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A Textbook Example

Example

le t rec fo ld_ le f t f acc = function
[ ] −> acc
| x : : xs −> fo ld_ le f t f ( f acc x) xs

; ;
let rev ls = fo ld_ le f t ( fun xs x −> x : : xs) [ ] l s
; ;

Question

What is the runtime complexity of rev?

TCT says

O(n)

1

http://colo6-c703.uibk.ac.at/tct/tct-hoca/
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Tyrolean Complexity Tool (tct-trs)

t
c
t
-
t
r
s

libraries tct-core

complexity bound / failure

• fully automated complexity analysis
tool for TRSs

• recipient of a Gödel medal in the 1st
FLOC Olympic games

• modular complexity analysis
framework

• partly certified by CeTA

M. Avanzini, C. Sternagel, and R. Thiemann.
Certification of complexity proofs using CeTA.
In Proc. 26th RTA, volume 36 of LIPIcs, pages 23–39, 2015.

M. Avanzini and GM.
A combination framework for complexity.
IC, 248:22–55, 2016.

M. Avanzini, GM, and M. Schaper.
Tct: Tyrolean complexity tool.
In Proc. 22nd TACAS, volume 9636 of LNCS, pages 407–423, 2016.

2

http://vsl2014.at/olympics/
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Does Testing Suffice?

Problems

• only samples the set of possible behaviors

• unlike physical systems, software systems are discontinuous

• there is no sound basis for extrapolating from tested to untested cases

• need to consider all (= infinitely many cases) . . . is this possible?

• it’s possible with symbolic techniques

• for example Abstract Interpretations

• more on that in the seminar
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Importance of Static Analysis

In the Beginning

• static analysis initially used for optimising compilers

• program transformations preserve the behavior

• still an important application for static analysis.

Today

• bug finding

• program understanding

• verification

• resource analysis

4
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The Phases of GCC
• parsing

• tree optimisation

• RTL generation

• sibling call optimisation

• jump optimisation

• register scan

• jump threading

• common subexpression elimination

• loop optimisations

• jump bypassing

• data flow analysis

• instruction combination

• if-conversion

• register movement

• instruction scheduling

• register allocation

• basic block reordering

• delayed branch scheduling

• branch shortening

• assembly output

• debugging output

60% of the compiliation time spent in static analysis
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Availabe Expression Analysis

i := 0;

while (i <= n) {

j := 0;

while (j <= m) {

A[i*(m+1)+j] := B[i*(m+1)+j] + C[i*(m+1)+j] ;

j := j+1; }

i := i+1; }

Common Subexpression Elimination: Introduction of Temp Vars

i := 0;

while (i <= n) {

j := 0;

while (j <= m) {

temp := i*(m+1)+j;

A[temp] := B[temp] + C[temp] ;

j := j+1; }

i := i+1; }
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Theoretical Results

Theorem (Rice’s Theorem)

Interesting Program Properties are undecidable.

Proof.

See FLAT

Undecidabilty

• static analysis is (very) undecidable, that is necessarily unsound or incomplete or
partial

• engineering challenge is to give practical useful answers anyway

7



Theoretical Results

Theorem (Rice’s Theorem)

Interesting Program Properties are undecidable.

Proof.

See FLAT

Undecidabilty

• static analysis is (very) undecidable, that is necessarily unsound or incomplete or
partial

• engineering challenge is to give practical useful answers anyway

7



Labelled Programs

Definitions (syntactic categories)

a ∈ AExp arithmetic expressions x, y ∈ Var variables

b ∈ BExp Boolean expressions n ∈ Num numerals

S ∈ STmt statments ` ∈ Lab labels

Definitions (operators)

opa ∈ Opa arithmetic operators

opb ∈ Opb Boolean operators

opr ∈ Opr relational operators
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Abstract Syntax

Definition (syntax of WHILE)

a ::= x | n | a1 opa b2

b ::= true | false | not b | b1 opb b2 | a1 opr a2

S ::= [x := a]` | [skip]` | S1;S2 | if [b]` then S1else S2 | while [b]` do S

Konvention

• labelled items are referred to as elementary blocks

• we shall use paranteses to disambiguate the syntax

• for statements we write {, } or begin, end

• for other categories we use round brackets

9
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Reaching Definition Analysis

Definition

An assignment (aka definition) of the from [x := a]` may reach a certain program point
if there is an execution of the program where x was last assigned a value at ` when
the program point is reached

Definitions

• (y,1) reaches the entry to 2, if the assignment [y := x]1 reaches the entry of the
elementary block [z := 1]2

• we also say that (x, ?) reaches 2; here ? stands for an uninitialised value

full information about reaching definitions is given by the pair RD = (RDentry,RDexit)
for each program location

10



Reaching Definition Analysis

Definition

An assignment (aka definition) of the from [x := a]` may reach a certain program point
if there is an execution of the program where x was last assigned a value at ` when
the program point is reached

Definitions

• (y,1) reaches the entry to 2, if the assignment [y := x]1 reaches the entry of the
elementary block [z := 1]2

• we also say that (x, ?) reaches 2; here ? stands for an uninitialised value

full information about reaching definitions is given by the pair RD = (RDentry,RDexit)
for each program location

10



Data Flow Analysis
The Equational Approach

an analysis (like reaching definitions) can be specified by extracting a number of
equations from the program

Equation System

there are two classes of equations:

• relate exit information of a block to entry information of the same block

• relate entry information of a block to the exit information of the preceeding block
(wrt the CFG)

• the CFG may be immediately obvious (as in the WHILE language) or may be
obtained by a control flow analysis

11
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