universität innsbruck

SAT and SMT Solving

Sarah Winkler

Computational Logic Group
Department of Computer Science
University of Innsbruck
lecture 1
SS 2019

Outline

- Introduction
- Organisation
- Why SAT and SMT?
- Contents
- Propositional Logic
- DPLL
- Transformations to CNF
- Using SAT Solvers

Important Information
 - LVA 703048 (PS 2)

Important Information

- LVA 703048 (PS 2)
- http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt/

Important Information

- LVA 703048 (PS 2)
- http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt/

Time and Place
PS Friday 13:15-15:00 HSB9

Important Information

- LVA 703048 (PS 2)
- http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt/

Time and Place

VO	Friday	$13: 15-14: 00$	HSB9
PS	Friday	$14: 15-15: 00$	HSB9

Important Information

- LVA 703048 (PS 2)
- http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt/

Time and Place
VO Friday 13:15-14:00 HSB9
PS Friday 14:15-15:00 HSB9

Grading

- 70% weekly exercises, 30% proseminar test on June 28
- attendence required

Exercises

- 10 points per week
- indicate solved exercises before Friday 11:00 in OLAT, submit solutions

Important Information

- LVA 703048 (PS 2)
- http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt/

Time and Place
VO Friday 13:15-14:00 HSB9
PS Friday 14:15-15:00 HSB9

Grading

- 70% weekly exercises, 30% proseminar test on June 28
- attendence required

Exercises

- 10 points per week
- indicate solved exercises before Friday 11:00 in OLAT, submit solutions

Important Information

- LVA 703048 (PS 2)
- http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt/

Time and Place

VO	Friday	$13: 15-14: 00$	HSB9
PS	Friday	$14: 15-15: 00$	HSB9

Grading

- 70\% weekly exercises, 30% proseminar test on June 28
- attendence required

Exercises

- 10 points per week
- indicate solved exercises before Friday 11:00 in OLAT, submit solutions

Consultation Hours

Sarah Winkler 3M03 Thursday 14:00-16:00

Outline

- Introduction
- Organisation
- Why SAT and SMT?
- Contents
- Propositional Logic
- DPLL
- Transformations to CNF
- Using SAT Solvers

SAT Solving

input: propositional formula φ

SAT Solving

input:
output:
propositional formula φ
SAT + valuation v such that $v(\varphi)=T$ if φ satisfiable

SAT Solving

input:
output:
propositional formula φ
SAT + valuation v such that $v(\varphi)=T$ UNSAT
if φ satisfiable otherwise

SAT Solving

input:
output:
propositional formula φ
SAT + valuation v such that $v(\varphi)=T \quad$ if φ satisfiable UNSAT
otherwise

SAT Solving

input:
output:
propositional formula φ
SAT + valuation v such that $v(\varphi)=T$
UNSAT
if φ satisfiable otherwise

Terminology

- decision problem P is problem with answer yes or no

SAT Solving

input:
output:
propositional formula φ
SAT + valuation v such that $v(\varphi)=T$
UNSAT
if φ satisfiable otherwise

Terminology

- decision problem P is problem with answer yes or no
- SAT encoding of decision problem P is propositional formula φ_{P} such that answer to P is yes $\Longleftrightarrow \varphi_{P}$ is satisfiable

SMT Solving

input: \quad formula φ involving theory T

SMT solver

SMT Solving

input: \quad formula φ involving theory T
output:
SAT + valuation v such that $v(\varphi)=T \quad$ if φ is T-satisfiable

SMT solver

SMT Solving

input: formula φ involving theory T
output: SAT + valuation v such that $v(\varphi)=T \quad$ if φ is T-satisfiable UNSAT otherwise

SMT solver

SMT Solving

input: \quad formula φ involving theory T
output:
SAT + valuation v such that $v(\varphi)=T \quad$ if φ is T-satisfiable UNSAT

SMT solver

SMT Solving

input: \quad formula φ involving theory T
output:
SAT + valuation v such that $v(\varphi)=T \quad$ if φ is T-satisfiable UNSAT

SMT solver

Example (Theories)

- arithmetic

$$
2 a+b \geqslant c \vee(a=0 \wedge p)
$$

SMT Solving

input: formula φ involving theory T
output: SAT + valuation v such that $v(\varphi)=T \quad$ if φ is T-satisfiable UNSAT otherwise

Example (Theories)

- arithmetic
- uninterpreted functions

$$
\begin{array}{r}
2 a+b \geqslant c \vee(a=0 \wedge p) \\
\mathrm{f}(x, y) \neq \mathrm{f}(y, x) \wedge \mathrm{g}(\mathrm{f}(x, x))=\mathrm{g}(y)
\end{array}
$$

SMT Solving

input: formula φ involving theory T
output:

SAT + valuation v such that $v(\varphi)=T$ UNSAT
if φ is T-satisfiable otherwise

SMT solver

Example (Theories)

- arithmetic
- uninterpreted functions
- bit vectors

$$
\begin{array}{r}
2 a+b \geqslant c \vee(a=0 \wedge p) \\
\mathrm{f}(x, y) \neq \mathrm{f}(y, x) \wedge \mathrm{g}(\mathrm{f}(x, x))=\mathrm{g}(y) \\
\left(\left(\operatorname{zext}_{32} a_{8}\right)+b_{32}\right) \times c_{32}>_{u} 0_{32}
\end{array}
$$

SMT Solving

input: \quad formula φ involving theory T
output:

SAT + valuation v such that $v(\varphi)=T$
UNSAT
if φ is T-satisfiable otherwise

Example (Theories)

- arithmetic
- uninterpreted functions
- bit vectors

$$
\begin{array}{r}
2 a+b \geqslant c \vee(a=0 \wedge p) \\
\mathrm{f}(x, y) \neq \mathrm{f}(y, x) \wedge \mathrm{g}(\mathrm{f}(x, x))=\mathrm{g}(y) \\
\left(\left(\text { zext }_{32} a_{8}\right)+b_{32}\right) \times c_{32}>_{u} 0_{32}
\end{array}
$$

Terminology

- SMT encoding over theory T of decision problem P is formula φ_{P} such that answer to P is yes $\Longleftrightarrow \varphi_{P}$ is satisfiable

Application: Driving License Test

Problem

Austrian driving license test consists of 80 questions out of 1500 such that the following conditions are satisfied:

- 30 questions "main questions" with 3 sub-questions each
- at least 12 main questions must be about crossroads
- at least 12 questions must have pictures
- at least 5 "hard", "medium", and "easy" main questions

Frape 160 3Aviste
Sie biegen nach dem Verkehrszeichen "Erlaubte Höchstgeschwindigkeit $70 \mathrm{~km} / \mathrm{h}^{*}$ im Ortsgebiet rechts ab. Wie schnell dürfen Sie dann höchstens fahren?

Application: Driving License Test

Problem

Austrian driving license test consists of 80 questions out of 1500 such that the following conditions are satisfied:

- 30 questions "main questions" with 3 sub-questions each
- at least 12 main questions must be about crossroads
- at least 12 questions must have pictures
- at least 5 "hard", "medium", and "easy" main questions

Fape 160 3Prist
Sie biegen nach dem Verkehrszeichen "Erlaubte Höchstgeschwindigkeit $70 \mathrm{~km} / \mathrm{h}^{*}$ im Ortsgebiet rechts ab. Wie schnell dürfen Sie dann höchstens fahren?

- how can software find valid question set?

Application: Driving License Test

Problem

Austrian driving license test consists of 80 questions out of 1500 such that the following conditions are satisfied:

- 30 questions "main questions" with 3 sub-questions each
- at least 12 main questions must be about crossroads
- at least 12 questions must have pictures
- at least 5 "hard", "medium", and "easy" main questions

Frape 160 3Aviste
Sie biegen nach dem Verkehrszeichen "Erlaubte Höchstgeschwindigkeit $70 \mathrm{~km} / \mathrm{h}^{-}$ im Ortsgebiet rechts ab. Wie schnell dürfen Sie dann höchstens fahren?

- how can software find valid question set?

SAT Encoding

- variables q_{i} for $1 \leqslant i \leqslant 1500$

Application: Driving License Test

Problem

Austrian driving license test consists of 80 questions out of 1500 such that the following conditions are satisfied:

- 30 questions "main questions" with 3 sub-questions each
- at least 12 main questions must be about crossroads
- at least 12 questions must have pictures
- at least 5 "hard", "medium", and "easy" main questions

Frape 160 3Aviste
Sie biegen nach dem Verkehrszeichen "Erlaubte Höchstgeschwindigkeit $70 \mathrm{~km} / \mathrm{h}^{\text {" }}$ im Ortsgebiet rechts ab. Wie schnell dürfen Sie dann höchstens fahren?

- how can software find valid question set?

SAT Encoding

- variables q_{i} for $1 \leqslant i \leqslant 1500$
- idea: valuation v sets $v\left(q_{i}\right)=\mathrm{T}$ if question i is included, $v\left(q_{i}\right)=\mathrm{F}$ otherwise

Application: Driving License Test

Problem

Austrian driving license test consists of 80 questions out of 1500 such that the following conditions are satisfied:

- 30 questions "main questions" with 3 sub-questions each
- at least 12 main questions must be about crossroads
- at least 12 questions must have pictures
- at least 5 "hard", "medium", and "easy" main questions

Fape 160 3Prist
Sie biegen nach dem Verkehrszeichen "Erlaubte Höchstgeschwindigkeit $70 \mathrm{~km} / \mathrm{h}^{*}$ im Ortsgebiet rechts ab. Wie schnell dürfen Sie dann höchstens fahren?

- how can software find valid question set?

SAT Encoding

- variables q_{i} for $1 \leqslant i \leqslant 1500$
- idea: valuation v sets $v\left(q_{i}\right)=\mathrm{T}$ if question i is included, $v\left(q_{i}\right)=\mathrm{F}$ otherwise
- $\sum_{i \in Q_{\text {xroads }}} q_{i} \geqslant 12$

Application: Driving License Test

Problem

Austrian driving license test consists of 80 questions out of 1500 such that the following conditions are satisfied:

- 30 questions "main questions" with 3 sub-questions each
- at least 12 main questions must be about crossroads
- at least 12 questions must have pictures
- at least 5 "hard", "medium", and "easy" main questions

Fape 150 3Anast
Sie biegen nach dem Verkehrszeichen "Erlaubte Höchstgeschwindigkeit $70 \mathrm{~km} / \mathrm{h}^{\text {- }}$ im Ortsgebiet rechts ab. Wie schnell dürfen Sie dann höchstens fahren?

- how can software find valid question set?

SAT Encoding

- variables q_{i} for $1 \leqslant i \leqslant 1500$
- idea: valuation v sets $v\left(q_{i}\right)=\mathrm{T}$ if question i is included, $v\left(q_{i}\right)=\mathrm{F}$ otherwise
- $\sum_{i \in Q_{\text {xroads }}} q_{i} \geqslant 12$
- $\sum_{i \in Q_{\text {pictures }}} q_{i} \geqslant 12$

Application: Driving License Test

Problem

Austrian driving license test consists of 80 questions out of 1500 such that the following conditions are satisfied:

- 30 questions "main questions" with 3 sub-questions each
- at least 12 main questions must be about crossroads
- at least 12 questions must have pictures
- at least 5 "hard", "medium", and "easy" main questions

Fape 150 3Anast
Sie biegen nach dem Verkehrszeichen "Erlaubte Höchstgeschwindigkeit $70 \mathrm{~km} / \mathrm{h}^{\text {- }}$ im Ortsgebiet rechts ab. Wie schnell dürfen Sie dann höchstens fahren?

- how can software find valid question set?

SAT Encoding

- variables q_{i} for $1 \leqslant i \leqslant 1500$
- idea: valuation v sets $v\left(q_{i}\right)=\mathrm{T}$ if question i is included, $v\left(q_{i}\right)=\mathrm{F}$ otherwise
- $\sum_{i \in Q_{\text {xroads }}} q_{i} \geqslant 12$
- $\sum_{i \in Q_{\text {pictures }}} q_{i} \geqslant 12$
- $\sum_{i \in Q_{\text {hard }}} q_{i} \geqslant 5$

Application: Driving License Test

Problem

Austrian driving license test consists of 80 questions out of 1500 such that the following conditions are satisfied:

- 30 questions "main questions" with 3 sub-questions each
- at least 12 main questions must be about crossroads
- at least 12 questions must have pictures
- at least 5 "hard", "medium", and "easy" main questions

Fape 160 3Rurity
Sie biegen nach dem Verkehrszeichen "Erlaubte Höchstgeschwindigkeit $70 \mathrm{~km} / \mathrm{h}^{\text {" }}$ im Ortsgebiet rechts ab. Wie schnell dürfen Sie dann höchstens fahren?

- how can software find valid question set?

SAT Encoding

- variables q_{i} for $1 \leqslant i \leqslant 1500$
- idea: valuation v sets $v\left(q_{i}\right)=\mathrm{T}$ if question i is included, $v\left(q_{i}\right)=\mathrm{F}$ otherwise
- $\sum_{i \in Q_{\text {xroads }}} q_{i} \geqslant 12$
- $\sum_{i \in Q_{\text {pictures }}} q_{i} \geqslant 12$
- $\sum_{i \in Q_{\text {hard }}} q_{i} \geqslant 5$

Result

easy generation of valid question sets (with some random preselection)

Application: Pythagorean Triples

Problem

Can one color all natural numbers with two colors such that whenever $x^{2}+y^{2}=z^{2}$ not all of x, y, and z have same color?

Application: Pythagorean Triples

Problem

Can one color all natural numbers with two colors such that whenever $x^{2}+y^{2}=z^{2}$ not all of x, y, and z have same color?

Example

$$
3^{2}+4^{2}=5^{2} \quad 5^{2}+12^{2}=13^{2}
$$

(a)	1	2	3	4	5	6	7	8	9	10	11	12	13	\ldots	\checkmark
(b)	1	2	3	4	5	6	7	8	9	10	11	12	13	\ldots	x

Application: Pythagorean Triples

Problem

Can one color all natural numbers with two colors such that whenever $x^{2}+y^{2}=z^{2}$ not all of x, y, and z have same color?

Example

$$
3^{2}+4^{2}=5^{2} \quad 5^{2}+12^{2}=13^{2}
$$

(a)	1	2	3	4	5	6	7	8	9	10	11	12	13	\ldots	\checkmark
(b)	1	2	3	4	5	6	7	8	9	10	11	12	13	\ldots	x

SAT Encoding

- variables x_{i} for $1 \leqslant i \leqslant n$ such that x_{i} becomes true ff it is colored red

Application: Pythagorean Triples

Problem

Can one color all natural numbers with two colors such that whenever $x^{2}+y^{2}=z^{2}$ not all of x, y, and z have same color?

Example

$$
3^{2}+4^{2}=5^{2} \quad 5^{2}+12^{2}=13^{2}
$$

(a)	1	2	3	4	5	6	7	8	9	10	11	12	13	\ldots	\checkmark
(b)	1	2	3	4	5	6	7	8	9	10	11	12	13	\ldots	x

SAT Encoding

- variables x_{i} for $1 \leqslant i \leqslant n$ such that x_{i} becomes true iff it is colored red
- SAT encoding: for all $a^{2}+b^{2}=c^{2}$ include $\left(x_{a} \vee x_{b} \vee x_{c}\right) \wedge\left(\bar{x}_{a} \vee \bar{x}_{b} \vee \bar{x}_{c}\right)$ (+ symmetry breaking, simplification, heuristics)

Application: Pythagorean Triples

Problem

Can one color all natural numbers with two colors such that whenever $x^{2}+y^{2}=z^{2}$ not all of x, y, and z have same color?

Example

$$
3^{2}+4^{2}=5^{2} \quad 5^{2}+12^{2}=13^{2}
$$

(a)	1	2	3	4	5	6	7	8	9	10	11	12	13	\ldots	\checkmark
(b)	1	2	3	4	5	6	7	8	9	10	11	12	13	\ldots	x

SAT Encoding

- variables x_{i} for $1 \leqslant i \leqslant n$ such that x_{i} becomes true iff it is colored red
- SAT encoding: for all $a^{2}+b^{2}=c^{2}$ include $\left(x_{a} \vee x_{b} \vee x_{c}\right) \wedge\left(\bar{x}_{a} \vee \bar{x}_{b} \vee \bar{x}_{c}\right)$ (+ symmetry breaking, simplification, heuristics)

Result: No. Coloring exists only up to 7,825 .

Application: Pythagorean Triples

Result: No. Coloring exists only up to 7,825 .

Application: Pythagorean Triples

Problem

Can one color all natural numbers with two colors such that whenever $x^{2}+y^{2}=z^{2}$ not all of x, y, and z have same color?

Example

$$
3^{2}+4^{2}=5^{2} \quad 5^{2}+12^{2}=13^{2}
$$

(a)	1	2	3	4	5	6	7	8	9	10	11	12	13	\ldots
(b)	1	2	3	4	5	6	7	8	9	10	11	12	13	\ldots

SAT Encoding

- variables x_{i} for $1 \leqslant i \leqslant n$ such that x_{i} becomes true iff it is colored red
- SAT encoding: for all $a^{2}+b^{2}=c^{2}$ include $\left(x_{a} \vee x_{b} \vee x_{c}\right) \wedge\left(\bar{x}_{a} \vee \bar{x}_{b} \vee \bar{x}_{c}\right)$ (+ symmetry breaking, simplification, heuristics)

Result: No. Coloring exists only up to $\mathbf{7 , 8 2 5}$.

