧ f(x) 6= f(z)︸ ︷︷ ︸
ϕ2

I V = {x , y , z}

I 5 different equivalence relations E :

1 {{x , y , z}} ϕ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}} ϕ2 ∧ α(V ,E) is unsatisfiable

3 {{x , z}, {y}}

ϕ2 ∧ α(V ,E) is unsatisfiable

4 {{x}, {y , z}}

ϕ1 ∧ α(V ,E) is unsatisfiable

5 {{x}, {y}, {z}}

ϕ1 ∧ α(V ,E) is unsatisfiable

I ϕ is unsatisfiable

16

Example

formula ϕ in combination of LIA and EUF:

1 6 x ∧ x 6 2 ∧ y = 1 ∧ z = 2︸ ︷︷ ︸
ϕ1

∧ f(x) 6= f(y) ∧ f(x) 6= f(z)︸ ︷︷ ︸
ϕ2

I V = {x , y , z}

I 5 different equivalence relations E :

1 {{x , y , z}} ϕ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}} ϕ2 ∧ α(V ,E) is unsatisfiable

3 {{x , z}, {y}} ϕ2 ∧ α(V ,E) is unsatisfiable

4 {{x}, {y , z}}

ϕ1 ∧ α(V ,E) is unsatisfiable

5 {{x}, {y}, {z}}

ϕ1 ∧ α(V ,E) is unsatisfiable

I ϕ is unsatisfiable

16

Example

formula ϕ in combination of LIA and EUF:

1 6 x ∧ x 6 2 ∧ y = 1 ∧ z = 2︸ ︷︷ ︸
ϕ1

∧ f(x) 6= f(y) ∧ f(x) 6= f(z)︸ ︷︷ ︸
ϕ2

I V = {x , y , z}

I 5 different equivalence relations E :

1 {{x , y , z}} ϕ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}} ϕ2 ∧ α(V ,E) is unsatisfiable

3 {{x , z}, {y}} ϕ2 ∧ α(V ,E) is unsatisfiable

4 {{x}, {y , z}} ϕ1 ∧ α(V ,E) is unsatisfiable

5 {{x}, {y}, {z}}

ϕ1 ∧ α(V ,E) is unsatisfiable

I ϕ is unsatisfiable

16

Example

formula ϕ in combination of LIA and EUF:

1 6 x ∧ x 6 2 ∧ y = 1 ∧ z = 2︸ ︷︷ ︸
ϕ1

∧ f(x) 6= f(y) ∧ f(x) 6= f(z)︸ ︷︷ ︸
ϕ2

I V = {x , y , z}

I 5 different equivalence relations E :

1 {{x , y , z}} ϕ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}} ϕ2 ∧ α(V ,E) is unsatisfiable

3 {{x , z}, {y}} ϕ2 ∧ α(V ,E) is unsatisfiable

4 {{x}, {y , z}} ϕ1 ∧ α(V ,E) is unsatisfiable

5 {{x}, {y}, {z}} ϕ1 ∧ α(V ,E) is unsatisfiable

I ϕ is unsatisfiable

16

Example

formula ϕ in combination of LIA and EUF:

1 6 x ∧ x 6 2 ∧ y = 1 ∧ z = 2︸ ︷︷ ︸
ϕ1

∧ f(x) 6= f(y) ∧ f(x) 6= f(z)︸ ︷︷ ︸
ϕ2

I V = {x , y , z}

I 5 different equivalence relations E :

1 {{x , y , z}} ϕ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}} ϕ2 ∧ α(V ,E) is unsatisfiable

3 {{x , z}, {y}} ϕ2 ∧ α(V ,E) is unsatisfiable

4 {{x}, {y , z}} ϕ1 ∧ α(V ,E) is unsatisfiable

5 {{x}, {y}, {z}} ϕ1 ∧ α(V ,E) is unsatisfiable

I ϕ is unsatisfiable

16

Outline

Summary of Last Week

Nelson-Oppen Combination Method

Nondeterministic Version

Deterministic Version

17

Definition

theory T is convex if

F �T

n∨
i=1

ui = vi implies (F �T ui = vi for some 1 6 i 6 n)

