- 1) Sei $\Sigma = \{a, b\}$ und a < b.
 - a) Es gibt zwei Wörter w mit der Eigenschaft, dass $\epsilon \leq_{\text{gradlex}} w \leq_{\text{gradlex}} a$ gilt: ϵ und a. Es gibt drei Wörter w mit der Eigenschaft, dass $\epsilon \leq_{\text{gradlex}} w \leq_{\text{gradlex}} b$ gilt: ϵ , a, b.

Es gibt zwei Wörter w mit der Eigenschaft, dass $\epsilon \leq_{\text{lex}} w \leq_{\text{lex}} a$ gilt: ϵ und a.

Es gibt jedoch unendlich viele Wörter w mit der Eigenschaft, dass $\epsilon \leq_{\text{lex}} w \leq_{\text{lex}} b$ gilt. Z.B. haben wir:

$$\epsilon <_{\text{lex}} a <_{\text{lex}} aa <_{\text{lex}} aaa <_{\text{lex}} aaaa <_{\text{lex}} \dots <_{\text{lex}} b.$$

- b) Wenn $w <_{\text{lex}} v$ und $\ell(w) = \ell(v)$ gelten, dann gibt es laut der Definition von $<_{\text{lex}}$ ein $k \in \{0, \dots, \ell(w) 1\}$, so dass $w_i = v_i$ für alle $i \in \{0, \dots, k 1\}$ gilt, aber $w_k < v_k$ ist. Dann gilt aber auch für w' = wa, dass $w'_i = v_i$ (für alle $i \in \{0, \dots, k 1\}$) und $w'_k < v_k$ ist. Also ist $w' <_{\text{lex}} v$. Da die ersten $\ell(w)$ Zeichen von w und w' übereinstimmen, w' aber länger ist als w, folgt (wieder aus der Definition von $<_{\text{lex}}$): $w <_{\text{lex}} w'$. Also haben wir w < w' < v.
- 2) Lösung. Im Basisfall ist n=1 und somit $1!=1^1$. Im Induktionsschritt ist $n\geq 1$ und $n\to n+1$. Die Induktionshypothese lautet $n!\leq n^n$. Zu zeigen ist $(n+1)!\leq (n+1)^{n+1}$ was leicht nachgeprüft werden kann:

$$(n+1)! = n!(n+1) \le n^n(n+1) < (n+1)^n(n+1) = (n+1)^{n+1}$$

3) Lösung. Wir wählen die graduiert-lexikographische Ordnung \leq_{gradlex} (mit a < b).

• BASIS: Da \leq_{gradlex} total ist, ist ϵ das einzige minimale Element. In der Tat hat ϵ eine gerade Anzahl von as.

• SCHRITT: Sei w ein beliebiges nicht-minimales Element. Somit ist $w \neq \epsilon$. Die Induktionshypothese gilt für alle x mit $x <_{\text{gradlex}} w$ und besagt, dass wenn x ein Palindrom gerader Länge ist, dass x dann eine gerade Anzahl an as enthält. Wir zeigen " $w \in P$ und $\ell(w)$ gerade impliziert w hat gerade Anzahl an as". Da w ein Palindrom gerader Länge ungleich ϵ ist, hat w eine der beiden Gestalten

$$- w = axa$$

$$-w = bxb$$

Beachte, dass auch x ein Palindrom gerader Länge ist. Da $x <_{\text{gradlex}} w$ hat x eine gerade Anzahl von as und somit auch w.

- 4) Beweis. Wir zeigen die Aussage durch strukturelle Induktion über a:
 - BASIS: 0 + b = b + 0. Per Definition gilt b = b + 0, was durch Induktion über b gezeigt werden kann.

1

- SCHRITT: Wir formen Sa + b = b + Sa durch Anwendung der Definition in S(a+b) = b + Sa um, dann wenden wir die Inkduktionshypothese an und erhalten S(b+a) = b + Sa. Nun zeigen wir durch Induktion über b, dass S(b+a) = b + Sa:
 - Basis: Wir wenden auf S(0+a) = 0 + Sa die Definition an und erhalten Sa = Sa.
 - SCHRITT: IH: S(b+a) = b + Sa. Wir formen S(Sb+a) = Sb + Sa in S(S(b+a)) = S(b+Sa) um. Durch Anwendung der Induktionshypothese auf die linke Seite erhalten wir S(b+Sa) = S(b+Sa).

- 5) Lösung. a) $(\epsilon)_4 = 0$ und $(wx)_4 = (w)_4 \cdot 4 + x$.
 - b) Wir beweisen die Behauptung durch Induktion über w. Im Basisfall gilt $(\epsilon)_4 = 0 = \mathsf{qit}(\epsilon)$. Im Induktionsschritt gilt $(wx)_4 = (w)_4 \cdot 4 + x \equiv (w)_4 + x \equiv \mathsf{qit}(w) + x = \mathsf{qit}(wx)$ (mod 3). Die erste Äquivalenz gilt, da $4 \equiv 1 \mod 3$, die zweite Äquivalenz gilt durch die Induktionshypothese für w, die zwei Gleichheiten gelten durch die Definition von $(_)_4$ and $\mathsf{qit}(_)$.

2