1000s of variables, solving time 2 days with 800 processors, 200 TB of proof

Q日e Der längste Mathe－Beweis der Welt umfasst 200 Terabyte－SPIEGEL ONLINE－Mozilla Firefox S Der längste Mathe－Bew \times

```
\leftarrow}->\textrm{C}\mathrm{ क人
（i）\(\AA\) www．spiegel．de／wissenschaft／men
园 \(\cdots\) シ a search
```

SPIEGEL ONLINE merspiegel sfiegltv

Menü| Politik Meinung Wirtschaft Panorama Sport Kultur Netzwelt Wissenschaft mehrv

WISSENSCHAFT
Schlagzellen | wetter | DAX 12.200,59 | TVProgramm | ADO

```

Nachrichten＞Wissenschaft＞Mensch＞Mathematik＞Der länsste Mathe－Beweis der Welt umfasst 200 Terabyte

\section*{Zahlenrätsel}

\section*{Der längste Mathe－Beweis der Welt}

Drei Mathematiker haben ein Zahlenrätsel geknackt－mithilfe eines Supercomputers．Der Beweis umfasst 200 Terabyte．Sie wollen wissen，worum es geht？Okay，versuchen wir es．


Von Holger Dambeck \(\checkmark\)


Supercomputer als Mathematiker



Zahlen, bitte! Mit 800 CPU-Kernen zur Zahl 7825
14.06.2016 13:37 Uhr - Volker Zota

1()) vorlesen 138506294224
101465022981
12057825934
8866944723

Q日e Der längste Mathe-Beweis der Welt umfasst 200 Terabyte - SPIEGEL ONLINE - Mozilla Firefox



\section*{Application: Tournament Scheduling}

\section*{Problem: Round Robin Scheduling}

Schedule sports league tournament for \(n\) teams, \(p\) periods of \(n-1\) rounds each (+ venue restrictions, break restrictions, ...)

\section*{Application: Tournament Scheduling}

\section*{Problem: Round Robin Scheduling}

Schedule sports league tournament for \(n\) teams, \(p\) periods of \(n-1\) rounds each (+ venue restrictions, break restrictions, ...)

\section*{Example (Österreichische Fußball-Bundesliga)}

10 teams play in 4 periods ( 9 rounds each), periods \(1 \& 2\) and \(3 \& 4\) mirrored

\section*{Application: Tournament Scheduling}

\section*{Problem: Round Robin Scheduling}

Schedule sports league tournament for \(n\) teams, \(p\) periods of \(n-1\) rounds each (+ venue restrictions, break restrictions, ...)

\section*{Example (Österreichische Fußball-Bundesliga)}

10 teams play in 4 periods ( 9 rounds each), periods \(1 \& 2\) and \(3 \& 4\) mirrored (Part of) SAT Encoding
- variable \(x_{i j p r}\) is true if team \(i\) plays team \(j\) at home in period \(p\), round \(r\)

\section*{Application: Tournament Scheduling}

\section*{Problem: Round Robin Scheduling}

Schedule sports league tournament for \(n\) teams, \(p\) periods of \(n-1\) rounds each (+ venue restrictions, break restrictions, ....)

\section*{Example (Österreichische Fußball-Bundesliga)}

10 teams play in 4 periods ( 9 rounds each), periods \(1 \& 2\) and \(3 \& 4\) mirrored

\section*{(Part of) SAT Encoding}
- variable \(x_{i j p r}\) is true if team \(i\) plays team \(j\) at home in period \(p\), round \(r\)
\[
\bigwedge_{i, p, r} \bigvee_{j \neq i}\left(x_{i j p r} \vee x_{j i p r}\right)
\]

\section*{Application: Tournament Scheduling}

\section*{Problem: Round Robin Scheduling}

Schedule sports league tournament for \(n\) teams, \(p\) periods of \(n-1\) rounds each (+ venue restrictions, break restrictions, ...)

\section*{Example (Österreichische Fußball-Bundesliga)}

10 teams play in 4 periods ( 9 rounds each), periods \(1 \& 2\) and \(3 \& 4\) mirrored

\section*{(Part of) SAT Encoding}
- variable \(x_{i j p r}\) is true if team \(i\) plays team \(j\) at home in period \(p\), round \(r\)
\[
\begin{array}{lr}
\bigwedge_{i, p, r} \bigvee_{j \neq i}\left(x_{i j p r} \vee x_{j i p r}\right) & \text { each team plays in every round } \\
\bigwedge_{i} \bigwedge_{i \neq j}\left(x_{i j p r} \rightarrow \neg\left(x_{i k p r} \vee x_{k i p r}\right)\right) \quad \text { each team plays at most once in every round }
\end{array}
\]

\section*{Application: Tournament Scheduling}

\section*{Problem: Round Robin Scheduling}

Schedule sports league tournament for \(n\) teams, \(p\) periods of \(n-1\) rounds each (+ venue restrictions, break restrictions, ...)

\section*{Example (Österreichische Fußball-Bundesliga)}

10 teams play in 4 periods ( 9 rounds each), periods \(1 \& 2\) and \(3 \& 4\) mirrored

\section*{(Part of) SAT Encoding}
- variable \(x_{i j p r}\) is true if team \(i\) plays team \(j\) at home in period \(p\), round \(r\)
\[
\begin{aligned}
& \bigwedge_{i, p, r} \bigvee_{j \neq i}\left(x_{i j p r} \vee x_{j i p r}\right) \\
& \bigwedge_{i, p, r} \bigwedge_{j \neq i} \bigwedge_{k \neq i \wedge k \neq j}\left(x_{i j p r}\right.
\end{aligned}
\]
\[
\bigwedge \bigwedge_{\bigwedge}\left(x_{i j p r} \rightarrow \neg\left(x_{i k p r} \vee x_{k i p r}\right)\right) \quad \text { each team plays at most once in every round }
\]
\[
\bigwedge_{i \cdot r}\left(x_{i j 1 r} \rightarrow x_{j i 2 r}\right) \wedge\left(x_{i j 3 r} \rightarrow x_{j i 4 r}\right) \quad \text { mirror rounds } 1 \& 2 \text { and } 3 \& 4
\]

\section*{Application: Tournament Scheduling}

\section*{Problem: Round Robin Scheduling}

Schedule sports league tournament for \(n\) teams, \(p\) periods of \(n-1\) rounds each (+ venue restrictions, break restrictions, ...)

\section*{Example (Österreichische Fußball-Bundesliga)}

10 teams play in 4 periods ( 9 rounds each), periods \(1 \& 2\) and \(3 \& 4\) mirrored

\section*{(Part of) SAT Encoding}
- variable \(x_{i j p r}\) is true if team \(i\) plays team \(j\) at home in period \(p\), round \(r\)
\[
\begin{aligned}
& \bigwedge_{i, p, r} \bigvee_{j \neq i}\left(x_{i j p r} \vee x_{j i p r}\right) \\
& \bigwedge_{i, p, r} \bigwedge_{j \neq i} \bigwedge_{k \neq i \wedge k \neq j}\left(x _ { i j p r } \rightarrow \neg \left(x_{i k p r} \vee x\right.\right. \\
& \bigwedge_{i, j, r}\left(x_{i j 1 r} \rightarrow x_{j i 2 r}\right) \wedge\left(x_{i j 3 r} \rightarrow x_{j i 4 r}\right)
\end{aligned}
\]
\[
\bigwedge \bigwedge_{\bigwedge_{i}}\left(x_{i j p r} \rightarrow \neg\left(x_{i k p r} \vee x_{k i p r}\right)\right) \quad \text { each team plays at most once in every round }
\]

\section*{Result}

SAT scheduling is 100x faster than previous industrial scheduling tools

\section*{Application: Hardware Verification}

\section*{Problem}
- errors in hardware chips are costly (Intel paid \(\$ 475\) million for FDIV bug )

\section*{Example (Formal Circuit Model)}


\section*{Application: Hardware Verification}

\section*{Problem}
- errors in hardware chips are costly (Intel paid \(\$ 475\) million for FDIV bug )
- testing is not enough to guarantee desired behavior

\section*{Example (Formal Circuit Model)}


\section*{Application: Hardware Verification}

\section*{Problem}
- errors in hardware chips are costly (Intel paid \(\$ 475\) million for FDIV bug )
- testing is not enough to guarantee desired behavior

\section*{Example (Formal Circuit Model)}


\section*{SAT Encoding}
- variables for input and output
- SAT formulas for implemented behavior and expected behavior (specification)
- check for equivalence

\section*{Application: Hardware Verification}

\section*{Problem}
- errors in hardware chips are costly (Intel paid \(\$ 475\) million for FDIV bug )
- testing is not enough to guarantee desired behavior

\section*{Example (Formal Circuit Model)}


\section*{SAT Encoding}
- variables for input and output
- SAT formulas for implemented behavior and expected behavior (specification)
- check for equivalence

\section*{Impact}
- ensured correctness, more reliable hardware components (formal verification)
- manufacturers rely on SAT-based verification since beginning of 2000s e.g., Intel Core i7 implements over 2700 distinct verified microinstructions

\section*{Outline}
- Introduction
- Organisation
- Why SAT and SMT?
- Contents
- Propositional Logic
- DPLL
- Transformations to CNF
- Using SAT Solvers

\section*{Contents}

\section*{Part 1: SAT}

DPLL, conflict analysis, CDCL, heuristics, unsatisfiable cores, maxSAT, symmetry breaking

\section*{Part 2: SMT}

DPLL(T), eager vs lazy, \(T\)-propagation, Nelson-Oppen combination, maxSMT

\section*{Part 3: Theory Solving}
- equality with uninterpreted functions (congruence closure, conflict analysis)
- linear real arithmetic (simplex algorithm)
- arrays (reduction to EUF, lemmas on demand)
- bit vectors (bit blasting, preprocessing)

\section*{Practice}

SAT solvers, SMT solvers, encoding, DIMACS, SMT-LIB, model checking

\section*{Contents}

\section*{Part 1: SAT}

DPLL, conflict analysis, CDCL, heuristics, unsatisfiable cores, maxSAT, symmetry breaking

\section*{Part 2: SMT}

DPLL(T), eager vs lazy, \(T\)-propagation, Nelson-Oppen combination, maxSMT

\section*{Part 3: Theory Solving}
- equality with uninterpreted functions (congruence closure, conflict analysis)
- linear real arithmetic (simplex algorithm)
- arrays (reduction to EUF, lemmas on demand)
- bit vectors (bit blasting, preprocessing)

\section*{Practice}

SAT solvers, SMT solvers, encoding, DIMACS, SMT-LIB, model checking

\section*{Outline}

\section*{- Introduction}
- Propositional Logic
- DPLL
- Transformations to CNF
- Using SAT Solvers

\section*{Propositional Logic Revisited}

\section*{Concepts}
- literal
- formula
- assignment
- satisfiability and validity
- negation normal form (NNF)
- conjunctive normal form (CNF)
- disjunctive normal form (DNF)

\section*{Definition (Propositional Logic: Syntax)}
propositional formulas are built form
- atoms
\[
p, q, r, p_{1}, p_{2}, \ldots
\]

\section*{Definition (Propositional Logic: Syntax)}
propositional formulas are built form
- atoms
\(p, q, r, p_{1}, p_{2}, \ldots\)
- constants
\(\perp, \top\)

\section*{Definition (Propositional Logic: Syntax)}
propositional formulas are built form
- atoms
- constants
\(p, q, r, p_{1}, p_{2}, \ldots\)
\(\perp, \top\)
- negation
\(\neg p \quad\) "not \(p\) "

\section*{Definition (Propositional Logic: Syntax)}
propositional formulas are built form
- atoms
- constants
- negation
- conjunction
\(p, q, r, p_{1}, p_{2}, \ldots\)
\(\perp, \top\)
\(\neg p\)
\(p \wedge q\)
"not \(p\) "
" \(p\) and \(q\) "

\section*{Definition (Propositional Logic: Syntax)}
propositional formulas are built form
- atoms
- constants
- negation
- conjunction
- disjunction
\[
\begin{array}{ll}
p, q, r, p_{1}, p_{2}, \ldots & \\
\perp, \top & \\
\neg p & \text { "not } p \text { " } \\
p \wedge q & \text { " } p \text { and } q \text { " } \\
p \vee q & \text { " } p \text { or } q \text { " }
\end{array}
\]

\section*{Definition (Propositional Logic: Syntax)}
propositional formulas are built form
- atoms
- constants
- negation
- conjunction
- disjunction
- implication
\(p, q, r, p_{1}, p_{2}, \ldots\)
\(\perp, \top\)
\(\neg p\)
\(p \wedge q\)
\(p \vee q\)
\(p \rightarrow q\)
"not \(p\) "
" \(p\) and \(q\) "
" \(p\) or \(q\) "
"if \(p\) then \(q\) holds"

\section*{Definition (Propositional Logic: Syntax)}
propositional formulas are built form
- atoms
- constants
- negation
- conjunction
- disjunction
- implication
- equivalence

\section*{\(p, q, r, p_{1}, p_{2}, \ldots\)}
\(\perp, \top\)
\(\neg p\)
\(p \wedge q\)
\(p \vee q\)
\(p \rightarrow q\)
\(p \leftrightarrow q\)
"not \(p\) "
" \(p\) and \(q\) "
" \(p\) or \(q\) "
"if \(p\) then \(q\) holds"
" \(p\) if and only if \(q\) "

\section*{Definition (Propositional Logic: Syntax)}
propositional formulas are built form
- atoms
- constants
- negation
- conjunction
- disjunction
- implication
- equivalence
\[
\begin{array}{ll}
p, q, r, p_{1}, p_{2}, \ldots & \\
\perp, T & \text { "not } p \text { " } \\
\neg p & \text { " } p \text { and } q \text { " } \\
p \wedge q & \text { " } p \text { or } q \text { " } \\
p \vee q & \text { "if } p \text { then } q \text { holds" } \\
p \rightarrow q & \text { " } p \text { if and only if } q \text { " }
\end{array}
\]
according to the BNF grammar
\[
\varphi::=p|\perp| \top|(\neg \varphi)|(\varphi \wedge \varphi)|(\varphi \vee \varphi)|(\varphi \rightarrow \varphi) \mid(\varphi \leftrightarrow \varphi)
\]

\section*{Definition (Propositional Logic: Syntax)}
propositional formulas are built form
- atoms
- constants
- negation
- conjunction
- disjunction
- implication
- equivalence
\[
\begin{array}{ll}
p, q, r, p_{1}, p_{2}, \ldots & \\
\perp, \top & \text { "not } p \text { " } \\
\neg p & \text { " } p \text { and } q \text { " } \\
p \wedge q & \text { " } p \text { or } q \text { "" } \\
p \vee q & \text { "if } p \text { then } q \text { holds" } \\
p \rightarrow q & \text { " } p \text { if and only if } q \text { " }
\end{array}
\]
according to the BNF grammar
\[
\varphi::=p|\perp| \top|(\neg \varphi)|(\varphi \wedge \varphi)|(\varphi \vee \varphi)|(\varphi \rightarrow \varphi) \mid(\varphi \leftrightarrow \varphi)
\]

\section*{Conventions}
- binding precedence \(\neg>\wedge>\vee>, \leftrightarrow\)

\section*{Definition (Propositional Logic: Syntax)}
propositional formulas are built form
- atoms
- constants
- negation
- conjunction
- disjunction
- implication
- equivalence
\[
\begin{array}{ll}
p, q, r, p_{1}, p_{2}, \ldots & \\
\perp, \top & \text { "not } p \text { " } \\
\neg p & \text { " } p \text { and } q \text { " } \\
p \wedge q & \text { " } p \text { or } q \text { "" } \\
p \vee q & \text { "if } p \text { then } q \text { holds" } \\
p \rightarrow q & \text { " } p \text { if and only if } q \text { " }
\end{array}
\]
according to the BNF grammar
\[
\varphi::=p|\perp| \top|(\neg \varphi)|(\varphi \wedge \varphi)|(\varphi \vee \varphi)|(\varphi \rightarrow \varphi) \mid(\varphi \leftrightarrow \varphi)
\]

\section*{Conventions}
- binding precedence \(\neg>\wedge>\vee>, \leftrightarrow\)
- omit outer parantheses

\section*{Definition (Propositional Logic: Syntax)}
propositional formulas are built form
- atoms
- constants
- negation
- conjunction
- disjunction
- implication
- equivalence
\(p, q, r, p_{1}, p_{2}, \ldots\)
\[
\perp, \top
\]
\[
\neg p
\]
\[
p \wedge q
\]
\[
p \vee q
\]
\[
p \rightarrow q
\]
\[
p \leftrightarrow q
\]
"not \(p\) "
" \(p\) and \(q\) "
" \(p\) or \(q\) "
"if \(p\) then \(q\) holds"
" \(p\) if and only if \(q\) "
according to the BNF grammar
\[
\varphi::=p|\perp| \top|(\neg \varphi)|(\varphi \wedge \varphi)|(\varphi \vee \varphi)|(\varphi \rightarrow \varphi) \mid(\varphi \leftrightarrow \varphi)
\]

\section*{Conventions}
- binding precedence \(\neg>\wedge>\vee>, \leftrightarrow\)
- omit outer parantheses
\(\triangleright \rightarrow, \wedge, \vee\) are right-associative: \(\quad p \rightarrow q \rightarrow r\) denotes \(p \rightarrow(q \rightarrow r)\)

\section*{Definition (Propositional Logic: Semantics)}
- valuation (truth assignment) is mapping \(v:\{p, q, r, \ldots\} \rightarrow\{F, T\}\) from atoms to truth values

\section*{Definition (Propositional Logic: Semantics)}
- valuation (truth assignment) is mapping \(v:\{p, q, r, \ldots\} \rightarrow\{F, T\}\) from atoms to truth values
- extension to formulas:
\[
v(\perp)=\mathrm{F}
\]

\section*{Definition (Propositional Logic: Semantics)}
- valuation (truth assignment) is mapping \(v:\{p, q, r, \ldots\} \rightarrow\{F, T\}\) from atoms to truth values
- extension to formulas:
\[
v(\perp)=\mathrm{F}
\]
\[
v(T)=T
\]

\section*{Definition (Propositional Logic: Semantics)}
- valuation (truth assignment) is mapping \(v:\{p, q, r, \ldots\} \rightarrow\{F, T\}\) from atoms to truth values
- extension to formulas:
\[
v(\perp)=\mathrm{F}
\]
\[
v(\top)=T
\]
\[
v(\varphi \wedge \psi)= \begin{cases}\mathrm{T} & \text { if } v(\varphi)=v(\psi)=\mathrm{T} \\ \mathrm{~F} & \text { otherwise }\end{cases}
\]

\section*{Definition (Propositional Logic: Semantics)}
- valuation (truth assignment) is mapping \(v:\{p, q, r, \ldots\} \rightarrow\{\mathrm{F}, \mathrm{T}\}\) from atoms to truth values
- extension to formulas:
\[
\begin{aligned}
v(\perp) & =\mathrm{F} \\
v(\varphi \wedge \psi) & = \begin{cases}\mathrm{T} & \text { if } v(\varphi)=v(\psi)=\mathrm{T} \\
\mathrm{~F} & \text { otherwise }\end{cases}
\end{aligned}
\]
\[
\begin{aligned}
& v(T)=T \\
& v(\neg \varphi)= \begin{cases}T & \text { if } v(\varphi)=\mathrm{F} \\
\mathrm{~F} & \text { if } v(\varphi)=\mathrm{T}\end{cases}
\end{aligned}
\]

\section*{Definition (Propositional Logic: Semantics)}
- valuation (truth assignment) is mapping \(v:\{p, q, r, \ldots\} \rightarrow\{F, T\}\) from atoms to truth values
- extension to formulas:
\[
\begin{aligned}
v(\perp) & =\mathrm{F} \\
v(\varphi \wedge \psi) & = \begin{cases}\mathrm{T} & \text { if } v(\varphi)=v(\psi)=\mathrm{T} \\
\mathrm{~F} & \text { otherwise }\end{cases} \\
v(\varphi \vee \psi) & = \begin{cases}\mathrm{F} & \text { if } v(\varphi)=v(\psi)=\mathrm{F} \\
\mathrm{~T} & \text { otherwise }\end{cases}
\end{aligned}
\]
\[
v(T)=T
\]
\[
v(\neg \varphi)= \begin{cases}\mathrm{T} & \text { if } v(\varphi)=\mathrm{F} \\ \mathrm{~F} & \text { if } v(\varphi)=\mathrm{T}\end{cases}
\]

\section*{Definition (Propositional Logic: Semantics)}
- valuation (truth assignment) is mapping \(v:\{p, q, r, \ldots\} \rightarrow\{F, T\}\) from atoms to truth values
- extension to formulas:
\[
\begin{aligned}
v(\perp) & =\mathrm{F} \\
v(\varphi \wedge \psi) & = \begin{cases}\mathrm{T} & \text { if } v(\varphi)=v(\psi)=\mathrm{T} \\
\mathrm{~F} & \text { otherwise }\end{cases} \\
v(\varphi \vee \psi) & = \begin{cases}\mathrm{F} & \text { if } v(\varphi)=v(\psi)=\mathrm{F} \\
\mathrm{~T} & \text { otherwise }\end{cases}
\end{aligned}
\]
\[
\begin{aligned}
v(T) & =T \\
v(\neg \varphi) & = \begin{cases}\mathrm{T} & \text { if } v(\varphi)=\mathrm{F} \\
\mathrm{~F} & \text { if } v(\varphi)=\mathrm{T}\end{cases} \\
v(\varphi \leftrightarrow \psi) & = \begin{cases}\mathrm{T} & \text { if } v(\varphi)=v(\psi) \\
\mathrm{F} & \text { otherwise }\end{cases}
\end{aligned}
\]

\section*{Definition (Propositional Logic: Semantics)}
- valuation (truth assignment) is mapping \(v:\{p, q, r, \ldots\} \rightarrow\{F, T\}\) from atoms to truth values
- extension to formulas:
\[
v(\perp)=F
\]
\(v(\varphi \wedge \psi)= \begin{cases}\mathrm{T} & \text { if } v(\varphi)=v(\psi)=\mathrm{T} \\ \mathrm{F} & \text { otherwise }\end{cases}\)
\[
v(\varphi \vee \psi)= \begin{cases}\mathrm{F} & \text { if } v(\varphi)=v(\psi)=\mathrm{F} \\ \mathrm{~T} & \text { otherwise }\end{cases}
\]
\[
\begin{aligned}
v(T) & =\mathrm{T} \\
v(\neg \varphi) & = \begin{cases}\mathrm{T} & \text { if } v(\varphi)=\mathrm{F} \\
\mathrm{~F} & \text { if } v(\varphi)=\mathrm{T}\end{cases} \\
v(\varphi \leftrightarrow \psi) & = \begin{cases}\mathrm{T} & \text { if } v(\varphi)=v(\psi) \\
\mathrm{F} & \text { otherwise }\end{cases}
\end{aligned}
\]
\(v(\varphi \rightarrow \psi)= \begin{cases}\mathrm{F} & \text { if } v(\varphi)=\mathrm{T}, v(\psi)=\mathrm{F} \\ \mathrm{T} & \text { otherwise }\end{cases}\)

\section*{Definitions}
- formula \(\varphi\) is satisfiable if \(v(\varphi)=\mathrm{T}\) for some valuation \(v\)

\section*{Definitions}
- formula \(\varphi\) is satisfiable if \(v(\varphi)=\mathrm{T}\) for some valuation \(v\)
- formula \(\varphi\) is valid if \(v(\varphi)=\mathrm{T}\) for every valuation \(v\)

\section*{Definitions}