∀ quantifier-free conjunctive formula F and variables u1, . . . , un, v1, . . . , vn

Example

I linear arithmetic over integers (LIA) is not convex:

1 6 x 6 2 ∧ y = 1 ∧ z = 2 �T x = y ∨ x = z

holds but none of

1 6 x 6 2 ∧ y = 1 ∧ z = 2 �T x = y
1 6 x 6 2 ∧ y = 1 ∧ z = 2 �T x = z

I linear arithmetic over rationals and reals (LRA) is convex

I equality logic with uninterpreted functions (EUF) is convex

18

Definition

theory T is convex if

F �T

n∨
i=1

ui = vi implies (F �T ui = vi for some 1 6 i 6 n)

∀ quantifier-free conjunctive formula F and variables u1, . . . , un, v1, . . . , vn

Example

I linear arithmetic over integers (LIA) is not convex:

1 6 x 6 2 ∧ y = 1 ∧ z = 2 �T x = y ∨ x = z

holds but none of

1 6 x 6 2 ∧ y = 1 ∧ z = 2 �T x = y
1 6 x 6 2 ∧ y = 1 ∧ z = 2 �T x = z

I linear arithmetic over rationals and reals (LRA) is convex

I equality logic with uninterpreted functions (EUF) is convex

18

Definition

theory T is convex if

F �T

n∨
i=1

ui = vi implies (F �T ui = vi for some 1 6 i 6 n)

∀ quantifier-free conjunctive formula F and variables u1, . . . , un, v1, . . . , vn

Example

I linear arithmetic over integers (LIA) is not convex:

1 6 x 6 2 ∧ y = 1 ∧ z = 2 �T x = y ∨ x = z

holds but none of

1 6 x 6 2 ∧ y = 1 ∧ z = 2 �T x = y
1 6 x 6 2 ∧ y = 1 ∧ z = 2 �T x = z

I linear arithmetic over rationals and reals (LRA) is convex

I equality logic with uninterpreted functions (EUF) is convex

18

Definition

theory T is convex if

F �T

n∨
i=1

ui = vi implies (F �T ui = vi for some 1 6 i 6 n)

∀ quantifier-free conjunctive formula F and variables u1, . . . , un, v1, . . . , vn

Example

I linear arithmetic over integers (LIA) is not convex:

1 6 x 6 2 ∧ y = 1 ∧ z = 2 �T x = y ∨ x = z

holds but none of

1 6 x 6 2 ∧ y = 1 ∧ z = 2 �T x = y
1 6 x 6 2 ∧ y = 1 ∧ z = 2 �T x = z

I linear arithmetic over rationals and reals (LRA) is convex

I equality logic with uninterpreted functions (EUF) is convex

18

Definition

theory T is convex if

F �T

n∨
i=1

ui = vi implies (F �T ui = vi for some 1 6 i 6 n)

∀ quantifier-free conjunctive formula F and variables u1, . . . , un, v1, . . . , vn

Example

I linear arithmetic over integers (LIA) is not convex:

1 6 x 6 2 ∧ y = 1 ∧ z = 2 �T x = y ∨ x = z

holds but none of

1 6 x 6 2 ∧ y = 1 ∧ z = 2 �T x = y
1 6 x 6 2 ∧ y = 1 ∧ z = 2 �T x = z

I linear arithmetic over rationals and reals (LRA) is convex

I equality logic with uninterpreted functions (EUF) is convex 18

Example

combination of LRA and EUF:

x > y ∧ y − z > x ∧ f(f(y)− f(x)) 6= f(z) ∧ z > 0

purification

ϕ1 : x > y ∧ y − z > x ∧ w1 = w2 − w3 ∧ z > 0

ϕ2 : f(w1) 6= f(z) ∧ w2 = f(y) ∧ w3 = f(x)

implied equalities between shared variables

E :

