Induced Operations

Fabian Schaub
Kamal Elsaid Ibrahim Zakieldin

June 11, 2019

Outline

- Motivation
- Inducing along the Abstraction function
- Correctness
- Fixed Points
- Application to Data Flow Analysis
- Example
- Inducing along the Concretisation function
- Introduction
- Concretisation process
- Widening Operator
- Correctness

Induced Operations

Key Idea

Use Galois connections to transform computations into more approximate computations with better time-, space-, or termination behavior.

Induced Operations

Two possible ways:

Inducing along the Abstraction function

- Replace a computation using L by a computation using M : Analysis using M is an upper approximation to the analysis induced by L (loss of precision).

Inducing along the Concretisation function

- Use M for approximating the fixed point computations in L :

Ensure convergence of fixed points by using the more approximate complete lattice M while maintaining precision of the analysis.

Inducing along the Abstraction Function

Assumptions

- Galois connections $\left(L_{1}, \alpha_{1}, \gamma_{1}, M_{1}\right)$ and $\left(L_{2}, \alpha_{2}, \gamma_{2}, M_{2}\right)$
- Analysis $f_{p}: L_{1} \rightarrow L_{2}$

Goal

Replace f_{p} by new more approximate analysis $g_{p}: M_{1} \rightarrow M_{2}$.

- Candidate for $g_{p}: \alpha_{2} \circ f_{p} \circ \gamma_{1}$

Inducing along the Abstraction Function

Example

Consider analysis $f_{\text {plus }}(\mathbb{Z} \mathbb{Z})=\left\{z_{1}+z_{2} \mid\left(z_{1}, z_{2}\right) \in \mathbb{Z} \mathbb{Z}\right\}$ using complete lattices $(\mathcal{P}(\mathbb{Z}), \subseteq)$ and $(\mathcal{P}(\mathbb{Z} \times \mathbb{Z}), \subseteq)$.

Galois Connections

- $\left(\mathcal{P}(\mathbb{Z}), \alpha_{\text {sign }}, \gamma_{\text {sign }}, \mathcal{P}(\right.$ Sign $\left.)\right)$
- $\alpha_{\text {sign }}(Z)=\{\operatorname{sign}(z) \mid z \in Z\}$
- $\gamma_{\text {sign }}(S)=\{z \in Z \mid \operatorname{sign}(z) \in S\}$
- $\left(\mathcal{P}(\mathbb{Z} \times \mathbb{Z}), \alpha_{S S^{\prime}}, \gamma_{S S^{\prime}}, \mathcal{P}(\mathbf{S i g n} \times \mathbf{S i g n})\right)$
- $\alpha_{S S^{\prime}}(Z Z)=\left\{\left(\operatorname{sign}\left(z_{1}\right), \operatorname{sign}\left(z_{2}\right)\right) \mid\left(z_{1}, z_{2}\right) \in Z Z\right\}$
- $\gamma_{S S^{\prime}}(S S)=\left\{\left(z_{1}, z_{2}\right) \mid\left(\operatorname{sign}\left(z_{1}\right), \operatorname{sign}\left(z_{2}\right)\right) \in S S\right\}$

Inducing along the Abstraction Function

Example (cont'd)

Construct analysis $g_{p l u s}: \mathcal{P}(\mathbf{S i g n} \times \mathbf{S i g n}) \rightarrow \mathcal{P}(\mathbf{S i g n})$ from $f_{\text {plus }}$, using candidate $g_{\text {plus }}=\alpha_{\text {sign }} \circ f_{\text {plus }} \circ \gamma_{S S^{\prime}}$.

$$
\begin{aligned}
g_{\text {plus }}(S S) & =\alpha_{\text {sign }}\left(f_{\text {plus }}\left(\gamma_{S S^{\prime}}(S S)\right)\right) \\
& =\alpha_{\text {sign }}\left(f_{\text {plus }}\left(\left\{\left(z_{1}, z_{2}\right) \mid\left(\operatorname{sign}\left(z_{1}\right), \operatorname{sign}\left(z_{2}\right)\right) \in S S\right\}\right)\right) \\
& =\alpha_{\text {sign }}\left(\left\{z_{1}+z_{2} \mid\left(\operatorname{sign}\left(z_{1}\right), \operatorname{sign}\left(z_{2}\right)\right) \in S S\right\}\right) \\
& =\left\{\operatorname{sign}\left(z_{1}+z_{2}\right) \mid\left(\operatorname{sign}\left(z_{1}\right), \operatorname{sign}\left(z_{2}\right)\right) \in S S\right\} \\
& =\bigcup\left\{s_{1} \oplus s_{2} \mid\left(s_{1}, s_{2}\right) \in S S\right\}
\end{aligned}
$$

where \oplus is the "addition" on signs.

Inducing along the Abstraction Function

Correctness

Recap

- Galois connections $\left(L_{i}, \alpha_{i}, \gamma_{i}, M_{i}\right), i \in\{1,2\}$
- Analysis $f_{p}: L_{1} \rightarrow L_{2}$
- Analysis $g_{p}: M_{1} \rightarrow M_{2}$

Correctness relations

- Representation functions $\beta_{i}: V_{i} \rightarrow L_{i}$
- Correctness relations $R_{i}: V_{i} \times L_{i} \rightarrow\{$ true, false $\}$ generated by $\beta_{i}: V_{i} \rightarrow L_{i}$
- Correctness relations $S_{i}: V_{i} \times M_{i} \rightarrow\{$ true, false $\}$ generated by $\alpha_{i} \circ \beta_{i}: V_{i} \rightarrow M_{i}$

Inducing along the Abstraction Function

Correctness cont'd

Lemma 4.41

If $\left(L_{i}, \alpha_{i}, \gamma_{i}, M_{i}\right)$ are Galois connections and $\beta_{i}: V_{i} \rightarrow L_{i}$ are representation functions, then

$$
\left(\left(\alpha_{1} \circ \beta_{1}\right) \rightarrow\left(\alpha_{2} \circ \beta_{2}\right)\right)(\sim)=\alpha_{2} \circ\left(\left(\beta_{1} \rightarrow \beta_{2}\right)(\sim)\right) \circ \gamma_{1}
$$

holds for all \sim.

