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Motivation

I Performing fixed point calculations on the complete lattice L
can be expensive, or even uncomputable.

I Idea: Introduce an abstraction over lattice L – a simpler
lattice M.

Example
The complete lattice over the powerset of integers L = (P(Z),v)
is hard to use. By introducing an abstraction (describing sets of
integers with intervals), interesting computations become easier.



Motivation

I Performing fixed point calculations on the complete lattice L
can be expensive, or even uncomputable.

I Idea: Introduce an abstraction over lattice L – a simpler
lattice M.

Example
The complete lattice over the powerset of integers L = (P(Z),v)
is hard to use. By introducing an abstraction (describing sets of
integers with intervals), interesting computations become easier.



Basic Idea

So, instead of performing program analysis p ` l1 B l2 over the
lattice L, find descriptions (abstractions) M of elements in L and
perform the simpler analysis p ` m1 B m2 over M instead.

Here, the lattice M and the transformation from elements of L to
elements of M must have certain properties to maintain the
requirement for safe results: the properties of a Galois connection.
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Galois connections

Definition
A Galois connection is a 4-tuple (L, α, γ,M) with the properties:
I L and M are complete lattices, and
I α and γ are monotone functions

α : L→ M (abstraction function)
γ : M → L (concretization function),

where α and γ satisfy:

γ ◦ α w λ`.`
α ◦ γ v λm.m

These properties ensure safety, but precision may be lost.
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Example: Integers and Intervals (1)

Example
Consider the example mentioned at the beginning – abstracting
the powerset over the whole numbers as a set of intervals.

L : P(Z) = (P(Z),⊆)
M : Interval = (Interval,v)

Then, (P(Z), αZI , γZI , Interval) is a Galois connection with:

αZI(Z ) =
{
⊥ ifZ = ∅
[inf ′(Z ), sup′(Z )] otherwise

γZI(int) = {z ∈ Z| inf(int) ≤ z ≤ sup(int)}
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Example: Integers and Intervals (2)
It is easy to show that α and γ are monotone, and they also have
the desired properties α ◦ γ v λm.m and γ ◦ α w λ`.`:

αZI(γZI([z1, z2])) = [z1, z2]
γZI(αZI(Z )) ⊇ Z

Example

γZI([0, 3]) = {0, 1, 2, 3}
γZI([0,∞]) = {z ∈ Z|z ≥ 0}

αZI({0, 1, 3}) = [0, 3]
αZI({2 · z |z > 0}) = [2,∞]
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Example: Using the representation function β

The representation function β, which associates properties ` to
program states v , can also be used to define a Galois connection
(P(V ), α, γ, L) with the following properties:

α(V ′) = t
{
β(v)|v ∈ V ′}

γ(`) = {v ∈ V |β(v) @ `}

P(V ) L

V

α

γ

× β
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Properties of Galois connections (1)

For a Galois connection (L, α, γ,M), the following statements hold:

I α uniquely determines γ:

γ(m) = t{`|α(`) v m}

I γ uniquely determines α:

α(`) = u{m|l v γ(m)}

I α is completely additive, γ is completely multiplicative
I α(⊥) = ⊥ and γ(>) = >
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Properties of Galois connections (2)

There are some additional important properties of functions over
lattices:

I If a function α : L→ M is completely additive, then
∃γ : M → L such that (L, α, γ,M) is a Galois connection.

I If a function γ : M → L is completely multiplicative, then
∃α : L→ M such that (L, α, γ,M) is a Galois connection.

Additionally,
I both α ◦ γ ◦ α = α,
I and γ ◦ α ◦ γ = γ

hold because of the monotonicity of α and γ and the additional
constraints on α ◦ γ and γ ◦ α for Galois connections.
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Adapting the correctness relation (1)

Transforming L into M (and back) for performing calculations does
not affect the result of program correctness and safety analyses.

I New correctness relation S, using R and (L, α, γ,M):
I before: R : V × L→ {true, false}
I now: S : V ×M → {true, false}
I with: vSm⇔ vR(γ(m))

If S is indeed a correctness relation, the following two properties
must hold (Chapter 4.1):

vR`1 ∧ `1 v `2 ⇒ vR`2
(∀` ∈ L′ ⊆ L : vR`)⇒ vR(uL′)
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Adapting the correctness relation (2)

Proof.
With γ monotone, and R as correctness relation:

(vSm1) ∧m1 v m2 ⇒ vR(γ(m1)) ∧ γ(m1) v γ(m2)
⇒ vR(γ(m2))
⇒ vSm2

With γ completely multiplicative, and R as correctness relation:

(∀m ∈ M ′ : vSm)⇒ (∀m ∈ M ′ : vR(γ(m)))
⇒ vR(u

{
γ(m)|m ∈ M ′})

⇒ vR(γ(uM ′))
⇒ vS(uM ′)

Hence, S is a correctness relation, if R is a correctness relation and
(L, α, γ,M) is a Galois connection.
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Adapting the correctness relation (3)

S can be generated from the representation function β and the
Galois connection (L, α, γ,M):

β : V → L
β(v) = `⇐⇒ vR`

vSm⇔ vR(γ(m))
⇔ β(v) v γ(m)
⇔ (α ◦ β)(v) v m

So, S can be generated from the function composition of the
abstraction function α and and the representation function β.
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Galois insertions

Due to the abstractions that are applied when constructing M
from L, there can be several superfluous m ∈ M that describe the
same l ∈ L, and are hence redundant for performing analyses.

Definition
For complete lattices L = (L,v) and M = (M,v), monotone
functions α : L→ M and γ : M → L, which have the properties

γ ◦ α w λ`.`
α ◦ γ = λm.m,

the 4-tuple (L, α, γ,M) is a Galois insertion. The equality in the
second requirement is a stronger restriction than for Galois
connections, where a v relation was sufficient.
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Properties of Galois insertions (1)

The stronger constraints on α and γ ensure that no superfluous
elements can be added (to M) when first applying the abstraction
function, and then the concretization function.

Example
The Galois connection (P(Z), αZI , γZI , Interval) from the first
example is also a Galois insertion, since the equality α ◦ γ = λm.m
holds.
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Properties of Galois insertions (2)
For a given Galois connection (L, α, γ,M), the following claims are
equivalent:
I (L, α, γ,M) is a Galois insertion,

I α is surjective,

∀m ∈ M : ∃` ∈ L : α(`) = m

I γ is injective,

∀m1,m2 ∈ M : γ(m1) = γ(m2)⇒ m1 = m2

I γ is an order-similarity

∀m1,m2 ∈ M : γ(m1) v γ(m2)⇔ m1 v m2

(γ preserves lattice ordering)
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Construction of Galois insertions

It is always possible to construct a Galois insertion from an existing
Galois connection.

Proof.
By construction:

I Introduce a reduction operator ς : M → M with:

ς(m) = u
{
m′|γ(m) = γ(m′)

}

I Construct a complete lattice from ς and M:

ς[M] = ({ς(m)|m ∈ M} ,vM)

Then, (L, α, γ, ς [M]) is a Galois insertion, by definition.
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