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Definitions

for unsatisfiable CNF formula ϕ given as set of clauses

I ψ ⊆ ϕ such that
∧

C∈ψ C is unsatisfiable is unsatisfiable core (UC) of ϕ

I minimal unsatisfiable core ψ is UC such that every subset of ψ is satisfiable

I SUC (minimum unsatisfiable core) is UC such that |ψ| is minimal

Remark

SUC is always minimal unsatisfiable core

Definition (Resolution Graph)

directed acyclic graph G = (V ,E ) is resolution graph for set of clauses ϕ

if

1. V = Vi ] Vc is set of clauses and Vi = ϕ,

2. Vi nodes have no incoming edges,

3. there is exactly one node � without outgoing edges,

4. ∀C ∈ Vc ∃ edges D → C , D ′ → C such that C is resolvent of D and D ′, and

5. there are no other edges.
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Algorithm minUnsatCore(ϕ)

Input: unsatisfiable formula ϕ
Output: minimal unsatisfiable core of ϕ

build resolution graph G = (Vi ] Vc ,E ) for ϕ
while ∃ unmarked clause in Vi do

C ← unmarked clause in Vi

if SAT(ReachG (C )) then . subgraph without C satisfiable?
mark C . C is UC member

else
build resolution graph G ′ = (V ′i ] V ′c ,E

′) for ReachG (C )
Vi ← Vi \ {C} and Vc ← V ′c ∪ (Vc \ ReachG (C ))
E ← E ′ ∪ (E \ ReachEG (C ))
G ← (Vi ∪ Vc ,E )
G ← G |BReachG (�) . restrict to nodes with path to �

return Vi

Theorem

if ϕ unsatisfiable then minUnsatCore(ϕ) is minimal unsatisfiable core of ϕ
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Definition (Partial minUNSAT)

pminUNSAT(χ, ϕ) is minimal |ψ| such that ψ ⊆ ϕ and χ ∧
∧

C∈ψ ¬C satisfiable

Lemma
|ϕ| = |pminUNSAT(χ, ϕ)|+ |pmaxSAT(χ, ϕ)|

Theorem

FuMalik(χ, ϕ) = pminUNSAT(χ, ϕ)
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Algorithm FuMalik(χ, ϕ)

Input: clause set ϕ and satisfiable clause set χ
Output: minUNSAT(χ, ϕ)

cost ← 0
while ¬SAT(χ ∪ ϕ) do

UC ← unsatCore(χ ∪ ϕ)
B ← ∅
for C ∈ UC ∩ ϕ do . loop over soft clauses in core

b ← new blocking variable
ϕ← ϕ \ {C} ∪ {C ∨ b}
B ← B ∪ {b}

χ← χ ∪ CNF(
∑

b∈B b = 1) . cardinality constraint is hard
cost ← cost + 1

return cost
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SMT Solving

input: formula ϕ involving theory T

output: SAT + valuation v such that v(ϕ) = T if ϕ satisfiable

UNSAT otherwise

ϕ

SAT (v)

UNSAT

SMT solver

a + b > c ∨ (a = 0 ∧ p)

v(a) = 3 v(b) = 0

v(c) = 0 v(p) = T

Example (Theories)

I arithmetic 2a+ b > c ∨ (a− b = c + 3 ∧ p)

I uninterpreted functions f(x , y) 6= f(y , x) ∧ g(a)→ g(f(x , x)) = g(y)

I bit vectors ((zext32 a8) + b32)× c32 >u 032
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Definitions

for formulas F and G and list of literals M:

I theory T is set of first-order logic formulas without free variables

I F is T -consistent (or T -satisfiable) if F ∧ T is satisfiable in first-order sense

I F is T -inconsistent (or T -unsatisfiable) if not T -consistent

I M = l1, . . . , lk is T -consistent if l1 ∧ · · · ∧ lk is

I M is T -model of F if M � F and M is T -consistent

I F entails G in T (denoted F �T G ) if F ∧ ¬G is T -inconsistent

I F and G are T -equivalent (denoted F ≡T G ) if F �T G and G �T F

Definition (Theory of Equality)

theory of equality (EQ) uses binary predicate ≈ and consists of axioms

∀x . (x ≈ x) ∀x y . (x ≈ y → y ≈ x) ∀x y z . (x ≈ y ∧ y ≈ z → x ≈ z)