Inducing along the Abstraction Function

Correctness cont'd

Proof (Lemma 4.41)

Simply calculate:

$$
\begin{aligned}
\left(\left(\alpha_{1} \circ \beta_{1}\right)\right. & \left.\rightarrow\left(\alpha_{2} \circ \beta_{2}\right)\right)(\leadsto)\left(m_{1}\right) \\
& =\bigsqcup\left\{\alpha_{2}\left(\beta_{2}\left(v_{2}\right)\right) \mid \alpha_{1}\left(\beta_{1}\left(v_{1}\right)\right) \sqsubseteq m_{1} \wedge v_{1} \leadsto v_{2}\right\} \\
& \left.=\alpha_{2}\left(\bigsqcup\left\{\beta_{2}\left(v_{2}\right)\right) \mid \beta_{1}\left(v_{1}\right) \sqsubseteq \gamma_{1}\left(m_{1}\right) \wedge v_{1} \leadsto v_{2}\right\}\right) \\
& =\alpha_{2}\left(\left(\beta_{1} \rightarrow \beta_{2}\right)(\leadsto)\left(\gamma_{1}\left(m_{1}\right)\right)\right. \\
& =\left(\alpha_{2} \circ\left(\left(\beta_{1} \rightarrow \beta_{2}\right)(\leadsto)\right) \circ \gamma_{1}\right)\left(m_{1}\right)
\end{aligned}
$$

Inducing along the Abstraction Function

Correctness cont'd

Lemma 4.41 yields:

$$
\begin{aligned}
(p \vdash \cdot & \sim \cdot)\left(R_{1} \rightarrow R_{2}\right) f_{p} \wedge \alpha_{2} \circ f_{p} \circ \gamma_{1} \sqsubseteq g_{p} \\
& \Rightarrow(p \vdash \cdot \leadsto)\left(S_{1} \rightarrow S_{2}\right) g_{p}
\end{aligned}
$$

In words: if f_{p} is correct and g_{p} is an upper approximation to the induced analysis $\alpha_{2} \circ f_{p} \circ \gamma_{1}$ then also g_{p} is correct.

Inducing along the Abstraction Function

Correctness cont'd

Proof

(1) Suppose $(p \vdash \cdot \sim \cdot)\left(R_{1} \rightarrow R_{2}\right) f_{p}$ and $\alpha_{2} \circ f_{p} \circ \gamma_{1} \sqsubseteq g_{p}$.
(2) Since $\left(L_{i}, \alpha_{i}, \gamma_{i}, M_{i}\right)$ are Galois connections and f_{p} and g_{p} are monotone we get $f_{p} \sqsubseteq \gamma_{2} \circ g_{p} \circ \alpha_{1}$.
(3) Using the first assumption and Lemma 4.8:

$$
\begin{aligned}
(p \vdash \cdot \sim \cdot) & \left(R_{1} \rightarrow R_{2}\right) f_{p} \wedge f_{p} \sqsubseteq \gamma_{2} \circ g_{p} \circ \alpha_{1} \\
& \Rightarrow\left(\beta_{1} \rightarrow \beta_{2}\right)(p \vdash \cdot \leadsto \cdot) \sqsubseteq f_{p} \wedge f_{p} \sqsubseteq \gamma_{2} \circ g_{p} \circ \alpha_{1} \\
& \Rightarrow\left(\beta_{1} \rightarrow \beta_{2}\right)(p \vdash \cdot \sim \cdot) \sqsubseteq \gamma_{2} \circ g_{p} \circ \alpha_{1} \\
& \Rightarrow \alpha_{2} \circ\left(\beta_{1} \rightarrow \beta_{2}\right)(p \vdash \cdot \leadsto \cdot) \circ \gamma_{1} \sqsubseteq g_{p} \\
& \Rightarrow\left(\alpha_{1} \circ \beta_{1} \rightarrow \alpha_{2} \circ \beta_{2}\right)(p \vdash \cdot \leadsto \cdot) \sqsubseteq g_{p} \\
& \Rightarrow(p \vdash \cdot \leadsto \cdot)\left(S_{1} \rightarrow S_{2}\right) g_{p}
\end{aligned}
$$

Inducing along the Abstraction Function

 Optimality
Definition

A function $f_{p}: L_{1} \rightarrow L_{2}$ is optimal for the program p if and only if correctness of a function $f^{\prime}: L_{1} \rightarrow L_{2}$ amounts to $f_{p} \sqsubseteq f^{\prime}$
Equivalently, f_{p} is optimal if and only if $\left(\beta_{1} \rightarrow \beta_{2}\right)(p \vdash \cdot \leadsto \cdot)=f_{p}$

Lemma 4.41 may then be read as saying that if $f_{p}: L_{1} \rightarrow L_{2}$ is optimal then so is $\alpha_{2} \circ f_{p} \circ \gamma_{1}: M_{1} \rightarrow M_{2}$.

Inducing along the Abstraction Function

Fixed Points

Consider analysis $f_{p}: L_{1} \rightarrow L_{2}$ requires computation of the least fixed point of a monotone function $F:\left(L_{1} \rightarrow L_{2}\right) \rightarrow\left(L_{1} \rightarrow L_{2}\right)$ so that $f_{p}=\operatorname{Ifp}(F)$.

- $\left(L_{i}, \alpha_{i}, \gamma_{i}, M_{i}\right)$ give rise to $\left(L_{1} \rightarrow L_{2}, \alpha, \gamma, M_{1} \rightarrow M_{2}\right)$
- Let $G:\left(M_{1} \rightarrow M_{2}\right) \rightarrow\left(M_{1} \rightarrow M_{2}\right)$ be an upper approximation to $\alpha \circ F \circ \gamma$
- Take $g_{p}: M_{1} \rightarrow M_{2}$ to be $g_{p}=\operatorname{Ifp}(G)$

Fact

Correctness of f_{p} carries over to g_{p}.

