universität innsbruck

SAT and SMT Solving

Sarah Winkler

Computational Logic Group
Department of Computer Science
University of Innsbruck
lecture 5
SS 2019

Outline

- Summary of Last Week
- Satisfiability Modulo Theories
- $\operatorname{DPLL}(\mathrm{T})$
- Equality and Uninterpreted Functions in Practice

Definitions

for unsatisfiable CNF formula φ given as set of clauses

- $\psi \subseteq \varphi$ such that $\bigwedge_{c \in \psi} C$ is unsatisfiable is unsatisfiable core (UC) of φ
- minimal unsatisfiable core ψ is UC such that every subset of ψ is satisfiable
- SUC (minimum unsatisfiable core) is UC such that $|\psi|$ is minimal

Remark

SUC is always minimal unsatisfiable core

Definition (Resolution Graph)

directed acyclic graph $G=(V, E)$ is resolution graph for set of clauses φ

1. $V=V_{i} \uplus V_{c}$ is set of clauses and $V_{i}=\varphi$,
2. V_{i} nodes have no incoming edges,
3. there is exactly one node \square without outgoing edges,
4. $\forall C \in V_{c} \exists$ edges $D \rightarrow C, D^{\prime} \rightarrow C$ such that C is resolvent of D and D^{\prime}, and
5. there are no other edges.

Definitions

for unsatisfiable CNF formula φ given as set of clauses

- $\psi \subseteq \varphi$ such that $\bigwedge_{c \in \psi} C$ is unsatisfiable is unsatisfiable core (UC) of φ
- minimal unsatisfiable core ψ is UC such that every subset of ψ is satisfiable
- SUC (minimum unsatisfiable core) is UC such that $|\psi|$ is minimal

Remark

SUC is always minimal unsatisfiable core

Definition (Resolution Graph)

directed acyclic graph $G=(V, E)$ is resolution graph for set of clauses φ if

1. $V=V_{i} \uplus V_{c}$ is set of clauses and $V_{i}=\varphi$,
2. V_{i} nodes have no incoming edges,
3. there is exactly one node \square without outgoing edges,
4. $\forall C \in V_{c} \exists$ edges $D \rightarrow C, D^{\prime} \rightarrow C$ such that C is resolvent of D and D^{\prime}, and
5. there are no other edges.

Algorithm minUnsatCore (φ)

Input:	unsatisfiable formula φ
Output:	minimal unsatisfiable core of φ

build resolution graph $G=\left(V_{i} \uplus V_{c}, E\right)$ for φ
while \exists unmarked clause in V_{i} do
$C \leftarrow$ unmarked clause in V_{i}
if SAT $\left(\operatorname{Reach}_{G}(C)\right)$ then mark C
\triangleright subgraph without C satisfiable?
$\triangleright C$ is UC member
else
build resolution graph $G^{\prime}=\left(V_{i}^{\prime} \uplus V_{c}^{\prime}, E^{\prime}\right)$ for $\overline{\operatorname{Reach}_{G}(C)}$
$V_{i} \leftarrow V_{i} \backslash\{C\}$ and $V_{c} \leftarrow V_{c}^{\prime} \cup\left(V_{c} \backslash \operatorname{Reach}_{G}(C)\right)$
$E \leftarrow E^{\prime} \cup\left(E \backslash \operatorname{Reach}_{G}^{E}(C)\right)$
$G \leftarrow\left(V_{i} \cup V_{c}, E\right)$
$\left.G \leftarrow G\right|_{B R e a c h} ^{G}(\square) \quad \triangleright$ restrict to nodes with path to \square
return V_{i}

Theorem

if φ unsatisfiable then minUnsatCore (φ) is minimal unsatisfiable core of φ

Definition (Partial minUNSAT)

pminUNSAT (χ, φ) is minimal $|\psi|$ such that $\psi \subseteq \varphi$ and $\chi \wedge \bigwedge_{C \in \psi} \neg C$ satisfiable

Lemma

$$
|\varphi|=|\operatorname{pmin} \operatorname{UNSAT}(\chi, \varphi)|+|\operatorname{pmaxSAT}(\chi, \varphi)|
$$

Theorem

$\operatorname{FuMalik}(\chi, \varphi)=\operatorname{pminUNSAT}(\chi, \varphi)$

```
Algorithm FuMalik \((\chi, \varphi)\)
Input: clause set \(\varphi\) and satisfiable clause set \(\chi\)
Output: minUNSAT \((\chi, \varphi)\)
cost \(\leftarrow 0\)
while \(\neg \operatorname{SAT}(\chi \cup \varphi)\) do
        \(U C \leftarrow\) unsatCore \((\chi \cup \varphi)\)
        \(B \leftarrow \varnothing\)
        for \(C \in U C \cap \varphi\) do \(\quad \triangleright\) loop over soft clauses in core
            \(b \leftarrow\) new blocking variable
            \(\varphi \leftarrow \varphi \backslash\{C\} \cup\{C \vee b\}\)
            \(B \leftarrow B \cup\{b\}\)
    \(\chi \leftarrow \chi \cup \operatorname{CNF}\left(\sum_{b \in B} b=1\right) \quad \triangleright\) cardinality constraint is hard
    return cost
```


Outline

- Summary of Last Week
- Satisfiability Modulo Theories
- DPLL(T)
- Equality and Uninterpreted Functions in Practice

SMT Solving

input: \quad formula φ involving theory T output:

SAT + valuation v such that $v(\varphi)=T$ UNSAT
if φ satisfiable otherwise

SMT solver

SMT Solving

input: \quad formula φ involving theory T output:

SAT + valuation v such that $v(\varphi)=T$ UNSAT
if φ satisfiable otherwise

SMT solver

SMT Solving

input: \quad formula φ involving theory T
output:

SAT + valuation v such that $v(\varphi)=T$ UNSAT
if φ satisfiable otherwise

SMT solver

Example (Theories)

- arithmetic

$$
2 a+b \geqslant c \vee(a-b=c+3 \wedge p)
$$

SMT Solving

input: \quad formula φ involving theory T
output:
SAT + valuation v such that $v(\varphi)=T \quad$ if φ satisfiable UNSAT
otherwise

Example (Theories)

- arithmetic
- uninterpreted functions

$$
\begin{array}{r}
2 a+b \geqslant c \vee(a-b=c+3 \wedge p) \\
\mathrm{f}(x, y) \neq \mathrm{f}(y, x) \wedge \mathrm{g}(\mathrm{a}) \rightarrow \mathrm{g}(\mathrm{f}(x, x))=\mathrm{g}(y)
\end{array}
$$

SMT Solving

input: \quad formula φ involving theory T
output:

SAT + valuation v such that $v(\varphi)=T$ UNSAT
if φ satisfiable otherwise

Example (Theories)

- arithmetic
- uninterpreted functions
- bit vectors

$$
\begin{array}{r}
2 a+b \geqslant c \vee(a-b=c+3 \wedge p) \\
\mathrm{f}(x, y) \neq \mathrm{f}(y, x) \wedge \mathrm{g}(\mathrm{a}) \rightarrow \mathrm{g}(\mathrm{f}(x, x))=\mathrm{g}(y) \\
\left(\left(\text { zext }_{32} a_{8}\right)+b_{32}\right) \times c_{32}>_{u} 0_{32}
\end{array}
$$

Definitions

for formulas F and G and list of literals M :

Definitions

for formulas F and G and list of literals M :

- theory T is set of first-order logic formulas without free variables

Definitions

for formulas F and G and list of literals M :

- theory T is set of first-order logic formulas without free variables
- F is T-consistent (or T-satisfiable) if $F \wedge T$ is satisfiable in first-order sense

Definitions

for formulas F and G and list of literals M :

- theory T is set of first-order logic formulas without free variables
- F is T-consistent (or T-satisfiable) if $F \wedge T$ is satisfiable in first-order sense
- F is T-inconsistent (or T-unsatisfiable) if not T-consistent

Definitions

for formulas F and G and list of literals M :

- theory T is set of first-order logic formulas without free variables
- F is T-consistent (or T-satisfiable) if $F \wedge T$ is satisfiable in first-order sense
- F is T-inconsistent (or T-unsatisfiable) if not T-consistent
- $M=I_{1}, \ldots, I_{k}$ is T-consistent if $I_{1} \wedge \ldots \wedge I_{k}$ is

Definitions

for formulas F and G and list of literals M :

- theory T is set of first-order logic formulas without free variables
- F is T-consistent (or T-satisfiable) if $F \wedge T$ is satisfiable in first-order sense
- F is T-inconsistent (or T-unsatisfiable) if not T-consistent
- $M=I_{1}, \ldots, I_{k}$ is T-consistent if $I_{1} \wedge \cdots \wedge I_{k}$ is
- M is T-model of F if $M \vDash F$ and M is T-consistent

Definitions

for formulas F and G and list of literals M :

- theory T is set of first-order logic formulas without free variables
- F is T-consistent (or T-satisfiable) if $F \wedge T$ is satisfiable in first-order sense
- F is T-inconsistent (or T-unsatisfiable) if not T-consistent
- $M=I_{1}, \ldots, I_{k}$ is T-consistent if $I_{1} \wedge \cdots \wedge I_{k}$ is
- M is T-model of F if $M \vDash F$ and M is T-consistent
- F entails G in T (denoted $F \vDash_{T} G$) if $F \wedge \neg G$ is T-inconsistent

Definitions

for formulas F and G and list of literals M :

- theory T is set of first-order logic formulas without free variables
- F is T-consistent (or T-satisfiable) if $F \wedge T$ is satisfiable in first-order sense
- F is T-inconsistent (or T-unsatisfiable) if not T-consistent
- $M=I_{1}, \ldots, I_{k}$ is T-consistent if $I_{1} \wedge \cdots \wedge I_{k}$ is
- M is T-model of F if $M \vDash F$ and M is T-consistent
- F entails G in T (denoted $F \vDash_{T} G$) if $F \wedge \neg G$ is T-inconsistent
- F and G are T-equivalent (denoted $F \equiv_{T} G$) if $F \vDash_{T} G$ and $G \vDash_{T} F$

Definitions

for formulas F and G and list of literals M :

- theory T is set of first-order logic formulas without free variables
- F is T-consistent (or T-satisfiable) if $F \wedge T$ is satisfiable in first-order sense
- F is T-inconsistent (or T-unsatisfiable) if not T-consistent
- $M=I_{1}, \ldots, I_{k}$ is T-consistent if $I_{1} \wedge \cdots \wedge I_{k}$ is
- M is T-model of F if $M \vDash F$ and M is T-consistent
- F entails G in T (denoted $F \vDash_{T} G$) if $F \wedge \neg G$ is T-inconsistent
- F and G are T-equivalent (denoted $F \equiv{ }_{T} G$) if $F \vDash_{T} G$ and $G \vDash_{T} F$

Definition (Theory of Equality)

theory of equality (EQ) uses binary predicate \approx and consists of axioms
$\forall x .(x \approx x) \quad \forall x y .(x \approx y \rightarrow y \approx x) \quad \forall x y z .(x \approx y \wedge y \approx z \rightarrow x \approx z)$

Definitions

for formulas F and G and list of literals M :

