
Specialisation Seminar
Abstraction Interpretations

Georg Moser

cbr.uibk.ac.at

cbr.uibk.ac.at


Organisation

1



Schedule

week 1 March 7 administration week 8 May 9

week 2 March 14 week 9 May 16

week 3 March 21 week 10 May 23

week 4 March 28 week 11 June 6

week 5 April 4 week 12 June 13

week 6 April 11 week 13 June 27

week 7 May 2

Time and Place

Seminar Thursday, 11:15–12:00, 3W03

2



Schedule

week 1 March 7 administration week 8 May 9

week 2 March 14 week 9 May 16

week 3 week 10 May 23

week 4 week 11 June 6

week 5 week 12 June 13

week 6 week 13

week 7

Time and Place

Seminar Thursday, 11:15–12:00, 3W03

2



Schedule

week 1 March 7 administration week 8 May 9

week 2 March 14 week 9 May 16

week 3 week 10 May 23

week 4 week 11 June 6

week 5 week 12 June 13

week 6 week 13

week 7

Time and Place

Seminar Thursday, 11:15–12:00, 3W03

2



Literature

Principles of Programming Analysis

Flemming Nielson, Hanne Riis Nielson, Chris Hankin

• We study the 4th Chapter of the book on Abstract Interpretations in detail

• Each team of students (1-2) will prepare one of the subsections and present them
at the end of the term

• The seminar will be extended to 60min on presentations days

• Each team has to write one short report (5 pages)

• Today and next week I’ll give a teaser on static program analysis

3



Literature

Principles of Programming Analysis

Flemming Nielson, Hanne Riis Nielson, Chris Hankin

• We study the 4th Chapter of the book on Abstract Interpretations in detail

• Each team of students (1-2) will prepare one of the subsections and present them
at the end of the term

• The seminar will be extended to 60min on presentations days

• Each team has to write one short report (5 pages)

• Today and next week I’ll give a teaser on static program analysis

3



Program Analysis

4



Static Analysis

Aims to prove properties about the runtime behavior of a program without actually
running it.

The algorithmic discovery of properties of a program by inspection of the
source text. Manna and Pnueli, “Algorithmic Verification”

Example

• is the program free of runtime errors, eg. overflows, division by zero, null-pointer
dereference?

• does the program terminate?

• when does the program terminate, how much memory, energy, etc. is required?

• are two structures on the heap disjoint?

5



Static Analysis

Aims to prove properties about the runtime behavior of a program without actually
running it.

The algorithmic discovery of properties of a program by inspection of the
source text. Manna and Pnueli, “Algorithmic Verification”

Example

• is the program free of runtime errors, eg. overflows, division by zero, null-pointer
dereference?

• does the program terminate?

• when does the program terminate, how much memory, energy, etc. is required?

• are two structures on the heap disjoint?

5



Zune Bug

year = ORIGINYEAR; /* = 1980 */

while (days > 365) {

if (IsLeapYear(year)) {

if (days > 366) {

days -= 366;

year += 1; } }

else {

days -= 365;

year += 1; } }

“Solution”

wait one day and reboot

6

https://en.wikipedia.org/wiki/Zune


Zune Bug

year = ORIGINYEAR; /* = 1980 */

while (days > 365) {

if (IsLeapYear(year)) {

if (days > 366) {

days -= 366;

year += 1; } }

else {

days -= 365;

year += 1; } }

“Solution”

wait one day and reboot

6

https://en.wikipedia.org/wiki/Zune


Ed Felten, Deputy US Chief Technology Officer (since 2015)

What lessons can we learn from this? First, even seemingly simple compu-
tations can be hard to get right. Microsoft’s quality control process, which is
pretty good by industry standards, failed to catch the problem in this simple
code. How many more errors like this are lurking in popular software products?
Second, errors in seemingly harmless parts of a program can have serious con-
sequences. Here, a problem computing dates caused the entire system to be
unusable for a day.

This story might help to illustrate why experienced engineers assume that any
large software program will contain errors, and why they distrust anyone who
claims otherwise. Getting a big program to run at all is an impressive feat of
engineering. Making it error-free is too much to hope for. For the foreseeable
future, software errors will be a fact of life.

7


	Organisation