Inducing along the Abstraction Function

Fixed Points - Correctness

Lemma 4.42

Assume

- (L, α, γ, M) is a Galois connection
- $f: L \rightarrow L$ and $g: M \rightarrow M$ are monotone functions
- g is an upper approximation to f (i.e. $\alpha \circ f \circ \gamma \sqsubseteq g$)

Then follows

- $\forall m \in M: g(m) \sqsubseteq m \Rightarrow f(\gamma(m)) \sqsubseteq \gamma(m)$
- and furthermore $\operatorname{Ifp}(f) \sqsubseteq \gamma(I f p(g))$ and $\alpha(\operatorname{lfp}(f)) \sqsubseteq \operatorname{lfp}(g)$

Inducing along the Abstraction Function

Fixed Points - Correctness

Proof

Show $\forall m \in M: g(m) \sqsubseteq m \Rightarrow f(\gamma(m)) \sqsubseteq \gamma(m)$

$$
\begin{aligned}
g(m) & \sqsubseteq m \wedge \alpha(f(\gamma(m))) \sqsubseteq g(m) \\
& \Rightarrow \alpha(f(\gamma(m))) \sqsubseteq m \\
& \Rightarrow f(\gamma(m)) \sqsubseteq \gamma(m)
\end{aligned}
$$

Inducing along the Abstraction Function

Fixed Points - Correctness

Proof cont'd

From the previous result follows $\{\gamma(m) \mid g(m) \sqsubseteq m\} \subseteq\{I \mid f(I) \sqsubseteq I\}$ and hence (using Lemma 4.22)

$$
\gamma(\bigcap\{m \mid g(m) \sqsubseteq m\})=\rceil\{\gamma(m) \mid g(m) \sqsubseteq m\} \sqsupseteq \bigcap\{I \mid f(I) \sqsubseteq I\}
$$

Using Tarski's theorem and that a Galois connection is an adjunction:

$$
\begin{aligned}
& \gamma\left(\prod\{m \mid g(m) \sqsubseteq m\}\right) \sqsupseteq \prod\{I \mid f(I) \sqsubseteq I\} \\
& \quad \Rightarrow \gamma(\operatorname{Red}(g)) \sqsupseteq \operatorname{Red}(f) \\
& \quad \Rightarrow \operatorname{Ifp}(f) \sqsubseteq \gamma(I f p(g)) \\
& \quad \Rightarrow \alpha(I f p(f)) \sqsubseteq I f p(g)
\end{aligned}
$$

Excursion - Data Flow Analysis

- Model how the data flows through a program
- Construct Constraints describing the program
- Analysis describes state-changes with transfer functions

Excursion - Data Flow Analysis

- Statement with label $I=1$
- Assigns x to y
- For some analysis A we write
- $A_{\circ}(I)$ for the entry-state
- $A_{\bullet}(I)$ for the exit-state
- f_{l}^{A} (State) for the transfer function
- constraints are modeled for example with

- $A_{\bullet}(1) \sqsupseteq f_{1}^{A}\left(A_{\circ}(1)\right)$
- $A_{\circ}(2) \sqsupseteq A_{\bullet}(1)$

Inducing along the Abstraction Function

Application to Data Flow Analysis

Generalized Monotone Framework A

- complete lattice L
- finite flow $F \subseteq \mathbf{L a b} \times \mathbf{L a b}$
- finite set of extremal labels $E \subseteq \mathbf{L a b}$
- extremal value $i \in L$
- a mapping f from the labels of F and E to monotone transfer functions $L \rightarrow L$
- Constraints $A \sqsupseteq$

$$
\begin{aligned}
& A_{\circ}(I) \sqsupseteq \bigsqcup\left\{A_{\bullet}\left(I^{\prime}\right) \mid\left(I^{\prime}, I\right) \in F\right\} \sqcup i_{E}^{\prime} \text { where } i_{E}^{\prime}= \begin{cases}i & I \in E \\
\perp & I \notin E\end{cases} \\
& A_{\bullet}(I) \sqsupseteq f_{l}\left(A_{\circ}(I)\right)
\end{aligned}
$$

Inducing along the Abstraction Function

Application to Data Flow Analysis

Generalized Monotone Framework A

- $\left(A_{\circ}, A_{\bullet}\right) \models A \sqsupseteq$ whenever A_{\circ}, A_{\bullet} is a solution to the constraints $A \sqsupseteq$
- consider the associated monotone function $\vec{f}\left(A_{\circ}, A_{\bullet}\right)=\left(\lambda I . A_{\circ}(I), \lambda I_{\cdot}(I)\right)$
- $\left(A_{\circ}, A_{\bullet}\right) \sqsupseteq \vec{f}\left(A_{\circ}, A_{\bullet}\right)$ is equivalent to $\left(A_{\circ}, A_{\bullet}\right) \models A \sqsupseteq$

Inducing along the Abstraction Function

Application to Data Flow Analysis

Generalized Monotone Framework B

- let (L, α, γ, M) be a Galois Connection
- B is as A, but has
- the mapping g from labels of F and E to monotone transfer functions $M \rightarrow M$, that satisfies $g_{l} \sqsupseteq \alpha \circ f_{l} \circ \gamma$
- the extremal value $j \sqsupseteq \alpha(i)$
- As in A we get the constraints $B \sqsupseteq$ for B and the associated monotone function \vec{g}

Fact

$\left(B_{\circ}, B_{\bullet}\right) \models B^{\sqsupseteq} \Longrightarrow\left(\gamma \circ B_{\circ}, \gamma \circ B_{\bullet}\right) \models A \sqsupseteq$

