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Overview

• Proof Methods

• Well-Foundedness

• Manual Termination Proofs

• Exercises
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Proof Methods

Some Useful Attributes

• of – instantiation of schematic variables (by position from left to right)
〈?x = ?x 〉[of y]  〈y = y 〉

• OF – discharge assumptions using existing facts (by position)
〈?A =⇒ ?A 〉[OF TrueI]  〈True 〉

• symmetric – get symmetric version of equation
〈?a = ?b 〉[symmetric]  〈?b = ?a 〉

• rule_format – replace HOL connectives by Pure connectives
〈∀x. ?P x −→ ?Q 〉[rule_format]  〈?P ?x =⇒ ?Q 〉

• THEN – composition of facts
〈?A ∈ Pow ?B =⇒ ?A ⊆ ?B 〉[THEN 〈?A ⊆ ?B =⇒ ?c ∈ ?A =⇒ ?c ∈ ?B 〉] 
〈?A ∈ Pow ?B =⇒ ?c ∈ ?A =⇒ ?c ∈ ?B 〉

• simp, intro, elim, dest – declare fact
simplification/introduction/elimination/destruction rule
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Proof Methods

Kinds of Rules

• simplification rules – (conditional) equations used from left to right
• introduction rules – if conclusion of rule matches conclusion of subgoal, replace it by

premises of rule (generating one new subgoal per premise)
• destruction rules – replace first premise of subgoal matching major premise of rule by

conclusion (together with remaining premises) of rule
• elimination rules – like destruction rules, but rule is supposed to not loose (destruct)

information (compare conjunct1 with conjE)

Examples

• have "∀x. P x" apply (rule allI) 
∧

x. P x
• have "A ∧ B =⇒ C" apply (drule conjunct2)  B =⇒ C

• have "A ∨ B =⇒ C" apply (erule disjE) 
1. A =⇒ C
2. B =⇒ C
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Proof Methods

Equational Proof Methods

• unfold fact+ – exhaustively apply equational facts (replacing left-hand sides by
right-hand sides); usually as initial method

• simp/simp_all – exhaustively apply simp rules to first/all subgoal(s)

Proof Methods for Classical Reasoning

• (intro | elim) fact+ – exhaustively apply intro/elim rules; usually as initial method
• blast (best, fast) – solve first subgoal by exhaustive proof search (up to certain

bound) using all known intro/dest/elim rules (using best-first search, depth-first search)

Combined Proof Methods

• force (fastforce, bestsimp) – solve first subgoal by combination of equational and
classical reasoning

• auto – apply combination of equational and classical reasoning to all subgoals and leave
result as new subgoals
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Proof Methods

Modifiers for Classical Methods

classical methods (like blast and auto) take following modifiers:
• intro: fact+ – add additional intro rules
• dest: fact+ – add additional dest rules
• elim: fact+ – add additional elim rules
• del: fact+ – delete classical rules

Note

when used with combined methods (like force and auto), modifiers for simplifier use prefix
simp (like simp add:, simp del:, . . . )
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Well-Foundedness

Your favorite definition of well-foundedness?

Definition
relation < is well-founded iff it meets one of following (equivalent) conditions:
• no infinite chains of shape x1 > x2 > x3 > . . . ( C )
• < admits induction, that is, for all P: (∀x . (∀y < x . P(y))→ P(x))→∀x . P(x) ( I )
• all elements are accessible, where x is accessible iff all y < x are accessible ( A )
• all nonempty sets have minimal element (M)
• no nonterminating set, where N nonterminating iff N 6=∅∧∀x ∈ N .∃y ∈ N . y < x ( N )

Demo09.thy – Equivalence Proof

prove that ( I ) implies ( A ) and ( N ) implies ( C )
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Well-Foundedness

Trivially Well-Founded Relations

• the empty relation is well-founded
• every finite acyclic relation is well-founded

(R acyclic iff no x such that (x , x) ∈ R+)

Measure Functions

• every measure function f : A→ N induces relation M f = {(x , y). f (x)< f (y)}
• M f well-founded for any f by construction
• Isabelle notation for M f is ‘measure f’

Lexicographic Product of Relations

• lexicographic product of relations R and S, written R <*lex*> S, give by
((x1, x2), (y1, y2)) ∈ R <*lex*> S iff (x1, y1) ∈ R or both, x1 = y1 and (x2, y2) ∈ S

• lexicographic product of well-founded relations is well-founded
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Manual Termination Proofs
Demo09.thy – Alternative Implementation for Grouping Repeated List Elements

fun split_same :: "'a ⇒ 'a list ⇒ ('a list × 'a list)"
where

"split_same x [] = ([], [])"
| "split_same x (y # ys) =

(if x = y then let (us, vs) = split_same x ys in (y # us, vs)
else ([], y # ys))"

fun group :: "'a list ⇒ 'a list list"
where

"group [] = []"
| "group (x#xs) = (let (ys,zs) = split_same x xs in (x#ys) # group zs)"

Additional Simp Rules for Termination
• sometimes sufficient to add simp rules (only for termination proofs)
• use attribute termination_simp
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Manual Termination Proofs

Demo09.thy – An Odd Even/Odd Function

fun evenodd :: "nat ⇒ bool ⇒ bool"
where

"evenodd 0 True ←→ True"
| "evenodd x False ←→ ¬ (evenodd x True)"
| "evenodd (Suc x) True ←→ evenodd x False"

Explicit Termination Proofs
• replace fun f :: "T" . . . by
function (sequential) f :: "T" . . . by (pat_completeness) auto

• and add termination by (relation "R") auto for some well-founded relation R
that covers recursive calls

• note: by default fun uses method lexicographic_order for termination proofs
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Manual Termination Proofs

Demo09.thy – Higher-Order Recursion

datatype tree = Tree nat "tree list"

fun map :: "('a ⇒ 'b) ⇒ 'a list ⇒ 'b list"
where

"map f [] = []"
| "map f (x#xs) = f x # map f xs"

fun mirror :: "tree ⇒ tree"
where

"mirror (Tree n ts) = Tree n (rev (map mirror ts))"

Congruence Rules
• express on which values higher-order arguments have to agree to yield same result
• fundef_cong – declares congruence rule for function definitions

CS (DCS @ UIBK) session 9 12/15

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://cl-informatik.uibk.ac.at/teaching/ss19/itp/thys/Demo09.thy
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://cl-informatik.uibk.ac.at/teaching/ss19/itp/thys/Demo09.thy
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://cl-informatik.uibk.ac.at/teaching/ss19/itp/thys/Demo09.thy
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Exercises

Exercises (start from Exercises09.thy)

URL
http://cl-informatik.uibk.ac.at/teaching/ss19/itp/thys/Exercises09.thy
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Further Reading

Alexander Krauss.
Defining Recursive Functions in Isabelle/HOL.
Isabelle documentation, 2018.

Alexander Krauss.
Automating Recursive Definitions and Termination Proofs in Higher-Order Logic.
PhD thesis, Institut für Informatik, Technische Universität München, 2009.
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Important Concepts

• best (method)
• bestsimp (method)
• blast (method)
• del (modifiers)
• dest (attribute/modifier)
• elim (attribute/method/modifier)
• fast (method)
• fastforce (method)
• force (method)
• fundef_cong (attribute)

• intro (attribute/method/modifier)
• lexicographic_order (method)
• of (attribute)
• OF (attribute)
• rule_format (attribute)
• simp (attribute)
• symmetric (attribute)
• THEN (attribute)
• termination_simp (attribute)
• unfold (method)
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