- theory T is set of first-order logic formulas without free variables
- F is T-consistent (or T-satisfiable) if $F \wedge T$ is satisfiable in first-order sense
- F is T-inconsistent (or T-unsatisfiable) if not T-consistent
- $M=I_{1}, \ldots, I_{k}$ is T-consistent if $I_{1} \wedge \cdots \wedge I_{k}$ is
- M is T-model of F if $M \vDash F$ and M is T-consistent
- F entails G in T (denoted $F \vDash_{T} G$) if $F \wedge \neg G$ is T-inconsistent
- F and G are T-equivalent (denoted $F \equiv{ }_{T} G$) if $F \vDash_{T} G$ and $G \vDash_{T} F$

Definition (Theory of Equality)

theory of equality (EQ) uses binary predicate \approx and consists of axioms

$$
\forall x .(x \approx x) \quad \forall x y \cdot(x \approx y \rightarrow y \approx x) \quad \forall x y z .(x \approx y \wedge y \approx z \rightarrow x \approx z)
$$

Example

- $u \approx v \wedge \neg(v \approx w)$ is EQ-consistent

Definitions

for formulas F and G and list of literals M :

- theory T is set of first-order logic formulas without free variables
- F is T-consistent (or T-satisfiable) if $F \wedge T$ is satisfiable in first-order sense
- F is T-inconsistent (or T-unsatisfiable) if not T-consistent
- $M=I_{1}, \ldots, I_{k}$ is T-consistent if $I_{1} \wedge \cdots \wedge I_{k}$ is
- M is T-model of F if $M \vDash F$ and M is T-consistent
- F entails G in T (denoted $F \vDash_{T} G$) if $F \wedge \neg G$ is T-inconsistent
- F and G are T-equivalent (denoted $F \equiv_{T} G$) if $F \vDash_{T} G$ and $G \vDash_{T} F$

Definition (Theory of Equality)

theory of equality (EQ) uses binary predicate \approx and consists of axioms
$\forall x .(x \approx x) \quad \forall x y .(x \approx y \rightarrow y \approx x) \quad \forall x y z .(x \approx y \wedge y \approx z \rightarrow x \approx z)$

Example

- $u \approx v \wedge \neg(v \approx w)$ is EQ-consistent
- $u \approx v \wedge \neg(v \approx w) \wedge(w \approx u \vee u \approx w)$ is EQ-inconsistent

Definitions

for formulas F and G and list of literals M :

- theory T is set of first-order logic formulas without free variables
- F is T-consistent (or T-satisfiable) if $F \wedge T$ is satisfiable in first-order sense
- F is T-inconsistent (or T-unsatisfiable) if not T-consistent
- $M=I_{1}, \ldots, I_{k}$ is T-consistent if $I_{1} \wedge \cdots \wedge I_{k}$ is
- M is T-model of F if $M \vDash F$ and M is T-consistent
- F entails G in T (denoted $F \vDash_{T} G$) if $F \wedge \neg G$ is T-inconsistent
- F and G are T-equivalent (denoted $F \equiv_{T} G$) if $F \vDash_{T} G$ and $G \vDash_{T} F$

Definition (Theory of Equality)

theory of equality (EQ) uses binary predicate \approx and consists of axioms
$\forall x .(x \approx x) \quad \forall x y .(x \approx y \rightarrow y \approx x) \quad \forall x y z .(x \approx y \wedge y \approx z \rightarrow x \approx z)$

Example

- $u \approx v \wedge \neg(v \approx w)$ is EQ-consistent
- $u \approx v \wedge \neg(v \approx w) \wedge(w \approx u \vee u \approx w)$ is EQ-inconsistent
- have $u \approx v \wedge \neg(v \approx w) \vDash_{\mathrm{EQ}} \neg(w \approx u)$

Definitions

for formulas F and G and list of literals M :

- theory T is set of first-order logic formulas without free variables
- F is T-consistent (or T-satisfiable) if $F \wedge T$ is satisfiable in first-order sense
- F is T-inconsistent (or T-unsatisfiable) if not T-consistent
- $M=I_{1}, \ldots, I_{k}$ is T-consistent if $I_{1} \wedge \cdots \wedge I_{k}$ is
- M is T-model of F if $M \vDash F$ and M is T-consistent
- F entails G in T (denoted $F \vDash_{T} G$) if $F \wedge \neg G$ is T-inconsistent
- F and G are T-equivalent (denoted $F \equiv_{T} G$) if $F \vDash_{T} G$ and $G \vDash_{T} F$

Definition (Theory of Equality)

theory of equality (EQ) uses binary predicate \approx and consists of axioms
$\forall x .(x \approx x) \quad \forall x y .(x \approx y \rightarrow y \approx x) \quad \forall x y z .(x \approx y \wedge y \approx z \rightarrow x \approx z)$

Example

- $u \approx v \wedge \neg(v \approx w)$ is EQ-consistent
- $u \approx v \wedge \neg(v \approx w) \wedge(w \approx u \vee u \approx w)$ is EQ-inconsistent
- have $u \approx v \wedge \neg(v \approx w) \vDash_{\mathrm{EQ}} \neg(w \approx u)$ and $u \approx v \equiv_{\mathrm{EQ}} v \approx u$

Definition (Theory of Equality With Uninterpreted Functions)

EUF over set of function symbols \mathcal{F} consists of equality axioms:
$\forall x .(x \approx x) \quad \forall x y \cdot(x \approx y \rightarrow y \approx x) \quad \forall x y z .(x \approx y \wedge y \approx z \rightarrow x \approx z)$

Definition (Theory of Equality With Uninterpreted Functions)

EUF ovprent of function cumbale \mathcal{I} anncicte $\begin{aligned} & \text { and } \\ & \text { function symbol } f \text { takes } n>0 \text { arguments }\end{aligned}$
$\forall x .(x \approx x) \quad \forall x y \cdot f x \approx y \rightarrow y \approx x) \quad \forall x y z .(x \approx y \wedge y \approx z \rightarrow x \approx z)$
plus for all $f \in \mathcal{F}$ with n arguments

Definition (Theory of Equality With Uninterpreted Functions)

EUF over set of function symbols \mathcal{F} consists of equality axioms:

$$
\forall x \cdot(x \approx x) \quad \forall x y \cdot(x \approx y \rightarrow y \approx x) \quad \forall x y z \cdot(x \approx y \wedge y \approx z \rightarrow x \approx z)
$$

plus for all $f \in \mathcal{F}$ with n arguments the functional consistency axiom:

$$
\forall x_{1} y_{1} \ldots x_{n} y_{n}\left(x_{1} \approx y_{1} \wedge \ldots \wedge x_{n} \approx y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right) \approx f\left(y_{1}, \ldots, y_{n}\right)\right)
$$

Uninterpreted Functions in Real Life

Definition (Theory of Equality With Uninterpreted Functions)

EUF over set of function symbols \mathcal{F} consists of equality axioms:

$$
\forall x(x \approx x) \quad \forall x y(x \approx y \rightarrow y \approx x) \quad \forall x y z(x \approx y \wedge y \approx z \rightarrow x \approx z)
$$

plus for all $f \in \mathcal{F}$ with $n>0$ arguments the functional consistency axiom:

$$
\forall x_{1} y_{1} \ldots x_{n} y_{n} .\left(x_{1} \approx y_{1} \wedge \cdots \wedge x_{n} \approx y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right) \approx f\left(y_{1}, \ldots, y_{n}\right)\right)
$$

Example

EUF over $\mathcal{F}=\{\mathrm{a} / 0, \mathrm{~b} / 0, \mathrm{f} / 1$, add $/ 2\}$ consists of axioms

$$
\forall x(x \approx x) \quad \forall x y(x \approx y \rightarrow y \approx x) \quad \forall x y z(x \approx y \wedge y \approx z \rightarrow x \approx z)
$$

Definition (Theory of Equality With Uninterpreted Functions)

EUF over set of function symbols \mathcal{F} consists of equality axioms:

$$
\forall x(x \approx x) \quad \forall x y(x \approx y \rightarrow y \approx x) \quad \forall x y z(x \approx y \wedge y \approx z \rightarrow x \approx z)
$$

plus for all $f \in \mathcal{F}$ with $n>0$ arguments the functional consistency axiom:

$$
\forall x_{1} y_{1} \ldots x_{n} y_{n} .\left(x_{1} \approx y_{1} \wedge \cdots \wedge x_{n} \approx y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right) \approx f\left(y_{1}, \ldots, y_{n}\right)\right)
$$

Example

EUF over $\mathcal{F}=\{\mathrm{a} / 0, \mathrm{~b} / 0, \mathrm{f} / 1$, add $/ 2\}$ consists of axioms

$$
\forall x(x \approx x) \quad \forall x y(x \approx y \rightarrow y \approx x) \quad \forall x y z(x \approx y \wedge y \approx z \rightarrow x \approx z)
$$

plus

$$
\begin{gathered}
\forall x y \cdot(x \approx y \rightarrow f(x) \approx f(y)) \\
\forall x_{1} y_{1} x_{2} y_{2} \cdot\left(x_{1} \approx y_{1} \wedge x_{2} \approx y_{2} \rightarrow \operatorname{add}\left(x_{1}, y_{1}\right) \approx \operatorname{add}\left(x_{2}, y_{2}\right)\right)
\end{gathered}
$$

Definition (Theory of Equality With Uninterpreted Functions)

EUF over set of function symbols \mathcal{F} consists of equality axioms:

$$
\forall x(x \approx x) \quad \forall x y(x \approx y \rightarrow y \approx x) \quad \forall x y z(x \approx y \wedge y \approx z \rightarrow x \approx z)
$$

plus for all $f \in \mathcal{F}$ with $n>0$ arguments the functional consistency axiom:

$$
\forall x_{1} y_{1} \ldots x_{n} y_{n} \cdot\left(x_{1} \approx y_{1} \wedge \cdots \wedge x_{n} \approx y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right) \approx f\left(y_{1}, \ldots, y_{n}\right)\right)
$$

Example

EUF over $\mathcal{F}=\{a / 0, b / 0, f / 1$, add $/ 2\}$ consists of axioms

$$
\forall x(x \approx x) \quad \forall x y(x \approx y \rightarrow y \approx x) \quad \forall x y z(x \approx y \wedge y \approx z \rightarrow x \approx z)
$$

plus

$$
\begin{gathered}
\forall x y \cdot(x \approx y \rightarrow \mathrm{f}(x) \approx \mathrm{f}(y)) \\
\forall x_{1} y_{1} x_{2} y_{2} \cdot\left(x_{1} \approx y_{1} \wedge x_{2} \approx y_{2} \rightarrow \operatorname{add}\left(x_{1}, y_{1}\right) \approx \operatorname{add}\left(x_{2}, y_{2}\right)\right)
\end{gathered}
$$

Definition (Theory of Equality With Uninterpreted Functions)

EUF over set of function symbols \mathcal{F} consists of equality axioms:

$$
\forall x(x \approx x) \quad \forall x y(x \approx y \rightarrow y \approx x) \quad \forall x y z(x \approx y \wedge y \approx z \rightarrow x \approx z)
$$

plus for all $f \in \mathcal{F}$ with $n>0$ arguments the functional consistency axiom:

$$
\forall x_{1} y_{1} \ldots x_{n} y_{n} .\left(x_{1} \approx y_{1} \wedge \cdots \wedge x_{n} \approx y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right) \approx f\left(y_{1}, \ldots, y_{n}\right)\right)
$$