Inducing along the Abstraction Function

A Worked Example

Sets of States Analysis SS

- complete lattice $(\mathcal{P}($ State $), \subseteq)$
- flow $F=$ flow $\left(S_{*}\right)$
- set $E=\left\{\operatorname{init}\left(S_{*}\right)\right\}$ of extremal labels
- extremal value $i=$ State
- transfer functions given by $f^{S S}$:

$$
f_{l}^{S S}(\Sigma)= \begin{cases}\{\sigma[x \mapsto \mathcal{A} \llbracket a \rrbracket \sigma] \mid \sigma \in \Sigma\} & \text { if }[x:=a]^{\prime} \text { is in } S_{*} \\ \Sigma & \text { if }[s k i p]^{\prime} \text { is in } S_{*} \\ \Sigma & \text { if }[b]^{\prime} \text { is in } S_{*}\end{cases}
$$

where $\Sigma \subseteq$ State

Inducing along the Abstraction Function

A Worked Example

Fact

The SS analysis is correct

Inducing along the Abstraction Function
 A Worked Example

Constant Propagation Analysis

- complete lattice State $\mathbf{C P}=\left(\left(\mathbf{V a r} \rightarrow \mathbf{Z}^{\top}\right)_{\perp}, \sqsubseteq\right)$
- flow $F=\operatorname{flow}\left(S_{*}\right)$
- extremal labels $E=\left\{\operatorname{init}\left(S_{*}\right)\right\}$
- extremal value $i=\lambda x$. \top
- transfer functions of the constant propagation analysis ${ }^{a}$ given by $f^{C P}$
${ }^{a}$ Principles of Program Analysis, page 71, Table 2.7

Inducing along the Abstraction Function

A Worked Example

The relationship between the two analyses is established by the representation function

$$
\begin{aligned}
& \beta_{C P}: \text { State } \rightarrow \text { State }_{\mathbf{C P}} \\
& \beta_{C P}(\sigma)=\sigma
\end{aligned}
$$

Galois Connection

$\beta_{C P}$ gives rise to a Galois connection ($\mathcal{P}($ State $), \alpha_{C P}, \gamma_{C P}$, State $\left._{\mathbf{C P}}\right)$

$$
\begin{aligned}
\alpha_{C P}(\Sigma) & =\bigsqcup\left\{\beta_{C P}(\sigma) \mid \sigma \in \Sigma\right\} \\
\gamma_{C P}(\hat{\sigma}) & =\left\{\sigma \mid \beta_{C P}(\sigma) \sqsubseteq \hat{\sigma}\right\}
\end{aligned}
$$

Inducing along the Abstraction Function

A Worked Example

Conclusion

one can now show

$$
\begin{aligned}
& \forall I \in \text { Lab }: f_{l}^{C P} \sqsupseteq \alpha_{C P} \circ f_{l}^{S S} \circ \gamma_{C P} \\
& \gamma_{C P}(\lambda x . \top)=\text { State }
\end{aligned}
$$

and hence $C P$ is an upper approximation to the analysis induced from $S S$ by the Galois connection and therefore correct.

Inducing along the Concretisation Function

Why?

Inducing by abstraction function has a critical disadvantage. It lose precision along the analysis.

Inducing by Concretisation Function

instead of replacing the analysis using L with analysis using M;

- We perform normally on L (to not lose precision).
- but we only use M to approximate the fixed point computations done in L (to ensure convergence of the fixed points).

Inducing by Concretisation Function

Inducing by Concretisation Function

Using widening operator $\nabla_{M}: M \times M \rightarrow M$

- to define $\nabla_{L}: L \times L \rightarrow L$
by using the formula $I_{1} \nabla_{L} I_{2}=\gamma\left(\alpha\left(I_{1}\right) \nabla_{M} \alpha\left(I_{2}\right)\right)$
- we can approximate $\operatorname{Ifp}(\mathbf{f})$ over L.

Concretisation process

Inducing along the concretization function

Widening Operator

Why Widening Operator?

- We can't guarantee reaching stability eventually.
- or reaching least upper bound that equals Ifp(f).

Widening Operator

- used to obtain approximations of the least fixed points.
- used to limit the number of computation steps needed.

lemma 4.45

If $(\mathbf{L}, \alpha, \gamma, \mathbf{M})$ is a Galois insertion such that
$\gamma\left(\perp_{\mathbf{M}}\right)=\perp_{\mathbf{L}}$ and if $\nabla_{\mathbf{M}}: \mathbf{M} \times \mathbf{M} \rightarrow \mathbf{M}$ is a widening operator.
Then $\nabla_{\mathbf{L}}: \mathbf{L} \times \mathbf{L} \rightarrow \mathbf{L}$ is a widening operator defined by the formula $\mathbf{I}_{\mathbf{1}} \nabla_{\mathbf{L}} \mathbf{I}_{\mathbf{2}}=\gamma\left(\alpha\left(\mathbf{I}_{\mathbf{1}} \nabla_{\mathbf{M}} \alpha\left(\mathbf{I}_{\mathbf{2}}\right)\right)\right.$.
this satisfies $\mathbf{I f p}_{\nabla_{\mathbf{L}}}(\mathbf{f})=\gamma\left(\mathbf{I f} \mathbf{p}_{\nabla_{\mathbf{M}}}(\alpha \circ \mathbf{f} \circ \gamma)\right)$ for all monotone functions $\mathbf{f}: \mathbf{L} \rightarrow \mathbf{L}$.