- formula \(\varphi\) is satisfiable if \(v(\varphi)=\mathrm{T}\) for some valuation \(v\)
- formula \(\varphi\) is valid if \(v(\varphi)=\mathrm{T}\) for every valuation \(v\)
- semantic entailment \(\varphi_{1}, \ldots, \varphi_{n} \vDash \psi\)
if \(v(\psi)=\mathrm{T}\) whenever \(v\left(\varphi_{1}\right)=v\left(\varphi_{2}\right)=\cdots=v\left(\varphi_{n}\right)=\mathrm{T}\)

\section*{Definitions}
- formula \(\varphi\) is satisfiable if \(v(\varphi)=\mathrm{T}\) for some valuation \(v\)
- formula \(\varphi\) is valid if \(v(\varphi)=\mathrm{T}\) for every valuation \(v\)
- semantic entailment \(\varphi_{1}, \ldots, \varphi_{n} \vDash \psi\)
if \(v(\psi)=\mathrm{T}\) whenever \(v\left(\varphi_{1}\right)=v\left(\varphi_{2}\right)=\cdots=v\left(\varphi_{n}\right)=\mathrm{T}\)
- formulas \(\varphi\) and \(\psi\) are equivalent \((\varphi \equiv \psi)\) if \(v(\varphi)=v(\psi)\) for every valuation \(v\)

\section*{Definitions}
- formula \(\varphi\) is satisfiable if \(v(\varphi)=\mathrm{T}\) for some valuation \(v\)
- formula \(\varphi\) is valid if \(v(\varphi)=\mathrm{T}\) for every valuation \(v\)
- semantic entailment \(\varphi_{1}, \ldots, \varphi_{n} \vDash \psi\)
if \(v(\psi)=\mathrm{T}\) whenever \(v\left(\varphi_{1}\right)=v\left(\varphi_{2}\right)=\cdots=v\left(\varphi_{n}\right)=\mathrm{T}\)
- formulas \(\varphi\) and \(\psi\) are equivalent \((\varphi \equiv \psi)\) if \(v(\varphi)=v(\psi)\) for every valuation \(v\)
- formulas \(\varphi\) and \(\psi\) are equisatisfiable \((\varphi \approx \psi)\) if
\(\varphi\) is satisfiable \(\Longleftrightarrow \psi\) is satisfiable

\section*{Definitions}
- formula \(\varphi\) is satisfiable if \(v(\varphi)=\mathrm{T}\) for some valuation \(v\)
- formula \(\varphi\) is valid if \(v(\varphi)=\mathrm{T}\) for every valuation \(v\)
- semantic entailment \(\varphi_{1}, \ldots, \varphi_{n} \vDash \psi\)
if \(v(\psi)=\mathrm{T}\) whenever \(v\left(\varphi_{1}\right)=v\left(\varphi_{2}\right)=\cdots=v\left(\varphi_{n}\right)=\mathrm{T}\)
- formulas \(\varphi\) and \(\psi\) are equivalent \((\varphi \equiv \psi)\) if \(v(\varphi)=v(\psi)\) for every valuation \(v\) - formulas \(\varphi\) and \(\psi\) are equisatisfiable \((\varphi \approx \psi)\) if
\[
\varphi \text { is satisfiable } \Longleftrightarrow \psi \text { is satisfiable }
\]

\section*{Theorem}
formula \(\varphi\) is unsatisfiable if and only if \(\neg \varphi\) is valid

\section*{Definitions}
- formula \(\varphi\) is satisfiable if \(v(\varphi)=\mathrm{T}\) for some valuation \(v\)
- formula \(\varphi\) is valid if \(v(\varphi)=\mathrm{T}\) for every valuation \(v\)
- semantic entailment \(\varphi_{1}, \ldots, \varphi_{n} \vDash \psi\)
if \(v(\psi)=\mathrm{T}\) whenever \(v\left(\varphi_{1}\right)=v\left(\varphi_{2}\right)=\cdots=v\left(\varphi_{n}\right)=\mathrm{T}\)
- formulas \(\varphi\) and \(\psi\) are equivalent \((\varphi \equiv \psi)\) if \(v(\varphi)=v(\psi)\) for every valuation \(v\)
- formulas \(\varphi\) and \(\psi\) are equisatisfiable \((\varphi \approx \psi)\) if
\(\varphi\) is satisfiable \(\Longleftrightarrow \psi\) is satisfiable

\section*{Theorem}
formula \(\varphi\) is unsatisfiable if and only if \(\neg \varphi\) is valid

\section*{Theorem}
satisfiability and validity are decidable

\section*{Definition (Literal)}
- literal is atom \(p\) or negation of atom \(\neg p\)

\section*{Definition (Literal)}
- literal is atom \(p\) or negation of atom \(\neg p\)
- literals \(I_{1}\) and \(I_{2}\) are complementary if \(I_{1}=\neg I_{2}\) or \(I_{2}=\neg I_{1}\)

\section*{Definition (Literal)}
- literal is atom \(p\) or negation of atom \(\neg p\)
- literals \(I_{1}\) and \(I_{2}\) are complementary if \(I_{1}=\neg I_{2}\) or \(I_{2}=\neg I_{1}\)

\section*{Definitions}
- negation normal form (NNF) if formula with negation only applied to atoms

\section*{Definition (Literal)}
- literal is atom \(p\) or negation of atom \(\neg p\)
- literals \(I_{1}\) and \(I_{2}\) are complementary if \(I_{1}=\neg I_{2}\) or \(I_{2}=\neg I_{1}\)

\section*{Definitions}
- negation normal form (NNF) if formula with negation only applied to atoms
- conjunctive normal form (CNF) is conjunction of disjunctions

\section*{Definition (Literal)}
- literal is atom \(p\) or negation of atom \(\neg p\)
- literals \(I_{1}\) and \(I_{2}\) are complementary if \(I_{1}=\neg I_{2}\) or \(I_{2}=\neg I_{1}\)

\section*{Definitions}
- negation normal form (NNF) if formula with negation only applied to atoms
- conjunctive normal form (CNF) is conjunction of disjunctions
- 3-CNF is conjunction of disjunctions with 3 literals: \(\bigwedge_{i}\left(a_{i} \vee b_{i} \vee c_{i}\right)\)

\section*{Definition (Literal)}
- literal is atom \(p\) or negation of atom \(\neg p\)
- literals \(I_{1}\) and \(I_{2}\) are complementary if \(I_{1}=\neg I_{2}\) or \(I_{2}=\neg I_{1}\)

\section*{Definitions}
- negation normal form (NNF) if formula with negation only applied to atoms
- conjunctive normal form (CNF) is conjunction of disjunctions
- 3-CNF is conjunction of disjunctions with 3 literals: \(\bigwedge_{i}\left(a_{i} \vee b_{i} \vee c_{i}\right)\)
- disjunctive normal form (DNF) is disjunction of conjunctions

\section*{Definition (Literal)}
- literal is atom \(p\) or negation of atom \(\neg p\)
- literals \(I_{1}\) and \(I_{2}\) are complementary if \(I_{1}=\neg I_{2}\) or \(I_{2}=\neg I_{1}\)

\section*{Definitions}
- negation normal form (NNF) if formula with negation only applied to atoms
- conjunctive normal form (CNF) is conjunction of disjunctions
- 3-CNF is conjunction of disjunctions with 3 literals: \(\bigwedge_{i}\left(a_{i} \vee b_{i} \vee c_{i}\right)\)
- disjunctive normal form (DNF) is disjunction of conjunctions

\section*{Theorem}
for every formula \(\varphi\) there is CNF \(\psi\), 3-CNF \(\chi\) and DNF \(\eta\) such that \(\varphi \equiv \psi \equiv \chi \equiv \eta\)

\section*{Definition (Literal)}
- literal is atom \(p\) or negation of atom \(\neg p\)
- literals \(I_{1}\) and \(I_{2}\) are complementary if \(I_{1}=\neg I_{2}\) or \(I_{2}=\neg I_{1}\)

\section*{Definitions}
- negation normal form (NNF) if formula with negation only applied to atoms
- conjunctive normal form (CNF) is conjunction of disjunctions
- 3-CNF is conjunction of disjunctions with 3 literals: \(\bigwedge_{i}\left(a_{i} \vee b_{i} \vee c_{i}\right)\)
- disjunctive normal form (DNF) is disjunction of conjunctions

\section*{Theorem}
for every formula \(\varphi\) there is CNF \(\psi, 3-\) CNF \(\chi\) and DNF \(\eta\) such that \(\varphi \equiv \psi \equiv \chi \equiv \eta\) Remarks
- translation from formula to CNF can result in exponential blowup

\section*{Definition (Literal)}
- literal is atom \(p\) or negation of atom \(\neg p\)
- literals \(I_{1}\) and \(I_{2}\) are complementary if \(I_{1}=\neg I_{2}\) or \(I_{2}=\neg I_{1}\)

\section*{Definitions}
- negation normal form (NNF) if formula with negation only applied to atoms
- conjunctive normal form (CNF) is conjunction of disjunctions
- 3-CNF is conjunction of disjunctions with 3 literals: \(\bigwedge_{i}\left(a_{i} \vee b_{i} \vee c_{i}\right)\)
- disjunctive normal form (DNF) is disjunction of conjunctions

\section*{Theorem}
for every formula \(\varphi\) there is CNF \(\psi\), 3-CNF \(\chi\) and DNF \(\eta\) such that \(\varphi \equiv \psi \equiv \chi \equiv \eta\)

\section*{Remarks}
- translation from formula to CNF can result in exponential blowup
- Tseitin's transformation is linear and produces equisatisfiable formula

\section*{Satisfiability (SAT)}
instance:
question:
propositional formula \(\varphi\) is \(\varphi\) satisfiable?

\section*{Satisfiability (SAT)}
instance: propositional formula \(\varphi\) question: is \(\varphi\) satisfiable?

\section*{3-Satisfiability (3-SAT)}
instance: propositional formula \(\varphi\) in 3-CNF question: is \(\varphi\) satisfiable?

\section*{Satisfiability (SAT)}
instance: propositional formula \(\varphi\)
question: is \(\varphi\) satisfiable?

\section*{3-Satisfiability (3-SAT)}
instance: propositional formula \(\varphi\) in 3-CNF question: is \(\varphi\) satisfiable?

\section*{Theorem}

SAT and 3-SAT are NP-complete problems

\section*{Satisfiability (SAT)}
instance: propositional formula \(\varphi\)
question: is \(\varphi\) satisfiable?

\section*{3-Satisfiability (3-SAT)}
instance: propositional formula \(\varphi\) in 3-CNF question: is \(\varphi\) satisfiable?

\section*{Theorem}

SAT and 3-SAT are NP-complete problems

- 1 million \$ prize money awarded for solution to \(\mathbf{P}=\) ? NP

\section*{Outline}

\section*{- Introduction}

\section*{- Propositional Logic}
- DPLL
- Transformations to CNF
- Using SAT Solvers

\section*{Approach}
- most state-of-the-art SAT solvers use variation of Davis - Putnam Logemann - Loveland (DPLL) procedure (1962)

\section*{Approach}
- most state-of-the-art SAT solvers use variation of Davis - Putnam Logemann - Loveland (DPLL) procedure (1962)
- DPLL is sound and complete backtracking-based search algorithm

\section*{Approach}
- most state-of-the-art SAT solvers use variation of Davis - Putnam Logemann - Loveland (DPLL) procedure (1962)
- DPLL is sound and complete backtracking-based search algorithm

\section*{Approach}
- most state-of-the-art SAT solvers use variation of Davis - Putnam Logemann - Loveland (DPLL) procedure (1962)
- DPLL is sound and complete backtracking-based search algorithm
- can be described abstractly by transition system
(Nieuwenhuis, Oliveras, Tinelli 2006)

\section*{Approach}
- most state-of-the-art SAT solvers use variation of Davis - Putnam Logemann - Loveland (DPLL) procedure (1962)
- DPLL is sound and complete backtracking-based search algorithm
- can be described abstractly by transition system
(Nieuwenhuis, Oliveras, Tinelli 2006)

\section*{Definition (Abstract DPLL)}
- decision literal is annotated literal / \({ }^{d}\)

\section*{Approach}
- most state-of-the-art SAT solvers use variation of Davis - Putnam Logemann - Loveland (DPLL) procedure (1962)
- DPLL is sound and complete backtracking-based search algorithm
- can be described abstractly by transition system
(Nieuwenhuis, Oliveras, Tinelli 2006)

\section*{Definition (Abstract DPLL)}
- decision literal is annotated literal / \({ }^{d}\)
- state is pair \(M \| F\) for
- list \(M\) of (decision) literals
- formula \(F\) in CNF

\section*{Approach}
- most state-of-the-art SAT solvers use variation of Davis - Putnam Logemann - Loveland (DPLL) procedure (1962)
- DPLL is sound and complete backtracking-based search algorithm
- can be described abstractly by transition system
(Nieuwenhuis, Oliveras, Tinelli 2006)

\section*{Definition (Abstract DPLL)}
- decision literal is annotated literal \(/{ }^{d}\)
- state is pair \(M \| F\) for
- list \(M\) of (decision) literals
- formula \(F\) in CNF
- transition rules
\[
M\left\|F \quad \Longrightarrow \quad M^{\prime}\right\| F^{\prime} \quad \text { or } \quad \text { FailState }
\]

\section*{Example}
\[
\begin{aligned}
& \varphi=(\overline{1} \vee \overline{2}) \wedge(2 \vee 3) \wedge(\overline{1} \vee \overline{3} \vee 4) \wedge(2 \vee \overline{3} \vee \overline{4}) \wedge(1 \vee 4) \\
& \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4
\end{aligned}
\]

\section*{Example}
\[
\begin{aligned}
& \varphi=(\overline{1} \vee \overline{2}) \wedge(2 \vee 3) \wedge(\overline{1} \vee \overline{3} \vee 4) \wedge(2 \vee \overline{3} \vee \overline{4}) \wedge(1 \vee 4) \\
& \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4 \\
& \Longrightarrow \quad 1^{d} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4
\end{aligned}
\]

\section*{Example}
\[
\varphi=(\overline{1} \vee \overline{2}) \wedge(2 \vee 3) \wedge(\overline{1} \vee \overline{3} \vee 4) \wedge(2 \vee \overline{3} \vee \overline{4}) \wedge(1 \vee 4)
\]
\[
\| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4
\]
\[
1^{d} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4
\]
\[
\Longrightarrow \quad 1^{d} \overline{2} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4 \quad \text { unit propagate }
\]

\section*{Example}
\[
\varphi=(\overline{1} \vee \overline{2}) \wedge(2 \vee 3) \wedge(\overline{1} \vee \overline{3} \vee 4) \wedge(2 \vee \overline{3} \vee \overline{4}) \wedge(1 \vee 4)
\]
\[
\| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4
\]
\[
1^{d} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4
\]
\[
1^{d} \overline{2} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4 \quad \text { unit propagate }
\]
\[
\Longrightarrow \quad 1^{d} \overline{2} 3 \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4 \quad \text { unit propagate }
\]

\section*{Example}
\[
\begin{array}{rlrl}
\varphi= & (\overline{1} \vee \overline{2}) \wedge(2 \vee 3) \wedge(\overline{1} \vee \overline{3} \vee 4) \wedge(2 \vee \overline{3} \vee \overline{4}) \wedge(1 \vee 4) & \\
& & \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4 & \\
& \Longrightarrow \quad 1^{d} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4 & \text { decide } \\
& \Longrightarrow \quad 1^{d} \overline{2} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4 & \text { unit propagate } \\
& \Longrightarrow \quad 1^{d} \overline{2} 3 \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4 & \text { unit propagate }
\end{array}
\]

\section*{Example}
\[
\varphi=(\overline{1} \vee \overline{2}) \wedge(2 \vee 3) \wedge(\overline{1} \vee \overline{3} \vee 4) \wedge(2 \vee \overline{3} \vee \overline{4}) \wedge(1 \vee 4)
\]
\[
\| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4
\]
\[
1^{d} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4
\]
\[
\Longrightarrow \quad 1^{d} \overline{2} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4
\]
unit propagate
\[
\Longrightarrow \quad 1^{d} \overline{2} 3 \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4 \quad \text { unit propagate }
\]
\[
\Longrightarrow \quad 1^{d} \overline{2} 34 \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4 \quad \text { unit propagate }
\]
\[
\Longrightarrow \quad \overline{1} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4 \quad \text { backtrack }
\]

\section*{Example}
\[
\varphi=(\overline{1} \vee \overline{2}) \wedge(2 \vee 3) \wedge(\overline{1} \vee \overline{3} \vee 4) \wedge(2 \vee \overline{3} \vee \overline{4}) \wedge(1 \vee 4)
\]
\[
\| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4
\]
\[
1^{d} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4
\]
decide \(\Longrightarrow \quad 1^{d} \overline{2} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4 \quad\) unit propagate \(\Longrightarrow \quad 1^{d} \overline{2} 3 \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4 \quad\) unit propagate
\(\Longrightarrow \quad 1^{d} \overline{2} 34 \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4 \quad\) unit propagate
\(\Longrightarrow \quad \overline{1} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4 \quad\) backtrack
\(\Longrightarrow \quad \overline{1} 4 \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4\) unit propagate

\section*{Example}
\[
\varphi=(\overline{1} \vee \overline{2}) \wedge(2 \vee 3) \wedge(\overline{1} \vee \overline{3} \vee 4) \wedge(2 \vee \overline{3} \vee \overline{4}) \wedge(1 \vee 4)
\]
\[
\| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4
\]
\[
1^{d} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4
\]
decide \(\Longrightarrow \quad 1^{d} \overline{2} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4 \quad\) unit propagate \(\Longrightarrow \quad 1^{d} \overline{2} 3 \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4 \quad\) unit propagate \(\Longrightarrow \quad 1^{d} \overline{2} 34 \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4 \quad\) unit propagate \(\Longrightarrow \quad \overline{1} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4 \quad\) backtrack \(\overline{1} 4 \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4 \quad u n i t ~ p r o p a g a t e\)
\(\Longrightarrow \quad \overline{1} 43^{d} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4\) decide

\section*{Example}
\[
\varphi=(\overline{1} \vee \overline{2}) \wedge(2 \vee 3) \wedge(\overline{1} \vee \overline{3} \vee 4) \wedge(2 \vee \overline{3} \vee \overline{4}) \wedge(1 \vee 4)
\]
\[
\| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4
\]
\[
1^{d} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4
\]
decide
\(\qquad\)
\(\Longrightarrow\)
\(\Longrightarrow \quad 1^{d} \overline{2} 34 \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4 \quad\) unit propagate
\(\Longrightarrow \quad \overline{1} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4 \quad\) backtrack
\(\overline{1} 4 \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4 \quad u n i t ~ p r o p a g a t e\)
\(\Longrightarrow \quad \overline{1} 43^{d} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4\)
decide
\(\Longrightarrow \quad \overline{1} 43^{d} 2 \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4,2 \vee \overline{3} \vee \overline{4}, 1 \vee 4\) unit propagate

\section*{Definition (DPLL Transition Rules)}
- unit propagation \(M\|F, C \vee I \Longrightarrow M I\| F, C \vee I\)
if \(M \vDash \neg C\) and \(I\) is undefined in \(M\)

\section*{Definition (DPLL Transition Rules)}
- unit propagation \(M\|F, C \vee I \Longrightarrow M I\| F, C \vee I\)
if \(M \vDash \neg C\) and \(I\) is undefined in \(M\)
- pure literal \(\quad M\|F \Longrightarrow M I\| F\)
if \(I\) occurs in \(F\) but \(I^{c}\) does not occur in \(F\), and \(I\) is undefined in \(M\)

\section*{Definition (DPLL Transition Rules)}
- unit propagation \(M\|F, C \vee I \Longrightarrow M I\| F, C \vee I\)
if \(M \vDash \neg C\) and \(I\) is undefined in \(M\)
- pure literal
\[
M\|F \quad \Longrightarrow \quad M I\| F
\]
if \(I\) occurs in \(F\) but \(I^{c}\) does not occur in \(F\), and \(I\) is undefined in \(M\)
- decide
\[
M\left\|F \quad \Longrightarrow \quad M I^{d}\right\| F
\]
if \(I\) or \(I^{c}\) occurs in \(F\), and \(I\) is undefined in \(M\)

\section*{Definition (DPLL Transition Rules)}
- unit propagation \(M\|F, C \vee I \Longrightarrow M I\| F, C \vee I\)
if \(M \vDash \neg C\) and \(I\) is undefined in \(M\)
- pure literal
\[
M\|F \quad \Longrightarrow \quad M I\| F
\]
if \(I\) occurs in \(F\) but \(I^{c}\) does not occur in \(F\), and \(I\) is undefined in \(M\)
- decide
\[
M\left\|F \quad \Longrightarrow \quad M I^{d}\right\| F
\]
if \(I\) or \(I^{c}\) occurs in \(F\), and \(I\) is undefined in \(M\)
- backtrack \(\quad M I^{d} N\left\|F, C \Longrightarrow M I^{c}\right\| F, C\) if \(M I^{d} N \vDash \neg C\) and \(N\) contains no decision literals

\section*{Definition (DPLL Transition Rules)}
- unit propagation \(M\|F, C \vee I \Longrightarrow M I\| F, C \vee I\) if \(M \vDash \neg C\) and \(I\) is undefined in \(M\)
- pure literal
\[
M\|F \quad \Longrightarrow \quad M I\| F
\]
if \(I\) occurs in \(F\) but \(I^{c}\) does not occur in \(F\), and \(I\) is undefined in \(M\)