x = y ∧ w2 = w3 ∧ z = w1

test satisfiability of ϕ1 ∧ E

ϕ1 ∧ E =⇒ x = y

unsatisfiable

19

Example

combination of LRA and EUF:

x > y ∧ y − z > x ∧ f(f(y)− f(x)) 6= f(z) ∧ z > 0

purification

ϕ1 : x > y ∧ y − z > x ∧ w1 = w2 − w3 ∧ z > 0

ϕ2 : f(w1) 6= f(z) ∧ w2 = f(y) ∧ w3 = f(x)

implied equalities between shared variables

E :

x = y ∧ w2 = w3 ∧ z = w1

test satisfiability of ϕ1 ∧ E

ϕ1 ∧ E =⇒ x = y

unsatisfiable

19

Example

combination of LRA and EUF:

x > y ∧ y − z > x ∧ f(f(y)− f(x)) 6= f(z) ∧ z > 0

purification

ϕ1 : x > y ∧ y − z > x ∧ w1 = w2 − w3 ∧ z > 0

ϕ2 : f(w1) 6= f(z) ∧ w2 = f(y) ∧ w3 = f(x)

implied equalities between shared variables

E :

x = y ∧ w2 = w3 ∧ z = w1

test satisfiability of ϕ1 ∧ E

ϕ1 ∧ E =⇒ x = y

unsatisfiable

19

Example

combination of LRA and EUF:

x > y ∧ y − z > x ∧ f(f(y)− f(x)) 6= f(z) ∧ z > 0

purification

ϕ1 : x > y ∧ y − z > x ∧ w1 = w2 − w3 ∧ z > 0

ϕ2 : f(w1) 6= f(z) ∧ w2 = f(y) ∧ w3 = f(x)

implied equalities between shared variables

E : x = y

∧ w2 = w3 ∧ z = w1

test satisfiability of ϕ1 ∧ E

ϕ1 ∧ E =⇒ x = y

unsatisfiable

19

Example

combination of LRA and EUF:

x > y ∧ y − z > x ∧ f(f(y)− f(x)) 6= f(z) ∧ z > 0

purification

ϕ1 : x > y ∧ y − z > x ∧ w1 = w2 − w3 ∧ z > 0

ϕ2 : f(w1) 6= f(z) ∧ w2 = f(y) ∧ w3 = f(x)

implied equalities between shared variables

E : x = y ∧ w2 = w3

∧ z = w1

test satisfiability of ϕ2 ∧ E

ϕ2 ∧ E =⇒ w2 = w3

unsatisfiable

19

Example

combination of LRA and EUF:

x > y ∧ y − z > x ∧ f(f(y)− f(x)) 6= f(z) ∧ z > 0

purification

ϕ1 : x > y ∧ y − z > x ∧ w1 = w2 − w3 ∧ z > 0

ϕ2 : f(w1) 6= f(z) ∧ w2 = f(y) ∧ w3 = f(x)

implied equalities between shared variables

E : x = y ∧ w2 = w3 ∧ z = w1

test satisfiability of ϕ1 ∧ E

ϕ1 ∧ E =⇒ z = w1

unsatisfiable

19

Example

combination of LRA and EUF:

x > y ∧ y − z > x ∧ f(f(y)− f(x)) 6= f(z) ∧ z > 0

purification

ϕ1 : x > y ∧ y − z > x ∧ w1 = w2 − w3 ∧ z > 0

ϕ2 : f(w1) 6= f(z) ∧ w2 = f(y) ∧ w3 = f(x)

implied equalities between shared variables

E : x = y ∧ w2 = w3 ∧ z = w1

test satisfiability of ϕ2 ∧ E

ϕ2 ∧ E =⇒ ⊥

unsatisfiable

19

Example

combination of LRA and EUF:

x > y ∧ y − z > x ∧ f(f(y)− f(x)) 6= f(z) ∧ z > 0

purification

ϕ1 : x > y ∧ y − z > x ∧ w1 = w2 − w3 ∧ z > 0

ϕ2 : f(w1) 6= f(z) ∧ w2 = f(y) ∧ w3 = f(x)