Proof

- given $\nabla_{\mathbf{L}}$ is a widening operator, $\exists n_{f} \geq 0, \mathbf{I f}_{\nabla_{\mathbf{L}}}(\mathbf{f})=\mathbf{f}_{\nabla_{\mathbf{L}}}^{\mathbf{n}_{\mathbf{f}}}=\mathbf{f}_{\nabla_{\mathrm{L}}}^{\mathbf{n}}$
- given $\nabla_{\mathbf{M}}$ is a widening operator, $\exists n_{g} \geq 0, \mathbf{I f p}_{\nabla_{M}}(\mathbf{g})=\mathbf{g}_{\nabla_{\mathrm{M}}}^{\mathbf{n}_{\mathbf{g}}}=\mathbf{g}_{\nabla_{\mathrm{M}}}^{\mathbf{n}}$
- if we can prove that: $\mathbf{f}_{\nabla_{\mathrm{L}}}^{\mathbf{n}}=\gamma\left(\mathbf{g}_{\nabla_{\mathrm{M}}}^{\mathbf{n}}\right)$
- we can obtain that: $\mathbf{I f p}_{\nabla_{\mathbf{L}}}(\mathbf{f})=\gamma\left(\mathbf{I f} \mathbf{p}_{\nabla_{\mathbf{M}}}(\mathbf{g})\right)$

The Proof

by induction on \mathbf{n} :

- base case: $\mathrm{n}=0$.

The Proof

by induction on \mathbf{n} :

- base case: $\mathrm{n}=0$.

$$
f_{\nabla_{L}}^{0}=\perp_{L} \text { and } g_{\nabla_{M}}^{0}=\perp_{M}
$$

The Proof

by induction on \mathbf{n} :

- base case: $\mathrm{n}=0$.
$f_{\nabla_{L}}^{0}=\perp_{L}$ and $g_{\nabla_{M}}^{0}=\perp_{M}$ assume $\perp_{L}=\gamma\left(\perp_{M}\right)$

The Proof

by induction on \mathbf{n} :

- base case: $\mathrm{n}=0$.

$$
f_{\nabla_{L}}^{0}=\perp_{L} \text { and } g_{\nabla_{M}}^{0}=\perp_{M}
$$

$$
\text { assume } \perp_{L}=\gamma\left(\perp_{M}\right)
$$

$$
\Rightarrow f_{\nabla_{L}}^{0}=\gamma\left(g_{\nabla_{M}}^{0}\right)
$$

The Proof

by induction on \mathbf{n} :

- base case: $\mathrm{n}=0$.

$$
f_{\nabla_{L}}^{0}=\perp_{L} \text { and } g_{\nabla_{M}}^{0}=\perp_{M}
$$

$$
\text { assume } \perp_{L}=\gamma\left(\perp_{M}\right)
$$

$$
\Rightarrow f_{\nabla_{L}}^{0}=\gamma\left(g_{\nabla_{M}}^{0}\right)
$$

- for induction step over n.

The Proof

by induction on \mathbf{n} :

- base case: $\mathrm{n}=0$.

$$
\begin{aligned}
& f_{\nabla_{L}}^{0}=\perp_{L} \text { and } g_{\nabla_{M}}^{0}=\perp_{M} \\
& \text { assume } \perp_{L}=\gamma\left(\perp_{M}\right) \\
& \Rightarrow f_{\nabla_{L}}^{0}=\gamma\left(g_{\nabla_{M}}^{0}\right)
\end{aligned}
$$

- for induction step over n .

$$
f\left(f_{\nabla_{L}}^{n}\right) \sqsubseteq f_{\nabla_{L}}^{n} \Leftrightarrow g\left(g_{\nabla_{M}}^{n}\right) \sqsubseteq g g_{\nabla_{M}}^{n}
$$

The Proof

by induction on \mathbf{n} :

- base case: $\mathrm{n}=0$.

$$
\begin{aligned}
& f_{\nabla_{L}}^{0}=\perp_{L} \text { and } g_{\nabla_{M}}^{0}=\perp_{M} \\
& \text { assume } \perp_{L}=\gamma\left(\perp_{M}\right) \\
& \Rightarrow f_{\nabla_{L}}^{0}=\gamma\left(g_{\nabla_{M}}^{0}\right)
\end{aligned}
$$

- for induction step over n .

$$
\begin{aligned}
& f\left(f_{\nabla_{L}}^{n}\right) \sqsubseteq f_{\nabla_{L}}^{n} \Leftrightarrow g\left(g_{\nabla_{M}}^{n}\right) \sqsubseteq g g_{\nabla_{M}}^{n} \\
& f\left(f_{\nabla_{L}}^{n}\right) \sqsubseteq f_{\nabla_{L}}^{n} \Rightarrow \alpha\left(f\left(f_{\nabla_{L}}^{n}\right)\right) \sqsubseteq \alpha\left(f_{\nabla_{L}}^{n}\right)
\end{aligned}
$$

The Proof

by induction on \mathbf{n} :

- base case: $\mathrm{n}=0$.

$$
\begin{aligned}
& f_{\nabla_{L}}^{0}=\perp_{L} \text { and } g_{\nabla_{M}}^{0}=\perp_{M} \\
& \text { assume } \perp_{L}=\gamma\left(\perp_{M}\right) \\
& \Rightarrow f_{\nabla_{L}}^{0}=\gamma\left(g_{\nabla_{M}}^{0}\right)
\end{aligned}
$$

- for induction step over n .

$$
\begin{aligned}
& f\left(f_{\nabla_{L}}^{n}\right) \sqsubseteq f_{\nabla_{L}}^{n} \Leftrightarrow g\left(g_{\nabla_{M}}^{n}\right) \sqsubseteq g g_{M}^{n} \\
& f\left(f_{\nabla_{L}}^{n}\right) \sqsubseteq f_{\nabla_{L}}^{n} \Rightarrow \alpha\left(f\left(f_{\nabla_{L}}^{n}\right)\right) \sqsubseteq \alpha\left(f_{\nabla_{L}}^{n}\right) \\
& \quad \Rightarrow \alpha\left(f\left(\gamma\left(g_{\nabla_{M}}^{n}\right)\right)\right) \sqsubseteq \alpha\left(\gamma\left(g_{\nabla_{M}}^{n}\right)\right.
\end{aligned}
$$

The Proof

by induction on \mathbf{n} :

- base case: $\mathrm{n}=0$.