- decide
\[
M\left\|F \quad \Longrightarrow \quad M I^{d}\right\| F
\]
if \(I\) or \(I^{c}\) occurs in \(F\), and \(I\) is undefined in \(M\)
- backtrack
\[
M I^{d} N\left\|F, C \quad \Longrightarrow \quad M I^{c}\right\| F, C
\]
if \(M I^{d} N \vDash \neg C\) and \(N\) contains no decision literals
- fail
\[
M \| F, C \quad \Longrightarrow \quad \text { FailState }
\]
if \(M \vDash \neg C\) and \(M\) contains no decision literals

\section*{Definition (DPLL Transition Rules)}
- unit propagation \(\quad M\|F, C \vee I \Longrightarrow M I\| F, C \vee I\) if \(M \vDash \neg C\) and \(I\) is undefined in \(M\)
- pure literal
\[
M\|F \quad \Longrightarrow \quad M I\| F
\]
if \(I\) occurs in \(F\) but \(I^{c}\) does not occur in \(F\), and \(I\) is undefined in \(M\)
- decide
\[
M\left\|F \quad \Longrightarrow \quad M I^{d}\right\| F
\]
if \(I\) or \(I^{c}\) occurs in \(F\), and \(I\) is undefined in \(M\)
- backtrack
\[
M I^{d} N\left\|F, C \quad \Longrightarrow \quad M I^{c}\right\| F, C
\]
if \(M I^{d} N \vDash \neg C\) and \(N\) contains no decision literals
- fail
\[
M \| F, C \quad \Longrightarrow \quad \text { FailState }
\]
if \(M \vDash \neg C\) and \(M\) contains no decision literals
- backjump
\[
M I^{d} N\left\|F, C \quad \Longrightarrow \quad M I^{\prime}\right\| F, C
\]

\section*{Definition (DPLL Transition Rules)}
- unit propagation \(M\|F, C \vee I \Longrightarrow M I\| F, C \vee I\) if \(M \vDash \neg C\) and \(I\) is undefined in \(M\)
- pure literal
\[
M\|F \quad \Longrightarrow \quad M I\| F
\]
if \(I\) occurs in \(F\) but \(I^{c}\) does not occur in \(F\), and \(I\) is undefined in \(M\)
- decide
\[
M\left\|F \quad \Longrightarrow \quad M I^{d}\right\| F
\]
if \(I\) or \(I^{c}\) occurs in \(F\), and \(I\) is undefined in \(M\)
- backtrack
\[
M I^{d} N\left\|F, C \quad \Longrightarrow \quad M I^{c}\right\| F, C
\]
if \(M I^{d} N \vDash \neg C\) and \(N\) contains no decision literals
- fail \(M \| F, C \quad \Longrightarrow \quad\) FailState if \(M \vDash \neg C\) and \(M\) contains no decision literals
- backjump \(M I^{d} N\left\|F, C \quad \Longrightarrow \quad M I^{\prime}\right\| F, C\) if \(M I^{d} N \vDash \neg C\) and \(\exists\) clause \(C^{\prime} \vee I^{\prime}\) such that

\section*{Definition (DPLL Transition Rules)}
- unit propagation
\[
M\|F, C \vee I \quad \Longrightarrow \quad M I\| F, C \vee I
\]
if \(M \vDash \neg C\) and \(I\) is undefined in \(M\)
- pure literal
\[
M\|F \quad \Longrightarrow \quad M I\| F
\]
if \(I\) occurs in \(F\) but \(I^{c}\) does not occur in \(F\), and \(I\) is undefined in \(M\)
- decide
\[
M\left\|F \quad \Longrightarrow \quad M I^{d}\right\| F
\]
if \(I\) or \(I^{c}\) occurs in \(F\), and \(I\) is undefined in \(M\)
- backtrack
\[
M I^{d} N\left\|F, C \quad \Longrightarrow \quad M I^{c}\right\| F, C
\]
if \(M I^{d} N \vDash \neg C\) and \(N\) contains no decision literals
- fail
\[
M \| F, C \quad \Longrightarrow \quad \text { FailState }
\]
if \(M \vDash \neg C\) and \(M\) contains no decision literals
- backjump
\[
M I^{d} N\left\|F, C \quad \Longrightarrow \quad M I^{\prime}\right\| F, C
\]
if \(M I^{d} N \vDash \neg C\) and \(\exists\) clause \(C^{\prime} \vee I^{\prime}\) such that
- \(F, C \vDash C^{\prime} \vee I^{\prime}\)

\section*{Definition (DPLL Transition Rules)}
- unit propagation
\[
M\|F, C \vee I \quad \Longrightarrow \quad M I\| F, C \vee I
\]
if \(M \vDash \neg C\) and \(I\) is undefined in \(M\)
- pure literal
\[
M\|F \quad \Longrightarrow \quad M I\| F
\]
if \(I\) occurs in \(F\) but \(I^{c}\) does not occur in \(F\), and \(I\) is undefined in \(M\)
- decide
\[
M\left\|F \quad \Longrightarrow \quad M I^{d}\right\| F
\]
if \(I\) or \(I^{c}\) occurs in \(F\), and \(I\) is undefined in \(M\)
- backtrack
\[
M I^{d} N\left\|F, C \quad \Longrightarrow \quad M I^{c}\right\| F, C
\]
if \(M I^{d} N \vDash \neg C\) and \(N\) contains no decision literals
- fail
\[
M \| F, C \quad \Longrightarrow \quad \text { FailState }
\]
if \(M \vDash \neg C\) and \(M\) contains no decision literals
- backjump
\[
M I^{d} N\left\|F, C \quad \Longrightarrow \quad M I^{\prime}\right\| F, C
\]
if \(M I^{d} N \vDash \neg C\) and \(\exists\) clause \(C^{\prime} \vee I^{\prime}\) such that
- \(F, C \vDash C^{\prime} \vee I^{\prime}\)
backjump clause
- \(M \vDash \neg C^{\prime}\) and \(I^{\prime}\) is undefined in \(M\), and \(I^{\prime}\) or \(I^{\prime c}\) occurs in \(F\) or in \(M I^{d} \underset{23}{N}\)

\section*{Definition (DPLL Transition Rules)}
- unit propagation
\[
M\|F, C \vee I \quad \Longrightarrow \quad M I\| F, C \vee I
\]
if \(M \vDash \neg C\) and \(I\) is undefined in \(M\)
- pure literal
\[
M\|F \quad \Longrightarrow \quad M I\| F
\]
if \(I\) occurs in \(F\) but \(I^{c}\) does not occur in \(F\), and \(I\) is undefined in \(M\)
- decide
\[
M\left\|F \quad \Longrightarrow \quad M I^{d}\right\| F
\]
if \(I\) or \(I^{c}\) occurs in \(F\), and \(I\) is undefined in \(M\)
- backtrack
\[
M I^{d} N\left\|F, C \quad \Longrightarrow \quad M I^{c}\right\| F, C
\]
if \(M I^{d} N \vDash \neg C\) and \(N\) contains no decision literals
- fail
\[
M \| F, C \quad \Longrightarrow \quad \text { FailState }
\]
if \(M \vDash \neg C\) and \(M\) contains no decision literals
- backjump \(\quad M I^{d} N\left\|F, C \Longrightarrow M I^{\prime}\right\| F, C\) if \(M I^{d} N \vDash \neg C\) and \(\exists\) clause \(C^{\prime} \vee I^{\prime}\) such that
- \(F, C \vDash C^{\prime} \vee I^{\prime}\)
backjump clause
- \(M \vDash \neg C^{\prime}\) and \(I^{\prime}\) is undefined in \(M\), and \(I^{\prime}\) or \(I^{\prime c}\) occurs in \(F\) or in \(M I^{d} \underset{23}{N}\)

\section*{Example (Backjump)}
\(\varphi=(\overline{1} \vee 2) \wedge(\overline{1} \vee \overline{3} \vee 4 \vee 5) \wedge(\overline{2} \vee \overline{4} \vee \overline{5}) \wedge(4 \vee \overline{5}) \wedge(\overline{4} \vee 5)\)
\(\| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5\)

\section*{Example (Backjump)}
\[
\begin{aligned}
& \varphi=(\overline{1} \vee 2) \wedge(\overline{1} \vee \overline{3} \vee 4 \vee 5) \wedge(\overline{2} \vee \overline{4} \vee \overline{5}) \wedge(4 \vee \overline{5}) \wedge(\overline{4} \vee 5) \\
& \Longrightarrow \quad \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 \\
& \Longrightarrow \quad 1^{d} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5
\end{aligned}
\]

\section*{Example (Backjump)}
\[
\varphi=(\overline{1} \vee 2) \wedge(\overline{1} \vee \overline{3} \vee 4 \vee 5) \wedge(\overline{2} \vee \overline{4} \vee \overline{5}) \wedge(4 \vee \overline{5}) \wedge(\overline{4} \vee 5)
\]
\[
\begin{array}{r}
\| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 \\
1^{d} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 \\
1^{d} 2 \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 \quad \text { unit propagate }
\end{array}
\]

\section*{Example (Backjump)}
\[
\varphi=(\overline{1} \vee 2) \wedge(\overline{1} \vee \overline{3} \vee 4 \vee 5) \wedge(\overline{2} \vee \overline{4} \vee \overline{5}) \wedge(4 \vee \overline{5}) \wedge(\overline{4} \vee 5)
\]
\begin{tabular}{rrr}
\(\| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5\) & \\
\(1^{d} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5\) & decide \\
\(1^{d} 2 \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5\) & unit propagate \\
\(1^{d} 23^{d} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5\) & decide
\end{tabular}

\section*{Example (Backjump)}
\[
\varphi=(\overline{1} \vee 2) \wedge(\overline{1} \vee \overline{3} \vee 4 \vee 5) \wedge(\overline{2} \vee \overline{4} \vee \overline{5}) \wedge(4 \vee \overline{5}) \wedge(\overline{4} \vee 5)
\]
\begin{tabular}{lrrr} 
& \(\| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5\) & \\
& \(1^{d} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5\) & decide \\
\(\Longrightarrow\) & \(1^{d} 2 \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5\) & unit propagate \\
\(\Longrightarrow\) & \(1^{d} 23^{d} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5\) & decide \\
\(\Longrightarrow\) & \(1^{d} 23^{d} 4^{d} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5\) & decide
\end{tabular}

\section*{Example (Backjump)}
\[
\begin{aligned}
& \varphi=(\overline{1} \vee 2) \wedge(\overline{1} \vee \overline{3} \vee 4 \vee 5) \wedge(\overline{2} \vee \overline{4} \vee \overline{5}) \wedge(4 \vee \overline{5}) \wedge(\overline{4} \vee 5) \\
& \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 \\
& 1^{d} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 \\
& \text { decide } \\
& 1^{d} 2 \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 \text { unit propagate } \\
& 1^{d} 23^{d} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 \\
& 1^{d} 23^{d} 4^{d} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 \\
& \text { decide } \\
& \text { decide } \\
& \Longrightarrow \quad 1^{d} 23^{d} 4^{d} \overline{5} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 \text { unit propagate }
\end{aligned}
\]

\section*{Example (Backjump)}
\[
\varphi=(\overline{1} \vee 2) \wedge(\overline{1} \vee \overline{3} \vee 4 \vee 5) \wedge(\overline{2} \vee \overline{4} \vee \overline{5}) \wedge(4 \vee \overline{5}) \wedge(\overline{4} \vee 5)
\]
\begin{tabular}{lrrr} 
& \(\| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5\) & \\
\(\Longrightarrow\) & \(1^{d} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5\) & decide \\
\(\Longrightarrow\) & \(1^{d} 2 \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5\) & unit propagate \\
\(\Longrightarrow\) & \(1^{d} 23^{d} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5\) & decide \\
\(\Longrightarrow\) & \(1^{d} 23^{d} 4^{d} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5\) & decide \\
\(\Longrightarrow\) & \(1^{d} 23^{d} 4^{d} \overline{5} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5\) & unit propagate \\
\(\Longrightarrow\) & \(1^{d} 23^{d} \overline{4} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5\) & backtrack
\end{tabular}

\section*{Example (Backjump)}
\[
\varphi=(\overline{1} \vee 2) \wedge(\overline{1} \vee \overline{3} \vee 4 \vee 5) \wedge(\overline{2} \vee \overline{4} \vee \overline{5}) \wedge(4 \vee \overline{5}) \wedge(\overline{4} \vee 5)
\]
\[
\begin{array}{lrrr} 
& \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 & \\
\Longrightarrow & 1^{d} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 & \text { decide } \\
\Longrightarrow & 1^{d} 2 \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 & \text { unit propagate } \\
\Longrightarrow & 1^{d} 23^{d} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 & \text { decide } \\
\Longrightarrow & 1^{d} 23^{d} 4^{d} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 & \text { decide } \\
\Longrightarrow & 1^{d} 23^{d} 4^{d} \overline{5} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 & \text { unit propagate } \\
\Longrightarrow & 1^{d} 23^{d} \overline{4} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 & \text { backtrack } \\
\Longrightarrow & 1^{d} 23^{d} \overline{4} 5 \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 & \text { unit propagate }
\end{array}
\]

\section*{Example (Backjump)}
\[
\varphi=(\overline{1} \vee 2) \wedge(\overline{1} \vee \overline{3} \vee 4 \vee 5) \wedge(\overline{2} \vee \overline{4} \vee \overline{5}) \wedge(4 \vee \overline{5}) \wedge(\overline{4} \vee 5)
\]
\[
\begin{array}{lrrr} 
& \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 & \\
\Longrightarrow & 1^{d} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 & \text { decide } \\
\Longrightarrow & 1^{d} 2 \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 & \text { unit propagate } \\
\Longrightarrow & 1^{d} 23^{d} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 & \text { decide } \\
\Longrightarrow & 1^{d} 23^{d} 4^{d} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 & \text { decide } \\
\Longrightarrow & 1^{d} 23^{d} 4^{d} \overline{5} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 & \text { unit propagate } \\
\Longrightarrow & 1^{d} 23^{d} \overline{4} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 & \text { backtrack } \\
\Longrightarrow & 1^{d} 23^{d} \overline{4} 5 \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 & \text { unit propagate }
\end{array}
\]

\section*{Example (Backjump)}
\[
\varphi=(\overline{1} \vee 2) \wedge(\overline{1} \vee \overline{3} \vee 4 \vee 5) \wedge(\overline{2} \vee \overline{4} \vee \overline{5}) \wedge(4 \vee \overline{5}) \wedge(\overline{4} \vee 5)
\]
\[
\begin{array}{lrr} 
& \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 & \\
\Longrightarrow & 1^{d} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 & \text { decide } \\
\Longrightarrow & 1^{d} 2 \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 & \text { unit propagate } \\
\Longrightarrow & 1^{d} 23^{d} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 & \text { decide } \\
\Longrightarrow & 1^{d} 23^{d} 4^{d} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 & \text { decide } \\
\Longrightarrow & 1^{d} 23^{d} 4^{d} \overline{5} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 & \text { unit propagate } \\
\Longrightarrow & 1^{d} 23^{d} \overline{4} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 & \text { backtrack } \\
\Longrightarrow & 1^{d} 23^{d} \overline{4} 5 \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 & \text { unit propagate }
\end{array}
\]

\section*{Example (Backjump)}
\[
\begin{gathered}
\varphi=(\overline{1} \vee 2) \wedge(\overline{1} \vee \overline{3} \vee 4 \vee 5) \wedge(\overline{2} \vee \overline{4} \vee \overline{5}) \wedge(4 \vee \overline{5}) \wedge(\overline{4} \vee 5) \\
\\
\Longrightarrow \quad \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 \\
\Longrightarrow \quad 1^{d} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5
\end{gathered} \quad \text { decide }
\]

\section*{Example (Backjump)}
\[
\begin{aligned}
& \varphi=(\overline{1} \vee 2) \wedge(\overline{1} \vee \overline{3} \vee 4 \vee 5) \wedge(\overline{2} \vee \overline{4} \vee \overline{5}) \wedge(4 \vee \overline{5}) \wedge(\overline{4} \vee 5) \\
& \begin{array}{l}
\Rightarrow \\
\Rightarrow \\
\Rightarrow \\
\Rightarrow
\end{array} \\
& \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 \\
& 1^{d} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 \\
& \text { decide } \\
& 1^{d} 2 \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 \text { unit propagate } \\
& 1^{d} 23^{d} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 \\
& 1^{d} 23^{d} 4^{d} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 \\
& \text { decide } \\
& \text { decide } \\
& \Longrightarrow \quad 1^{d} 23^{d} 4^{d} \overline{5} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 \text { unit propagate } \\
& 1^{d} 2 \overline{3} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5 \\
& \Longrightarrow 1^{+} \quad 2 \overline{3} \overline{4} \overline{5} \| \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5
\end{aligned}
\]

\section*{Definition}
basic DPLL \(\mathcal{B}\) consists of unit propagation, decide, fail, and backjump

\section*{Definition}
basic DPLL \(\mathcal{B}\) consists of unit propagation, decide, fail, and backjump

\section*{Properties}
if \(\left\|F \Longrightarrow{ }_{\mathcal{B}}^{*} M\right\| F^{\prime}\) then
- \(F=F^{\prime}\)

\section*{Definition}
basic DPLL \(\mathcal{B}\) consists of unit propagation, decide, fail, and backjump

\section*{Properties}
if \(\left\|F \Longrightarrow{ }_{\mathcal{B}}^{*} M\right\| F^{\prime}\) then
- \(F=F^{\prime}\)
- \(M\) does not contain complementary literals

\section*{Definition}
basic DPLL \(\mathcal{B}\) consists of unit propagation, decide, fail, and backjump

\section*{Properties}
if \(\left\|F \Longrightarrow{ }_{\mathcal{B}}^{*} M\right\| F^{\prime}\) then
- \(F=F^{\prime}\)
- \(M\) does not contain complementary literals
- literals in \(M\) are distinct

\section*{Definition}
basic DPLL \(\mathcal{B}\) consists of unit propagation, decide, fail, and backjump

\section*{Properties}
if \(\left\|F \Longrightarrow{ }_{\mathcal{B}}^{*} M\right\| F^{\prime}\) then
- \(F=F^{\prime}\)
- \(M\) does not contain complementary literals
- literals in \(M\) are distinct
- length of \(M\) is bounded by number of atoms

\section*{Definition}
basic DPLL \(\mathcal{B}\) consists of unit propagation, decide, fail, and backjump

\section*{Properties}
if \(\left\|F \Longrightarrow{ }_{\mathcal{B}}^{*} M\right\| F^{\prime}\) then
- \(F=F^{\prime}\)
- \(M\) does not contain complementary literals
- literals in \(M\) are distinct
- length of \(M\) is bounded by number of atoms

\section*{Lemma (Model Entailment)}

Suppose \(\left\|F \Longrightarrow{ }_{B}^{*} M\right\| F\) such that
- \(M=\left.\left.\left.M_{0}\right|_{1} ^{d} M_{1}\right|_{2} ^{d} M_{2} \ldots\right|_{k} ^{d} M_{k}\) and
- there are no decision literals in \(M_{i}\).

\section*{Definition}
basic DPLL \(\mathcal{B}\) consists of unit propagation, decide, fail, and backjump

\section*{Properties}
if \(\left\|F \Longrightarrow{ }_{\mathcal{B}}^{*} M\right\| F^{\prime}\) then
- \(F=F^{\prime}\)
- \(M\) does not contain complementary literals
- literals in \(M\) are distinct
- length of \(M\) is bounded by number of atoms

\section*{Lemma (Model Entailment)}

Suppose \(\left\|F \Longrightarrow_{\mathcal{B}}^{*} M\right\| F\) such that
- \(M=M_{0} I_{1}^{d} M_{1} I_{2}^{d} M_{2} \ldots I_{k}^{d} M_{k}\) and
- there are no decision literals in \(M_{i}\).

Then \(F, l_{1}, \ldots, l_{i} \vDash M_{i}\) for all \(0 \leqslant i \leqslant k\).

\section*{Definition}
basic DPLL \(\mathcal{B}\) consists of unit propagation, decide, fail, and backjump

\section*{Properties}
if \(\left\|F \Longrightarrow{ }_{\mathcal{B}}^{*} M\right\| F^{\prime}\) then
- \(F=F^{\prime}\)
- \(M\) does not contain complementary literals
- literals in \(M\) are distinct
- length of \(M\) is bounded by number of atoms

\section*{Lemma (Model Entailment)}

Suppose \(\left\|F \Longrightarrow_{\mathcal{B}}^{*} M\right\| F\) such that

- there are no decision literals in \(M_{i}\).

Then \(F, l_{1}, \ldots, l_{i} \vDash M_{i}\) for all \(0 \leqslant i \leqslant k\).

\section*{Theorem (Termination)}
for any formula \(F\) there are no infinite derivations


\section*{Theorem (Termination)}
for any formula \(F\) there are no infinite derivations
\[
\| F \quad \Longrightarrow_{\mathcal{B}} \quad S_{1} \quad \Longrightarrow_{\mathcal{B}} \quad S_{2} \quad \Longrightarrow_{\mathcal{B}} \quad \ldots
\]

\section*{Proof.}
- for list of distinct literals \(M\), define \(a(M)=n-|M|\) where
- \(n\) is total number of atoms
- \(|M|\) is length of \(M\)

\section*{Theorem (Termination)}
for any formula \(F\) there are no infinite derivations
\[
\begin{aligned}
& \| F \quad \Longrightarrow_{\mathcal{B}} \quad S_{1} \quad \Longrightarrow_{\mathcal{B}} \quad S_{2} \quad \Longrightarrow_{\mathcal{B}} \quad . \\