Example

EUF over $\mathcal{F}=\{\mathrm{a} / 0, \mathrm{~b} / 0, \mathrm{f} / 1$, add $/ 2\}$ consists of axioms

$$
\forall x(x \approx x) \quad \forall x y(x \approx y \rightarrow y \approx x) \quad \forall x y z(x \approx y \wedge y \approx z \rightarrow x \approx z)
$$

plus

$$
\begin{gathered}
\forall x y \cdot(x \approx y \rightarrow \mathrm{f}(x) \approx \mathrm{f}(y)) \\
\forall x_{1} y_{1} x_{2} y_{2} \cdot\left(x_{1} \approx y_{1} \wedge x_{2} \approx y_{2} \rightarrow \operatorname{add}\left(x_{1}, y_{1}\right) \approx \operatorname{add}\left(x_{2}, y_{2}\right)\right)
\end{gathered}
$$

- $\mathrm{a} \not \approx \mathrm{b} \wedge \mathrm{f}(\mathrm{a}) \approx \mathrm{f}(\mathrm{b})$ is EUF-consistent

Definition (Theory of Equality With Uninterpreted Functions)

EUF over set of function symbols \mathcal{F} consists of equality axioms:

$$
\forall x(x \approx x) \quad \forall x y(x \approx y \rightarrow y \approx x) \quad \forall x y z(x \approx y \wedge y \approx z \rightarrow x \approx z)
$$

plus for all $f \in \mathcal{F}$ with $n>0$ arguments the functional consistency axiom:

$$
\forall x_{1} y_{1} \ldots x_{n} y_{n} .\left(x_{1} \approx y_{1} \wedge \cdots \wedge x_{n} \approx y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right) \approx f\left(y_{1}, \ldots, y_{n}\right)\right)
$$

Example

EUF over $\mathcal{F}=\{\mathrm{a} / 0, \mathrm{~b} / 0, \mathrm{f} / 1$, add $/ 2\}$ consists of axioms

$$
\forall x(x \approx x) \quad \forall x y(x \approx y \rightarrow y \approx x) \quad \forall x y z(x \approx y \wedge y \approx z \rightarrow x \approx z)
$$

plus

$$
\begin{gathered}
\forall x y \cdot(x \approx y \rightarrow \mathrm{f}(x) \approx \mathrm{f}(y)) \\
\forall x_{1} y_{1} x_{2} y_{2} \cdot\left(x_{1} \approx y_{1} \wedge x_{2} \approx y_{2} \rightarrow \operatorname{add}\left(x_{1}, y_{1}\right) \approx \operatorname{add}\left(x_{2}, y_{2}\right)\right)
\end{gathered}
$$

- $a \neq b \wedge f(a) \approx f(b)$ is EUF-consistent
- $\mathrm{a} \not \approx y \wedge \mathrm{f}(\mathrm{a}) \approx x$ is EUF-consistent

Definition (Theory of Equality With Uninterpreted Functions)

EUF over set of function symbols \mathcal{F} consists of equality axioms:

$$
\forall x(x \approx x) \quad \forall x y(x \approx y \rightarrow y \approx x) \quad \forall x y z(x \approx y \wedge y \approx z \rightarrow x \approx z)
$$

plus for all $f \in \mathcal{F}$ with $n>0$ arguments the functional consistency axiom:

$$
\forall x_{1} y_{1} \ldots x_{n} y_{n} .\left(x_{1} \approx y_{1} \wedge \cdots \wedge x_{n} \approx y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right) \approx f\left(y_{1}, \ldots, y_{n}\right)\right)
$$

Example

EUF over $\mathcal{F}=\{\mathrm{a} / 0, \mathrm{~b} / 0, \mathrm{f} / 1$, add $/ 2\}$ consists of axioms

$$
\forall x(x \approx x) \quad \forall x y(x \approx y \rightarrow y \approx x) \quad \forall x y z(x \approx y \wedge y \approx z \rightarrow x \approx z)
$$

plus

$$
\begin{gathered}
\forall x y \cdot(x \approx y \rightarrow f(x) \approx f(y)) \\
\forall x_{1} y_{1} x_{2} y_{2} \cdot\left(x_{1} \approx y_{1} \wedge x_{2} \approx y_{2} \rightarrow \operatorname{add}\left(x_{1}, y_{1}\right) \approx \operatorname{add}\left(x_{2}, y_{2}\right)\right)
\end{gathered}
$$

- $a \not \approx b \wedge f(a) \approx f(b)$ is EUF-consistent
- $a \not \approx y \wedge f(a) \approx x$ is EUF-consistent
- $a \approx f(b) \wedge b \approx f(a) \wedge f(b) \not \approx f(f(f(b)))$ is EUF-inconsistent

Definition (Theory of Equality With Uninterpreted Functions)

EUF over set of function symbols \mathcal{F} consists of equality axioms:

$$
\forall x(x \approx x) \quad \forall x y(x \approx y \rightarrow y \approx x) \quad \forall x y z(x \approx y \wedge y \approx z \rightarrow x \approx z)
$$

plus for all $f \in \mathcal{F}$ with $n>0$ arguments the functional consistency axiom:

$$
\forall x_{1} y_{1} \ldots x_{n} y_{n} \cdot\left(x_{1} \approx y_{1} \wedge \cdots \wedge x_{n} \approx y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right) \approx f\left(y_{1}, \ldots, y_{n}\right)\right)
$$

Example

EUF over $\mathcal{F}=\{\mathrm{a} / 0, \mathrm{~b} / 0, \mathrm{f} / 1$, add $/ 2\}$ consists of axioms

$$
\forall x(x \approx x) \quad \forall x y(x \approx y \rightarrow y \approx x) \quad \forall x y z(x \approx y \wedge y \approx z \rightarrow x \approx z)
$$

plus

$$
\begin{gathered}
\forall x y \cdot(x \approx y \rightarrow \mathrm{f}(x) \approx \mathrm{f}(y)) \\
\forall x_{1} y_{1} x_{2} y_{2} \cdot\left(x_{1} \approx y_{1} \wedge x_{2} \approx y_{2} \rightarrow \operatorname{add}\left(x_{1}, y_{1}\right) \approx \operatorname{add}\left(x_{2}, y_{2}\right)\right)
\end{gathered}
$$

- $a \not \approx b \wedge f(a) \approx f(b)$ is EUF-consistent
- $a \not \approx y \wedge f(a) \approx x$ is EUF-consistent
- $a \approx f(b) \wedge b \approx f(a) \wedge f(b) \not \approx f(f(f(b)))$ is EUF-inconsistent
- $\mathrm{a} \approx \mathrm{b} \vDash_{\text {EUF }} \mathrm{f}(\mathrm{b}) \approx \mathrm{f}(\mathrm{a})$

Definition (Theory of Equality With Uninterpreted Functions)

EUF over set of function symbols \mathcal{F} consists of equality axioms:

$$
\forall x(x \approx x) \quad \forall x y(x \approx y \rightarrow y \approx x) \quad \forall x y z(x \approx y \wedge y \approx z \rightarrow x \approx z)
$$

plus for all $f \in \mathcal{F}$ with $n>0$ arguments the functional consistency axiom:

$$
\forall x_{1} y_{1} \ldots x_{n} y_{n} \cdot\left(x_{1} \approx y_{1} \wedge \cdots \wedge x_{n} \approx y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right) \approx f\left(y_{1}, \ldots, y_{n}\right)\right)
$$

Example

EUF over $\mathcal{F}=\{\mathrm{a} / 0, \mathrm{~b} / 0, \mathrm{f} / 1$, add $/ 2\}$ consists of axioms

$$
\forall x(x \approx x) \quad \forall x y(x \approx y \rightarrow y \approx x) \quad \forall x y z(x \approx y \wedge y \approx z \rightarrow x \approx z)
$$

plus

$$
\begin{aligned}
& \forall x y \cdot(x \approx y \rightarrow \mathrm{f}(x) \approx \mathrm{f}(y)) \\
& \forall x_{1} y_{1} x_{2} y_{2} \cdot\left(x_{1} \approx y_{1} \wedge x_{2} \approx y_{2} \rightarrow \operatorname{add}\left(x_{1}, y_{1}\right) \approx \operatorname{add}\left(x_{2}, y_{2}\right)\right)
\end{aligned}
$$

- $a \not \approx b \wedge f(a) \approx f(b)$ is EUF-consistent
- $a \not \approx y \wedge f(a) \approx x$ is EUF-consistent
- $a \approx f(b) \wedge b \approx f(a) \wedge f(b) \not \approx f(f(f(b)))$ is EUF-inconsistent
- $\mathrm{a} \approx \mathrm{b} \vDash_{\text {EUF }} \mathrm{f}(\mathrm{b}) \approx \mathrm{f}(\mathrm{a})$ but $\mathrm{a} \approx \mathrm{b} \not$ 三EUF $^{\mathrm{f}} \mathrm{f}(\mathrm{b}) \approx \mathrm{f}(\mathrm{a})$

Application: Verification of Microprocessors

- verify that 3-stage pipelined MIPS processor satisfies intended instruction set architecture

里
Miroslav N. Velev and Randal E. Bryant.
Bit-level abstraction in the verification of pipelined microprocessors by correspondence checking.
In Proc. of Formal Methods in Computer-Aided Design, pp. 18-35, 1998.

Application: Verification of Microprocessors

- verify that 3-stage pipelined MIPS processor satisfies intended instruction set architecture
- encoding
- data as bit sequence
- memory as uninterpreted function (UF)
- computation logic as UF
- control logic as uninterpreted predicate

俥
Miroslav N. Velev and Randal E. Bryant.
Bit-level abstraction in the verification of pipelined microprocessors by correspondence checking.
In Proc. of Formal Methods in Computer-Aided Design, pp. 18-35, 1998.

Application: Verification of Microprocessors

- verify that 3 -stage pipelined MIPS processor satisfies intended instruction set architecture
- encoding
- data as bit sequence
- memory as uninterpreted function (UF)
- computation logic as UF
- control logic as uninterpreted predicate

- EUF ensures functional consistency:
same data results in same computation
(Miroslav N. Velev and Randal E. Bryant.
Bit-level abstraction in the verification of pipelined microprocessors by correspondence checking.
In Proc. of Formal Methods in Computer-Aided Design, pp. 18-35, 1998.

