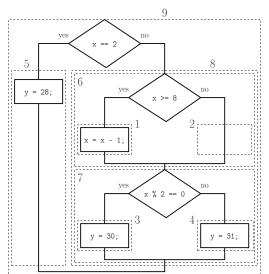


Es gibt unendlich viele Wege in G_1 von Ecke 1 nach Ecke 3, da man z.B. die Kante a bei Knoten 1 beliebig oft nehmen kann, bevor man zu Ecke 3 geht. Die einfachen Wege sind: (d), (b, c), (b, e)


 G_1 hat die einfachen Zykel (a), die 2 möglichen Zykel die durch die Kanten (c, e) entstehen, die 6 möglichen Zykel die durch die Kanten (b, c, d) entstehen (je 3 verschiedene Startknoten, und 2 mögliche Richtungen), gleich für die Kanten (b, e, d). Insgesamt hat G_1 also 15 einfache Zykel.

 G_2 hat 3 möglichen einfachen Zykel und G_3 hat keine Zykel.

 G_1 und G_3 sind zusammenhängend.

 G_1 ist nicht zyklenfrei also weder ein Baum noch ein Wald. G_2 ist kein ungerichteter Multigraph, also ist die Definition nicht direkt anwendbar. G_3 ist ein Baum und ein Wald.

5) Lösung. Wie der Flussgraph induktiv erstellt werden kann wird durch die nummerierten gestrichelten Boxen in

gezeigt. Boxen 1, 3, 4 und 5 sind Ausdrucks-Basisfälle, Box 2 ist ein leerer Basisfall. Wir haben dann Auswahlzusammensetzungsboxen 6 (aus 1 und 2), sowie 7 (aus 3 und 4), welche zu einer sequentiellen Zusammensetzungsbox 8 (aus 6 und 7) kombiniert werden. Schlussendlich

werden 5 und 8 zu einer Auswahlzusammensetzungsbox 9 kombiniert, welche das gesamte Flussdiagramm darstellt.

Wir verwenden rekursive Inferenz (siehe Einführung in die Theoretische Informatik) um das Programm abzuleiten:

	Wort	Variable	Regel	Rekursion
1	x == 2	T	Test	
2	y = 28	S	Ausdruck	
3	y = 28;	P	P o S;	2
4	x >= 8	T	Test	
5	x = x - 1	S	Ausdruck	
6	x = x -1;	P	P o S;	5
7	;	P	P o ;	
8	x % 2 == 0	T	Test	
9	y = 30	S	Ausdruck	
10	y = 30;	P	P o S;	9
11	y = 31	S	Ausdruck	
12	y = 31;	P	P o S;	11
13	if $(x \ge 8) \{x = x - 1;\} $ else $\{;\}$	P	$P o \mathtt{if}\left(T ight)\left\{P ight\}$ else $\left\{P ight\}$	4, 6, 7
14	if $(x \% 2 == 0) \{y=30;\}$ else $\{y=31;\}$	P	$P o \mathtt{if}\left(T ight)\left\{P ight\}$ else $\left\{P ight\}$	8, 10, 12
15	sequentielle Zusammenfügung zweier Programme	P	$P \to P P$	13, 14
16	komplettes Programm aus Angabe	P	$P o \mathtt{if}\left(T ight)\left\{P ight\}$ else $\left\{P ight\}$	1, 3, 15