& \text { missing literals in } M
\end{aligned}
\]

\section*{Proof.}
- for list of distinct literals \(M\), define \(a(M)=n-|M|\) where
- \(n\) is total number of atoms
- \(|M|\) is length of \(M\)

\section*{Theorem (Termination)}
for any formula \(F\) there are no infinite derivations
\[
\begin{aligned}
& \| F \quad \Longrightarrow_{\mathcal{B}} \quad S_{1} \quad \Longrightarrow_{\mathcal{B}} \quad S_{2} \quad \Longrightarrow_{\mathcal{B}} \quad . \\
& \text { missing literals in } M
\end{aligned}
\]

\section*{Proof.}
- for list of distinct literals \(M\), define \(a(M)=n-|M|\) where
- \(n\) is total number of atoms
- \(|M|\) is length of \(M\)
- measure state \(M_{0} I_{1}^{d} M_{1} I_{2}^{d} M_{2} \ldots I_{k}^{d} M_{k} \| F\) by tuple
\[
(a\left(M_{0}\right), a\left(M_{1}\right), \ldots, a\left(M_{k}\right), \underbrace{\infty, \ldots, \infty}_{n-k})
\]

\section*{Theorem (Termination)}
for any formula \(F\) there are no infinite derivations
\[
\begin{aligned}
\| F \quad \Longrightarrow_{\mathcal{B}} \quad S_{1} \quad \Longrightarrow_{\mathcal{B}} \quad S_{2} \quad \Longrightarrow_{\mathcal{B}} \quad \ldots \\
\text { missing literals in } M
\end{aligned}
\]

\section*{Proof.}
- for list of distinct literals \(M\), define \(a(M)=n-|M|\) where
- \(n\) is total number of atoms
- \(|M|\) is length of \(M\)
- measure state \(M_{0} I_{1}^{d} M_{1} I_{2}^{d} M_{2} \ldots I_{k}^{d} M_{k} \| F\) by tuple
\[
(a\left(M_{0}\right), a\left(M_{1}\right), \ldots, a\left(M_{k}\right), \underbrace{\infty, \ldots, \infty}_{n-k})
\]
- compare tuples lexicographically by extension of \(>_{\mathbb{N}}\) with \(\infty\) maximal

\section*{Theorem (Termination)}
for any formula \(F\) there are no infinite derivations
\[
\begin{array}{r}
\| F \quad \Longrightarrow_{\mathcal{B}} \quad S_{1} \quad \Longrightarrow_{\mathcal{B}} \quad S_{2} \quad \Longrightarrow_{\mathcal{B}} \quad \ldots \\
\text { missing literals in } M
\end{array}
\]

\section*{Proof.}
- for list of distinct literals \(M\), define \(a(M)=n-|M|\) where
- \(n\) is total number of atoms
- \(|M|\) is length of \(M\)
- measure state \(M_{0} I_{1}^{d} M_{1} I_{2}^{d} M_{2} \ldots I_{k}^{d} M_{k} \| F\) by tuple
\[
(a\left(M_{0}\right), a\left(M_{1}\right), \ldots, a\left(M_{k}\right), \underbrace{\infty, \ldots, \infty}_{n-k})
\]
- compare tuples lexicographically by extension of \(>_{\mathbb{N}}\) with \(\infty\) maximal
- every transition step decreases measure

\section*{Example (Revisited for Termination)}
\(\varphi=(\overline{1} \vee \overline{2}) \wedge(2 \vee 3) \wedge(\overline{1} \vee \overline{3} \vee 4) \wedge(2 \vee \overline{3} \vee \overline{4}) \wedge(1 \vee 4)\)
\(\| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\)
\((n, \infty, \ldots)\)

\section*{Example (Revisited for Termination)}
\(\varphi=(\overline{1} \vee \overline{2}) \wedge(2 \vee 3) \wedge(\overline{1} \vee \overline{3} \vee 4) \wedge(2 \vee \overline{3} \vee \overline{4}) \wedge(1 \vee 4)\)
\[
\begin{aligned}
& \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots(n, \infty, \ldots) \\
& 1^{d} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots \text { decide } \\
&(n, n, \infty, \ldots)
\end{aligned}
\]

\section*{Example (Revisited for Termination)}
\(\varphi=(\overline{1} \vee \overline{2}) \wedge(2 \vee 3) \wedge(\overline{1} \vee \overline{3} \vee 4) \wedge(2 \vee \overline{3} \vee \overline{4}) \wedge(1 \vee 4)\)
\[
\begin{array}{rll}
\| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots & (n, \infty, \ldots) \\
1^{d} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots & \text { decide } & (n, n, \infty, \ldots) \\
1^{d} \overline{2} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots & \text { unit propagate } & (n, n-1, \infty, \ldots)
\end{array}
\]

\section*{Example (Revisited for Termination)}
\(\varphi=(\overline{1} \vee \overline{2}) \wedge(2 \vee 3) \wedge(\overline{1} \vee \overline{3} \vee 4) \wedge(2 \vee \overline{3} \vee \overline{4}) \wedge(1 \vee 4)\)
\begin{tabular}{ccl} 
& \(\| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & \((n, \infty, \ldots)\) \\
& \(1^{d} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & decide \\
\hline & \((n, n, \infty, \ldots)\) \\
\(\Longrightarrow \quad\) & \(1^{d} \overline{2} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & unit propagate \\
\hline & \(\left.1^{d} \overline{2} 3 \| \overline{1} \vee \overline{2}, n-1, \infty, \ldots\right)\) \\
& &
\end{tabular}

\section*{Example (Revisited for Termination)}
\(\varphi=(\overline{1} \vee \overline{2}) \wedge(2 \vee 3) \wedge(\overline{1} \vee \overline{3} \vee 4) \wedge(2 \vee \overline{3} \vee \overline{4}) \wedge(1 \vee 4)\)
\begin{tabular}{lcll} 
& \(\| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & \((n, \infty, \ldots)\) \\
\(\Longrightarrow\) & \(1^{d} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & decide & \((n, n, \infty, \ldots)\) \\
\(\Longrightarrow\) & \(1^{d} \overline{2} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & unit propagate & \((n, n-1, \infty, \ldots)\) \\
\(\Longrightarrow\) & \(1^{d} \overline{2} 3 \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & unit propagate & \((n, n-2, \infty, \ldots)\) \\
\(\Longrightarrow\) & \(1^{d} \overline{2} 34 \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & unit propagate & \((n, n-3, \infty, \ldots)\)
\end{tabular}

\section*{Example (Revisited for Termination)}
\[
\varphi=(\overline{1} \vee \overline{2}) \wedge(2 \vee 3) \wedge(\overline{1} \vee \overline{3} \vee 4) \wedge(2 \vee \overline{3} \vee \overline{4}) \wedge(1 \vee 4)
\]
\begin{tabular}{lrll} 
& \(\| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & \((n, \infty, \ldots)\) \\
& \(1^{d} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & decide & \((n, n, \infty, \ldots)\) \\
\(\Longrightarrow\) & \(1^{d} \overline{2} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & unit propagate & \((n, n-1, \infty, \ldots)\) \\
\(\Longrightarrow \quad\) & \(1^{d} \overline{2} 3 \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & unit propagate & \((n, n-2, \infty, \ldots)\) \\
\(\Longrightarrow \quad\) & \(1^{d} \overline{2} 34 \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & unit propagate & \((n, n-3, \infty, \ldots)\) \\
\(\Longrightarrow \quad\) & \(\overline{1} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & backtrack & \((n-1, \infty, \ldots)\)
\end{tabular}

\section*{Example (Revisited for Termination)}
\[
\varphi=(\overline{1} \vee \overline{2}) \wedge(2 \vee 3) \wedge(\overline{1} \vee \overline{3} \vee 4) \wedge(2 \vee \overline{3} \vee \overline{4}) \wedge(1 \vee 4)
\]
\begin{tabular}{lrll} 
& \(\| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & \((n, \infty, \ldots)\) \\
& \(1^{d} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & decide & \((n, n, \infty, \ldots)\) \\
\(\Longrightarrow\) & \(1^{d} \overline{2} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & unit propagate & \((n, n-1, \infty, \ldots)\) \\
\(\Longrightarrow\) & \(1^{d} \overline{2} 3 \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & unit propagate & \((n, n-2, \infty, \ldots)\) \\
\(\Longrightarrow\) & \(1^{d} \overline{2} 34 \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & unit propagate & \((n, n-3, \infty, \ldots)\) \\
\(\Longrightarrow\) & \(\overline{1} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & backtrack & \((n-1, \infty, \ldots)\) \\
\(\Longrightarrow\) & \(\overline{1} 4 \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & unit propagate & \((n-2, \infty, \ldots)\)
\end{tabular}

\section*{Example (Revisited for Termination)}
\[
\varphi=(\overline{1} \vee \overline{2}) \wedge(2 \vee 3) \wedge(\overline{1} \vee \overline{3} \vee 4) \wedge(2 \vee \overline{3} \vee \overline{4}) \wedge(1 \vee 4)
\]
\begin{tabular}{rrrl} 
& \(\| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & \((n, \infty, \ldots)\) \\
& \(1^{d} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & decide & \((n, n, \infty, \ldots)\) \\
\(\Longrightarrow\) & \(1^{d} \overline{2} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & unit propagate & \((n, n-1, \infty, \ldots)\) \\
\(\Longrightarrow\) & \(1^{d} \overline{2} 3 \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & unit propagate & \((n, n-2, \infty, \ldots)\) \\
\(\Longrightarrow\) & \(1^{d} \overline{2} 34 \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & unit propagate & \((n, n-3, \infty, \ldots)\) \\
\(\Longrightarrow\) & \(\overline{1} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & backtrack & \((n-1, \infty, \ldots)\) \\
\(\Longrightarrow \quad\) & \(\overline{1} 4 \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & unit propagate & \((n-2, \infty, \ldots)\) \\
\(\Longrightarrow \quad\) & \(\overline{1} 43^{d} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & decide & \((n-2, n, \infty, \ldots)\)
\end{tabular}

\section*{Example (Revisited for Termination)}
\[
\varphi=(\overline{1} \vee \overline{2}) \wedge(2 \vee 3) \wedge(\overline{1} \vee \overline{3} \vee 4) \wedge(2 \vee \overline{3} \vee \overline{4}) \wedge(1 \vee 4)
\]
\begin{tabular}{ccrl} 
& \(\| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & \((n, \infty, \ldots)\) \\
& \(1^{d} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & decide & \((n, n, \infty, \ldots)\) \\
\(\Longrightarrow \quad\) & \(1^{d} \overline{2} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & unit propagate & \((n, n-1, \infty, \ldots)\) \\
\(\Longrightarrow \quad\) & \(1^{d} \overline{2} 3 \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & unit propagate & \((n, n-2, \infty, \ldots)\) \\
\(\Longrightarrow \quad\) & \(1^{d} \overline{2} 34 \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & unit propagate & \((n, n-3, \infty, \ldots)\) \\
\(\Longrightarrow \quad\) & \(\overline{1} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & backtrack & \((n-1, \infty, \ldots)\) \\
\(\Longrightarrow \quad\) & \(\overline{1} 4 \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & unit propagate & \((n-2, \infty, \ldots)\) \\
\(\Longrightarrow \quad\) & \(\overline{1} 43^{d} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & decide & \((n-2, n, \infty, \ldots)\) \\
\(\Longrightarrow \quad\) & \(\overline{1} 43^{d} 2 \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots\) & unit propagate & \((n-2, n-1, \infty, \ldots)\)
\end{tabular}

\section*{Example (Revisited for Termination)}
\[
\begin{array}{ccll}
\varphi=(\overline{1} \vee \overline{2}) \wedge(2 \vee 3) \wedge(\overline{1} \vee \overline{3} \vee 4) \wedge(2 \vee \overline{3} \vee \overline{4}) \wedge(1 \vee 4) \\
& \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots & \\
& (n, \infty, \ldots) \\
\Longrightarrow \quad & 1^{d} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots & \text { decide } & (n, n, \infty, \ldots) \\
\Longrightarrow \quad & 1^{d} \overline{2} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots & \text { unit propagate } & (n, n-1, \infty, \ldots) \\
\Longrightarrow \quad & 1^{d} \overline{2} 3 \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots & \text { unit propagate } & (n, n-2, \infty, \ldots) \\
\Longrightarrow \quad & 1^{d} \overline{2} 34 \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots & \text { unit propagate } & (n, n-3, \infty, \ldots) \\
\Longrightarrow \quad & \overline{1} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots & \text { backtrack } & (n-1, \infty, \ldots) \\
\Longrightarrow \quad & \overline{1} 4 \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots & \text { unit propagate } & (n-2, \infty, \ldots) \\
\Longrightarrow \quad & \overline{1} 43^{d} \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots & \text { decide } & (n-2, n, \infty, \ldots) \\
\Longrightarrow & \overline{1} 43^{d} 2 \| \overline{1} \vee \overline{2}, 2 \vee 3, \overline{1} \vee \overline{3} \vee 4, \ldots & \text { unit propagate } & (n-2, n-1, \infty, \ldots)
\end{array}
\]

\section*{Observation}
- decide replaces \(\infty\) by \(n\)
- unit propagate, backtrack, and backjump replace \(m\) by \(m-1\)

Consider maximal derivation with final state \(S_{n}\) :
\(\| F \quad \Longrightarrow_{\mathcal{B}} \quad S_{1} \quad \Longrightarrow_{\mathcal{B}} \quad S_{2} \quad \Longrightarrow_{\mathcal{B}} \quad \cdots \quad \Longrightarrow_{\mathcal{B}} \quad S_{n}\)

Consider maximal derivation with final state \(S_{n}\) :
\[
\| F \quad \Longrightarrow_{\mathcal{B}} \quad S_{1} \quad \Longrightarrow_{\mathcal{B}} \quad S_{2} \quad \Longrightarrow_{\mathcal{B}} \quad \ldots \quad \Longrightarrow_{\mathcal{B}} \quad S_{n}
\]

\section*{Theorem}
if \(S_{n}=\) FailState then \(F\) is unsatisfiable

Consider maximal derivation with final state \(S_{n}\) :
\[
\| F \quad \Longrightarrow_{\mathcal{B}} \quad S_{1} \quad \Longrightarrow_{\mathcal{B}} \quad S_{2} \quad \Longrightarrow_{\mathcal{B}} \quad \ldots \quad \Longrightarrow_{\mathcal{B}} \quad S_{n}
\]

\section*{Theorem}
if \(S_{n}=\) FailState then \(F\) is unsatisfiable

\section*{Proof.}
- must have \(\left\|F \Longrightarrow{ }_{\mathcal{B}}^{*} M\right\| F \Longrightarrow_{\text {fail }}\) FailState such that \(M\) contains no decision literals and \(M \vDash \neg C\) for some \(C\) in \(F\)

Consider maximal derivation with final state \(S_{n}\) :
\[
\| F \quad \Longrightarrow_{\mathcal{B}} \quad S_{1} \quad \Longrightarrow_{\mathcal{B}} \quad S_{2} \quad \Longrightarrow_{\mathcal{B}} \quad \ldots \quad \Longrightarrow_{\mathcal{B}} \quad S_{n}
\]

\section*{Theorem}
if \(S_{n}=\) FailState then \(F\) is unsatisfiable

\section*{Proof.}
- must have \(\left\|F \Longrightarrow{ }_{\mathcal{B}}^{*} M\right\| F \Longrightarrow_{\text {fail }}\) FailState such that \(M\) contains no decision literals and \(M \vDash \neg C\) for some \(C\) in \(F\)
- by Model Entailment Lemma \(F \vDash M\), so \(F \vDash \neg C\)

Consider maximal derivation with final state \(S_{n}\) :
\[
\| F \quad \Longrightarrow_{\mathcal{B}} \quad S_{1} \quad \Longrightarrow_{\mathcal{B}} \quad S_{2} \quad \Longrightarrow_{\mathcal{B}} \quad \ldots \quad \Longrightarrow_{\mathcal{B}} \quad S_{n}
\]

\section*{Theorem}
if \(S_{n}=\) FailState then \(F\) is unsatisfiable

\section*{Proof.}
- must have \(\left\|F \Longrightarrow{ }_{\mathcal{B}}^{*} M\right\| F \Longrightarrow_{\text {fail }}\) FailState such that \(M\) contains no decision literals and \(M \vDash \neg C\) for some \(C\) in \(F\)
- by Model Entailment Lemma \(F \vDash M\), so \(F \vDash \neg C\)
- also have \(F \vDash C\) because \(C\) is in \(F\), so \(F\) is unsatisfiable

Consider maximal derivation with final state \(S_{n}\) :
\[
\| F \quad \Longrightarrow_{\mathcal{B}} \quad S_{1} \quad \Longrightarrow_{\mathcal{B}} \quad S_{2} \quad \Longrightarrow_{\mathcal{B}} \quad \ldots \quad \Longrightarrow_{\mathcal{B}} \quad S_{n}
\]

\section*{Theorem}
if \(S_{n}=\) FailState then \(F\) is unsatisfiable

\section*{Proof.}
- must have \(\left\|F \Longrightarrow{ }_{\mathcal{B}}^{*} M\right\| F \Longrightarrow_{\text {fail }}\) FailState such that \(M\) contains no decision literals and \(M \vDash \neg C\) for some \(C\) in \(F\)
- by Model Entailment Lemma \(F \vDash M\), so \(F \vDash \neg C\)
- also have \(F \vDash C\) because \(C\) is in \(F\), so \(F\) is unsatisfiable

\section*{Theorem}
if \(S_{n}=M \| F^{\prime}\) then \(F\) is satisfiable and \(M \vDash F\)

Consider maximal derivation with final state \(S_{n}\) :
\[
\| F \quad \Longrightarrow_{\mathcal{B}} \quad S_{1} \quad \Longrightarrow_{\mathcal{B}} \quad S_{2} \quad \Longrightarrow_{\mathcal{B}} \quad \ldots \quad \Longrightarrow_{\mathcal{B}} \quad S_{n}
\]

\section*{Theorem}
if \(S_{n}=\) FailState then \(F\) is unsatisfiable

\section*{Proof.}
- must have \(\left\|F \Longrightarrow{ }_{\mathcal{B}}^{*} M\right\| F \Longrightarrow_{\text {fail }}\) FailState such that \(M\) contains no decision literals and \(M \vDash \neg C\) for some \(C\) in \(F\)
- by Model Entailment Lemma \(F \vDash M\), so \(F \vDash \neg C\)
- also have \(F \vDash C\) because \(C\) is in \(F\), so \(F\) is unsatisfiable

\section*{Theorem}
if \(S_{n}=M \| F^{\prime}\) then \(F\) is satisfiable and \(M \vDash F\)
Proof.
- have \(F=F^{\prime}\)

Consider maximal derivation with final state \(S_{n}\) :
\[
\| F \quad \Longrightarrow_{\mathcal{B}} \quad S_{1} \quad \Longrightarrow_{\mathcal{B}} \quad S_{2} \quad \Longrightarrow_{\mathcal{B}} \quad \ldots \quad \Longrightarrow_{\mathcal{B}} \quad S_{n}
\]

\section*{Theorem}
if \(S_{n}=\) FailState then \(F\) is unsatisfiable

\section*{Proof.}
- must have \(\left\|F \Longrightarrow{ }_{\mathcal{B}}^{*} M\right\| F \Longrightarrow_{\text {fail }}\) FailState such that \(M\) contains no decision literals and \(M \vDash \neg C\) for some \(C\) in \(F\)
- by Model Entailment Lemma \(F \vDash M\), so \(F \vDash \neg C\)
- also have \(F \vDash C\) because \(C\) is in \(F\), so \(F\) is unsatisfiable

\section*{Theorem}
if \(S_{n}=M \| F^{\prime}\) then \(F\) is satisfiable and \(M \vDash F\)

\section*{Proof.}
- have \(F=F^{\prime}\)
- \(S_{n}\) is final, so all literals of \(F\) are defined in \(M\) (otherwise decide applicable)

Consider maximal derivation with final state \(S_{n}\) :
\[
\| F \quad \Longrightarrow_{\mathcal{B}} \quad S_{1} \quad \Longrightarrow_{\mathcal{B}} \quad S_{2} \quad \Longrightarrow_{\mathcal{B}} \quad \ldots \quad \Longrightarrow_{\mathcal{B}} \quad S_{n}
\]

\section*{Theorem}
if \(S_{n}=\) FailState then \(F\) is unsatisfiable

\section*{Proof.}
- must have \(\left\|F \Longrightarrow{ }_{\mathcal{B}}^{*} M\right\| F \Longrightarrow_{\text {fail }}\) FailState such that \(M\) contains no decision literals and \(M \vDash \neg C\) for some \(C\) in \(F\)
- by Model Entailment Lemma \(F \vDash M\), so \(F \vDash \neg C\)
- also have \(F \vDash C\) because \(C\) is in \(F\), so \(F\) is unsatisfiable

\section*{Theorem}
if \(S_{n}=M \| F^{\prime}\) then \(F\) is satisfiable and \(M \vDash F\)

\section*{Proof.}
- have \(F=F^{\prime}\)
- \(S_{n}\) is final, so all literals of \(F\) are defined in \(M\) (otherwise decide applicable)
- \(\nexists\) clause \(C\) in \(F\) such that \(M \vDash \neg C\) (otherwise backjump or fail applicable)

Consider maximal derivation with final state \(S_{n}\) :
\[
\| F \quad \Longrightarrow_{\mathcal{B}} \quad S_{1} \quad \Longrightarrow_{\mathcal{B}} \quad S_{2} \quad \Longrightarrow_{\mathcal{B}} \quad \ldots \quad \Longrightarrow_{\mathcal{B}} \quad S_{n}
\]

\section*{Theorem}
if \(S_{n}=\) FailState then \(F\) is unsatisfiable

\section*{Proof.}
- must have \(\left\|F \Longrightarrow{ }_{\mathcal{B}}^{*} M\right\| F \Longrightarrow_{\text {fail }}\) FailState such that \(M\) contains no decision literals and \(M \vDash \neg C\) for some \(C\) in \(F\)
- by Model Entailment Lemma \(F \vDash M\), so \(F \vDash \neg C\)
