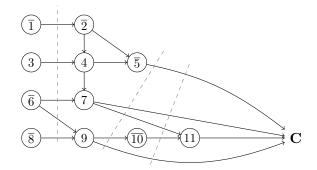
	<u>Ç</u>	universität insbruck Institut für informatik
SAT and SMT Solving	SS 2019	LVA 703048
Solutions to Test Exercises		July 1, 2019

1

(a) The implication graph looks as follows:



The UIPs are $\overline{8}$ and 9. The indicated cuts lead to the implied clauses $1 \vee \overline{3} \vee 6 \vee 8$, $5 \vee \overline{7} \vee \overline{9}$, and $5 \vee \overline{7} \vee \overline{9} \vee 10$, from left to right.

(b) The clause $5 \vee \overline{7} \vee \overline{9}$ is minimal. Using resolution it can be derived as follows: The conflict clause is $5 \vee \overline{7} \vee \overline{9} \vee \overline{11}$, its literal whose complement was assigned last is $\overline{11}$. The clause responsible for this assignment is $\overline{7} \vee 10 \vee 11$. We thus resolve

$$\frac{5 \vee \overline{7} \vee \overline{9} \vee \overline{11}}{5 \vee \overline{7} \vee \overline{9} \vee 10 \vee 11}$$

The literal in the resulting clause whose complement was assigned last is 10. The clause responsible for this assignment is $\overline{9} \vee \overline{10}$. We hence get

$$\frac{5 \vee \overline{7} \vee \overline{9} \vee 10 \qquad \overline{9} \vee \overline{10}}{5 \vee \overline{7} \vee \overline{9}}$$

|2|(a) For example, substituting literals as follows:

1: $a \approx b$ 2: $c \approx g(a)$ 3: $f(a) \approx f(b)$ 4: $f(g(a)) \approx g(a)$ 5: $f(a) \approx c$ 6: $f(b) \approx f(c)$

the propositional skeleton is $1 \wedge 2 \wedge (\overline{3} \vee \overline{4}) \wedge 5 \wedge 6$.

(b) We apply DPLL(T) as follows:

	$\parallel 1, 2, \overline{3} \lor \overline{4}, 5, 6$	
\Longrightarrow^+	$1256 \parallel 1, 2, \overline{3} \lor \overline{4}, 5, 6$	unit propagate
\implies	$1\ 2\ 5\ 6\ 3\ \ \ 1,\ 2,\ \overline{3}\lor\overline{4},\ 5,\ 6$	T-propagate
\implies	$1 2 5 6 3 \overline{4} \parallel 1, 2, \overline{3} \lor \overline{4}, 5, 6$	unit propagate

(Here the literal 3 is T-learned from literal 1 in a single step of the congruence closure algorithm.) At this point the SAT solver claims satisfiability with model $12563\overline{4}$, corresponding to

$$\mathsf{a}\approx\mathsf{b}\wedge\mathsf{c}\approx\mathsf{g}(\mathsf{a})\wedge\mathsf{f}(\mathsf{a})\approx\mathsf{c}\wedge\mathsf{f}(\mathsf{b})\approx\mathsf{f}(\mathsf{c})\wedge\mathsf{f}(\mathsf{a})\approx\mathsf{f}(\mathsf{b})\wedge\mathsf{f}(\mathsf{g}(\mathsf{a}))\not\approx\mathsf{g}(\mathsf{a})$$

We apply congruence closure to check that the model is *T*-consistent. This is the case if the positive literals do not imply $f(g(a)) \approx g(a)$, which is the negative of the negative literal. We start by putting all subterms into different sets:

$$1: \{a\} \quad 2: \{b\} \quad 3: \{c\} \quad 4: \{f(a)\} \quad 5: \{f(b)\} \quad 6: \{f(c)\} \quad 7: \{g(a)\} \quad 8: \{f(g(a))\} \quad 3: \{g(g(a))\} \quad 3: \{$$

Merging sets according to equations results in

1:
$$\{a, b\}$$
 3: $\{c, g(a), f(a), f(b), f(c)\}$ 8: $\{f(g(a))\}$

Since $c \approx g(a)$ implies $f(c) \approx f(g(a))$ the sets 3 and 8 must be merged:

1: $\{a, b\}$ 3: $\{c, g(a), f(a), f(b), f(c), f(g(a))\}$

No more merge steps are possible. As f(g(a)) and g(a) are in the same set the model is inconsistent, and the clause $\overline{1} \vee \overline{2} \vee \overline{5} \vee \overline{6} \vee \overline{3} \vee 4$ negating the current model is implied. We can continue the DPLL(T) run by a *T*-learn step to add the new clause:

$$\Rightarrow 12563\overline{4} \parallel 1, 2, \overline{3} \lor \overline{4}, 5, 6, \overline{1} \lor \overline{2} \lor \overline{5} \lor \overline{6} \lor \overline{3} \lor 4$$
 T-learn
$$\Rightarrow FailState$$
 fail

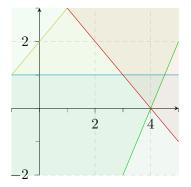
and conclude unsatisfiability after a final step.

- (a) Both s_1 and s_2 violate their (upper) bound, so we want to decrease the value of one of them. Because the coefficients for both s_1 and s_2 with x and s_3 are negative, the value of one of x or s_3 has to be increased. But s_3 is at its upper bound, so not suitable. So only (s_1, x) and (s_2, x) are suitable.
 - (b) We pivot s_2 with x, because $s_2 < s_1$. This yields the following updated tableau:

$$\begin{array}{ccc} s_2 & s_3 \\ s_1 & \begin{pmatrix} 1 & 1 \\ -\frac{1}{2} & -1 \\ y & \\ s_4 & \begin{pmatrix} \frac{1}{2} & 0 \\ -\frac{3}{2} & -2 \end{pmatrix} \end{array}$$

The variable s_2 is set to its upper bound 2, and the nonbasic variable s_3 is still assigned -4. The remaining variables are updated to x = 3, y = 1, $s_1 = -2$, $s_4 = 5$, which satisfies the constraints.

(c) The solution space is given by the small triangle, hence it is bounded.



4 (a) We use auxiliary bitvectors \mathbf{c}_3 and (optionally) \mathbf{s}_3 to encode addition:

$c_0 = a_0 \wedge b_0$	$s_0 = a_0 \oplus b_0$
$c_1 = (a_1 \wedge b_1) \lor (a_1 \wedge c_0) \lor (b_1 \wedge c_0)$	$s_1 = a_1 \oplus b_1 \oplus c_0$
$c_2 = (a_2 \land b_2) \lor (a_2 \land c_1) \lor (b_2 \land c_1)$	$s_2 = a_2 \oplus b_2 \oplus c_1$

Then c_2 encodes occurrence of an overflow. (The sum \mathbf{s}_3 is actually not needed for that.) (b) We can simply set $\exp 2(\mathbf{c}_8) = \mathbf{1}_8 \ll \mathbf{c}_8$.

5 (a) The formula $(z = 0) \land (x + z \ge y) \land (y \ge x) \land (f(z) > z) \land (f(x) = f(z) + f(y))$ can be purified to

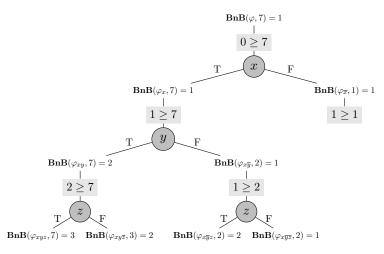
$$\psi_1 = (z = 0) \land (x + z \ge y) \land (y \ge x) \land (c > z) \land (a = c + b)$$

$$\psi_2 = (a = f(x)) \land (b = f(y)) \land (c = f(z))$$

using fresh variables a, b, and c.

- (b) We use the deterministic version of the Nelson-Oppen procedure. Initially, the set E of inferred equations is empty.
 - First, LIA infers x = y from ψ_1 and therefore sets $E = \{x = y\}$.
 - Now EUF can infer a = b from ψ_2 together with E, and hence updates $E = \{x = y, a = b\}$.
 - At this point LRA concludes unsatisfiability from ψ_1 and E because a = b and a = c + b but c > 0.

6 (a) The following computation yields $BnB(\varphi, 7) = 1$, hence maxSAT(φ) = 6.



(b) An SUC is given by the clause set $\{\neg x, x\}$.