
SAT and SMT Solving SS 2019 LVA 703048

Solutions to Test Exercises July 1, 2019

1 (a) The implication graph looks as follows:

1 2

3 4 5

6 7

8 9 10 11 C

The UIPs are 8 and 9. The indicated cuts lead to the implied clauses 1∨3∨6∨8, 5∨7∨9,
and 5 ∨ 7 ∨ 9 ∨ 10, from left to right.

(b) The clause 5 ∨ 7 ∨ 9 is minimal. Using resolution it can be derived as follows:

The conflict clause is 5 ∨ 7 ∨ 9 ∨ 11, its literal whose complement was assigned last is 11.
The clause responsible for this assignment is 7 ∨ 10 ∨ 11. We thus resolve

5 ∨ 7 ∨ 9 ∨ 11 7 ∨ 10 ∨ 11

5 ∨ 7 ∨ 9 ∨ 10

The literal in the resulting clause whose complement was assigned last is 10. The clause
responsible for this assignment is 9 ∨ 10. We hence get

5 ∨ 7 ∨ 9 ∨ 10 9 ∨ 10

5 ∨ 7 ∨ 9

2 (a) For example, substituting literals as follows:

1 : a ≈ b 2: c ≈ g(a) 3 : f(a) ≈ f(b) 4 : f(g(a)) ≈ g(a) 5 : f(a) ≈ c 6: f(b) ≈ f(c)

the propositional skeleton is 1 ∧ 2 ∧ (3 ∨ 4) ∧ 5 ∧ 6.

(b) We apply DPLL(T ) as follows:

‖ 1, 2, 3 ∨ 4, 5, 6

=⇒+ 1 2 5 6 ‖ 1, 2, 3 ∨ 4, 5, 6 unit propagate

=⇒ 1 2 5 6 3 ‖ 1, 2, 3 ∨ 4, 5, 6 T -propagate

=⇒ 1 2 5 6 3 4 ‖ 1, 2, 3 ∨ 4, 5, 6 unit propagate

(Here the literal 3 is T -learned from literal 1 in a single step of the congruence closure
algorithm.) At this point the SAT solver claims satisfiability with model 1 2 5 6 3 4,
corresponding to

a ≈ b ∧ c ≈ g(a) ∧ f(a) ≈ c ∧ f(b) ≈ f(c) ∧ f(a) ≈ f(b) ∧ f(g(a)) 6≈ g(a)



We apply congruence closure to check that the model is T -consistent. This is the case
if the positive literals do not imply f(g(a)) ≈ g(a), which is the negation of the negative
literal. We start by putting all subterms into different sets:

1 : {a} 2: {b} 3: {c} 4: {f(a)} 5: {f(b)} 6: {f(c)} 7: {g(a)} 8: {f(g(a))}

Merging sets according to equations results in

1: {a, b} 3: {c, g(a), f(a), f(b), f(c)} 8: {f(g(a))}

Since c ≈ g(a) implies f(c) ≈ f(g(a)) the sets 3 and 8 must be merged:

1 : {a, b} 3: {c, g(a), f(a), f(b), f(c), f(g(a))}

No more merge steps are possible. As f(g(a)) and g(a) are in the same set the model is
inconsistent, and the clause 1 ∨ 2 ∨ 5 ∨ 6 ∨ 3 ∨ 4 negating the current model is implied.
We can continue the DPLL(T) run by a T -learn step to add the new clause:

=⇒ 1 2 5 6 3 4 ‖ 1, 2, 3 ∨ 4, 5, 6, 1 ∨ 2 ∨ 5 ∨ 6 ∨ 3 ∨ 4 T -learn

=⇒ FailState fail

and conclude unsatisfiability after a final step.

3 (a) Both s1 and s2 violate their (upper) bound, so we want to decrease the value of one of
them. Because the coefficients for both s1 and s2 with x and s3 are negative, the value
of one of x or s3 has to be increased. But s3 is at its upper bound, so not suitable.

So only (s1, x) and (s2, x) are suitable.

(b) We pivot s2 with x, because s2 < s1. This yields the following updated tableau:

s1
x
y
s4


s2 s3

1 1

−1
2 −1
1
2 0

−3
2 −2


The variable s2 is set to its upper bound 2, and the nonbasic variable s3 is still assigned
−4. The remaining variables are updated to x = 3, y = 1, s1 = −2, s4 = 5, which
satisfies the constraints.

(c) The solution space is given by the small triangle, hence it is bounded.

2 4

−2

2



4 (a) We use auxiliary bitvectors c3 and (optionally) s3 to encode addition:

c0 = a0 ∧ b0 s0 = a0 ⊕ b0
c1 = (a1 ∧ b1) ∨ (a1 ∧ c0) ∨ (b1 ∧ c0) s1 = a1 ⊕ b1 ⊕ c0
c2 = (a2 ∧ b2) ∨ (a2 ∧ c1) ∨ (b2 ∧ c1) s2 = a2 ⊕ b2 ⊕ c1

Then c2 encodes occurrence of an overflow. (The sum s3 is actually not needed for that.)

(b) We can simply set exp2(c8) = 18 � c8.

5 (a) The formula (z = 0) ∧ (x + z > y) ∧ (y > x) ∧ (f(z) > z) ∧ (f(x) = f(z) + f(y)) can be
purified to

ψ1 = (z = 0) ∧ (x+ z > y) ∧ (y > x) ∧ (c > z) ∧ (a = c+ b)

ψ2 = (a = f(x)) ∧ (b = f(y)) ∧ (c = f(z))

using fresh variables a, b, and c.

(b) We use the deterministic version of the Nelson-Oppen procedure. Initially, the set E of
inferred equations is empty.

– First, LIA infers x = y from ψ1 and therefore sets E = {x = y}.
– Now EUF can infer a = b from ψ2 together with E, and hence updates E = {x =
y, a = b}.

– At this point LRA concludes unsatisfiability from ψ1 and E because a = b and
a = c+ b but c > 0.

6 (a) The following computation yields BnB(ϕ, 7) = 1, hence maxSAT(ϕ) = 6.

BnB(ϕ, 7) = 1

0 ≥ 7

x

BnB(ϕx, 7) = 1

1 ≥ 7

y

BnB(ϕxy, 7) = 2

2 ≥ 7

z

BnB(ϕxyz, 7) = 3

T

BnB(ϕxyz, 3) = 2

F

T

BnB(ϕxy, 2) = 1

1 ≥ 2

z

BnB(ϕxyz, 2) = 2

T

BnB(ϕxyz, 2) = 1

F

F

T

BnB(ϕx, 1) = 1

1 ≥ 1

F

(b) An SUC is given by the clause set {¬x, x}.