- also have \(F \vDash C\) because \(C\) is in \(F\), so \(F\) is unsatisfiable

\section*{Theorem}
if \(S_{n}=M \| F^{\prime}\) then \(F\) is satisfiable and \(M \vDash F\)

\section*{Proof.}
- have \(F=F^{\prime}\)
- \(S_{n}\) is final, so all literals of \(F\) are defined in \(M\) (otherwise decide applicable)
- \(\nexists\) clause \(C\) in \(F\) such that \(M \vDash \neg C\) (otherwise backjump or fail applicable)
- so \(M\) satisfies \(F(M \vDash F)\)

\section*{DPLL}

R- Martin Davis and Hilary Putnam.
A Computing Procedure for Quantification Theory. Journal of the ACM 7(3), pp. 201-215, 1960.

击 Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli.
Solving SAT and SAT Modulo Theories: From an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the ACM 53(6), pp. 937-977, 2006.

\section*{Application Examples}

通
Roope Kaivola et al.
Replacing Testing with Formal Verification in Intel CoreTM i7 Processor Execution
Engine Validation.
Proc. 21st International Conference on Computer Aided Verification, pp. 414-429, 2009.
Andrei Horbach, Thomas Bartsch, and Dirk Briskorn.
Using a SAT solver to Schedule Sports Leagues.
Journal of Scheduling 15, pp. 117-125, 2012.
T Marijn Heule, Oliver Kullmann, and Victor Marek.
Solving and Verifying the Boolean Pythagorean Triples Problem via Cube-and-Conquer. Proc. 16th International Conference on Theory and Applications of Satisfiability Testing, \(\mathrm{pp}_{29}\) 228-245, 2016.

\section*{Outline}

\section*{- Introduction}

\section*{- Propositional Logic}
- DPLL
- Transformations to CNF
- Using SAT Solvers

\section*{Fact}
most SAT solvers require input to be in CNF

\section*{Fact}
most SAT solvers require input to be in CNF

\section*{Remarks}
- transforming formula to equivalent CNF can cause exponential blowup
- transforming formula into equisatisfiable CNF is possible in linear time

\section*{Fact}
most SAT solvers require input to be in CNF

\section*{Remarks}
- transforming formula to equivalent CNF can cause exponential blowup
- transforming formula into equisatisfiable CNF is possible in linear time

\section*{Definition}
formulas \(\varphi\) and \(\psi\) are equisatisfiable ( \(\varphi \approx \psi\) ) if
\(\varphi\) is satisfiable \(\quad \Longleftrightarrow \quad \psi\) is satisfiable

\section*{Fact}
most SAT solvers require input to be in CNF

\section*{Remarks}
- transforming formula to equivalent CNF can cause exponential blowup
- transforming formula into equisatisfiable CNF is possible in linear time

\section*{Definition}
formulas \(\varphi\) and \(\psi\) are equisatisfiable \((\varphi \approx \psi)\) if
\(\varphi\) is satisfiable \(\quad \Longleftrightarrow \quad \psi\) is satisfiable

\section*{Example}
\[
p \vee q \approx \top \quad p \wedge \neg p \approx q \wedge \neg q \quad p \wedge \neg p \nsim p \wedge \neg q
\]

\section*{Example (Tseitin's Transformation)}
- \(\varphi=\neg(p \vee q) \vee(p \wedge(p \vee q))\)

\section*{Example (Tseitin's Transformation)}
- \(\varphi=\neg(p \vee q) \vee(p \wedge(p \vee q))\)


\section*{Example (Tseitin's Transformation)}
- \(\varphi=\neg(p \vee q) \vee(p \wedge(p \vee q))\)
- use fresh propositional variable for every connective
\[
\begin{array}{ll}
a_{0}: \neg(p \vee q) \vee(p \wedge(p \vee q)) & a_{1}: \neg(p \vee q) \\
a_{2}: p \vee q & a_{3}: p \wedge(p \vee q)
\end{array}
\]
\(a_{4}: p \vee q\)


\section*{Example (Tseitin's Transformation)}
- \(\varphi=\neg(p \vee q) \vee(p \wedge(p \vee q))\)
- use fresh propositional variable for every connective
\[
\begin{array}{ll}
a_{0}: \neg(p \vee q) \vee(p \wedge(p \vee q)) & a_{1}: \neg(p \vee q) \\
a_{2}: p \vee q & a_{3}: p \wedge(p \vee q)
\end{array}
\]
\[
a_{4}: p \vee q
\]

- \(\varphi \approx a_{0} \wedge\left(a_{0} \leftrightarrow a_{1} \vee a_{3}\right) \wedge\left(a_{1} \leftrightarrow \neg a_{2}\right) \wedge\left(a_{2} \leftrightarrow p \vee q\right) \wedge\)
\[
\left(a_{3} \leftrightarrow p \wedge a_{4}\right) \wedge\left(a_{4} \leftrightarrow p \vee q\right)
\]

\section*{Example (Tseitin's Transformation)}
- \(\varphi=\neg(p \vee q) \vee(p \wedge(p \vee q))\)
- use fresh propositional variable for every connective
\[
\begin{array}{ll}
a_{0}: \neg(p \vee q) \vee(p \wedge(p \vee q)) & a_{1}: \neg(p \vee q) \\
a_{2}: p \vee q & a_{3}: p \wedge(p \vee q)
\end{array}
\]

\(a_{4}: p \vee q\)
- \(\varphi \approx a_{0} \wedge\left(a_{0} \leftrightarrow a_{1} \vee a_{3}\right) \wedge\left(a_{1} \leftrightarrow \neg a_{2}\right) \wedge\left(a_{2} \leftrightarrow p \vee q\right) \wedge\)
\[
\left(a_{3} \leftrightarrow p \wedge a_{4}\right) \wedge\left(a_{4} \leftrightarrow p \vee q\right)
\]
- every \(\leftrightarrow\) subexpression can be replaced by at most three clauses:
\[
\begin{aligned}
a \leftrightarrow b \wedge c & \equiv(\neg a \vee b) \wedge(\neg a \vee c) \wedge(a \vee \neg b \vee \neg c) \\
a \leftrightarrow b \vee c & \equiv(\neg a \vee b \vee c) \wedge(a \vee \neg b) \wedge(a \vee \neg c) \\
a \leftrightarrow \neg b & \equiv(\neg a \vee \neg b) \wedge(a \vee b)
\end{aligned}
\]

\section*{Example (Tseitin's Transformation)}
- \(\varphi=\neg(p \vee q) \vee(p \wedge(p \vee q))\)
- use fresh propositional variable for every connective
\[
\begin{array}{ll}
a_{0}: \neg(p \vee q) \vee(p \wedge(p \vee q)) & a_{1}: \neg(p \vee q) \\
a_{2}: p \vee q & a_{3}: p \wedge(p \vee q)
\end{array}
\]

- \(\varphi \approx a_{0} \wedge\left(a_{0} \leftrightarrow a_{1} \vee a_{3}\right) \wedge\left(a_{1} \leftrightarrow \neg a_{2}\right) \wedge\left(a_{2} \leftrightarrow p \vee q\right) \wedge\)
\[
\left(a_{3} \leftrightarrow p \wedge a_{4}\right) \wedge\left(a_{4} \leftrightarrow p \vee q\right)
\]
- every \(\leftrightarrow\) subexpression can be replaced by at most three clauses:
\[
\begin{aligned}
a \leftrightarrow b \wedge c & \equiv(\neg a \vee b) \wedge(\neg a \vee c) \wedge(a \vee \neg b \vee \neg c) \\
a \leftrightarrow b \vee c & \equiv(\neg a \vee b \vee c) \wedge(a \vee \neg b) \wedge(a \vee \neg c) \\
a \leftrightarrow \neg b & \equiv(\neg a \vee \neg b) \wedge(a \vee b)
\end{aligned}
\]

\section*{Example (Tseitin's Transformation)}
- \(\varphi=\neg(p \vee q) \vee(p \wedge(p \vee q))\)
- use fresh propositional variable for every connective
\[
\begin{array}{ll}
a_{0}: \neg(p \vee q) \vee(p \wedge(p \vee q)) & a_{1}: \neg(p \vee q) \\
a_{2}: p \vee q & a_{3}: p \wedge(p \vee q)
\end{array}
\]

\(a_{4}: p \vee q\)
- \(\varphi \approx a_{0} \wedge\left(a_{0} \leftrightarrow a_{1} \vee a_{3}\right) \wedge\left(a_{1} \leftrightarrow \neg a_{2}\right) \wedge\left(a_{2} \leftrightarrow p \vee q\right) \wedge\)
\[
\left(a_{3} \leftrightarrow p \wedge a_{2}\right)
\]
- every \(\leftrightarrow\) subexpression can be replaced by at most three clauses:
\[
\begin{aligned}
a \leftrightarrow b \wedge c & \equiv(\neg a \vee b) \wedge(\neg a \vee c) \wedge(a \vee \neg b \vee \neg c) \\
a \leftrightarrow b \vee c & \equiv(\neg a \vee b \vee c) \wedge(a \vee \neg b) \wedge(a \vee \neg c) \\
a \leftrightarrow \neg b & \equiv(\neg a \vee \neg b) \wedge(a \vee b)
\end{aligned}
\]

\section*{Observation}
bi-implication \(\leftrightarrow\) in Tseitin's transformation can be replaced by \(\rightarrow\) or \(\leftarrow\) : direction of implication \(\rightarrow\) or \(\leftarrow\) depends on polarity of subformula

\section*{Observation}
bi-implication \(\leftrightarrow\) in Tseitin's transformation can be replaced by \(\rightarrow\) or \(\leftarrow\) : direction of implication \(\rightarrow\) or \(\leftarrow\) depends on polarity of subformula

\section*{Observation}
bi-implication \(\leftrightarrow\) in Tseitin's transformation can be replaced by \(\rightarrow\) or \(\leftarrow\) : direction of implication \(\rightarrow\) or \(\leftarrow\) depends on polarity of subformula

\section*{Definition}
for \(\varphi\) subformula occurrence of \(\psi\)
- let \(k\) be number of negations above \(\varphi\) in syntax tree of \(\psi\)

\section*{Observation}
bi-implication \(\leftrightarrow\) in Tseitin's transformation can be replaced by \(\rightarrow\) or \(\leftarrow\) : direction of implication \(\rightarrow\) or \(\leftarrow\) depends on polarity of subformula

\section*{Definition}
for \(\varphi\) subformula occurrence of \(\psi\)
- let \(k\) be number of negations above \(\varphi\) in syntax tree of \(\psi\)
- polarity of \(\varphi\) is + if \(k\) is even, and - otherwise

\section*{Observation}
bi-implication \(\leftrightarrow\) in Tseitin's transformation can be replaced by \(\rightarrow\) or \(\leftarrow\) : direction of implication \(\rightarrow\) or \(\leftarrow\) depends on polarity of subformula

\section*{Definition}
for \(\varphi\) subformula occurrence of \(\psi\)
- let \(k\) be number of negations above \(\varphi\) in syntax tree of \(\psi\)
- polarity of \(\varphi\) is + if \(k\) is even, and - otherwise

\section*{Example}


\section*{Example (Plaisted and Greenbaum's Transformation)}
- \(\varphi=\neg(p \vee q) \vee(p \wedge(p \vee q))\)
- use fresh propositional variable for every connective
\[
\begin{array}{ll}
a_{0}: \neg(p \vee q) \vee(p \wedge(p \vee q)) & a_{1}: \neg(p \vee q) \\
a_{2}: p \vee q & a_{3}: p \wedge(p \vee q)
\end{array}
\]
\[
a_{4}: p \vee q
\]


\section*{Example (Plaisted and Greenbaum's Transformation)}
- \(\varphi=\neg(p \vee q) \vee(p \wedge(p \vee q))\)
- use fresh propositional variable for every connective
\[
\begin{array}{ll}
a_{0}: \neg(p \vee q) \vee(p \wedge(p \vee q)) & a_{1}: \neg(p \vee q) \\
a_{2}: p \vee q & a_{3}: p \wedge(p \vee q)
\end{array}
\]
\[
a_{4}: p \vee q
\]

- add \(\left(a_{i} \rightarrow \ldots\right)\) if polarity of \(a_{i}\) is positive and \(\left(a_{i} \leftarrow \ldots\right)\) if negative \(\varphi \approx a_{0}\)

\section*{Example (Plaisted and Greenbaum's Transformation)}
- \(\varphi=\neg(p \vee q) \vee(p \wedge(p \vee q))\)
- use fresh propositional variable for every connective
\[
\begin{array}{ll}
a_{0}: \neg(p \vee q) \vee(p \wedge(p \vee q)) & a_{1}: \neg(p \vee q) \\
a_{2}: p \vee q & a_{3}: p \wedge(p \vee q)
\end{array}
\]
\[
a_{4}: p \vee q
\]

- add \(\left(a_{i} \rightarrow \ldots\right)\) if polarity of \(a_{i}\) is positive and \(\left(a_{i} \leftarrow \ldots\right)\) if negative \(\varphi \approx a_{0}\)

\section*{Example (Plaisted and Greenbaum's Transformation)}
- \(\varphi=\neg(p \vee q) \vee(p \wedge(p \vee q))\)
- use fresh propositional variable for every connective
\[
\begin{array}{ll}
a_{0}: \neg(p \vee q) \vee(p \wedge(p \vee q)) & a_{1}: \neg(p \vee q) \\
a_{2}: p \vee q & a_{3}: p \wedge(p \vee q)
\end{array}
\]
\[
a_{4}: p \vee q
\]

- add \(\left(a_{i} \rightarrow \ldots\right)\) if polarity of \(a_{i}\) is positive and \(\left(a_{i} \leftarrow \ldots\right)\) if negative \(\varphi \approx a_{0} \wedge\left(a_{0} \rightarrow a_{1} \vee a_{3}\right)\)

\section*{Example (Plaisted and Greenbaum's Transformation)}
- \(\varphi=\neg(p \vee q) \vee(p \wedge(p \vee q))\)
- use fresh propositional variable for every connective
\[
\begin{array}{ll}
a_{0}: \neg(p \vee q) \vee(p \wedge(p \vee q)) & a_{1}: \neg(p \vee q) \\
a_{2}: p \vee q & a_{3}: p \wedge(p \vee q)
\end{array}
\]
\[
a_{4}: p \vee q
\]

- add \(\left(a_{i} \rightarrow \ldots\right)\) if polarity of \(a_{i}\) is positive and \(\left(a_{i} \leftarrow \ldots\right)\) if negative \(\varphi \approx a_{0} \wedge\left(a_{0} \rightarrow a_{1} \vee a_{3}\right) \wedge\left(a_{1} \rightarrow \neg a_{2}\right)\)

\section*{Example (Plaisted and Greenbaum's Transformation)}
- \(\varphi=\neg(p \vee q) \vee(p \wedge(p \vee q))\)
- use fresh propositional variable for every connective
\[
\begin{array}{ll}
a_{0}: \neg(p \vee q) \vee(p \wedge(p \vee q)) & a_{1}: \neg(p \vee q) \\
a_{2}: p \vee q & a_{3}: p \wedge(p \vee q)
\end{array}
\]
\[
a_{4}: p \vee q
\]

- add \(\left(a_{i} \rightarrow \ldots\right)\) if polarity of \(a_{i}\) is positive and \(\left(a_{i} \leftarrow \ldots\right)\) if negative \(\varphi \approx a_{0} \wedge\left(a_{0} \rightarrow a_{1} \vee a_{3}\right) \wedge\left(a_{1} \rightarrow \neg a_{2}\right) \wedge\left(a_{2} \leftarrow p \vee q\right)\)

\section*{Example (Plaisted and Greenbaum's Transformation)}
- \(\varphi=\neg(p \vee q) \vee(p \wedge(p \vee q))\)
- use fresh propositional variable for every connective
\[
\begin{array}{ll}
a_{0}: \neg(p \vee q) \vee(p \wedge(p \vee q)) & a_{1}: \neg(p \vee q) \\
a_{2}: p \vee q & a_{3}: p \wedge(p \vee q)
\end{array}
\]
\[
a_{4}: p \vee q
\]

- add \(\left(a_{i} \rightarrow \ldots\right)\) if polarity of \(a_{i}\) is positive and \(\left(a_{i} \leftarrow \ldots\right)\) if negative \(\varphi \approx a_{0} \wedge\left(a_{0} \rightarrow a_{1} \vee a_{3}\right) \wedge\left(a_{1} \rightarrow \neg a_{2}\right) \wedge\left(a_{2} \leftarrow p \vee q\right) \wedge\) \(\left(a_{3} \rightarrow p \wedge a_{4}\right)\)

\section*{Example (Plaisted and Greenbaum's Transformation)}
- \(\varphi=\neg(p \vee q) \vee(p \wedge(p \vee q))\)
- use fresh propositional variable for every connective
\[
\begin{array}{ll}
a_{0}: \neg(p \vee q) \vee(p \wedge(p \vee q)) & a_{1}: \neg(p \vee q) \\
a_{2}: p \vee q & a_{3}: p \wedge(p \vee q)
\end{array}
\]
\[
a_{4}: p \vee q
\]

- add \(\left(a_{i} \rightarrow \ldots\right)\) if polarity of \(a_{i}\) is positive and \(\left(a_{i} \leftarrow \ldots\right)\) if negative \(\varphi \approx a_{0} \wedge\left(a_{0} \rightarrow a_{1} \vee a_{3}\right) \wedge\left(a_{1} \rightarrow \neg a_{2}\right) \wedge\left(a_{2} \leftarrow p \vee q\right) \wedge\) \(\left(a_{3} \rightarrow p \wedge a_{4}\right) \wedge\left(a_{4} \rightarrow p \vee q\right)\)

\section*{Example (Plaisted and Greenbaum's Transformation)}
- \(\varphi=\neg(p \vee q) \vee(p \wedge(p \vee q))\)
- use fresh propositional variable for every connective
\[
\begin{array}{ll}
a_{0}: \neg(p \vee q) \vee(p \wedge(p \vee q)) & a_{1}: \neg(p \vee q) \\
a_{2}: p \vee q & a_{3}: p \wedge(p \vee q)
\end{array}
\]
\[
a_{4}: p \vee q
\]

- add \(\left(a_{i} \rightarrow \ldots\right)\) if polarity of \(a_{i}\) is positive and \(\left(a_{i} \leftarrow \ldots\right)\) if negative
\[
\begin{aligned}
\varphi \approx & a_{0} \wedge\left(a_{0} \rightarrow a_{1} \vee a_{3}\right) \wedge\left(a_{1} \rightarrow \neg a_{2}\right) \wedge\left(a_{2} \leftarrow p \vee q\right) \wedge \\
& \left(a_{3} \rightarrow p \wedge a_{4}\right) \wedge\left(a_{4} \rightarrow p \vee q\right)
\end{aligned}
\]
- every \(\leftarrow\) and \(\rightarrow\) subexpression can be replaced by at most two clauses:

\section*{Example (Plaisted and Greenbaum's Transformation)}
- \(\varphi=\neg(p \vee q) \vee(p \wedge(p \vee q))\)
- use fresh propositional variable for every connective
\[
\begin{array}{ll}
a_{0}: \neg(p \vee q) \vee(p \wedge(p \vee q)) & a_{1}: \neg(p \vee q) \\
a_{2}: p \vee q & a_{3}: p \wedge(p \vee q)
\end{array}
\]
\[
a_{4}: p \vee q
\]

- add \(\left(a_{i} \rightarrow \ldots\right)\) if polarity of \(a_{i}\) is positive and \(\left(a_{i} \leftarrow \ldots\right)\) if negative
\[
\begin{aligned}
\varphi \approx & a_{0} \wedge\left(a_{0} \rightarrow a_{1} \vee a_{3}\right) \wedge\left(a_{1} \rightarrow \neg a_{2}\right) \wedge\left(a_{2} \leftarrow p \vee q\right) \wedge \\
& \left(a_{3} \rightarrow p \wedge a_{4}\right) \wedge\left(a_{4} \rightarrow p \vee q\right)
\end{aligned}
\]
- every \(\leftarrow\) and \(\rightarrow\) subexpression can be replaced by at most two clauses:
\[
\begin{aligned}
a \rightarrow b \wedge c & \equiv(\neg a \vee b) \wedge(\neg a \vee c) & a \leftarrow b \wedge c & \equiv(a \vee \neg b \vee \neg c) \\
a \rightarrow b \vee c & \equiv(\neg a \vee b \vee c) & a \leftarrow b \vee c & \equiv(a \vee \neg b) \wedge(a \vee \neg c) \\
a \rightarrow \neg b & \equiv(\neg a \vee \neg b) & a \leftarrow \neg b & \equiv(a \vee b)
\end{aligned}
\]

\section*{SAT Solvers}

Minisat, Glucose, CaDiCaL, Glu_VC, Plingeling, MapleLRB LCM, MapleCOMPSPS, Riss, Lingeling, Treengeling, CryptoMiniSat, abcdSAT, Dimetheus, Kiel, MapleCOMSPS, Rsat, SWDiA5BY, BlackBox, SWDiA5BY, pprobSAT, glueSplit_clasp, BalancedZ, SApperloT, PeneLoPe, MXC, ROKKminisat, MiniSat_HACK_999ED, ZENN, CSHCrandMC, MiniGolf, march_rw, sattime2011, mphasesat64, sparrow2011, pmcSAT, CSHCpar8, gluebit_clasp, clasp, precosat, gNovelty, SATzilla, SatELite, Score2SAT, YalSAT, tch glucose3, ...

\section*{SAT Solvers}

Minisat, Glucose, CaDiCaL, Glu_VC, Plingeling, MapleLRB LCM, MapleCOMPSPS, Riss, Lingeling, Treengeling, CryptoMiniSat, abcdSAT, Dimetheus, Kiel, MapleCOMSPS, Rsat, SWDiA5BY, BlackBox, SWDiA5BY, pprobSAT, glueSplit_clasp, BalancedZ, SApperloT, PeneLoPe, MXC, ROKKminisat, MiniSat_HACK_999ED, ZENN, CSHCrandMC, MiniGolf, march_rw, sattime2011, mphasesat64, sparrow2011, pmcSAT, CSHCpar8, gluebit_clasp, clasp, precosat, gNovelty, SATzilla, SatELite, Score2SAT, YalSAT, tch glucose3, ...

\section*{SAT Competition}
- annual competition for different tracks (main, parallel, no-limit, ...)
- increasing set of benchmarks from industry, mathematics, cryptography, ...
- standardized input format DIMACS and proof format DRAT

\section*{SAT Solvers}

Minisat, Glucose, CaDiCaL, Glu_VC, Plingeling, MapleLRB LCM, MapleCOMPSPS, Riss, Lingeling, Treengeling, CryptoMiniSat, abcdSAT, Dimetheus, Kiel, MapleCOMSPS, Rsat, SWDiA5BY, BlackBox, SWDiA5BY, pprobSAT, glueSplit_clasp, BalancedZ, SApperloT, PeneLoPe, MXC, ROKKminisat, MiniSat_HACK_999ED, ZENN, CSHCrandMC, MiniGolf, march_rw, sattime2011, mphasesat64, sparrow2011, pmcSAT, CSHCpar8, gluebit_clasp, clasp, precosat, gNovelty, SATzilla, SatELite, Score2SAT, YalSAT, tch glucose3, ...

\section*{SAT Competition}
- annual competition for different tracks (main, parallel, no-limit, ...)
- increasing set of benchmarks from industry, mathematics, cryptography, ...
- standardized input format DIMACS and proof format DRAT
http://www.satcompetition.org/

\section*{SAT Solvers}

Minisat, Glucose, CaDiCaL, Glu_VC, Plingeling, MapleLRB LCM, MapleCOMPSPS, Riss, Lingeling, Treengeling, CryptoMiniSat, abcdSAT, Dimetheus, Kiel, MapleCOMSPS, Rsat, SWDiA5BY, BlackBox, SWDiA5BY, pprobSAT, glueSplit_clasp, BalancedZ, SApperloT, PeneLoPe, MXC, ROKKminisat, MiniSat_HACK_999ED, ZENN, CSHCrandMC, MiniGolf, march_rw, sattime2011, mphasesat64, sparrow2011, pmcSAT, CSHCpar8, gluebit_clasp, clasp, precosat, gNovelty, SATzilla, SatELite, Score2SAT, YalSAT, tch glucose3, ...

\section*{SAT Competition}
- annual competition for different tracks (main, parallel, no-limit, ...)
- increasing set of benchmarks from industry, mathematics, cryptography, ...
- standardized input format DIMACS and proof format DRAT
http://www.satcompetition.org/

\section*{Minisat}
- minimalistic open source solver (http://minisat.se/ or apt, yum,...)
\$ minisat test.sat result.txt
- web interface

\section*{Example (DIMACS)}
formula \(\left(x_{1} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee \neg x_{1}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)\) can be expressed by
```