Example

I u ≈ v ∧ ¬(v ≈ w) is EQ-consistent

I u ≈ v ∧ ¬(v ≈ w) ∧ (w ≈ u ∨ u ≈ w) is EQ-inconsistent

I have u ≈ v ∧ ¬(v ≈ w) �EQ ¬(w ≈ u)

and u ≈ v ≡EQ v ≈ u
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Definition (Theory of Equality With Uninterpreted Functions)

EUF over set of function symbols F consists of equality axioms:

∀x . (x ≈ x) ∀x y . (x ≈ y → y ≈ x) ∀x y z . (x ≈ y ∧ y ≈ z → x ≈ z)

plus for all f ∈ F with n arguments

the functional consistency axiom:

∀x1y1 . . . xnyn (x1 ≈ y1 ∧ · · · ∧ xn ≈ yn → f (x1, . . . , xn) ≈ f (y1, . . . , yn))

function symbol f takes n > 0 arguments
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Uninterpreted Functions in Real Life
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Definition (Theory of Equality With Uninterpreted Functions)

EUF over set of function symbols F consists of equality axioms:

∀x (x ≈ x) ∀x y (x ≈ y → y ≈ x) ∀x y z (x ≈ y ∧ y ≈ z → x ≈ z)

plus for all f ∈ F with n > 0 arguments the functional consistency axiom:

∀x1y1 . . . xnyn. (x1 ≈ y1 ∧ · · · ∧ xn ≈ yn → f (x1, . . . , xn) ≈ f (y1, . . . , yn))

function symbol f takes n arguments

Example

EUF over F = {a/0, b/0, f/1, add/2} consists of axioms

∀x (x ≈ x) ∀x y (x ≈ y → y ≈ x) ∀x y z (x ≈ y ∧ y ≈ z → x ≈ z)

plus
∀x y . (x ≈ y → f(x) ≈ f(y))

∀x1 y1 x2 y2. (x1 ≈ y1 ∧ x2 ≈ y2 → add(x1, y1) ≈ add(x2, y2))
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Application: Verification of Microprocessors

I verify that 3-stage pipelined MIPS processor

satisfies intended instruction set architecture

I encoding

I data as bit sequence

I memory as uninterpreted function (UF)

I computation logic as UF

I control logic as uninterpreted predicate

I EUF ensures functional consistency:

same data results in same computation

Miroslav N. Velev and Randal E. Bryant.

Bit-level abstraction in the verification of pipelined microprocessors by correspondence

checking.
In Proc. of Formal Methods in Computer-Aided Design, pp. 18–35, 1998.
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Theories of Interest in SMT Solvers

I equality + uninterpreted functions (EUF) f (x , a) ≈ g(y)

I difference logic (DL) x − y 6 1

I linear arithmetic 3x − 5y + 7z 6 1

I over integers Z (LIA)

I over reals R (LRA)

I arrays (A) read(write(A, i , v), j)

I bitvectors (BV) ((zext32 a8) + b32)× c32 >u 032

I strings x @ y = z @ replace(y , a, b)

I . . .

I their combinations

SMT-LIB

I language standard and benchmarks: http://www.smt-lib.org

I annual solver competition: http://www.smt-comp.org

I solvers: Yices, OpenSMT, MathSAT, Z3, CVC4, Barcelogic, ...
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The Eager Paradigm

Challenge

consider formula ϕ mixing propositional logic with theory T

Eager SMT Solving

I use satisfiability-preserving transformation from T literals to SAT formula,

ship one big formula to SAT solver

I requires sophisticated translation for each theory:

done for EUF, difference logic, linear integer arithmetic, arrays

I still dominant approach for bit-vector arithmetic (known as “bit blasting”)