$$
\begin{aligned}
& f_{\nabla_{L}}^{0}=\perp_{L} \text { and } g_{\nabla_{M}}^{0}=\perp_{M} \\
& \text { assume } \perp_{L}=\gamma\left(\perp_{M}\right) \\
& \Rightarrow f_{\nabla_{L}}^{0}=\gamma\left(g_{\nabla_{M}}^{0}\right)
\end{aligned}
$$

- for induction step over n .

$$
\begin{aligned}
f\left(f_{\nabla_{L}}^{n}\right) \sqsubseteq f_{\nabla_{L}}^{n} & \Leftrightarrow g\left(g_{\nabla_{M}}^{n}\right) \sqsubseteq g_{\nabla_{M}}^{n} \\
f\left(f_{\nabla_{L}}^{n}\right) \sqsubseteq f_{\nabla_{L}}^{n} & \Rightarrow \alpha\left(f\left(f_{\nabla_{L}}^{n}\right)\right) \sqsubseteq \alpha\left(f_{\nabla_{L}}^{n}\right) \\
& \Rightarrow \alpha\left(f\left(\gamma\left(g_{\nabla_{M}}^{n}\right)\right)\right) \sqsubseteq \alpha\left(\gamma\left(g_{\nabla_{M}}^{n}\right)\right. \\
& \Rightarrow g\left(g_{\nabla_{M}}^{n}\right) \sqsubseteq \alpha\left(\gamma\left(g_{\nabla_{M}}^{n}\right)\right.
\end{aligned}
$$

The Proof

by induction on \mathbf{n} :

- base case: $\mathrm{n}=0$.

$$
\begin{aligned}
& f_{\nabla_{L}}^{0}=\perp_{L} \text { and } g_{\nabla_{M}}^{0}=\perp_{M} \\
& \text { assume } \perp_{L}=\gamma\left(\perp_{M}\right) \\
& \Rightarrow f_{\nabla_{L}}^{0}=\gamma\left(g_{\nabla_{M}}^{0}\right)
\end{aligned}
$$

- for induction step over n.

$$
\begin{aligned}
f\left(f_{\nabla_{L}}^{n}\right) \sqsubseteq f_{\nabla_{L}}^{n} & \Leftrightarrow g\left(g_{\nabla_{M}}^{n}\right) \sqsubseteq g \nabla_{\nabla_{M}}^{n} \\
f\left(f_{\nabla_{L}}^{n}\right) \sqsubseteq f_{\nabla_{L}}^{n} & \Rightarrow \alpha\left(f\left(f_{\nabla_{L}}^{n}\right)\right) \sqsubseteq \alpha\left(f_{\nabla_{L}}^{n}\right) \\
& \Rightarrow \alpha\left(f\left(\gamma\left(g_{\nabla_{M}}^{n}\right)\right)\right) \sqsubseteq \alpha\left(\gamma\left(g_{\nabla_{M}}^{n}\right)\right. \\
& \Rightarrow g\left(g_{\nabla_{M}}^{n}\right) \sqsubseteq \alpha\left(\gamma\left(g_{\nabla_{M}}^{n}\right)\right. \\
& \Rightarrow g\left(g_{\nabla_{M}}^{n}\right) \sqsubseteq g_{\nabla_{M}}^{n}
\end{aligned}
$$

The Proof

by induction on \mathbf{n} :

- base case: $\mathrm{n}=0$.

$$
\begin{aligned}
& f_{\nabla_{L}}^{0}=\perp_{L} \text { and } g_{\nabla_{M}}^{0}=\perp_{M} \\
& \text { assume } \perp_{L}=\gamma\left(\perp_{M}\right) \\
& \Rightarrow f_{\nabla_{L}}^{0}=\gamma\left(g_{\nabla_{M}}^{0}\right)
\end{aligned}
$$

- for induction step over n .

$$
f\left(f_{\nabla_{L}}^{n}\right) \sqsubseteq f_{\nabla_{L}}^{n} \Leftrightarrow g\left(g_{\nabla_{M}}^{n}\right) \sqsubseteq g g_{\nabla_{M}}^{n}
$$

The Proof

by induction on \mathbf{n} :

- base case: $\mathrm{n}=0$.

$$
\begin{aligned}
& f_{\nabla_{L}}^{0}=\perp_{L} \text { and } g_{\nabla_{M}}^{0}=\perp_{M} \\
& \text { assume } \perp_{L}=\gamma\left(\perp_{M}\right) \\
& \Rightarrow f_{\nabla_{L}}^{0}=\gamma\left(g_{\nabla_{M}}^{0}\right)
\end{aligned}
$$

- for induction step over n .

$$
\begin{aligned}
& f\left(f_{\nabla_{L}}^{n}\right) \sqsubseteq f_{\nabla_{L}}^{n} \Leftrightarrow g\left(g_{\nabla_{M}}^{n}\right) \sqsubseteq g_{\nabla_{M}}^{n} \\
& g\left(g_{\nabla_{M}}^{n}\right) \sqsubseteq g_{\nabla_{M}}^{n} \Rightarrow \gamma\left(g\left(g_{\nabla_{M}}^{n}\right)\right) \sqsubseteq \gamma\left(g_{\nabla_{M}}^{n}\right)
\end{aligned}
$$

The Proof

by induction on \mathbf{n} :

- base case: $\mathrm{n}=0$.

$$
\begin{aligned}
& f_{\nabla_{L}}^{0}=\perp_{L} \text { and } g_{\nabla_{M}}^{0}=\perp_{M} \\
& \text { assume } \perp_{L}=\gamma\left(\perp_{M}\right) \\
& \Rightarrow f_{\nabla_{L}}^{0}=\gamma\left(g_{\nabla_{M}}^{0}\right)
\end{aligned}
$$

- for induction step over n .