Theories of Interest in SMT Solvers

- equality + uninterpreted functions (EUF) $f(x, a) \approx g(y)$

Theories of Interest in SMT Solvers

- equality + uninterpreted functions (EUF) $f(x, a) \approx g(y)$
- difference logic (DL) $\quad x-y \leqslant 1$

Theories of Interest in SMT Solvers

- equality + uninterpreted functions (EUF) $f(x, a) \approx g(y)$
- difference logic (DL) $\quad x-y \leqslant 1$
- linear arithmetic

$$
3 x-5 y+7 z \leqslant 1
$$

- over integers \mathbb{Z} (LIA)
- over reals \mathbb{R} (LRA)

Theories of Interest in SMT Solvers

- equality + uninterpreted functions (EUF) $f(x, a) \approx g(y)$
- difference logic (DL)
- linear arithmetic
- over integers \mathbb{Z} (LIA)
- over reals \mathbb{R} (LRA)
- arrays (A)
$x-y \leqslant 1$
$3 x-5 y+7 z \leqslant 1$
$\operatorname{read}(w r i t e(A, i, v), j)$

Theories of Interest in SMT Solvers

- equality + uninterpreted functions (EUF) $f(x, a) \approx g(y)$
- difference logic (DL)
- linear arithmetic
- over integers \mathbb{Z} (LIA)
- over reals \mathbb{R} (LRA)
- arrays (A)
- bitvectors (BV)

```
read(write(A,i,v),j)
((zext32 a a ) + b 32) × c c32 > }\mp@subsup{u}{u}{}\mp@subsup{0}{32}{
```


Theories of Interest in SMT Solvers

- equality + uninterpreted functions (EUF) $f(x, a) \approx g(y)$
- difference logic (DL)
- linear arithmetic
- over integers \mathbb{Z} (LIA)
- over reals \mathbb{R} (LRA)
- arrays (A)
- bitvectors (BV)
- strings

```
read(write(A, i,v),j)
((zext 32 a8) + b b2) > c c32 > }\mp@subsup{|}{0}{}\mp@subsup{0}{32}{
x@y=z @ replace(y, a, b)
```


Theories of Interest in SMT Solvers

- equality + uninterpreted functions (EUF) $f(x, a) \approx g(y)$
- difference logic (DL)
- linear arithmetic
- over integers \mathbb{Z} (LIA)
- over reals \mathbb{R} (LRA)
- arrays (A)
- bitvectors (BV)
- strings

$$
\begin{aligned}
& \operatorname{read}(\text { write }(A, i, v), j) \\
& \left(\left(z e x t_{32} a_{8}\right)+b_{32}\right) \times c_{32}>_{u} 0_{32} \\
& x @ y=z \text { @ replace }(y, \mathrm{a}, \mathrm{~b})
\end{aligned}
$$

- their combinations

Theories of Interest in SMT Solvers

- equality + uninterpreted functions (EUF) $f(x, a) \approx g(y)$
- difference logic (DL) $\quad x-y \leqslant 1$
- linear arithmetic

$$
3 x-5 y+7 z \leqslant 1
$$

- over integers \mathbb{Z} (LIA)
- over reals \mathbb{R} (LRA)
- arrays (A)
- bitvectors (BV)
- strings

$$
\begin{aligned}
& \text { read }(\text { write }(A, i, v), j) \\
& \left(\left(\operatorname{zext}_{32} a_{8}\right)+b_{32}\right) \times c_{32}>{ }_{u} 0_{32} \\
& x @ y=z \text { @ replace }(y, \mathrm{a}, \mathrm{~b})
\end{aligned}
$$

- their combinations

SMT-LIB

- language standard and benchmarks: http://www.smt-lib.org

Theories of Interest in SMT Solvers

- equality + uninterpreted functions (EUF) $f(x, a) \approx g(y)$
- difference logic (DL) $\quad x-y \leqslant 1$
- linear arithmetic

$$
3 x-5 y+7 z \leqslant 1
$$

- over integers \mathbb{Z} (LIA)
- over reals \mathbb{R} (LRA)
- arrays (A)
- bitvectors (BV)
- strings

$$
\begin{aligned}
& \text { read }(\text { write }(A, i, v), j) \\
& \left(\left(\operatorname{zext}_{32} a_{8}\right)+b_{32}\right) \times c_{32}>{ }_{u} 0_{32} \\
& x @ y=z \text { @ replace }(y, \mathrm{a}, \mathrm{~b})
\end{aligned}
$$

- their combinations

SMT-LIB

- language standard and benchmarks: http://www.smt-lib.org
- annual solver competition: http://www.smt-comp.org

Theories of Interest in SMT Solvers

- equality + uninterpreted functions (EUF) $f(x, a) \approx g(y)$
- difference logic (DL) $\quad x-y \leqslant 1$
- linear arithmetic
- over integers \mathbb{Z} (LIA)
- over reals \mathbb{R} (LRA)
- arrays (A)
- bitvectors (BV)
- strings

```
read(write(A, i,v),j)
((zext 32 a ) + b b2 ) > c c32 > }\mp@subsup{|}{0}{}\mp@subsup{0}{32}{
x@y=z @ replace(y, a, b)
```

- their combinations

SMT-LIB

- language standard and benchmarks: http://www.smt-lib.org
- annual solver competition: http://www.smt-comp.org
- solvers: Yices, OpenSMT, MathSAT, Z3, CVC4, Barcelogic, ...

The Eager Paradigm

Challenge
 consider formula φ mixing propositional logic with theory T

The Eager Paradigm

Challenge
 consider formula φ mixing propositional logic with theory T

Eager SMT Solving

- use satisfiability-preserving transformation from T literals to SAT formula, ship one big formula to SAT solver

The Eager Paradigm

Challenge

consider formula φ mixing propositional logic with theory T

Eager SMT Solving

- use satisfiability-preserving transformation from T literals to SAT formula, ship one big formula to SAT solver
- requires sophisticated translation for each theory: done for EUF, difference logic, linear integer arithmetic, arrays

The Eager Paradigm

Challenge

consider formula φ mixing propositional logic with theory T

Eager SMT Solving

- use satisfiability-preserving transformation from T literals to SAT formula, ship one big formula to SAT solver
- requires sophisticated translation for each theory: done for EUF, difference logic, linear integer arithmetic, arrays
- still dominant approach for bit-vector arithmetic (known as "bit blasting")

The Eager Paradigm

Challenge

consider formula φ mixing propositional logic with theory T

Eager SMT Solving

- use satisfiability-preserving transformation from T literals to SAT formula, ship one big formula to SAT solver
- requires sophisticated translation for each theory: done for EUF, difference logic, linear integer arithmetic, arrays
- still dominant approach for bit-vector arithmetic (known as "bit blasting")
- advantage: use SAT solver off the shelf

The Eager Paradigm

Challenge

consider formula φ mixing propositional logic with theory T

Eager SMT Solving

- use satisfiability-preserving transformation from T literals to SAT formula, ship one big formula to SAT solver
- requires sophisticated translation for each theory: done for EUF, difference logic, linear integer arithmetic, arrays
- still dominant approach for bit-vector arithmetic (known as "bit blasting")
- advantage: use SAT solver off the shelf
- drawbacks:
- expensive translations: infeasible for large formulas
- even more complicated with multiple theories

The Lazy Paradigm

Challenge
 consider formula φ mixing propositional logic with theory T

The Lazy Paradigm

Challenge
 consider formula φ mixing propositional logic with theory T

Idea

use specialized T-solver that can deal with conjunction of theory literals

The Lazy Paradigm

Challenge
 consider formula φ mixing propositional logic with theory T

Idea

use specialized T-solver that can deal with conjunction of theory literals
Lazy SMT Solving

The Lazy Paradigm

Challenge

consider formula φ mixing propositional logic with theory T

Idea

use specialized T-solver that can deal with conjunction of theory literals

Lazy SMT Solving

1 abstract φ to CNF:

- "forget theory" by replacing T-literals with fresh propositional variables

The Lazy Paradigm

Challenge

consider formula φ mixing propositional logic with theory T

Idea

use specialized T-solver that can deal with conjunction of theory literals

Lazy SMT Solving

1 abstract φ to CNF:

- "forget theory" by replacing T-literals with fresh propositional variables
- obtain pure SAT formula, transform to CNF formula ψ

The Lazy Paradigm

Challenge

consider formula φ mixing propositional logic with theory T

Idea

use specialized T-solver that can deal with conjunction of theory literals

Lazy SMT Solving

1 abstract φ to CNF:

- "forget theory" by replacing T-literals with fresh propositional variables
- obtain pure SAT formula, transform to CNF formula ψ

2 $\operatorname{ship} \psi$ to SAT solver

The Lazy Paradigm

Challenge

consider formula φ mixing propositional logic with theory T

Idea

use specialized T-solver that can deal with conjunction of theory literals

Lazy SMT Solving

1 abstract φ to CNF:

- "forget theory" by replacing T-literals with fresh propositional variables
- obtain pure SAT formula, transform to CNF formula ψ

2 $\operatorname{ship} \psi$ to SAT solver

- if ψ unsatisfiable, so is φ

The Lazy Paradigm

Challenge

consider formula φ mixing propositional logic with theory T

Idea

use specialized T-solver that can deal with conjunction of theory literals

Lazy SMT Solving

1 abstract φ to CNF:

- "forget theory" by replacing T-literals with fresh propositional variables
- obtain pure SAT formula, transform to CNF formula ψ

2 ship ψ to SAT solver

- if ψ unsatisfiable, so is φ
- if ψ satisfiable by v, check v with T-solver:

The Lazy Paradigm

Challenge

consider formula φ mixing propositional logic with theory T

Idea

use specialized T-solver that can deal with conjunction of theory literals

Lazy SMT Solving

1 abstract φ to CNF:

- "forget theory" by replacing T-literals with fresh propositional variables
- obtain pure SAT formula, transform to CNF formula ψ

2 ship ψ to SAT solver

- if ψ unsatisfiable, so is φ
- if ψ satisfiable by v, check v with T-solver:
- if v is T-consistent then also φ is satisfiable

The Lazy Paradigm

Challenge

consider formula φ mixing propositional logic with theory T

Idea

use specialized T-solver that can deal with conjunction of theory literals

Lazy SMT Solving

1 abstract φ to CNF:

- "forget theory" by replacing T-literals with fresh propositional variables
- obtain pure SAT formula, transform to CNF formula ψ

2 ship ψ to SAT solver

- if ψ unsatisfiable, so is φ
- if ψ satisfiable by v, check v with T-solver:
- if v is T-consistent then also φ is satisfiable
- otherwise T-solver generates T-consequence C of φ excluding v, repeat from 1 with $\varphi \wedge C$

Example

$$
\mathrm{g}(\mathrm{a}) \approx \mathrm{c} \wedge(\neg(\mathrm{f}(\mathrm{~g}(\mathrm{a})) \approx \mathrm{f}(\mathrm{c})) \vee \mathrm{g}(\mathrm{a}) \approx \mathrm{d}) \wedge \neg(\mathrm{c} \approx \mathrm{~d})
$$

Example

$$
\underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{c}}_{x_{1}} \wedge(\neg(\underbrace{\mathrm{f}(\mathrm{~g}(\mathrm{a})) \approx \mathrm{f}(\mathrm{c})}_{x_{2}}) \vee \underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{d}}_{x_{3}}) \wedge \neg(\underbrace{\mathrm{c} \approx \mathrm{~d}}_{x_{4}})
$$

- abstract to propositional skeleton $\psi_{1}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4}$

Example

$$
\underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{c}}_{x_{1}} \wedge(\neg(\underbrace{\mathrm{f}(\mathrm{~g}(\mathrm{a})) \approx \mathrm{f}(\mathrm{c})}_{x_{2}}) \vee \underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{d})}_{x_{3}} \wedge \neg(\underbrace{\mathrm{c} \approx \mathrm{~d}}_{x_{4}})
$$

