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Proof Methods

Some Useful Attributes

Overview ¢ of - instantiation of schematic variables (by position from left to right)
(?7x = ) [of y]l w <y = ¥
® QF - discharge assumptions using existing facts (by position)
* Proof Methods (?7A = 70 [OF Truel] ~» (True)

® symmetric - get symmetric version of equation
« Well-Foundedness (7a = 7b) [symmetric] « (?b = 7a)
® rule_format - replace HOL connectives by Pure connectives
(Vx. 7P x — ?Q) [rule_format] w» (7P 7x = 7Q»
® THEN - composition of facts
(7A € Pow 7B = 7A C ?B)[THEN (?A C 7B = 7c € 7A = 7c € 7B)] w»
* Exercises (7A € Pow 7B = 7c € A = 7c € 7B)

¢ Manual Termination Proofs

® simp, intro, elim, dest — declare fact
simplification/introduction/elimination/destruction rule
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Proof Methods
Kinds of Rules
¢ simplification rules — (conditional) equations used from left to right

¢ introduction rules — if conclusion of rule matches conclusion of subgoal, replace it by
premises of rule (generating one new subgoal per premise)

® destruction rules — replace first premise of subgoal matching major premise of rule by
conclusion (together with remaining premises) of rule

¢ elimination rules — like destruction rules, but rule is supposed to not loose (destruct)
information (compare conjunctl with conjE)

Examples

® have "Vx. P x" apply (rule alll) » Ax. P x
® have "A A B = C" apply (drule conjunct2) ~» B = C

1.LA = C

n n 3 3
® have "A V B = C" apply (erule disjE) ~» 9B —> C
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Proof Methods

Modifiers for Classical Methods

classical methods (like blast and auto) take following modifiers:
® intro: fact' — add additional intro rules
® dest: fact™ - add additional dest rules
® elim: fact™ — add additional elim rules

® del: fact' — delete classical rules

Note

when used with combined methods (like force and auto), modifiers for simplifier use prefix
simp (like simp add:, simp del:,...)

CS (DCS @ UIBK) session 9 7/15

Proof Methods

Equational Proof Methods

® unfold fact* - exhaustively apply equational facts (replacing left-hand sides by
right-hand sides); usually as initial method

® simp/simp_all - exhaustively apply simp rules to first/all subgoal(s)

Proof Methods for Classical Reasoning

® (intro | elim) fact* — exhaustively apply intro/elim rules; usually as initial method

® blast (best, fast) — solve first subgoal by exhaustive proof search (up to certain
bound) using all known intro/dest/elim rules (using best-first search, depth-first search)

Combined Proof Methods

® force (fastforce, bestsimp) - solve first subgoal by combination of equational and
classical reasoning

® auto - apply combination of equational and classical reasoning to all subgoals and leave
result as new subgoals
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Well-Foundedness

Your favorite definition of well-foundedness?

Definition
relation < is well-founded iff it meets one of following (equivalent) conditions:

® no infinite chains of shape x; > x, > x5 > ... (o))
® < admits induction, that is, for all P: (Vx.(Vy < x.P(y)) — P(x)) = Vx.P(x) (1)
® all elements are accessible, where x is accessible iff all y < x are accessible (A)
¢ all nonempty sets have minimal element M)

® no nonterminating set, where N nonterminating iff N #@AYx eN.Jy eN.y <x (N)

Demo09. thy — Equivalence Proof
prove that ( I ) implies (A) and (N) implies (C)
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Well-Foundedness
Trivially Well-Founded Relations
® the empty relation is well-founded

e every finite acyclic relation is well-founded
(R acyclic iff no x such that (x,x) € R")

Measure Functions
® every measure function f : A— N induces relation My = {(x, y). f(x) < f(¥)}
® M; well-founded for any f by construction

® Isabelle notation for M ¢ is ‘measure f’

Lexicographic Product of Relations

® lexicographic product of relations R and S, written R <xlex*>S, give by
((x1,x2), (¥1,¥2)) €R <*¥Llex*> S iff (xq, 1) €R or both, x; = y; and (x,y2) €S

® lexicographic product of well-founded relations is well-founded
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Manual Termination Proofs

Demo09.thy - An Odd Even/Odd Function

fun evenodd :: "nat = bool = bool"
where
"evenodd 0 True «— True"
| "evenodd x False «— — (evenodd x True)"
| "evenodd (Suc x) True «— evenodd x False"

Explicit Termination Proofs
® replace fun f :: "T" ... by
function (sequential) f :: "T" ... by (pat_completeness) auto

® and add termination by (relation "R") auto for some well-founded relation R
that covers recursive calls

® note: by default fun uses method lexicographic_order for termination proofs
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al Termination Proofs

Demo09. thy - Alternative Implementation for Grouping Repeated List Efements

fun split_same :: "'a = 'a list = ('a list X

where
"split_same x [1 = ({1, [1)
| "split_same x (y # ys) =
(if x = y then let (us, vs)
else ([1, y # ys))"

'a list)"

split_same x ys in (y # us, vs)

fun group :: "'a list = 'a list list"
where
"group n=1nrn-

| "group (x#xs) = (let (ys,zs)

split_same x xs in (x#ys) # group zs)"

Additional Simp Rules for Termination

® sometimes sufficient to add simp rules (only for termination proofs)

® use attribute termination_simp

CS (DCS @ UIBK)
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Demo09. thy — Higher-Order Recursion

datatype tree = Tree nat "tree list"

fun map :: "('a = 'b) = 'a list =
where
nmap £ [1=1]"
| "map f (x#xs) = f x # map f xs"
fun mirror :: "tree = tree"
where

'b list"

"mirror (Tree n ts) = Tree n (rev (map mirror ts))"

Congruence Rules

10/15

Manual Termination Proofs

® express on which values higher-order arguments have to agree to yield same result

® fundef_cong - declares congruence rule for function definitions
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Exercises (start from Exercises09.thy)

URL
http://cl-informatik.uibk.ac.at/teaching/ss19/itp/thys/Exercises09.thy
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Important Concepts
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best (method)
bestsimp (method)
blast (method)
del (modifiers)

dest (attribute/modifier)
elim (attribute/method/modifier)
fast (method)
fastforce (method)
force (method)
fundef_cong (attribute)

session 9
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Exercises

13/15

intro (attribute/method /modifier)

lexicographic_order
of

OF

rule_format

simp

symmetric

THEN
termination_simp
unfold

(method)
(attribute)
(attribute)
(attribute)
(attribute)
(attribute)
(attribute)
(attribute)

(method)
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Further Reading

[ Alexander Krauss.

Defining Recursive Functions in Isabelle/HOL.
Isabelle documentation, 2018.

[ Alexander Krauss.
Automating Recursive Definitions and Termination Proofs in Higher-Order Logic.
PhD thesis, Institut fiir Informatik, Technische Universitdt Miinchen, 2009.
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