I advantage: use SAT solver off the shelf

I drawbacks:

I expensive translations: infeasible for large formulas

I even more complicated with multiple theories

14
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The Lazy Paradigm

Challenge

consider formula ϕ mixing propositional logic with theory T

Idea

use specialized T -solver that can deal with conjunction of theory literals

Lazy SMT Solving

1 abstract ϕ to CNF:

I “forget theory” by replacing T -literals with fresh propositional variables

I obtain pure SAT formula, transform to CNF formula ψ

2 ship ψ to SAT solver

I if ψ unsatisfiable, so is ϕ

I if ψ satisfiable by v , check v with T -solver:

I if v is T -consistent then also ϕ is satisfiable

I otherwise T -solver generates T -consequence C of ϕ excluding v ,

repeat from 1 with ϕ ∧ C
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Example
g(a) ≈ c︸ ︷︷ ︸

x1

∧ (¬(f(g(a)) ≈ f(c)︸ ︷︷ ︸
x2

) ∨ g(a) ≈ d︸ ︷︷ ︸
x3

) ∧ ¬(c ≈ d︸ ︷︷ ︸
x4

)

I abstract to propositional skeleton ψ1 = x1 ∧ (¬x2 ∨ x3) ∧ ¬x4

satisfiable: v1(x1) = T and v1(x2) = v1(x4) = F

I T -solver gets g(a) ≈ c ∧ f(g(a)) 6≈ f(c) ∧ c 6≈ d

T -unsatisfiable: g(a) ≈ c implies f(g(a)) ≈ f(c)

I block valuation v1 in future: add ¬x1 ∨ x2 ∨ x4

I ψ2 = x1 ∧ (¬x2 ∨ x3) ∧ ¬x4 ∧ (¬x1 ∨ x2 ∨ x4)

satisfiable: v2(x1) = v2(x2) = v2(x3) = T and v2(x4) = F

I T -solver gets g(a) ≈ c ∧ f(g(a)) ≈ f(c) ∧ g(a) ≈ d ∧ c 6≈ d

T -unsatisfiable

I block valuation v2 in future: add ¬x1 ∨ ¬x2 ∨ ¬x3 ∨ x4

I ψ3 = x1 ∧ (¬x2 ∨ x3) ∧ ¬x4 ∧ (¬x1 ∨ x2 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3 ∨ x4)

I unsatisfiable
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Outline

Summary of Last Week

Satisfiability Modulo Theories

DPLL(T)

Equality and Uninterpreted Functions in Practice
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Approach

I most state-of-the-art SMT solvers use DPLL(T ):
lazy approach combining DPLL with theory propagation

I advantages: not specific to theory, also extends to theory combinations

Definition (DPLL(T ) Transition Rules)

DPLL(T ) consists of DPLL rules unit propagate, decide, fail, and restart plus

I T -backjump M ld N ‖ F ,C =⇒ M l ′ ‖ F ,C
if M ld N � ¬C and ∃ clause C ′ ∨ l ′ such that

I F ,C �T C ′ ∨ l ′

I M � ¬C ′ and l ′ is undefined in M, and l ′ or l ′c occurs in F or in M ld N

I T -learn M ‖ F =⇒ M ‖ F , C
if F �T C and all atoms of C occur in M or F

I T -forget M ‖ F , C =⇒ M ‖ F
if F �T C

I T -propagate M ‖ F =⇒ M l ‖ F
if M �T l , literal l or lc occurs in F , and l is undefined in M
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Naive Lazy Approach in DPLL(T )

I whenever state M ‖ F is final wrt unit propagate, decide, fail, T -backjump:

check T -consistency of M with T -solver

I if M is T -consistent then satisfiability is proven

I otherwise ∃l1, . . . , lk subset of M such that F �T ¬(l1 ∧ · · · ∧ lk)