- abstract to propositional skeleton $\psi_{1}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4}$
satisfiable: $\quad v_{1}\left(x_{1}\right)=\mathrm{T}$ and $v_{1}\left(x_{2}\right)=v_{1}\left(x_{4}\right)=\mathrm{F}$

Example

$$
\underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{c}}_{x_{1}} \wedge(\neg(\underbrace{\mathrm{f}(\mathrm{~g}(\mathrm{a})) \approx \mathrm{f}(\mathrm{c})}_{x_{2}}) \vee \underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{d})}_{x_{3}} \wedge \neg(\underbrace{\mathrm{c} \approx \mathrm{~d}}_{x_{4}})
$$

- abstract to propositional skeleton $\psi_{1}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4}$ satisfiable: $\quad v_{1}\left(x_{1}\right)=\mathrm{T}$ and $v_{1}\left(x_{2}\right)=v_{1}\left(x_{4}\right)=\mathrm{F}$
- T-solver gets $\mathrm{g}(\mathrm{a}) \approx \mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a})) \not \approx \mathrm{f}(\mathrm{c}) \wedge \mathrm{c} \not \approx \mathrm{d}$

Example

$$
\underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{c}}_{x_{1}} \wedge(\neg(\underbrace{\mathrm{f}(\mathrm{~g}(\mathrm{a})) \approx \mathrm{f}(\mathrm{c})}_{x_{2}}) \vee \underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{d})}_{x_{3}} \wedge \neg(\underbrace{\mathrm{c} \approx \mathrm{~d}}_{x_{4}})
$$

- abstract to propositional skeleton $\psi_{1}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4}$ satisfiable: $\quad v_{1}\left(x_{1}\right)=\mathrm{T}$ and $v_{1}\left(x_{2}\right)=v_{1}\left(x_{4}\right)=\mathrm{F}$
- T-solver gets $\mathrm{g}(\mathrm{a}) \approx \mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a})) \not \approx \mathrm{f}(\mathrm{c}) \wedge \mathrm{c} \not \approx \mathrm{d}$ T-unsatisfiable: $\mathrm{g}(\mathrm{a}) \approx \mathrm{c}$ implies $\mathrm{f}(\mathrm{g}(\mathrm{a})) \approx \mathrm{f}(\mathrm{c})$

Example

$$
\underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{c}}_{x_{1}} \wedge(\neg(\underbrace{\mathrm{f}(\mathrm{~g}(\mathrm{a})) \approx \mathrm{f}(\mathrm{c})}_{x_{2}}) \vee \underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{d})}_{x_{3}} \wedge \neg(\underbrace{\mathrm{c} \approx \mathrm{~d}}_{x_{4}})
$$

- abstract to propositional skeleton $\psi_{1}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4}$ satisfiable: $\quad v_{1}\left(x_{1}\right)=\mathrm{T}$ and $v_{1}\left(x_{2}\right)=v_{1}\left(x_{4}\right)=\mathrm{F}$
- T-solver gets $\mathrm{g}(\mathrm{a}) \approx \mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a})) \not \approx \mathrm{f}(\mathrm{c}) \wedge \mathrm{c} \not \approx \mathrm{d}$ T-unsatisfiable: $\mathrm{g}(\mathrm{a}) \approx \mathrm{c}$ implies $\mathrm{f}(\mathrm{g}(\mathrm{a})) \approx \mathrm{f}(\mathrm{c})$
- block valuation v_{1} in future: add $\neg x_{1} \vee x_{2} \vee x_{4}$

Example

$$
\underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{c}}_{x_{1}} \wedge(\neg(\underbrace{\mathrm{f}(\mathrm{~g}(\mathrm{a})) \approx \mathrm{f}(\mathrm{c})}_{x_{2}}) \vee \underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{d})}_{x_{3}} \wedge \neg(\underbrace{\mathrm{c} \approx \mathrm{~d}}_{x_{4}})
$$

- abstract to propositional skeleton $\psi_{1}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4}$ satisfiable: $\quad v_{1}\left(x_{1}\right)=\mathrm{T}$ and $v_{1}\left(x_{2}\right)=v_{1}\left(x_{4}\right)=\mathrm{F}$
- T-solver gets $\mathrm{g}(\mathrm{a}) \approx \mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a})) \not \approx \mathrm{f}(\mathrm{c}) \wedge \mathrm{c} \not \approx \mathrm{d}$ T-unsatisfiable: $\mathrm{g}(\mathrm{a}) \approx \mathrm{c}$ implies $\mathrm{f}(\mathrm{g}(\mathrm{a})) \approx \mathrm{f}(\mathrm{c})$
- block valuation v_{1} in future: add $\neg x_{1} \vee x_{2} \vee x_{4}$
- $\psi_{2}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4} \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

Example

$$
\underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{c}}_{x_{1}} \wedge(\neg(\underbrace{\mathrm{f}(\mathrm{~g}(\mathrm{a})) \approx \mathrm{f}(\mathrm{c})}_{x_{2}}) \vee \underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{d})}_{x_{3}} \wedge \neg(\underbrace{\mathrm{c} \approx \mathrm{~d}}_{x_{4}})
$$

- abstract to propositional skeleton $\psi_{1}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4}$ satisfiable: $\quad v_{1}\left(x_{1}\right)=\mathrm{T}$ and $v_{1}\left(x_{2}\right)=v_{1}\left(x_{4}\right)=\mathrm{F}$
- T-solver gets $\mathrm{g}(\mathrm{a}) \approx \mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a})) \not \approx \mathrm{f}(\mathrm{c}) \wedge \mathrm{c} \not \approx \mathrm{d}$ T-unsatisfiable: $\mathrm{g}(\mathrm{a}) \approx \mathrm{c}$ implies $\mathrm{f}(\mathrm{g}(\mathrm{a})) \approx \mathrm{f}(\mathrm{c})$
- block valuation v_{1} in future: add $\neg x_{1} \vee x_{2} \vee x_{4}$
- $\psi_{2}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4} \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$
satisfiable: $\quad v_{2}\left(x_{1}\right)=v_{2}\left(x_{2}\right)=v_{2}\left(x_{3}\right)=\mathrm{T}$ and $v_{2}\left(x_{4}\right)=\mathrm{F}$

Example

$$
\underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{c}}_{x_{1}} \wedge(\neg(\underbrace{\mathrm{f}(\mathrm{~g}(\mathrm{a})) \approx \mathrm{f}(\mathrm{c})}_{x_{2}}) \vee \underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{d})}_{x_{3}} \wedge \neg(\underbrace{\mathrm{c} \approx \mathrm{~d}}_{x_{4}})
$$

- abstract to propositional skeleton $\psi_{1}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4}$
satisfiable: $\quad v_{1}\left(x_{1}\right)=\mathrm{T}$ and $v_{1}\left(x_{2}\right)=v_{1}\left(x_{4}\right)=\mathrm{F}$
- T-solver gets $\mathrm{g}(\mathrm{a}) \approx \mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a})) \not \approx \mathrm{f}(\mathrm{c}) \wedge \mathrm{c} \not \approx \mathrm{d}$ T-unsatisfiable: $\mathrm{g}(\mathrm{a}) \approx \mathrm{c}$ implies $\mathrm{f}(\mathrm{g}(\mathrm{a})) \approx \mathrm{f}(\mathrm{c})$
- block valuation v_{1} in future: add $\neg x_{1} \vee x_{2} \vee x_{4}$
- $\psi_{2}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4} \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$
satisfiable: $\quad v_{2}\left(x_{1}\right)=v_{2}\left(x_{2}\right)=v_{2}\left(x_{3}\right)=\mathrm{T}$ and $v_{2}\left(x_{4}\right)=\mathrm{F}$
- T-solver gets $\mathrm{g}(\mathrm{a}) \approx \mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a})) \approx \mathrm{f}(\mathrm{c}) \wedge \mathrm{g}(\mathrm{a}) \approx \mathrm{d} \wedge \mathrm{c} \not \approx \mathrm{d}$

Example

$$
\underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{c}}_{x_{1}} \wedge(\neg(\underbrace{\mathrm{f}(\mathrm{~g}(\mathrm{a})) \approx \mathrm{f}(\mathrm{c})}_{x_{2}}) \vee \underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{d})}_{x_{3}} \wedge \neg(\underbrace{\mathrm{c} \approx \mathrm{~d}}_{x_{4}})
$$

- abstract to propositional skeleton $\psi_{1}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4}$ satisfiable: $\quad v_{1}\left(x_{1}\right)=\mathrm{T}$ and $v_{1}\left(x_{2}\right)=v_{1}\left(x_{4}\right)=\mathrm{F}$
- T-solver gets $\mathrm{g}(\mathrm{a}) \approx \mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a})) \not \approx \mathrm{f}(\mathrm{c}) \wedge \mathrm{c} \not \approx \mathrm{d}$ T-unsatisfiable: $\mathrm{g}(\mathrm{a}) \approx \mathrm{c}$ implies $\mathrm{f}(\mathrm{g}(\mathrm{a})) \approx \mathrm{f}(\mathrm{c})$
- block valuation v_{1} in future: add $\neg x_{1} \vee x_{2} \vee x_{4}$
- $\psi_{2}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4} \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$ satisfiable: $\quad v_{2}\left(x_{1}\right)=v_{2}\left(x_{2}\right)=v_{2}\left(x_{3}\right)=\mathrm{T}$ and $v_{2}\left(x_{4}\right)=\mathrm{F}$
- T-solver gets $\mathrm{g}(\mathrm{a}) \approx \mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a})) \approx \mathrm{f}(\mathrm{c}) \wedge \mathrm{g}(\mathrm{a}) \approx \mathrm{d} \wedge \mathrm{c} \not \approx \mathrm{d}$ T-unsatisfiable

Example

$$
\underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{c}}_{x_{1}} \wedge(\neg(\underbrace{\mathrm{f}(\mathrm{~g}(\mathrm{a})) \approx \mathrm{f}(\mathrm{c})}_{x_{2}}) \vee \underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{d})}_{x_{3}} \wedge \neg(\underbrace{\mathrm{c} \approx \mathrm{~d}}_{x_{4}})
$$

- abstract to propositional skeleton $\psi_{1}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4}$ satisfiable: $\quad v_{1}\left(x_{1}\right)=\mathrm{T}$ and $v_{1}\left(x_{2}\right)=v_{1}\left(x_{4}\right)=\mathrm{F}$
- T-solver gets $\mathrm{g}(\mathrm{a}) \approx \mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a})) \not \approx \mathrm{f}(\mathrm{c}) \wedge \mathrm{c} \not \approx \mathrm{d}$ T-unsatisfiable: $\mathrm{g}(\mathrm{a}) \approx \mathrm{c}$ implies $\mathrm{f}(\mathrm{g}(\mathrm{a})) \approx \mathrm{f}(\mathrm{c})$
- block valuation v_{1} in future: add $\neg x_{1} \vee x_{2} \vee x_{4}$
- $\psi_{2}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4} \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$ satisfiable: $\quad v_{2}\left(x_{1}\right)=v_{2}\left(x_{2}\right)=v_{2}\left(x_{3}\right)=\mathrm{T}$ and $v_{2}\left(x_{4}\right)=\mathrm{F}$
- T-solver gets $\mathrm{g}(\mathrm{a}) \approx \mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a})) \approx \mathrm{f}(\mathrm{c}) \wedge \mathrm{g}(\mathrm{a}) \approx \mathrm{d} \wedge \mathrm{c} \not \approx \mathrm{d}$ T-unsatisfiable
- block valuation v_{2} in future: add $\neg x_{1} \vee \neg x_{2} \vee \neg x_{3} \vee x_{4}$

