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Summary of Last Week

Satisfiability Modulo Theories

e DPLL(T)

Equality and Uninterpreted Functions in Practice



Definitions
for unsatisfiable CNF formula ¢ given as set of clauses

» 1 C o such that A\, C is unsatisfiable is unsatisfiable core (UC) of ¢
» minimal unsatisfiable core 1) is UC such that every subset of v is satisfiable
» SUC (minimum unsatisfiable core) is UC such that |¢| is minimal

Remark

SUC is always minimal unsatisfiable core

Definition (Resolution Graph)
directed acyclic graph G = (V/, E) is resolution graph for set of clauses ¢

1. V=V, V_ is set of clauses and V; = ¢,

2. Vj nodes have no incoming edges,

3. there is exactly one node [J without outgoing edges,

4. VC € V. dedges D — C, D' — C such that C is resolvent of D and D’, and
5. there are no other edges.
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Algorithm minUnsatCore(y)

Input: unsatisfiable formula ¢
Output: minimal unsatisfiable core of ¢
build resolution graph G = (V; W V,, E) for ¢
while 3 unmarked clause in V; do
C < unmarked clause in V;

if SAT(Reachg(C)) then > subgraph without C satisfiable?
mark C > C is UC member
else

build resolution graph G’ = (V! W V., E’) for Reachg(C)

Vi« Vi\ {C} and V. < VLU (V. \ Reachs(C))

E + E'U(E\ Reacht(C))

G+ (V;UV,,E)

G < G|BReachs (D) > restrict to nodes with path to [J
return V;

Theorem

if ¢ unsatisfiable then minUnsatCore() is minimal unsatisfiable core of ¢



Definition (Partial minUNSAT)
pminUNSAT(x, ¢) is minimal [¢)[ such that 1) C ¢ and x A ¢, —C satisfiable

Lemma
|| = |pminUNSAT (x, ¢)| + [pmaxSAT (x, ¢)|

Theorem
FuMalik(x, ¢) = pminUNSAT (x, ¢)



Algorithm FuMalik(x, ¢)

Input: clause set ¢ and satisfiable clause set x
Output: minUNSAT (x, ¢)
cost < 0

while —=SAT(x U ¢) do
UC < unsatCore(x U ¢)
B+ o
for C € UCNy do > loop over soft clauses in core
b < new blocking variable
o+ e\ {CU{CV b}
B+ BU{b}
X ¢ XUCNF(} ,cpb=1) > cardinality constraint is hard
cost < cost + 1
return cost
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SMT Solving

formula ¢ involving theory T

input:
output: SAT —+ valuation v such that v(p) = T if o satisfiable
UNSAT otherwise
v(a) =3 v(b)=0
o ()=0 v(p)=T
a+b>cV(a=0ADp)

SMT solver
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SMT Solving

input: formula ¢ involving theory T
output: SAT —+ valuation v such that v(p) = T if o satisfiable
UNSAT otherwise

Y —
a+b>cV(a=0ADp)

Example (Theories)
» arithmetic
» uninterpreted functions
» bit vectors

SMT solver

2a+b>cVv(a—b=c+3Ap)

f(x,y) # (v, x) A g(a) — g(f(x, x)) = g(y)
((zexts2 ag) + b32) X c32 >4, 032
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Uninterpreted Functions in Real Life

10



Definition (Theory of Equality With Uninterpreted Functions)

EUF over set of function symbols F consists of equality axioms:
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Application: Verification of Microprocessors

» verify that 3-stage pipelined MIPS processor
satisfies intended instruction set architecture

@ Miroslav N. Velev and Randal E. Bryant.
Bit-level abstraction in the verification of pipelined microprocessors by correspondence

checking.
In Proc. of Formal Methods in Computer-Aided Design, pp. 18-35, 1998.
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Application: Verification of Microprocessors

» verify that 3-stage pipelined MIPS processor

satisfies intended instruction set architecture
» encoding
» data as bit sequence
» memory as uninterpreted function (UF)
» computation logic as UF

» control logic as uninterpreted predicate

» EUF ensures functional consistency:
same data results in same computation

@ Miroslav N. Velev and Randal E. Bryant.
Bit-level abstraction in the verification of pipelined microprocessors by correspondence
checking.
In Proc. of Formal Methods in Computer-Aided Design, pp. 18-35, 1998.