I use T -learn to add ¬l1 ∨ · · · ∨ ¬lk
I apply restart

Improvement 1: Incremental T -Solver

I T -solver checks T -consistency of model M whenever literal is added to M

Improvement 2: On-Line SAT solver

I after T -learn added clause, apply fail or T -backjump instead of restart

Improvement 3: Eager Theory Propagation

I apply T -propagate before decide

Remark

all three improvements can be combined
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Example (Revisited with DPLL(T ))

g(a) ≈ c︸ ︷︷ ︸
1

∧ (¬(f(g(a)) ≈ f(c)︸ ︷︷ ︸
2

) ∨ g(a) ≈ d︸ ︷︷ ︸
3

) ∧ ¬(c ≈ d︸ ︷︷ ︸
4

)

‖ 1, (2 ∨ 3), 4

=⇒ 1 ‖ 1, (2 ∨ 3), 4 unit propagate

=⇒ 1 4 ‖ 1, (2 ∨ 3), 4 unit propagate

=⇒ 1 4 2
d ‖ 1, (2 ∨ 3), 4 decide

=⇒ 1 4 2
d ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4) T -learn

=⇒ 1 4 2 ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4) T -backjump

=⇒ 1 4 2 3 ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4) unit propagate

=⇒ 1 4 2 3 ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4), (1 ∨ 2 ∨ 3 ∨ 4) T -learn

=⇒ FailState fail

20



Example (Revisited with DPLL(T ))

g(a) ≈ c︸ ︷︷ ︸
1

∧ (¬(f(g(a)) ≈ f(c)︸ ︷︷ ︸
2

) ∨ g(a) ≈ d︸ ︷︷ ︸
3

) ∧ ¬(c ≈ d︸ ︷︷ ︸
4

)

‖ 1, (2 ∨ 3), 4

=⇒ 1 ‖ 1, (2 ∨ 3), 4 unit propagate

=⇒ 1 4 ‖ 1, (2 ∨ 3), 4 unit propagate

=⇒ 1 4 2
d ‖ 1, (2 ∨ 3), 4 decide

=⇒ 1 4 2
d ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4) T -learn

=⇒ 1 4 2 ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4) T -backjump

=⇒ 1 4 2 3 ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4) unit propagate

=⇒ 1 4 2 3 ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4), (1 ∨ 2 ∨ 3 ∨ 4) T -learn

=⇒ FailState fail

20



Example (Revisited with DPLL(T ))

g(a) ≈ c︸ ︷︷ ︸
1

∧ (¬(f(g(a)) ≈ f(c)︸ ︷︷ ︸
2

) ∨ g(a) ≈ d︸ ︷︷ ︸
3

) ∧ ¬(c ≈ d︸ ︷︷ ︸
4

)

‖ 1, (2 ∨ 3), 4

=⇒ 1 ‖ 1, (2 ∨ 3), 4 unit propagate

=⇒ 1 4 ‖ 1, (2 ∨ 3), 4 unit propagate

=⇒ 1 4 2
d ‖ 1, (2 ∨ 3), 4 decide

=⇒ 1 4 2
d ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4) T -learn

=⇒ 1 4 2 ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4) T -backjump

=⇒ 1 4 2 3 ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4) unit propagate

=⇒ 1 4 2 3 ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4), (1 ∨ 2 ∨ 3 ∨ 4) T -learn

=⇒ FailState fail

20



Example (Revisited with DPLL(T ))

g(a) ≈ c︸ ︷︷ ︸
1

∧ (¬(f(g(a)) ≈ f(c)︸ ︷︷ ︸
2

) ∨ g(a) ≈ d︸ ︷︷ ︸
3

) ∧ ¬(c ≈ d︸ ︷︷ ︸
4

)

‖ 1, (2 ∨ 3), 4

=⇒ 1 ‖ 1, (2 ∨ 3), 4 unit propagate

=⇒ 1 4 ‖ 1, (2 ∨ 3), 4 unit propagate

=⇒ 1 4 2
d ‖ 1, (2 ∨ 3), 4 decide

=⇒ 1 4 2
d ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4) T -learn

=⇒ 1 4 2 ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4) T -backjump

=⇒ 1 4 2 3 ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4) unit propagate