Example

$$
\underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{c}}_{x_{1}} \wedge(\neg(\underbrace{\mathrm{f}(\mathrm{~g}(\mathrm{a})) \approx \mathrm{f}(\mathrm{c})}_{x_{2}}) \vee \underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{d}}_{x_{3}}) \wedge \neg(\underbrace{\mathrm{c} \approx \mathrm{~d}}_{x_{4}})
$$

- abstract to propositional skeleton $\psi_{1}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4}$
satisfiable: $\quad v_{1}\left(x_{1}\right)=\mathrm{T}$ and $v_{1}\left(x_{2}\right)=v_{1}\left(x_{4}\right)=\mathrm{F}$
- T-solver gets $\mathrm{g}(\mathrm{a}) \approx \mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a})) \not \approx \mathrm{f}(\mathrm{c}) \wedge \mathrm{c} \not \approx \mathrm{d}$ T-unsatisfiable: $\mathrm{g}(\mathrm{a}) \approx \mathrm{c}$ implies $\mathrm{f}(\mathrm{g}(\mathrm{a})) \approx \mathrm{f}(\mathrm{c})$
- block valuation v_{1} in future: add $\neg x_{1} \vee x_{2} \vee x_{4}$
- $\psi_{2}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4} \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$
satisfiable: $\quad v_{2}\left(x_{1}\right)=v_{2}\left(x_{2}\right)=v_{2}\left(x_{3}\right)=\mathrm{T}$ and $v_{2}\left(x_{4}\right)=\mathrm{F}$
- T-solver gets $\mathrm{g}(\mathrm{a}) \approx \mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a})) \approx \mathrm{f}(\mathrm{c}) \wedge \mathrm{g}(\mathrm{a}) \approx \mathrm{d} \wedge \mathrm{c} \not \approx \mathrm{d}$
T-unsatisfiable
- block valuation v_{2} in future: add $\neg x_{1} \vee \neg x_{2} \vee \neg x_{3} \vee x_{4}$
- $\psi_{3}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4} \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3} \vee x_{4}\right)$

Example

$$
\underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{c}}_{x_{1}} \wedge(\neg(\underbrace{\mathrm{f}(\mathrm{~g}(\mathrm{a})) \approx \mathrm{f}(\mathrm{c})}_{x_{2}}) \vee \underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{d}}_{x_{3}}) \wedge \neg(\underbrace{\mathrm{c} \approx \mathrm{~d}}_{x_{4}})
$$

- abstract to propositional skeleton $\psi_{1}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4}$
satisfiable: $\quad v_{1}\left(x_{1}\right)=\mathrm{T}$ and $v_{1}\left(x_{2}\right)=v_{1}\left(x_{4}\right)=\mathrm{F}$
- T-solver gets $\mathrm{g}(\mathrm{a}) \approx \mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a})) \not \approx \mathrm{f}(\mathrm{c}) \wedge \mathrm{c} \not \approx \mathrm{d}$ T-unsatisfiable: $\mathrm{g}(\mathrm{a}) \approx \mathrm{c}$ implies $\mathrm{f}(\mathrm{g}(\mathrm{a})) \approx \mathrm{f}(\mathrm{c})$
- block valuation v_{1} in future: add $\neg x_{1} \vee x_{2} \vee x_{4}$
- $\psi_{2}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4} \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$
satisfiable: $\quad v_{2}\left(x_{1}\right)=v_{2}\left(x_{2}\right)=v_{2}\left(x_{3}\right)=\mathrm{T}$ and $v_{2}\left(x_{4}\right)=\mathrm{F}$
- T-solver gets $\mathrm{g}(\mathrm{a}) \approx \mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a})) \approx \mathrm{f}(\mathrm{c}) \wedge \mathrm{g}(\mathrm{a}) \approx \mathrm{d} \wedge \mathrm{c} \not \approx \mathrm{d}$
T-unsatisfiable
- block valuation v_{2} in future: add $\neg x_{1} \vee \neg x_{2} \vee \neg x_{3} \vee x_{4}$
- $\psi_{3}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4} \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3} \vee x_{4}\right)$
- unsatisfiable

Outline

- Summary of Last Week
- Satisfiability Modulo Theories
- DPLL(T)
- Equality and Uninterpreted Functions in Practice

Approach

- most state-of-the-art SMT solvers use $\operatorname{DPLL}(T)$:
lazy approach combining DPLL with theory propagation

Approach

- most state-of-the-art SMT solvers use $\operatorname{DPLL}(T)$:
lazy approach combining DPLL with theory propagation
- advantages: not specific to theory, also extends to theory combinations

Approach

- most state-of-the-art SMT solvers use $\operatorname{DPLL}(T)$:
lazy approach combining DPLL with theory propagation
- advantages: not specific to theory, also extends to theory combinations

Definition (DPLL(T) Transition Rules)

$\operatorname{DPLL}(T)$ consists of DPLL rules unit propagate, decide, fail, and restart plus

Approach

- most state-of-the-art SMT solvers use $\operatorname{DPLL}(T)$:
lazy approach combining DPLL with theory propagation
- advantages: not specific to theory, also extends to theory combinations

Definition (DPLL(T) Transition Rules)

$\operatorname{DPLL}(T)$ consists of DPLL rules unit propagate, decide, fail, and restart plus

- T-backjump $\quad M I^{d} N\left\|F, C \Longrightarrow M I^{\prime}\right\| F, C$ if $M I^{d} N \vDash \neg C$ and \exists clause $C^{\prime} \vee I^{\prime}$ such that
- $F, C \vDash_{T} C^{\prime} \vee I^{\prime}$
- $M \vDash \neg C^{\prime}$ and I^{\prime} is undefined in M, and I^{\prime} or $I^{\prime c}$ occurs in F or in $M I^{d} N$

Approach

- most state-of-the-art SMT solvers use $\operatorname{DPLL}(T)$:
lazy approach combining DPLL with theory propagation
- advantages: not specific to theory, also extends to theory combinations

Definition (DPLL(T) Transition Rules)

$\operatorname{DPLL}(T)$ consists of DPLL rules unit propagate, decide, fail, and restart plus

- T-backjump $\quad M I^{d} N\left\|F, C \quad \Longrightarrow \quad M I^{\prime}\right\| F, C$ if $M I^{d} N \vDash \neg C$ and \exists clause $C^{\prime} \vee I^{\prime}$ such that
- $F, C \vDash_{T} C^{\prime} \vee I^{\prime}$
- $M \vDash \neg C^{\prime}$ and I^{\prime} is undefined in M, and I^{\prime} or $I^{\prime c}$ occurs in F or in $M I^{d} N$
- T-learn $\quad M\|F \Longrightarrow M\| F, C$
if $F \vDash_{T} C$ and all atoms of C occur in M or F

Approach

- most state-of-the-art SMT solvers use $\operatorname{DPLL}(T)$:
lazy approach combining DPLL with theory propagation
- advantages: not specific to theory, also extends to theory combinations

Definition (DPLL(T) Transition Rules)

$\operatorname{DPLL}(T)$ consists of DPLL rules unit propagate, decide, fail, and restart plus

- T-backjump $\quad M I^{d} N\left\|F, C \quad \Longrightarrow M I^{\prime}\right\| F, C$ if $M I^{d} N \vDash \neg C$ and \exists clause $C^{\prime} \vee I^{\prime}$ such that
- $F, C \vDash_{T} C^{\prime} \vee I^{\prime}$
- $M \vDash \neg C^{\prime}$ and I^{\prime} is undefined in M, and I^{\prime} or $I^{\prime c}$ occurs in F or in $M I^{d} N$
- T-learn $\quad M\|F \Longrightarrow M\| F, C$
if $F \not \vDash_{T} C$ and all atoms of C occur in M or F
- T-forget

$$
M\|F, C \quad \Longrightarrow \quad M\| F
$$

if $F \vDash_{T} C$

Approach

- most state-of-the-art SMT solvers use $\operatorname{DPLL}(T)$:
lazy approach combining DPLL with theory propagation
- advantages: not specific to theory, also extends to theory combinations

Definition (DPLL(T) Transition Rules)

$\operatorname{DPLL}(T)$ consists of DPLL rules unit propagate, decide, fail, and restart plus

- T-backjump $\quad M I^{d} N\left\|F, C \Longrightarrow M I^{\prime}\right\| F, C$ if $M I^{d} N \vDash \neg C$ and \exists clause $C^{\prime} \vee I^{\prime}$ such that
- $F, C \vDash_{T} C^{\prime} \vee I^{\prime}$
- $M \vDash \neg C^{\prime}$ and I^{\prime} is undefined in M, and I^{\prime} or $I^{\prime c}$ occurs in F or in $M I^{d} N$
- T-learn

$$
M\|F \quad \Longrightarrow \quad M\| F, C
$$

if $F \vDash_{T} C$ and all atoms of C occur in M or F

- T-forget

$$
M\|F, C \quad \Longrightarrow \quad M\| F
$$

if $F \vDash_{T} C$

- T-propagate
$M\|F \quad \Longrightarrow \quad M I\| F$
if $M \vDash_{T} I$, literal $/$ or I^{c} occurs in F, and $/$ is undefined in M

Naive Lazy Approach in DPLL(T)

- whenever state $M \| F$ is final wrt unit propagate, decide, fail, T-backjump: check T-consistency of M with T-solver

Naive Lazy Approach in DPLL(T)

- whenever state $M \| F$ is final wrt unit propagate, decide, fail, T-backjump: check T-consistency of M with T-solver
- if M is T-consistent then satisfiability is proven

Naive Lazy Approach in DPLL(T)

- whenever state $M \| F$ is final wrt unit propagate, decide, fail, T-backjump: check T-consistency of M with T-solver
- if M is T-consistent then satisfiability is proven
- otherwise $\exists I_{1}, \ldots, I_{k}$ subset of M such that $F \vDash_{T} \neg\left(I_{1} \wedge \cdots \wedge I_{k}\right)$

Naive Lazy Approach in DPLL(T)

- whenever state $M \| F$ is final wrt unit propagate, decide, fail, T-backjump: check T-consistency of M with T-solver
- if M is T-consistent then satisfiability is proven
- otherwise $\exists l_{1}, \ldots, I_{k}$ subset of M such that $F \vDash_{T} \neg\left(I_{1} \wedge \cdots \wedge I_{k}\right)$
- use T-learn to add $\neg I_{1} \vee \cdots \vee \neg I_{k}$

Naive Lazy Approach in DPLL(T)

- whenever state $M \| F$ is final wrt unit propagate, decide, fail, T-backjump: check T-consistency of M with T-solver
- if M is T-consistent then satisfiability is proven
- otherwise $\exists I_{1}, \ldots, I_{k}$ subset of M such that $F \vDash_{T} \neg\left(I_{1} \wedge \cdots \wedge I_{k}\right)$
- use T-learn to add $\neg I_{1} \vee \cdots \vee \neg I_{k}$
- apply restart