implied equalities between shared variables

E : x = y ∧ w2 = w3 ∧ z = w1

test satisfiability of ϕ2 ∧ E

ϕ2 ∧ E =⇒ ⊥

unsatisfiable 19

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction ϕ in combination T1 ⊕ T2

of convex theories T1 and T2

Output satisfiable or unsatisfiable

1 purification ϕ ≈ ϕ1 ∧ ϕ2 for Σ1-formula ϕ1 and Σ2-formula ϕ2

2 V : set of shared variables in ϕ1 and ϕ2

E : already discovered equalities between variables in V

3 test satisfiability of ϕ1 ∧ E (and add implied equations)

I if ϕ1 ∧ E is T1-unsatisfiable then return unsatisfiable

I else add new implied equalities to E

4 test satisfiability of ϕ2 ∧ E (and add implied equations)

I if ϕ2 ∧ E is T2-unsatisfiable then return unsatisfiable

I else add new implied equalities to E

5 if E has been extended in steps 3 or 4 then go to step 2

else return satisfiable

20

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction ϕ in combination T1 ⊕ T2

of convex theories T1 and T2

Output satisfiable or unsatisfiable

1 purification ϕ ≈ ϕ1 ∧ ϕ2 for Σ1-formula ϕ1 and Σ2-formula ϕ2

2 V : set of shared variables in ϕ1 and ϕ2

E : already discovered equalities between variables in V

3 test satisfiability of ϕ1 ∧ E (and add implied equations)

I if ϕ1 ∧ E is T1-unsatisfiable then return unsatisfiable

I else add new implied equalities to E

4 test satisfiability of ϕ2 ∧ E (and add implied equations)

I if ϕ2 ∧ E is T2-unsatisfiable then return unsatisfiable

I else add new implied equalities to E

5 if E has been extended in steps 3 or 4 then go to step 2

else return satisfiable

20

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction ϕ in combination T1 ⊕ T2

of convex theories T1 and T2

Output satisfiable or unsatisfiable

1 purification ϕ ≈ ϕ1 ∧ ϕ2 for Σ1-formula ϕ1 and Σ2-formula ϕ2

2 V : set of shared variables in ϕ1 and ϕ2

E : already discovered equalities between variables in V

3 test satisfiability of ϕ1 ∧ E (and add implied equations)

I if ϕ1 ∧ E is T1-unsatisfiable then return unsatisfiable

I else add new implied equalities to E

4 test satisfiability of ϕ2 ∧ E (and add implied equations)

I if ϕ2 ∧ E is T2-unsatisfiable then return unsatisfiable

I else add new implied equalities to E

5 if E has been extended in steps 3 or 4 then go to step 2

else return satisfiable

20

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction ϕ in combination T1 ⊕ T2

of convex theories T1 and T2

Output satisfiable or unsatisfiable

1 purification ϕ ≈ ϕ1 ∧ ϕ2 for Σ1-formula ϕ1 and Σ2-formula ϕ2

2 V : set of shared variables in ϕ1 and ϕ2

E : already discovered equalities between variables in V

3 test satisfiability of ϕ1 ∧ E (and add implied equations)

I if ϕ1 ∧ E is T1-unsatisfiable then return unsatisfiable

I else add new implied equalities to E

4 test satisfiability of ϕ2 ∧ E (and add implied equations)

I if ϕ2 ∧ E is T2-unsatisfiable then return unsatisfiable

I else add new implied equalities to E

5 if E has been extended in steps 3 or 4 then go to step 2

else return satisfiable

20

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction ϕ in combination T1 ⊕ T2

of convex theories T1 and T2

Output satisfiable or unsatisfiable

1 purification ϕ ≈ ϕ1 ∧ ϕ2 for Σ1-formula ϕ1 and Σ2-formula ϕ2

2 V : set of shared variables in ϕ1 and ϕ2

E : already discovered equalities between variables in V

3 test satisfiability of ϕ1 ∧ E (and add implied equations)