=⇒ 1 4 2 3 ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4), (1 ∨ 2 ∨ 3 ∨ 4) T -learn

=⇒ FailState fail

20



Example (Revisited with DPLL(T ))

g(a) ≈ c︸ ︷︷ ︸
1

∧ (¬(f(g(a)) ≈ f(c)︸ ︷︷ ︸
2

) ∨ g(a) ≈ d︸ ︷︷ ︸
3

) ∧ ¬(c ≈ d︸ ︷︷ ︸
4

)

‖ 1, (2 ∨ 3), 4

=⇒ 1 ‖ 1, (2 ∨ 3), 4 unit propagate

=⇒ 1 4 ‖ 1, (2 ∨ 3), 4 unit propagate

=⇒ 1 4 2
d ‖ 1, (2 ∨ 3), 4 decide

=⇒ 1 4 2
d ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4) T -learn

=⇒ 1 4 2 ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4) T -backjump

=⇒ 1 4 2 3 ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4) unit propagate

=⇒ 1 4 2 3 ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4), (1 ∨ 2 ∨ 3 ∨ 4) T -learn

=⇒ FailState fail

20



Example (Revisited with DPLL(T ))

g(a) ≈ c︸ ︷︷ ︸
1

∧ (¬(f(g(a)) ≈ f(c)︸ ︷︷ ︸
2

) ∨ g(a) ≈ d︸ ︷︷ ︸
3

) ∧ ¬(c ≈ d︸ ︷︷ ︸
4

)

‖ 1, (2 ∨ 3), 4

=⇒ 1 ‖ 1, (2 ∨ 3), 4 unit propagate

=⇒ 1 4 ‖ 1, (2 ∨ 3), 4 unit propagate

=⇒ 1 4 2
d ‖ 1, (2 ∨ 3), 4 decide

=⇒ 1 4 2
d ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4) T -learn

=⇒ 1 4 2 ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4) T -backjump

=⇒ 1 4 2 3 ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4) unit propagate

=⇒ 1 4 2 3 ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4), (1 ∨ 2 ∨ 3 ∨ 4) T -learn

=⇒ FailState fail

20



Example (Revisited with DPLL(T ))

g(a) ≈ c︸ ︷︷ ︸
1

∧ (¬(f(g(a)) ≈ f(c)︸ ︷︷ ︸
2

) ∨ g(a) ≈ d︸ ︷︷ ︸
3

) ∧ ¬(c ≈ d︸ ︷︷ ︸
4

)

‖ 1, (2 ∨ 3), 4

=⇒ 1 ‖ 1, (2 ∨ 3), 4 unit propagate

=⇒ 1 4 ‖ 1, (2 ∨ 3), 4 unit propagate

=⇒ 1 4 2
d ‖ 1, (2 ∨ 3), 4 decide

=⇒ 1 4 2
d ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4) T -learn

=⇒ 1 4 2 ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4) T -backjump

=⇒ 1 4 2 3 ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4) unit propagate

=⇒ 1 4 2 3 ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4), (1 ∨ 2 ∨ 3 ∨ 4) T -learn

=⇒ FailState fail

20



Example (Revisited with DPLL(T ))

g(a) ≈ c︸ ︷︷ ︸
1

∧ (¬(f(g(a)) ≈ f(c)︸ ︷︷ ︸
2

) ∨ g(a) ≈ d︸ ︷︷ ︸
3

) ∧ ¬(c ≈ d︸ ︷︷ ︸
4

)

‖ 1, (2 ∨ 3), 4

=⇒ 1 ‖ 1, (2 ∨ 3), 4 unit propagate

=⇒ 1 4 ‖ 1, (2 ∨ 3), 4 unit propagate

=⇒ 1 4 2
d ‖ 1, (2 ∨ 3), 4 decide

=⇒ 1 4 2
d ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4) T -learn

=⇒ 1 4 2 ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4) T -backjump

=⇒ 1 4 2 3 ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4) unit propagate

