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Definition (Bit Vector Theory)
» variable x, is list of length k of propositional variables x,_1...xxx1X0
» constant ny is bit list of length k

» formulas built according to grammar

formula := (formula \/ formula) | (formula A formula) | (—formula) | atom
atom := term rel term | true | false
rel .= =|#£ |2, 25| >u | >s
term := (term binop term) | (unop term) | var | constant | term[ij] |
(formula ? term : term)
binop :=+ | — | X [y | +s | You | Yos | <[>0 [ >s [ &[] 7]

unop :=~| —

> axioms are equality axioms plus rules for arithmetic/comparison /bitwise
operations on bit vectors of length k

» solution assigns bit list of length k to variables xx



Remarks

» theory is decidable because carrier is finite
» common decision procedures use translation to SAT (bit blasting)

» eager: no DPLL(T), bit-blast entire formula to SAT problem

» lazy: second SAT solver as BV theory solver, bit-blast only BV atoms
» solvers heavily rely on preprocessing via rewriting

Definition (Bit Blasting: Formulas)
bit blasting transformation B transforms BV formula into propositional formula:

B(QD v ¢) - B( ) v B(w) bit blasting B; for term t
B(p A9 B(¢) AB(¥) returns (result u, side condition ¢)

=
B(~p) = -B(¢) 7
) =

(fl rel t> (Ul rel U2) N1 Apy if Bt(tl) = (U1,<p1) and Bt(tz) = (Ug,tpz)

B, transforms atom into propositional formula




Definition (Bit Blasting: Atoms)
for bit vectors xx and yy set
» equality
B/(xk =yk) = (k © Yk) A Alxa > y1) A (X0 < yo)
» inequality
B(xk Zyk) = (xk ®yk) V-V (xa @ y1) V (%0 @ yo)
» unsigned greater-than or equal
B,(x1 =, y1) =Y =7 X0
B,(Xk+1 20 yk+1) = (Xk A\ ﬁyk) V ((Xk — yk) AN B(X[k = 10] > y[k = 10]))
» unsigned greater-than

B(xx >y yk) = B(xk = yi) A B(xk # y«)



Definition (Bit Blasting: Bitwise Operations)

for bit vectors xx and y, use fresh variable z; and set

» bitwise and

k—1
Bi(xk&yk) = (zi,0) 9= [\ zi e (xiAyi)
i=0
» bitwise or
k—1
Bi(xklyx) = (zi,0) 0= N\ z & (x V)
i=0
» bitwise exclusive or
k—1
B:(xk “¥4) = (z1,0) o= N\ z o (x@y)
i=0
» bitwise negation
k—1

Bi(—xk) = (z,0) o= Nz e



Definition (Bit Blasting: Addition and Subtraction)

» addition

- le :
B:(xx + yk) = (sk, ) ripple-carry adder

Cy are carry bits
where . v

¢ =(co <> x0 A yo) A (S0 > X0 D yo) A
k—1
/\ (C,‘ <~ min2(x,-,y,-, C,'_1)) A (S,' XDy D C,'_1)
i=1
for fresh variables s, and cx and min2(a, b,d) = (aAb)V (aAd)V (bAd)
» unary minus
Bt(—Xk) = Bt(N Xk + lk)

» subtraction

B:(xk +yk) = Be(xx + (—y«)
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Definitions

» (first-order) theory consists of
» signature X: set of function and predicate symbols

» axioms T: set of sentences in first-order logic in which only
function and predicate symbols of ¥ appear
> theory is stably infinite if every satisfiable quantifier-free formula has
model with infinite carrier set

Definition
theory combination T @ T, of two theories

» T7 over signature ¥
» T, over signature ¥,

has signature X1 U X5 and axioms T1 U T»
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Example

combination of linear arithmetic and uninterpreted functions:

xzy Ny—z>2x A f(f(y) —f(x)) #f(z) A z>0

Assumptions

two stably infinite theories

» T7 over signature ¥
» T, over signature ¥,

such that

> Y1NYXy= {:}
» Ti-satisfiability of quantifier-free X ;1-formulas is decidable
> T,-satisfiability of quantifier-free ¥ ,-formulas is decidable

10
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Nelson-Oppen Method: Nondeterministic Version

Input quantifier-free conjunction ¢ in theory combination 77 & T;

Output  satisfiable or unsatisfiable
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Example

formula ¢ in combination of LIA and EUF:

1<x Ax<2Ay=1A2z=2Af1KX)#£1f(y) A

f(x) # (2)

®1 ©2
» V={xy,2z}

» b5 different equivalence relations E:

{{x,y,z}} 01 A a(V, E) is unsatisfiable
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Definition

theory T is convex if

n
F Er \/u,-:v,- implies (FETui=v; forsomel<i<n)
i=1
V quantifier-free conjunctive formula F and variables vy, ..., up, v1,..., Vp
Example

» linear arithmetic over integers (LIA) is not convex:
1<x<2ANy=1ANz=2 Fr x=y V x=zZ

holds but none of
1<x<2 AN y=
1<x<2 AN y=

Fr x=y
Fr x=z

» linear arithmetic over rationals and reals (LRA) is convex
» equality logic with uninterpreted functions (EUF) is convex
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combination of LRA and EUF:
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purification
pr: xz2y Ny—z2x Awi=w—w3 A z=>0
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> else add new implied equalities to E
if E has been extended in steps | or J then go to step
else return satisfiable

20



Remark

Nelson-Oppen decision procedure can be extended to non-convex theories:

case-splitting for implied disjunction of equalities

Example
combination of LIA and EUF:

1<x A x<2 A f(x)#f(1) A f(x)#1(2)

purification p1: 1<Xx A Xx<2Awp=1A w=2

pa: f(x) # f(wi) A f(x) # f(w)
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Application: Checking Program Equivalence

Relevance of Program Equivalence

correctness of compiler optimizations, regression testing, software verification
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Application: Checking Program Equivalence

Relevance of Program Equivalence

correctness of compiler optimizations, regression testing, software verification

Example (Are the following two programs equivalent?)

int one(int x){

unsigned z = x & (-1); int two(int x){
unsigned y = z * 2; return foo(x) + (x << 1);
return foo(z) + y; }

}
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Application: Checking Program Equivalence

Relevance of Program Equivalence

correctness of compiler optimizations, regression testing, software verification

Example (Are the following two programs equivalent?)

int one(int x){

unsigned z = x & (-1); int two(int x){
unsigned y = z * 2; return foo(x) + (x << 1);
return foo(z) + y; }

}
Assert non-equivalence by SMT encoding:
ones; = fOO(Z32) + Y32 N 232 = X32 & (—1)32 A\ Y32 = 232 X 232 A\
twos, = fOO(X32) + (X32 <K 132) A
ones; # twos;
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» useful to combine BV and EUF theories
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Application: Checking Program Equivalence

Relevance of Program Equivalence

correctness of compiler optimizations, regression testing, software verification

Example (Are the following two programs equivalent?)

int one(int x){

unsigned z = x & (-1); int two(int x){
unsigned y = z * 2; return foo(x) + (x << 1);
return foo(z) + y; }

} ’ uninterpreted functions‘
Assert non—equivalen%y SMT encoding:
ones; = fOO(Z32) + Y32 N 232 = X32 & (—1)32 A\ Y32 = 232 X 232 A\
twos, = fOO(X32) 4 (X32 < 132) A\
ones; # twos;

Remarks

» useful to combine BV and EUF theories
» checking equivalence of programs with loops is more challenging
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