$$
\begin{aligned}
& f\left(f_{\nabla_{L}}^{n}\right) \sqsubseteq f_{\nabla_{L}}^{n} \Leftrightarrow g\left(g_{\nabla_{M}}^{n}\right) \sqsubseteq g_{\nabla_{M}}^{n} \\
& g\left(g_{\nabla_{M}}^{n}\right) \sqsubseteq g_{\nabla_{M}}^{n} \Rightarrow \gamma\left(g\left(g_{\nabla_{M}}^{n}\right)\right) \sqsubseteq \gamma\left(g_{\nabla_{M}}^{n}\right) \\
& \quad \Rightarrow \gamma\left(\alpha\left(f\left(\gamma\left(g_{\nabla_{M}}^{n}\right)\right)\right)\right) \sqsubseteq \gamma\left(g_{\nabla_{M}}^{n}\right)
\end{aligned}
$$

The Proof

by induction on \mathbf{n} :

- base case: $\mathrm{n}=0$.

$$
\begin{aligned}
& f_{\nabla_{L}}^{0}=\perp_{L} \text { and } g_{\nabla_{M}}^{0}=\perp_{M} \\
& \text { assume } \perp_{L}=\gamma\left(\perp_{M}\right) \\
& \Rightarrow f_{\nabla_{L}}^{0}=\gamma\left(g_{\nabla_{M}}^{0}\right)
\end{aligned}
$$

- for induction step over n .

$$
\begin{aligned}
& f\left(f_{\nabla_{L}}^{n}\right) \sqsubseteq f_{\nabla_{L}}^{n} \Leftrightarrow g\left(g_{\nabla_{M}}^{n}\right) \sqsubseteq g_{\nabla_{M}}^{n} \\
& g\left(g_{\nabla_{M}}^{n}\right) \sqsubseteq g_{\nabla_{M}}^{n} \Rightarrow \gamma\left(g\left(g_{\nabla_{M}}^{n}\right)\right) \sqsubseteq \gamma\left(g_{\nabla_{M}}^{n}\right) \\
& \quad \Rightarrow \gamma\left(\alpha\left(f\left(\gamma\left(g_{\nabla_{M}}^{n}\right)\right)\right)\right) \sqsubseteq \gamma\left(g_{\nabla_{M}}^{n}\right) \\
& \quad \Rightarrow \gamma\left(\alpha\left(f\left(f_{\nabla_{L}}^{n}\right)\right)\right) \sqsubseteq f_{\nabla_{L}}^{n}
\end{aligned}
$$

The Proof

by induction on \mathbf{n} :

- base case: $\mathrm{n}=0$.

$$
\begin{aligned}
& f_{\nabla_{L}}^{0}=\perp_{L} \text { and } g_{\nabla_{M}}^{0}=\perp_{M} \\
& \text { assume } \perp_{L}=\gamma\left(\perp_{M}\right) \\
& \Rightarrow f_{\nabla_{L}}^{0}=\gamma\left(g_{\nabla_{M}}^{0}\right)
\end{aligned}
$$

- for induction step over n .

$$
\begin{aligned}
& f\left(f_{\nabla_{L}}^{n}\right)=f_{\nabla_{L}}^{n} \Leftrightarrow g\left(g_{\nabla_{M}}^{n}\right)=g^{n} \nabla_{M} \\
& g\left(g^{n} \nabla_{M}\right) \equiv g_{\nabla_{M}}^{n} \Rightarrow \gamma\left(g\left(g_{\nabla}^{n}\right)\right) \equiv \gamma\left(g_{\nabla_{M}}^{n}\right) \\
& \Rightarrow \gamma\left(\alpha\left(f\left(\gamma\left(g_{\nabla_{M}}^{n}\right)\right)\right) \sqsubseteq \gamma\left(g_{\nabla_{M}}^{n}\right)\right. \\
& \Rightarrow \gamma\left(\alpha\left(f\left(f_{\nabla_{L}}^{n}\right)\right)\right) \sqsubseteq f_{\nabla_{L}}^{n} \\
& \Rightarrow f\left(f \frac{n}{\nabla_{L}}\right)=f \frac{n}{\nabla_{L}}
\end{aligned}
$$

The Proof

- induction step: $\mathrm{n}>0$.

The Proof

- induction step: $\mathrm{n}>0$.

$$
f_{\nabla_{L}}^{n}=\left\{\begin{array}{cc}
f_{\nabla_{L}}^{n-1} & \text { if } \\
f_{\nabla_{L}}^{n-1} \nabla_{L} f\left(f_{\nabla_{L}}^{n-1}\right) & \text { otherwise }
\end{array}\right.
$$

The Proof

- induction step: $\mathrm{n}>0$.

$$
\begin{aligned}
f_{\nabla_{L}}^{n} & =\left\{\begin{array}{cc}
f_{\nabla_{L}}^{n-1} & \text { if } \\
f_{\nabla_{L}}^{n-1} \nabla_{L} f\left(f_{\nabla_{L}}^{n-1}\right) & \text { otherwise }
\end{array}\right. \\
& =\left\{\begin{array}{cc}
\left.f_{\nabla_{L}}^{n-1}\right) \sqsubseteq f_{\nabla_{L}}^{n-1} \\
f_{\nabla_{L}}^{n-1} \nabla_{L} f\left(f_{\nabla_{L}}^{n-1}\right) & \text { if } \\
g\left(g_{\nabla_{M}}^{n-1}\right) \sqsubseteq g_{\nabla_{M}}^{n-1} & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

The Proof

- induction step: $\mathrm{n}>0$.

$$
\begin{aligned}
& f_{\nabla_{L}}^{n}=\left\{\begin{array}{cc}
f_{\nabla_{L}}^{n-1} & \text { if } \\
f_{\nabla_{L}}^{n-1} \nabla_{L} f\left(f_{\nabla_{L}}^{n-1}\right) & \text { otherwise }
\end{array}\right. \\
& =\left\{\begin{array}{ccc}
f_{\nabla_{L}}^{n-1} & \text { if } \\
f_{\nabla_{L}}^{n-1} \nabla_{L} f\left(f_{\nabla_{L}}^{n-1}\right) & g\left(g_{\nabla_{M}}^{n-1}\right) \sqsubseteq g_{\nabla_{M}}^{n-1} & \text { otherwise }
\end{array}\right. \\
& =\left\{\begin{array}{cc}
\gamma\left(g_{\nabla_{M}}^{n-1}\right) & \text { if } g\left(g_{\nabla_{M}}^{n-1}\right) \sqsubseteq g_{\nabla_{M}}^{n-1} \\
\gamma\left(\alpha\left(\gamma\left(g_{\nabla_{M}}^{n-1}\right) \nabla_{M} f\left(\gamma\left(g_{\nabla_{M}}^{n-1}\right)\right)\right)\right) & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