I if ϕ1 ∧ E is T1-unsatisfiable then return unsatisfiable

I else add new implied equalities to E

4 test satisfiability of ϕ2 ∧ E (and add implied equations)

I if ϕ2 ∧ E is T2-unsatisfiable then return unsatisfiable

I else add new implied equalities to E

5 if E has been extended in steps 3 or 4 then go to step 2

else return satisfiable

20

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction ϕ in combination T1 ⊕ T2

of convex theories T1 and T2

Output satisfiable or unsatisfiable

1 purification ϕ ≈ ϕ1 ∧ ϕ2 for Σ1-formula ϕ1 and Σ2-formula ϕ2

2 V : set of shared variables in ϕ1 and ϕ2

E : already discovered equalities between variables in V

3 test satisfiability of ϕ1 ∧ E (and add implied equations)

I if ϕ1 ∧ E is T1-unsatisfiable then return unsatisfiable

I else add new implied equalities to E

4 test satisfiability of ϕ2 ∧ E (and add implied equations)

I if ϕ2 ∧ E is T2-unsatisfiable then return unsatisfiable

I else add new implied equalities to E

5 if E has been extended in steps 3 or 4 then go to step 2

else return satisfiable

20

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction ϕ in combination T1 ⊕ T2

of convex theories T1 and T2

Output satisfiable or unsatisfiable

1 purification ϕ ≈ ϕ1 ∧ ϕ2 for Σ1-formula ϕ1 and Σ2-formula ϕ2

2 V : set of shared variables in ϕ1 and ϕ2

E : already discovered equalities between variables in V

3 test satisfiability of ϕ1 ∧ E (and add implied equations)

I if ϕ1 ∧ E is T1-unsatisfiable then return unsatisfiable

I else add new implied equalities to E

4 test satisfiability of ϕ2 ∧ E (and add implied equations)

I if ϕ2 ∧ E is T2-unsatisfiable then return unsatisfiable

I else add new implied equalities to E

5 if E has been extended in steps 3 or 4 then go to step 2

else return satisfiable

20

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction ϕ in combination T1 ⊕ T2

of convex theories T1 and T2

Output satisfiable or unsatisfiable

1 purification ϕ ≈ ϕ1 ∧ ϕ2 for Σ1-formula ϕ1 and Σ2-formula ϕ2

2 V : set of shared variables in ϕ1 and ϕ2

E : already discovered equalities between variables in V

3 test satisfiability of ϕ1 ∧ E (and add implied equations)

I if ϕ1 ∧ E is T1-unsatisfiable then return unsatisfiable

I else add new implied equalities to E

4 test satisfiability of ϕ2 ∧ E (and add implied equations)

I if ϕ2 ∧ E is T2-unsatisfiable then return unsatisfiable

I else add new implied equalities to E

5 if E has been extended in steps 3 or 4 then go to step 2

else return satisfiable

20

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction ϕ in combination T1 ⊕ T2

of convex theories T1 and T2

Output satisfiable or unsatisfiable

1 purification ϕ ≈ ϕ1 ∧ ϕ2 for Σ1-formula ϕ1 and Σ2-formula ϕ2

2 V : set of shared variables in ϕ1 and ϕ2

E : already discovered equalities between variables in V

3 test satisfiability of ϕ1 ∧ E (and add implied equations)

I if ϕ1 ∧ E is T1-unsatisfiable then return unsatisfiable

I else add new implied equalities to E

4 test satisfiability of ϕ2 ∧ E (and add implied equations)

I if ϕ2 ∧ E is T2-unsatisfiable then return unsatisfiable

I else add new implied equalities to E

5 if E has been extended in steps 3 or 4 then go to step 2

else return satisfiable

20

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction ϕ in combination T1 ⊕ T2

of convex theories T1 and T2

Output satisfiable or unsatisfiable

1 purification ϕ ≈ ϕ1 ∧ ϕ2 for Σ1-formula ϕ1 and Σ2-formula ϕ2

2 V : set of shared variables in ϕ1 and ϕ2

E : already discovered equalities between variables in V

3 test satisfiability of ϕ1 ∧ E (and add implied equations)