=⇒ 1 4 2 3 ‖ 1, (2 ∨ 3), 4, (1 ∨ 2 ∨ 4), (1 ∨ 2 ∨ 3 ∨ 4) T -learn

=⇒ FailState fail

20



Lazyness in DPLL(T )

T -solver SAT solver
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Outline

Summary of Last Week

Satisfiability Modulo Theories

DPLL(T)

Equality and Uninterpreted Functions in Practice
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Example (SMT-LIB 2 for Propositional Logic)

formula (x1 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x1) ∧ (¬x1 ∨ x2 ∨ x3) can be expressed by

(declare-const x1 Bool)
(declare-const x2 Bool)
(declare-const x3 Bool)
(assert (or x1 (not x3)))
(assert (or x2 x3 (not x1)))
(assert (or (not x1) x2 x3))
(check-sat)
(get-model)

Propositional Logic in SMT-LIB 2

I declare-const x Bool creates propositional variable named x

I prefix notation for and, or, not, implies

I assert demands given formula to be satisfied

I check-sat issues satisfiability check of conjunction of assertions

I get-model prints model (after satisfiability check)

23
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Example (SMT-LIB 2 for EUF)

f(f(a)) ≈ a ∧ f(a) ≈ b ∧ ¬(a ≈ b) is expressed as

(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
(assert (= (f (f a)) a))
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)
(get-model)

EUF in SMT-LIB 2

I terms must have sort, so declare fresh sort and use for all symbols:

declare-sort S creates sort named S

I declare-const x s creates variable named x of sort S
I declare-fun F (S1 . . . Sn) T creates uninterpreted F : S1 × · · · × Sn → T
I prefix notation as in (f (f a)) to denote f(f(a))

and (= x y) for equality
I (distinct x y) is equivalent to not(= x y)

24
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Example

2x > y + z ∧ ¬(x ≈ y) is expressed as

(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(assert (>= (* 2 x) (+ y z)))
(assert (not (= x y)))
(check-sat)
(get-model)

Integer Arithmetic in SMT-LIB 2

I declare-const x Int creates integer variable named x
I numbers 0, 1, -1, 42,. . . are built-in
I +, *, - are +Z, ·Z, −Z

, used in prefix notation: (+ 2 3)

I = also covers equality on Z
I <, <=, >, >= are <Z, 6Z, >Z, >Z
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EUF in python/z3

A = DeclareSort(’A’) # new uninterpreted sort named ’A’

a = Const(’a’, A) # create constant of sort A

b = Const(’b’, A) # create another constant of sort A

f = Function(’f’, A, A) # create function of sort A -> A

s = Solver()

s.add(f(f(a)) == a, f(a) == b, a != b)

print s.check() # sat

m = s.model()

print "interpretation assigned to A:"

print m[A] # [A!val!0, A!val!1]

print "interpretations:"

print m[f] # [A!val!0 -> A!val!1, A!val!1 -> A!val!0, ...]

print m[a] # A!val!0

print m[b] # A!val!1 26



Example (Quantifiers and Monkeys)

In a village of monkeys every monkey owns at least two bananas:

(declare-sort monkey)
(declare-sort banana)
(declare-fun owns (monkey banana) Bool)
(declare-fun b1 (monkey) banana)
(declare-fun b2 (monkey) banana)

(assert (forall ((M monkey)) (not (= (b1 M) (b2 M)))))
(assert (forall ((M monkey)) (owns M (b1 M))))
(assert (forall ((M monkey)) (owns M (b2 M))))
(assert (forall ((M1 monkey) (M2 monkey) (B banana))
(implies (and (owns M1 B) (owns M2 B)) (= M1 M2))))
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DPLL(T )

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli.

Solving SAT and SAT Modulo Theories: From an Abstract

Davis-Putnam-Logemann-Loveland Procedure to DPLL(T).
Journal of the ACM 53(6), pp. 937–977, 2006.

Application

Miroslav N. Velev and Randal E. Bryant.

Bit-level abstraction in the verification of pipelined microprocessors by correspondence

checking.
In Proc. of Formal Methods in Computer-Aided Design, pp. 18–35, 1998.
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