The Proof

- induction step: $\mathrm{n}>0$.

$$
\begin{aligned}
& f_{\nabla_{L}}^{n}=\left\{\begin{array}{cc}
f_{\nabla_{L}}^{n-1} & \text { if } \\
f_{\nabla_{L}}^{n-1} \nabla_{L} f\left(f_{\nabla_{L}}^{n-1}\right) & \text { otherwise }
\end{array}\right. \\
& =\left\{\begin{array}{cc}
f_{\nabla_{L}}^{n-1} & \text { if } g\left(g_{\nabla_{M}}^{n-1}\right) \sqsubseteq g_{\nabla_{M}}^{n-1} \\
f_{\nabla_{L}}^{n-1} \nabla_{L} f\left(f_{\nabla_{L}}^{n-1}\right) & \text { otherwise }
\end{array}\right. \\
& =\left\{\begin{array}{cc}
\gamma\left(g_{\nabla_{M}}^{n-1}\right) & \text { if } g\left(g_{\nabla_{M}}^{n-1}\right) \sqsubseteq g_{\nabla_{M}}^{n-1} \\
\gamma\left(\alpha\left(\gamma\left(g_{\nabla_{M}}^{n-1}\right) \nabla_{M} f\left(\gamma\left(g_{\nabla_{M}}^{n-1}\right)\right)\right)\right) & \text { otherwise }
\end{array}\right. \\
& =\gamma\left(\left\{\begin{array}{cc}
\left(\begin{array}{c}
\left(g_{M}^{n}\right) \\
g_{\nabla_{M}}^{n-1} \nabla_{M} g\left(g_{\nabla_{M}}^{n-1}\right)
\end{array}\right. & \text { if } \\
g\left(g_{\nabla_{M}}^{n-1}\right) \sqsubseteq g_{\nabla_{M}}^{n-1} \\
\text { otherwise }
\end{array}\right)\right.
\end{aligned}
$$

The Proof

- induction step: $\mathrm{n}>0$.

$$
\begin{aligned}
f_{\nabla_{L}}^{n} & =\left\{\begin{array}{cc}
f_{\nabla_{L}}^{n-1} & \text { if } \\
f_{\nabla_{L}}^{n-1} \nabla_{L} f\left(f_{\nabla_{L}}^{n-1}\right) & \begin{array}{c}
\text { otherwise }
\end{array} \\
& =\left\{\begin{array}{cc}
\left.f_{\nabla_{L}}^{n-1}\right) \sqsubseteq f_{L}^{n-1} \\
f_{\nabla_{L}}^{n-1} \nabla_{L} f\left(f_{\nabla_{L}}^{n-1}\right) & \text { if } \\
g\left(g_{\nabla_{M}}^{n-1}\right) \sqsubseteq g_{\nabla_{M}}^{n-1} & \text { otherwise }
\end{array}\right. \\
= & \begin{array}{cc}
\gamma\left(g_{\nabla_{M}}^{n-1}\right) & \text { if } \\
\gamma\left(\alpha\left(g_{\nabla_{M}}^{n-1}\right) \sqsubseteq g_{\nabla_{M}}^{n-1}\right.
\end{array} \\
= & \gamma\left(\left\{\begin{array}{cc}
\left.\left.\left(g_{\nabla_{M}}^{n-1}\right) \nabla_{M} f\left(\gamma\left(g_{\nabla_{M}}^{n-1}\right)\right)\right)\right) & \text { otherwise } \\
\left.g_{\nabla_{M}}^{n-1}\right) & \text { if } \\
g_{\nabla_{M}}^{n-1} \nabla_{M} g\left(g_{\nabla_{M}}^{n-1}\right) & \text { otherwise }
\end{array}\right)\right. \\
=\gamma\left(g_{\nabla_{M}}^{n-1}\right) \sqsubseteq g_{\nabla_{M}}^{n-1}
\end{array}\right)
\end{aligned}
$$

Proof

- given $\nabla_{\mathbf{L}}$ is a widening operator, $\exists n_{f} \geq 0, \mathbf{I f}_{\nabla_{\mathrm{L}}}(\mathbf{f})=\mathbf{f}_{\nabla_{\mathrm{L}}}^{\mathbf{n}_{\mathbf{L}}}=\mathbf{f}_{\nabla_{\mathrm{L}}}^{\boldsymbol{n}}$
- given $\nabla_{\mathbf{M}}$ is a widening operator, $\exists n_{g} \geq 0$, $\mathbf{I f} \mathbf{p}_{\nabla_{M}}(\mathbf{g})=\mathbf{g}_{\nabla_{\mathbf{M}}}^{\mathbf{n}_{\mathbf{g}}}=\mathbf{g}_{\nabla_{\mathrm{M}}}^{\mathbf{n}}$
- We have proven that: $\mathbf{f}_{\nabla_{\mathbf{L}}}^{\mathbf{n}}=\gamma\left(\mathbf{g}_{\nabla_{M}}^{\mathbf{n}}\right)$
- which prove that: $\mathbf{I f p}_{\nabla_{\mathbf{L}}}(\mathbf{f})=\gamma\left(\mathbf{I f} \mathbf{p}_{\mathrm{M}}(\mathbf{g})\right)$

So, we can perform our analysis over \mathbf{L} without lossing precision.

Thank you for your attention, Questions?