I if ϕ1 ∧ E is T1-unsatisfiable then return unsatisfiable

I else add new implied equalities to E

4 test satisfiability of ϕ2 ∧ E (and add implied equations)

I if ϕ2 ∧ E is T2-unsatisfiable then return unsatisfiable

I else add new implied equalities to E

5 if E has been extended in steps 3 or 4 then go to step 2

else return satisfiable

20

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction ϕ in combination T1 ⊕ T2

of convex theories T1 and T2

Output satisfiable or unsatisfiable

1 purification ϕ ≈ ϕ1 ∧ ϕ2 for Σ1-formula ϕ1 and Σ2-formula ϕ2

2 V : set of shared variables in ϕ1 and ϕ2

E : already discovered equalities between variables in V

3 test satisfiability of ϕ1 ∧ E (and add implied equations)

I if ϕ1 ∧ E is T1-unsatisfiable then return unsatisfiable

I else add new implied equalities to E

4 test satisfiability of ϕ2 ∧ E (and add implied equations)

I if ϕ2 ∧ E is T2-unsatisfiable then return unsatisfiable

I else add new implied equalities to E

5 if E has been extended in steps 3 or 4 then go to step 2

else return satisfiable 20

Remark

Nelson-Oppen decision procedure can be extended to non-convex theories:

case-splitting for implied disjunction of equalities

Example

combination of LIA and EUF:

1 6 x ∧ x 6 2 ∧ f(x) 6= f(1) ∧ f(x) 6= f(2)

purification ϕ1 : 1 6 x ∧ x 6 2 ∧ w1 = 1 ∧ w2 = 2

ϕ2 : f (x) 6= f (w1) ∧ f (x) 6= f (w2)

implied equalities between shared variables

E :

x = w1

test satisfiability of ϕ1 ∧ E

=⇒ x = w1 ∨ x = w2

case split: x = w1 or x = w2 unsatisfiable

21

Remark

Nelson-Oppen decision procedure can be extended to non-convex theories:

case-splitting for implied disjunction of equalities

Example

combination of LIA and EUF:

1 6 x ∧ x 6 2 ∧ f(x) 6= f(1) ∧ f(x) 6= f(2)

purification ϕ1 : 1 6 x ∧ x 6 2 ∧ w1 = 1 ∧ w2 = 2

ϕ2 : f (x) 6= f (w1) ∧ f (x) 6= f (w2)

implied equalities between shared variables

E :

x = w1

test satisfiability of ϕ1 ∧ E

=⇒ x = w1 ∨ x = w2

case split: x = w1 or x = w2 unsatisfiable

21

Remark

Nelson-Oppen decision procedure can be extended to non-convex theories:

case-splitting for implied disjunction of equalities

Example

combination of LIA and EUF:

1 6 x ∧ x 6 2 ∧ f(x) 6= f(1) ∧ f(x) 6= f(2)

purification ϕ1 : 1 6 x ∧ x 6 2 ∧ w1 = 1 ∧ w2 = 2

ϕ2 : f (x) 6= f (w1) ∧ f (x) 6= f (w2)

implied equalities between shared variables

E :

x = w1

test satisfiability of ϕ1 ∧ E

=⇒ x = w1 ∨ x = w2

case split: x = w1 or x = w2 unsatisfiable

21

Remark

Nelson-Oppen decision procedure can be extended to non-convex theories:

case-splitting for implied disjunction of equalities

Example

combination of LIA and EUF:

1 6 x ∧ x 6 2 ∧ f(x) 6= f(1) ∧ f(x) 6= f(2)

purification ϕ1 : 1 6 x ∧ x 6 2 ∧ w1 = 1 ∧ w2 = 2

ϕ2 : f (x) 6= f (w1) ∧ f (x) 6= f (w2)

implied equalities between shared variables

E :

x = w1

test satisfiability of ϕ1 ∧ E =⇒ x = w1 ∨ x = w2

case split: x = w1 or x = w2 unsatisfiable

21

Remark

Nelson-Oppen decision procedure can be extended to non-convex theories:

case-splitting for implied disjunction of equalities

Example

combination of LIA and EUF:

1 6 x ∧ x 6 2 ∧ f(x) 6= f(1) ∧ f(x) 6= f(2)

purification ϕ1 : 1 6 x ∧ x 6 2 ∧ w1 = 1 ∧ w2 = 2

ϕ2 : f (x) 6= f (w1) ∧ f (x) 6= f (w2)

implied equalities between shared variables

E : x = w1

test satisfiability of ϕ1 ∧ E =⇒ x = w1 ∨ x = w2

case split: x = w1 or x = w2

unsatisfiable

21

Remark

Nelson-Oppen decision procedure can be extended to non-convex theories:

case-splitting for implied disjunction of equalities

Example

combination of LIA and EUF:

1 6 x ∧ x 6 2 ∧ f(x) 6= f(1) ∧ f(x) 6= f(2)

purification ϕ1 : 1 6 x ∧ x 6 2 ∧ w1 = 1 ∧ w2 = 2

ϕ2 : f (x) 6= f (w1) ∧ f (x) 6= f (w2)

implied equalities between shared variables

E : x = w1

test satisfiability of ϕ2 ∧ E =⇒ ⊥

case split: x = w1 or x = w2

unsatisfiable

21

Remark

Nelson-Oppen decision procedure can be extended to non-convex theories:

case-splitting for implied disjunction of equalities

Example

combination of LIA and EUF:

1 6 x ∧ x 6 2 ∧ f(x) 6= f(1) ∧ f(x) 6= f(2)

purification ϕ1 : 1 6 x ∧ x 6 2 ∧ w1 = 1 ∧ w2 = 2

ϕ2 : f (x) 6= f (w1) ∧ f (x) 6= f (w2)

implied equalities between shared variables

E : x = w2

test satisfiability of ϕ2 ∧ E =⇒ ⊥

case split: x = w1 or x = w2

unsatisfiable

21

Remark

Nelson-Oppen decision procedure can be extended to non-convex theories:

case-splitting for implied disjunction of equalities

Example

combination of LIA and EUF:

1 6 x ∧ x 6 2 ∧ f(x) 6= f(1) ∧ f(x) 6= f(2)

purification ϕ1 : 1 6 x ∧ x 6 2 ∧ w1 = 1 ∧ w2 = 2

ϕ2 : f (x) 6= f (w1) ∧ f (x) 6= f (w2)

implied equalities between shared variables

E : x = w2

test satisfiability of ϕ2 ∧ E =⇒ ⊥

case split: x = w1 or x = w2 unsatisfiable

21

Application: Checking Program Equivalence

Relevance of Program Equivalence

correctness of compiler optimizations, regression testing, software verification

Example (Are the following two programs equivalent?)
int one(int x){

unsigned z = x & (-1);

unsigned y = z * 2;

return foo(z) + y;

}

int two(int x){

return foo(x) + (x << 1);

}

Assert non-equivalence by SMT encoding:

one32 = foo(z32) + y32 ∧ z32 = x32 & (−1)32 ∧ y32 = z32 × 232 ∧
two32 = foo(x32) + (x32 � 132) ∧
one32 6= two32

uninterpreted functions bit vectors

Remarks

I useful to combine BV and EUF theories

I checking equivalence of programs with loops is more challenging

22

Application: Checking Program Equivalence

Relevance of Program Equivalence

correctness of compiler optimizations, regression testing, software verification

Example (Are the following two programs equivalent?)
int one(int x){

unsigned z = x & (-1);

unsigned y = z * 2;

return foo(z) + y;

}

int two(int x){

return foo(x) + (x << 1);