Naive Lazy Approach in $\operatorname{DPLL}(T)$

- whenever state $M \| F$ is final wrt unit propagate, decide, fail, T-backjump: check T-consistency of M with T-solver
- if M is T-consistent then satisfiability is proven
- otherwise $\exists I_{1}, \ldots, I_{k}$ subset of M such that $F \vDash_{T} \neg\left(I_{1} \wedge \cdots \wedge I_{k}\right)$
- use T-learn to add $\neg I_{1} \vee \cdots \vee \neg I_{k}$
- apply restart

Improvement 1: Incremental T-Solver

- T-solver checks T-consistency of model M whenever literal is added to M

Naive Lazy Approach in $\operatorname{DPLL}(T)$

- whenever state $M \| F$ is final wrt unit propagate, decide, fail, T-backjump: check T-consistency of M with T-solver
- if M is T-consistent then satisfiability is proven
- otherwise $\exists I_{1}, \ldots, I_{k}$ subset of M such that $F \vDash_{T} \neg\left(I_{1} \wedge \cdots \wedge I_{k}\right)$
- use T-learn to add $\neg /_{1} \vee \cdots \vee \neg I_{k}$
- apply restart

Improvement 1: Incremental T-Solver

- T-solver checks T-consistency of model M whenever literal is added to M

Improvement 2: On-Line SAT solver

- after T-learn added clause, apply fail or T-backjump instead of restart

Naive Lazy Approach in $\operatorname{DPLL}(T)$

- whenever state $M \| F$ is final wrt unit propagate, decide, fail, T-backjump: check T-consistency of M with T-solver
- if M is T-consistent then satisfiability is proven
- otherwise $\exists I_{1}, \ldots, I_{k}$ subset of M such that $F \vDash_{T} \neg\left(I_{1} \wedge \cdots \wedge I_{k}\right)$
- use T-learn to add $\neg I_{1} \vee \cdots \vee \neg I_{k}$
- apply restart

Improvement 1: Incremental T-Solver

- T-solver checks T-consistency of model M whenever literal is added to M

Improvement 2: On-Line SAT solver

- after T-learn added clause, apply fail or T-backjump instead of restart

Improvement 3: Eager Theory Propagation

- apply T-propagate before decide

Naive Lazy Approach in $\operatorname{DPLL}(T)$

- whenever state $M \| F$ is final wrt unit propagate, decide, fail, T-backjump: check T-consistency of M with T-solver
- if M is T-consistent then satisfiability is proven
- otherwise $\exists I_{1}, \ldots, I_{k}$ subset of M such that $F \vDash_{T} \neg\left(I_{1} \wedge \cdots \wedge I_{k}\right)$
- use T-learn to add $\neg I_{1} \vee \cdots \vee \neg I_{k}$
- apply restart

Improvement 1: Incremental T-Solver

- T-solver checks T-consistency of model M whenever literal is added to M

Improvement 2: On-Line SAT solver

- after T-learn added clause, apply fail or T-backjump instead of restart

Improvement 3: Eager Theory Propagation

- apply T-propagate before decide

Remark

all three improvements can be combined

Example (Revisited with DPLL(T))

$$
\begin{aligned}
& \underbrace{g(a) \approx c}_{1} \wedge(\neg(\underbrace{f(g(a))) \approx f(c)}_{2}) \vee \underbrace{g(a) \approx d}_{3}) \wedge \neg(\underbrace{c \approx d}_{4}) \\
& \| 1,(\overline{2} \vee 3), \overline{4}
\end{aligned}
$$

Example (Revisited with DPLL(T))

$$
\underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{c}}_{1} \wedge(\neg(\underbrace{\mathrm{f}(\mathrm{~g}(\mathrm{a})) \approx \mathrm{f}(\mathrm{c})}_{2}) \vee \underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{d}}_{3}) \wedge \neg(\underbrace{\mathrm{c} \approx \mathrm{~d}}_{4})
$$

$$
\begin{array}{r}
\| 1,(\overline{2} \vee 3), \overline{4} \\
1 \| 1,(\overline{2} \vee 3), \overline{4}
\end{array}
$$

unit propagate

Example (Revisited with DPLL(T))

$$
\underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{c}}_{1} \wedge(\neg(\underbrace{\mathrm{f}(\mathrm{~g}(\mathrm{a})) \approx \mathrm{f}(\mathrm{c})}_{2}) \vee \underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{d}}_{3}) \wedge \neg(\underbrace{\mathrm{c} \approx \mathrm{~d}}_{4})
$$

$$
\begin{array}{r}
\| 1,(\overline{2} \vee 3), \overline{4} \\
1 \| 1,(\overline{2} \vee 3), \overline{4} \\
1 \overline{4} \| 1,(\overline{2} \vee 3), \overline{4}
\end{array}
$$

unit propagate unit propagate

Example (Revisited with DPLL(T))

$$
\underbrace{g(a) \approx c}_{1} \wedge(\neg(\underbrace{f(g(a)) \approx f(c)}_{2}) \vee \underbrace{g(a) \approx d}_{3}) \wedge \neg(\underbrace{c \approx d}_{4})
$$

	$\\| 1,(\overline{2} \vee 3), \overline{4}$	
\Longrightarrow	$1 \\| 1,(\overline{2} \vee 3), \overline{4}$	unit propagate
\Longrightarrow	$1 \overline{4} \\| 1,(\overline{2} \vee 3), \overline{4}$	unit propagate
\Longrightarrow	$1 \overline{4}^{d} \\| 1,(\overline{2} \vee 3), \overline{4}$	decide

Example (Revisited with DPLL(T))

$$
\underbrace{g(a) \approx c}_{1} \wedge(\neg(\underbrace{f(g(a)) \approx f(c)}_{2}) \vee \underbrace{g(a) \approx d}_{3}) \wedge \neg(\underbrace{c \approx d}_{4})
$$

	$\\| 1,(\overline{2} \vee 3), \overline{4}$	
\Longrightarrow	$1 \\| 1,(\overline{2} \vee 3), \overline{4}$	unit propagate
\Longrightarrow	$1 \overline{4} \\| 1,(\overline{2} \vee 3), \overline{4}$	unit propagate
\Longrightarrow	$1 \overline{4}^{d} \\| 1,(\overline{2} \vee 3), \overline{4}$	decide
\Longrightarrow	$1 \overline{4}^{d} \overline{2}^{d} \\| 1,(\overline{2} \vee 3), \overline{4},(\overline{1} \vee 2 \vee 4)$	T-learn

Example (Revisited with DPLL(T))

$$
\underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{c}}_{1} \wedge(\neg(\underbrace{\mathrm{f}(\mathrm{~g}(\mathrm{a})) \approx \mathrm{f}(\mathrm{c})}_{2}) \vee \underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{d}}_{3}) \wedge \neg(\underbrace{\mathrm{c} \approx \mathrm{~d}}_{4})
$$

$$
\begin{gathered}
\| 1,(\overline{2} \vee 3), \overline{4} \\
1 \| 1,(\overline{2} \vee 3), \overline{4} \\
1 \overline{4} \| 1,(\overline{2} \vee 3), \overline{4} \\
1 \overline{4} \overline{2}^{d} \| 1,(\overline{2} \vee 3), \overline{4} \\
1 \overline{4} \overline{2}^{d} \| 1,(\overline{2} \vee 3), \overline{4},(\overline{1} \vee 2 \vee 4) \\
1 \overline{4} 2 \| 1,(\overline{2} \vee 3), \overline{4},(\overline{1} \vee 2 \vee 4)
\end{gathered}
$$

unit propagate unit propagate decide T-learn
T-backjump

Example (Revisited with DPLL(T))

$$
\underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{c}}_{1} \wedge(\neg(\underbrace{\mathrm{f}(\mathrm{~g}(\mathrm{a})) \approx \mathrm{f}(\mathrm{c})}_{2}) \vee \underbrace{\mathrm{g}(\mathrm{a}) \approx \mathrm{d}}_{3}) \wedge \neg(\underbrace{\mathrm{c} \approx \mathrm{~d}}_{4})
$$

	$\\| 1,(\overline{2} \vee 3), \overline{4}$
\Longrightarrow	$1 \\| 1,(\overline{2} \vee 3), \overline{4}$
\Longrightarrow	$1 \overline{4} \\| 1,(\overline{2} \vee 3), \overline{4}$
\Longrightarrow	$1 \overline{4} \overline{2}^{d} \\| 1,(\overline{2} \vee 3), \overline{4}$
\Longrightarrow	$1 \overline{4} \overline{2}^{d} \\| 1,(\overline{2} \vee 3), \overline{4},(\overline{1} \vee 2 \vee 4)$
\Longrightarrow	$1 \overline{4} 2 \\| 1,(\overline{2} \vee 3), \overline{4},(\overline{1} \vee 2 \vee 4)$
\Longrightarrow	$1 \overline{4} 23 \\| 1,(\overline{2} \vee 3), \overline{4},(\overline{1} \vee 2 \vee 4)$

unit propagate unit propagate decide T-learn T-backjump unit propagate

Example (Revisited with DPLL(T))

Lazyness in DPLL(T)

© Scott Adams, Inc./Dist. by UFS, Inc.

Lazyness in DPLL(T)

© Scott Adams, Inc./Dist. by UFS, Inc.
T-solver
SAT solver

Outline

- Summary of Last Week

- Satisfiability Modulo Theories

- DPLL(T)
- Equality and Uninterpreted Functions in Practice

Example (SMT-LIB 2 for Propositional Logic)

formula $\left(x_{1} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee \neg x_{1}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)$ can be expressed by

```
(declare-const x1 Bool)
(declare-const x2 Bool)
(declare-const x3 Bool)
(assert (or x1 (not x3)))
(assert (or x2 x3 (not x1)))
(assert (or (not x1) x2 x3))
(check-sat)
(get-model)
```


Example (SMT-LIB 2 for Propositional Logic)

formula $\left(x_{1} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee \neg x_{1}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)$ can be expressed by

```
(declare-const x1 Bool)
(declare-const x2 Bool)
(declare-const x3 Bool)
(assert (or x1 (not x3)))
(assert (or x2 x3 (not x1)))
(assert (or (not x1) x2 x3))
(check-sat)
(get-model)
```


Propositional Logic in SMT-LIB 2

- declare-const \times Bool creates propositional variable named x

Example (SMT-LIB 2 for Propositional Logic)

formula $\left(x_{1} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee \neg x_{1}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)$ can be expressed by

```
(declare-const x1 Bool)
(declare-const x2 Bool)
(declare-const x3 Bool)
(assert (or x1 (not x3)))
(assert (or x2 x3 (not x1)))
(assert (or (not x1) x2 x3))
(check-sat)
(get-model)
```


Propositional Logic in SMT-LIB 2

- declare-const \times Bool creates propositional variable named x
- prefix notation for and, or, not, implies

Example (SMT-LIB 2 for Propositional Logic)

formula $\left(x_{1} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee \neg x_{1}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)$ can be expressed by

```
(declare-const x1 Bool)
(declare-const x2 Bool)
(declare-const x3 Bool)
(assert (or x1 (not x3)))
(assert (or x2 x3 (not x1)))
(assert (or (not x1) x2 x3))
(check-sat)
(get-model)
```