c a very simple example

```
p cnf 43
\(1-30\)
\(23-10\)
\(-1240\)

\section*{Example (DIMACS)}
formula \(\left(x_{1} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee \neg x_{1}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)\) can be expressed by
```

c a very simple example

```
p cnf 43
\(1-30\)
\(23-10\)
\(-1240\)

\section*{The DIMACS Format}
- header \(p\) cnf \(n m\) specifies number of variables \(n\) and number of clauses \(m\)

\section*{Example (DIMACS)}
formula \(\left(x_{1} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee \neg x_{1}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)\) can be expressed by
```

c a very simple example

```
p cnf 43
\(1-30\)
\(\begin{array}{llll}2 & 3 & -1 & 0\end{array}\)
\(-1240\)

\section*{The DIMACS Format}
- header \(p\) cnf \(n m\) specifies number of variables \(n\) and number of clauses \(m\)
- variables (atoms) are assumed to be \(x_{1}, \ldots, x_{n}\)

\section*{Example (DIMACS)}
formula \(\left(x_{1} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee \neg x_{1}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)\) can be expressed by
```

c a very simple example

```
p cnf 43
\(1-30\)
2 3-1 0
\(-1240\)

\section*{The DIMACS Format}
- header p cnf \(n \mathrm{~m}\) specifies number of variables \(n\) and number of clauses \(m\)
- variables (atoms) are assumed to be \(x_{1}, \ldots, x_{n}\)
- literal \(x_{i}\) is denoted \(i\) and literal \(\neg x_{i}\) is denoted -i

\section*{Example (DIMACS)}
formula \(\left(x_{1} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee \neg x_{1}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)\) can be expressed by
```