}

Assert non-equivalence by SMT encoding:

one32 = foo(z32) + y32 ∧ z32 = x32 & (−1)32 ∧ y32 = z32 × 232 ∧
two32 = foo(x32) + (x32 � 132) ∧
one32 6= two32

uninterpreted functions bit vectors

Remarks

I useful to combine BV and EUF theories

I checking equivalence of programs with loops is more challenging

22

Application: Checking Program Equivalence

Relevance of Program Equivalence

correctness of compiler optimizations, regression testing, software verification

Example (Are the following two programs equivalent?)
int one(int x){

unsigned z = x & (-1);

unsigned y = z * 2;

return foo(z) + y;

}

int two(int x){

return foo(x) + (x << 1);

}

Assert non-equivalence by SMT encoding:

one32 = foo(z32) + y32 ∧ z32 = x32 & (−1)32 ∧ y32 = z32 × 232 ∧
two32 = foo(x32) + (x32 � 132) ∧
one32 6= two32

uninterpreted functions bit vectors

Remarks

I useful to combine BV and EUF theories

I checking equivalence of programs with loops is more challenging

22

Application: Checking Program Equivalence

Relevance of Program Equivalence

correctness of compiler optimizations, regression testing, software verification

Example (Are the following two programs equivalent?)
int one(int x){

unsigned z = x & (-1);

unsigned y = z * 2;

return foo(z) + y;

}

int two(int x){

return foo(x) + (x << 1);

}

Assert non-equivalence by SMT encoding:

one32 = foo(z32) + y32 ∧ z32 = x32 & (−1)32 ∧ y32 = z32 × 232 ∧
two32 = foo(x32) + (x32 � 132) ∧
one32 6= two32

uninterpreted functions bit vectors

Remarks

I useful to combine BV and EUF theories

I checking equivalence of programs with loops is more challenging

22

Application: Checking Program Equivalence

Relevance of Program Equivalence

correctness of compiler optimizations, regression testing, software verification

Example (Are the following two programs equivalent?)
int one(int x){

unsigned z = x & (-1);

unsigned y = z * 2;

return foo(z) + y;

}

int two(int x){

return foo(x) + (x << 1);

}

Assert non-equivalence by SMT encoding:

one32 = foo(z32) + y32 ∧ z32 = x32 & (−1)32 ∧ y32 = z32 × 232 ∧
two32 = foo(x32) + (x32 � 132) ∧
one32 6= two32

uninterpreted functions bit vectors

Remarks

I useful to combine BV and EUF theories

I checking equivalence of programs with loops is more challenging

22

Application: Checking Program Equivalence

Relevance of Program Equivalence

correctness of compiler optimizations, regression testing, software verification

Example (Are the following two programs equivalent?)
int one(int x){

unsigned z = x & (-1);

unsigned y = z * 2;

return foo(z) + y;

}

int two(int x){

return foo(x) + (x << 1);

}

Assert non-equivalence by SMT encoding:

one32 = foo(z32) + y32 ∧ z32 = x32 & (−1)32 ∧ y32 = z32 × 232 ∧
two32 = foo(x32) + (x32 � 132) ∧
one32 6= two32

uninterpreted functions bit vectors

Remarks

I useful to combine BV and EUF theories

I checking equivalence of programs with loops is more challenging 22

Bibliography

Greg Nelson and Derek C. Oppen

Simplification by Cooperating Decision Procedures

ACM Transactions on Programming Languages and Systems 2(1), pp 245–257, 1979.

Nuno P. Lopes and José Monteiro.

Automatic equivalence checking of programs with uninterpreted functions and integer

arithmetic.

International Journal on Software Tools for Technology Transfer 18(4), pp 359–374, 2016.

23

http://dx.doi.org/10.1145/357073.357079
http://dx.doi.org/10.1145/357073.357079
http://dx.doi.org/10.1145/357073.357079
https://doi.org/10.1007/s10009-015-0366-1
https://doi.org/10.1007/s10009-015-0366-1
https://doi.org/10.1007/s10009-015-0366-1
https://doi.org/10.1007/s10009-015-0366-1
https://doi.org/10.1007/s10009-015-0366-1

	lecture 10
	Summary of Last Week
	Nelson-Oppen Combination Method
	Nondeterministic Version
	Deterministic Version