Propositional Logic in SMT-LIB 2

- declare-const \times Bool creates propositional variable named x
- prefix notation for and, or, not, implies
- assert demands given formula to be satisfied

Example (SMT-LIB 2 for Propositional Logic)

formula $\left(x_{1} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee \neg x_{1}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)$ can be expressed by

```
(declare-const x1 Bool)
(declare-const x2 Bool)
(declare-const x3 Bool)
(assert (or x1 (not x3)))
(assert (or x2 x3 (not x1)))
(assert (or (not x1) x2 x3))
(check-sat)
(get-model)
```


Propositional Logic in SMT-LIB 2

- declare-const \times Bool creates propositional variable named x
- prefix notation for and, or, not, implies
- assert demands given formula to be satisfied
- check-sat issues satisfiability check of conjunction of assertions

Example (SMT-LIB 2 for Propositional Logic)

formula $\left(x_{1} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee \neg x_{1}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)$ can be expressed by

```
(declare-const x1 Bool)
(declare-const x2 Bool)
(declare-const x3 Bool)
(assert (or x1 (not x3)))
(assert (or x2 x3 (not x1)))
(assert (or (not x1) x2 x3))
(check-sat)
(get-model)
```


Propositional Logic in SMT-LIB 2

- declare-const \times Bool creates propositional variable named x
- prefix notation for and, or, not, implies
- assert demands given formula to be satisfied
- check-sat issues satisfiability check of conjunction of assertions
- get-model prints model (after satisfiability check)

Example (SMT-LIB 2 for EUF)

$\mathrm{f}(\mathrm{f}(\mathrm{a})) \approx \mathrm{a} \wedge \mathrm{f}(\mathrm{a}) \approx \mathrm{b} \wedge \neg(\mathrm{a} \approx \mathrm{b})$ is expressed as

```
(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
(assert (= (f (f a)) a))
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)
(get-model)
```


Example (SMT-LIB 2 for EUF)

$\mathrm{f}(\mathrm{f}(\mathrm{a})) \approx \mathrm{a} \wedge \mathrm{f}(\mathrm{a}) \approx \mathrm{b} \wedge \neg(\mathrm{a} \approx \mathrm{b})$ is expressed as

```
(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
(assert (= (f (f a)) a))
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)
(get-model)
```


EUF in SMT-LIB 2

- terms must have sort, so declare fresh sort and use for all symbols:
declare-sort S creates sort named S

Example (SMT-LIB 2 for EUF)

$\mathrm{f}(\mathrm{f}(\mathrm{a})) \approx \mathrm{a} \wedge \mathrm{f}(\mathrm{a}) \approx \mathrm{b} \wedge \neg(\mathrm{a} \approx \mathrm{b})$ is expressed as

```
(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
(assert (= (f (f a)) a))
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)
(get-model)
```


EUF in SMT-LIB 2

- terms must have sort, so declare fresh sort and use for all symbols:
declare-sort S creates sort named S
- declare-const x s creates variable named x of sort S

Example (SMT-LIB 2 for EUF)

$\mathrm{f}(\mathrm{f}(\mathrm{a})) \approx \mathrm{a} \wedge \mathrm{f}(\mathrm{a}) \approx \mathrm{b} \wedge \neg(\mathrm{a} \approx \mathrm{b})$ is expressed as

```
(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
(assert (= (f (f a)) a))
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)
(get-model)
```


EUF in SMT-LIB 2

- terms must have sort, so declare fresh sort and use for all symbols:
declare-sort S creates sort named S
- declare-const $x s$ creates variable named x of sort S
- declare-fun $F\left(S_{1} \ldots S_{n}\right) T$ creates uninterpreted $F: S_{1} \times \cdots \times S_{n} \rightarrow T$

Example (SMT-LIB 2 for EUF)

$\mathrm{f}(\mathrm{f}(\mathrm{a})) \approx \mathrm{a} \wedge \mathrm{f}(\mathrm{a}) \approx \mathrm{b} \wedge \neg(\mathrm{a} \approx \mathrm{b})$ is expressed as

```
(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
(assert (= (f (f a)) a))
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)
(get-model)
```


EUF in SMT-LIB 2

- terms must have sort, so declare fresh sort and use for all symbols:
declare-sort S creates sort named S
- declare-const $x s$ creates variable named x of sort S
- declare-fun $F\left(S_{1} \ldots S_{n}\right) T$ creates uninterpreted $F: S_{1} \times \cdots \times S_{n} \rightarrow T$
- prefix notation as in (f (f a)) to denote $f(f(a))$

Example (SMT-LIB 2 for EUF)

$\mathrm{f}(\mathrm{f}(\mathrm{a})) \approx \mathrm{a} \wedge \mathrm{f}(\mathrm{a}) \approx \mathrm{b} \wedge \neg(\mathrm{a} \approx \mathrm{b})$ is expressed as

```
(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
(assert (= (f (f a)) a))
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)
(get-model)
```


EUF in SMT-LIB 2

- terms must have sort, so declare fresh sort and use for all symbols:
declare-sort S creates sort named S
- declare-const $x s$ creates variable named x of sort S
- declare-fun $F\left(S_{1} \ldots S_{n}\right) T$ creates uninterpreted $F: S_{1} \times \cdots \times S_{n} \rightarrow T$
- prefix notation as in (f (f a)) to denote $f(f(a))$ and (= x y) for equality

Example (SMT-LIB 2 for EUF)

$\mathrm{f}(\mathrm{f}(\mathrm{a})) \approx \mathrm{a} \wedge \mathrm{f}(\mathrm{a}) \approx \mathrm{b} \wedge \neg(\mathrm{a} \approx \mathrm{b})$ is expressed as

```
(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
(assert (= (f (f a)) a))
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)
(get-model)
```


EUF in SMT-LIB 2

- terms must have sort, so declare fresh sort and use for all symbols:
declare-sort S creates sort named S
- declare-const $x s$ creates variable named x of sort S
- declare-fun $F\left(S_{1} \ldots S_{n}\right) T$ creates uninterpreted $F: S_{1} \times \cdots \times S_{n} \rightarrow T$
- prefix notation as in (f (f a)) to denote $f(f(a))$ and (= x y) for equality
- (distinct $x y$) is equivalent to not (= x y)

Example

$2 x \geqslant y+z \wedge \neg(x \approx y)$ is expressed as

```
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(assert (>= (* 2 x) (+ y z)))
(assert (not (= x y)))
(check-sat)
(get-model)
```


Example

$2 x \geqslant y+z \wedge \neg(x \approx y)$ is expressed as

```
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(assert (>= (* 2 x) (+ y z)))
(assert (not (= x y)))
(check-sat)
(get-model)
```


Integer Arithmetic in SMT-LIB 2

- declare-const x Int creates integer variable named x

Example

$2 x \geqslant y+z \wedge \neg(x \approx y)$ is expressed as

```
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(assert (>= (* 2 x) (+ y z)))
(assert (not (= x y)))
(check-sat)
(get-model)
```


Integer Arithmetic in SMT-LIB 2

- declare-const x Int creates integer variable named x
- numbers $0,1,-1,42, \ldots$ are built-in

Example

$2 x \geqslant y+z \wedge \neg(x \approx y)$ is expressed as

```
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(assert (>= (* 2 x) (+ y z)))
(assert (not (= x y)))
(check-sat)
(get-model)
```


Integer Arithmetic in SMT-LIB 2

- declare-const x Int creates integer variable named x
- numbers $0,1,-1,42, \ldots$ are built-in
- $+, *,-\operatorname{are}+_{\mathbb{Z}}, \cdot \mathbb{Z},-_{\mathbb{Z}}$

Example

$2 x \geqslant y+z \wedge \neg(x \approx y)$ is expressed as

```
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(assert (>= (* 2 x) (+ y z)))
(assert (not (= x y)))
(check-sat)
(get-model)
```


Integer Arithmetic in SMT-LIB 2

- declare-const x Int creates integer variable named x
- numbers $0,1,-1,42, \ldots$ are built-in
$\rightarrow \quad+, *,-\operatorname{are}+_{\mathbb{Z}}, \mathbb{Z}_{\mathbb{Z}},-_{\mathbb{Z}}$, used in prefix notation: (+2 3)

Example

$2 x \geqslant y+z \wedge \neg(x \approx y)$ is expressed as

```
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(assert (>= (* 2 x) (+ y z)))
(assert (not (= x y)))
(check-sat)
(get-model)
```


Integer Arithmetic in SMT-LIB 2

- declare-const x Int creates integer variable named x
- numbers $0,1,-1,42, \ldots$ are built-in
$\rightarrow \quad+, *,-\operatorname{are}+_{\mathbb{Z}}, \mathbb{Z}_{\mathbb{Z}},-_{\mathbb{Z}}$, used in prefix notation: (+2 3)
- = also covers equality on \mathbb{Z}

Example

$2 x \geqslant y+z \wedge \neg(x \approx y)$ is expressed as

```
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(assert (>= (* 2 x) (+ y z)))
(assert (not (= x y)))
(check-sat)
(get-model)
```


Integer Arithmetic in SMT-LIB 2

- declare-const x Int creates integer variable named x
- numbers $0,1,-1,42, \ldots$ are built-in
$\rightarrow \quad+, *,-\operatorname{are}+_{\mathbb{Z}}, \mathbb{Z}_{\mathbb{Z}},-_{\mathbb{Z}}$, used in prefix notation: (+2 3)
- = also covers equality on \mathbb{Z}
$><,<=,>,>=\operatorname{are}<_{\mathbb{Z}}, \leqslant_{\mathbb{Z}},>_{\mathbb{Z}}, \geqslant_{\mathbb{Z}}$

EUF in python/z3

```
A = DeclareSort('A') # new uninterpreted sort named 'A'
a = Const('a', A) # create constant of sort A
b = Const('b', A) # create another constant of sort A
f = Function('f', A, A) # create function of sort A -> A
s = Solver()
s.add(f(f(a)) == a, f(a) == b, a != b)
print s.check() # sat
m = s.model()
print "interpretation assigned to A:"
print m[A] # [A!val!0, A!val!1]
print "interpretations:"
print m[f] # [A!val!0 -> A!val!1, A!val!1 -> A!val!0, ...]
print m[a] # A!val!0
print m[b] # A!val!1
```


Example (Quantifiers and Monkeys)

In a village of monkeys every monkey owns at least two bananas:

```
(declare-sort monkey)
(declare-sort banana)
(declare-fun owns (monkey banana) Bool)
(declare-fun b1 (monkey) banana)
(declare-fun b2 (monkey) banana)
(assert (forall ((M monkey)) (not (= (b1 M) (b2 M)))))
(assert (forall ((M monkey)) (owns M (b1 M))))
(assert (forall ((M monkey)) (owns M (b2 M))))
(assert (forall ((M1 monkey) (M2 monkey) (B banana))
    (implies (and (owns M1 B) (owns M2 B)) (= M1 M2))))
```


DPLL(T)

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT Modulo Theories: From an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the ACM 53(6), pp. 937-977, 2006.

Application

\square Miroslav N. Velev and Randal E. Bryant.
Bit-level abstraction in the verification of pipelined microprocessors by correspondence checking.
In Proc. of Formal Methods in Computer-Aided Design, pp. 18-35, 1998.