c a very simple example

```
p cnf 43
\(1-30\)
\(23-10\)
\(-1240\)

\section*{The DIMACS Format}
- header \(p\) cnf \(n m\) specifies number of variables \(n\) and number of clauses \(m\)
- variables (atoms) are assumed to be \(x_{1}, \ldots, x_{n}\)
- literal \(x_{i}\) is denoted \(i\) and literal \(\neg x_{i}\) is denoted -i
- a clause is a list of literals terminated by 0

\section*{Example (DIMACS)}
formula \(\left(x_{1} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee \neg x_{1}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)\) can be expressed by
```

c a very simple example

```
p cnf 43
\(1-30\)
\(\begin{array}{llll}2 & 3 & -1 & 0\end{array}\)
\(-1240\)

\section*{The DIMACS Format}
- header \(p\) cnf \(n m\) specifies number of variables \(n\) and number of clauses \(m\)
- variables (atoms) are assumed to be \(x_{1}, \ldots, x_{n}\)
- literal \(x_{i}\) is denoted \(i\) and literal \(\neg x_{i}\) is denoted -i
- a clause is a list of literals terminated by 0
- lines starting with c are considered comments

Z3
common open source SAT/SMT solver

\section*{Z3}
common open source SAT/SMT solver

\section*{z3: Python interface to Z3}
- from https://github.com/Z3Prover/z3 or via pip install z3
- API: https://z3prover.github.io/api/html/namespacez3py.html

\section*{Z3}
common open source SAT/SMT solver

\section*{z3: Python interface to Z3}
- from https://github.com/Z3Prover/z3 or via pip install z3
- API: https://z3prover.github.io/api/html/namespacez3py.html

\section*{Building Formulas}
- True, False boolean constants

\section*{Z3}
common open source SAT/SMT solver

\section*{z3: Python interface to Z3}
- from https://github.com/Z3Prover/z3 or via pip install z3
- API: https://z3prover.github.io/api/html/namespacez3py.html

\section*{Building Formulas}
- True, False boolean constants
- Bool(name) propositional variable named name
(calling Bool (name) twice yields same variable)

\section*{Z3}
common open source SAT/SMT solver

\section*{z3: Python interface to Z3}
- from https://github.com/Z3Prover/z3 or via pip install z3
- API: https://z3prover.github.io/api/html/namespacez3py.html

\section*{Building Formulas}
- True, False boolean constants
- Bool(name) propositional variable named name (calling Bool (name) twice yields same variable)
- FreshBool(pre) new propositional variable with name prefix name (calling FreshBool (pre) twice does not yield same variable!)

\section*{Z3}
common open source SAT/SMT solver

\section*{z3: Python interface to Z3}
- from https://github.com/Z3Prover/z3 or via pip install z3
- API: https://z3prover.github.io/api/html/namespacez3py.html

\section*{Building Formulas}
- True, False boolean constants
- Bool(name) propositional variable named name (calling Bool (name) twice yields same variable)
- FreshBool(pre) new propositional variable with name prefix name (calling FreshBool(pre) twice does not yield same variable!)
- And \(\left(a_{1}, \ldots, a_{n}\right)\) conjunction with arbitrarily many arguments

\section*{Z3}
common open source SAT/SMT solver

\section*{z3: Python interface to Z3}
- from https://github.com/Z3Prover/z3 or via pip install z3
- API: https://z3prover.github.io/api/html/namespacez3py.html

\section*{Building Formulas}
- True, False boolean constants
- Bool(name) propositional variable named name (calling Bool (name) twice yields same variable)
- FreshBool(pre) new propositional variable with name prefix name (calling FreshBool(pre) twice does not yield same variable!)
- And \(\left(a_{1}, \ldots, a_{n}\right)\) conjunction with arbitrarily many arguments
- \(\operatorname{Or}\left(a_{1}, \ldots, a_{n}\right) \quad\) disjunction with arbitrarily many arguments

\section*{Z3}
common open source SAT/SMT solver

\section*{z3: Python interface to Z3}
- from https://github.com/Z3Prover/z3 or via pip install z3
- API: https://z3prover.github.io/api/html/namespacez3py.html

\section*{Building Formulas}
- True, False boolean constants
- Bool(name) propositional variable named name (calling Bool (name) twice yields same variable)
- FreshBool(pre) new propositional variable with name prefix name (calling FreshBool (pre) twice does not yield same variable!)
- And \(\left(a_{1}, \ldots, a_{n}\right)\) conjunction with arbitrarily many arguments
- \(\operatorname{Or}\left(a_{1}, \ldots, a_{n}\right) \quad\) disjunction with arbitrarily many arguments
- Not(a) negation

\section*{Z3}
common open source SAT/SMT solver

\section*{z3: Python interface to Z3}
- from https://github.com/Z3Prover/z3 or via pip install z3
- API: https://z3prover.github.io/api/html/namespacez3py.html

\section*{Building Formulas}
- True, False boolean constants
- Bool(name) propositional variable named name (calling Bool (name) twice yields same variable)
- FreshBool(pre) new propositional variable with name prefix name (calling FreshBool (pre) twice does not yield same variable!)
- And \(\left(a_{1}, \ldots, a_{n}\right)\) conjunction with arbitrarily many arguments
- \(\operatorname{Or}\left(a_{1}, \ldots, a_{n}\right) \quad\) disjunction with arbitrarily many arguments
- Not(a) negation
- \(\operatorname{Implies}(a, b) \quad\) implication

\section*{Z3}
common open source SAT/SMT solver

\section*{z3: Python interface to Z3}
- from https://github.com/Z3Prover/z3 or via pip install z3
- API: https://z3prover.github.io/api/html/namespacez3py.html

\section*{Building Formulas}
- True, False boolean constants
- Bool(name) propositional variable named name (calling Bool (name) twice yields same variable)
- FreshBool(pre) new propositional variable with name prefix name (calling FreshBool (pre) twice does not yield same variable!)
- And \(\left(a_{1}, \ldots, a_{n}\right)\) conjunction with arbitrarily many arguments
- \(\operatorname{Or}\left(a_{1}, \ldots, a_{n}\right) \quad\) disjunction with arbitrarily many arguments
- Not(a) negation
- Implies \((a, b)\) implication
- Xor \((a, b) \quad\) exclusive or

\section*{Solving Formulas}
- Solver()
create new solver object

\section*{Solving Formulas}
- Solver () create new solver object
- Solver. add \(\left(\varphi_{1}, \ldots, \varphi_{n}\right)\) require constraints \(\varphi_{1}, \ldots, \varphi_{n}\) to be true

\section*{Solving Formulas}
- Solver ()
create new solver object
- Solver. add \(\left(\varphi_{1}, \ldots, \varphi_{n}\right)\) require constraints \(\varphi_{1}, \ldots, \varphi_{n}\) to be true
- Solver.check() check for satisfiability

\section*{Solving Formulas}
- Solver ()
- Solver. add \(\left(\varphi_{1}, \ldots, \varphi_{n}\right)\) require constraints \(\varphi_{1}, \ldots, \varphi_{n}\) to be true
- Solver.check()
- Solver.model()
create new solver object
check for satisfiability
returns valuation (after successful call of check)

\section*{Solving Formulas}
- Solver ()
- Solver. add \(\left(\varphi_{1}, \ldots, \varphi_{n}\right)\) require constraints \(\varphi_{1}, \ldots, \varphi_{n}\) to be true
- Solver. check()
- Solver.model() check for satisfiability
returns valuation (after successful call of check)

\section*{Moreover ...}
- simplify \((\varphi)\)
simplifies formula \(\varphi\)

\section*{Solving Formulas}
- Solver ()
create new solver object
- Solver. \(\operatorname{add}\left(\varphi_{1}, \ldots, \varphi_{n}\right)\) require constraints \(\varphi_{1}, \ldots, \varphi_{n}\) to be true
- Solver.check()
- Solver.model() check for satisfiability
returns valuation (after successful call of check)

\section*{Moreover}
- simplify \((\varphi)\)
simplifies formula \(\varphi\)
- Solver.statistics() is map of solving statistics

\section*{Example}
```

from z3 import *
p = Bool('p') \# create variable named 'p'
foo1 = FreshBool('foo') \# create fresh variables prefixed 'foo'
foo2 = FreshBool('foo')
phi = Or(p, p, And(foo2, Xor(foo1, Not(foo1)), True), False)
print(phi) \# Or(p, p, And(foo!1, Xor(foo!0, Not(foo!0)), True), False)
psi = simplify(phi)
print(psi) \# Or(p, foo!1)
solver = Solver()
solver.add(psi) \# assert that psi should be true
solver.add(Implies(foo1,p), Or(foo1, foo2)) \# assert something else
print solver \# [Or(p, foo!1), Implies(foo!0, p), Or(foo!0, foo!1)]
result = solver.check() \# check for satisfiability
if result:
model = solver.model() \# get valuation
print model[p], model[foo1], model[foo2] \# False False True

```

\section*{Example (Minesweeper)}


\section*{Example (Minesweeper)}

\begin{tabular}{|l|l|l|l|}
\hline\(x_{1}\) & & \(x_{2}\) & \\
\hline\(x_{3}\) & \(x_{4}\) & \(x_{5}\) & \(x_{6}\) \\
\hline\(x_{7}\) & & \(x_{8}\) & \\
\hline\(x_{9}\) & \(x_{10}\) & \(x_{11}\) & \\
\hline
\end{tabular}

\section*{SAT Encoding}
- variable \(x_{i}\) for each unknown cell \(i, v\left(x_{i}\right)=\mathrm{T}\) iff cell \(i\) has mine
- constraints for every hint (number in grid)

\section*{Example (Minesweeper)}

\begin{tabular}{|l|l|l|l|}
\hline\(x_{1}\) & & \(x_{2}\) & \\
\hline\(x_{3}\) & \(x_{4}\) & \(x_{5}\) & \(x_{6}\) \\
\hline\(x_{7}\) & & \(x_{8}\) & \\
\hline\(x_{9}\) & \(x_{10}\) & \(x_{11}\) & \\
\hline
\end{tabular}

\section*{SAT Encoding}
- variable \(x_{i}\) for each unknown cell \(i, v\left(x_{i}\right)=\mathrm{T}\) iff cell \(i\) has mine
- constraints for every hint (number in grid)
\[
1\left(x_{2} \vee x_{5} \vee x_{6}\right)
\]

\section*{Example (Minesweeper)}

\begin{tabular}{|l|l|l|l|}
\hline\(x_{1}\) & & \(x_{2}\) & \\
\hline\(x_{3}\) & \(x_{4}\) & \(x_{5}\) & \(x_{6}\) \\
\hline\(x_{7}\) & & \(x_{8}\) & \\
\hline\(x_{9}\) & \(x_{10}\) & \(x_{11}\) & \\
\hline
\end{tabular}

\section*{SAT Encoding}
- variable \(x_{i}\) for each unknown cell \(i, v\left(x_{i}\right)=\mathrm{T}\) iff cell \(i\) has mine
- constraints for every hint (number in grid)
\[
1 \quad\left(x_{2} \vee x_{5} \vee x_{6}\right) \wedge\left(\left(\neg x_{2} \wedge \neg x_{5}\right) \vee\left(\neg x_{2} \wedge \neg x_{6}\right) \vee\left(\neg x_{5} \wedge \neg x_{6}\right)\right)
\]

\section*{Example (Minesweeper)}

\begin{tabular}{|l|l|l|l|}
\hline\(x_{1}\) & & \(x_{2}\) & \\
\hline\(x_{3}\) & \(x_{4}\) & \(x_{5}\) & \(x_{6}\) \\
\hline\(x_{7}\) & & \(x_{8}\) & \\
\hline\(x_{9}\) & \(x_{10}\) & \(x_{11}\) & \\
\hline
\end{tabular}

\section*{SAT Encoding}
- variable \(x_{i}\) for each unknown cell \(i, v\left(x_{i}\right)=\mathrm{T}\) iff cell \(i\) has mine
- constraints for every hint (number in grid)
\[
\begin{aligned}
& \mathbf{1}\left(x_{2} \vee x_{5} \vee x_{6}\right) \wedge\left(\left(\neg x_{2} \wedge \neg x_{5}\right) \vee\left(\neg x_{2} \wedge \neg x_{6}\right) \vee\left(\neg x_{5} \wedge \neg x_{6}\right)\right) \\
& \hline \hline \mathbf{8}
\end{aligned} x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{7} \wedge x_{8} \wedge x_{9} \wedge x_{10} \wedge x_{11}
\]

\section*{Example (Minesweeper)}

\begin{tabular}{|l|l|l|l|}
\hline\(x_{1}\) & & \(x_{2}\) & \\
\hline\(x_{3}\) & \(x_{4}\) & \(x_{5}\) & \(x_{6}\) \\
\hline\(x_{7}\) & & \(x_{8}\) & \\
\hline\(x_{9}\) & \(x_{10}\) & \(x_{11}\) & \\
\hline
\end{tabular}

\section*{SAT Encoding}
- variable \(x_{i}\) for each unknown cell \(i, v\left(x_{i}\right)=\mathrm{T}\) iff cell \(i\) has mine
- constraints for every hint (number in grid)
```

$1 \quad\left(x_{2} \vee x_{5} \vee x_{6}\right) \wedge\left(\left(\neg x_{2} \wedge \neg x_{5}\right) \vee\left(\neg x_{2} \wedge \neg x_{6}\right) \vee\left(\neg x_{5} \wedge \neg x_{6}\right)\right)$
$8 x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{7} \wedge x_{8} \wedge x_{9} \wedge x_{10} \wedge x_{11}$
$3\left(\left(x_{5} \wedge x_{6} \wedge x_{8}\right) \vee\left(x_{5} \wedge x_{6} \wedge x_{11}\right) \vee\left(x_{5} \wedge x_{8} \wedge x_{11}\right) \vee\left(x_{6} \wedge x_{8} \wedge x_{11}\right)\right) \wedge\left(\neg x_{5} \vee \neg x_{6} \vee \neg x_{8} \vee \neg x_{11}\right)$

```

\section*{Example (Minesweeper)}

\begin{tabular}{|l|l|l|l|}
\hline\(x_{1}\) & & \(x_{2}\) & \\
\hline\(x_{3}\) & \(x_{4}\) & \(x_{5}\) & \(x_{6}\) \\
\hline\(x_{7}\) & & \(x_{8}\) & \\
\hline\(x_{9}\) & \(x_{10}\) & \(x_{11}\) & \\
\hline
\end{tabular}

\section*{SAT Encoding}
- variable \(x_{i}\) for each unknown cell \(i, v\left(x_{i}\right)=\mathrm{T}\) iff cell \(i\) has mine
- constraints for every hint (number in grid)
```

$\left.\begin{array}{l}\mathbf{1}\left(x_{2} \vee x_{5} \vee x_{6}\right) \wedge\left(\left(\neg x_{2} \wedge \neg x_{5}\right) \vee\left(\neg x_{2} \wedge \neg x_{6}\right) \vee\left(\neg x_{5} \wedge \neg x_{6}\right)\right) \\ \hline \hline \mathbf{8} \\ \hline \hline 3\end{array} x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{7} \wedge x_{8} \wedge x_{9} \wedge x_{10} \wedge x_{11} .\left(x_{5} \wedge x_{6} \wedge x_{8}\right) \vee\left(x_{5} \wedge x_{6} \wedge x_{11}\right) \vee\left(x_{5} \wedge x_{8} \wedge x_{11}\right) \vee\left(x_{6} \wedge x_{8} \wedge x_{11}\right)\right) \wedge\left(\neg x_{5} \vee \neg x_{6} \vee \neg x_{8} \vee \neg x_{11}\right)$

```

\section*{Example (Minesweeper)}

\begin{tabular}{|l|l|l|l|}
\hline\(x_{1}\) & & \(x_{2}\) & \\
\hline\(x_{3}\) & \(x_{4}\) & \(x_{5}\) & \(x_{6}\) \\
\hline\(x_{7}\) & & \(x_{8}\) & \\
\hline\(x_{9}\) & \(x_{10}\) & \(x_{11}\) & \\
\hline
\end{tabular}

\section*{SAT Encoding}
- variable \(x_{i}\) for each unknown cell \(i, v\left(x_{i}\right)=\mathrm{T}\) iff cell \(i\) has mine
- constraints for every hint (number in grid)
```