12



Theories of Interest in SMT Solvers

» equality + uninterpreted functions (EUF) f(x,a) ~ g(y)

13


http://www.smt-lib.org
http://www.smt-comp.org

Theories of Interest in SMT Solvers

» equality + uninterpreted functions (EUF) f(x,a) ~ g(y)
» difference logic (DL) x—y<l1

13


http://www.smt-lib.org
http://www.smt-comp.org

Theories of Interest in SMT Solvers
» equality + uninterpreted functions (EUF) f(x,a) ~ g(y)
» difference logic (DL) x—y<l1
> linear arithmetic 3x—-by+7z<1
» over integers Z (LIA)
» over reals R (LRA)

13


http://www.smt-lib.org
http://www.smt-comp.org

Theories of Interest in SMT Solvers

» equality + uninterpreted functions (EUF) f(x,a) ~ g(y)
» difference logic (DL) x—y<l1
> linear arithmetic 3x—-by+7z<1
» over integers Z (LIA)
» over reals R (LRA)
> arrays (A) read(write(A, i, v), /)

13


http://www.smt-lib.org
http://www.smt-comp.org

Theories of Interest in SMT Solvers

» equality + uninterpreted functions (EUF) f(x,a) ~ g(y)
» difference logic (DL) x—y<l1
> linear arithmetic 3x—-by+7z<1
» over integers Z (LIA)
» over reals R (LRA)
> arrays (A) read(write(A, i, v), /)
> bitvectors (BV) ((zextsp ag) + b32) X c32 >, 032


http://www.smt-lib.org
http://www.smt-comp.org

Theories of Interest in SMT Solvers

v

equality + uninterpreted functions (EUF) f(x,a) =~ g(y)
difference logic (DL) x—y<l1
linear arithmetic 3x—-by+7z<1
» over integers Z (LIA)
» over reals R (LRA)

arrays (A) read(write(A, i, v), /)
bitvectors (BV) ((zext32 38) + b32) X c3p >, 032
strings x @y =z Qreplace(y, a,b)

13


http://www.smt-lib.org
http://www.smt-comp.org

Theories of Interest in SMT Solvers

vVvyVvyVvyy

equality + uninterpreted functions (EUF) f(x,a) =~ g(y)
difference logic (DL) x—y<l1
linear arithmetic 3x—-by+7z<1
» over integers Z (LIA)
» over reals R (LRA)

arrays (A) read(write(A, i, v), /)
bitvectors (BV) ((zext32 38) + b32) X €32 >, 032
strings x @y =z Qreplace(y, a,b)

their combinations

13


http://www.smt-lib.org
http://www.smt-comp.org

Theories of Interest in SMT Solvers

» equality + uninterpreted functions (EUF) f(x,a) ~ g(y)

» difference logic (DL)
> linear arithmetic
» over integers Z (LIA)
» over reals R (LRA)
arrays (A)
bitvectors (BV)
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SMT-LIB
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Theories of Interest in SMT Solvers
» equality + uninterpreted functions (EUF) f(x,a) ~ g(y)
» difference logic (DL) x—y<l1
> linear arithmetic 3x—-by+7z<1
» over integers Z (LIA)
» over reals R (LRA)

> arrays (A) read(write(A, i, v), /)
» bitvectors (BV) ((zext32 38) + b32) X c3p >, 032
» strings x @y =z Qreplace(y, a,b)
> ...
» their combinations
SMT-LIB

» language standard and benchmarks: http://www.smt-1ib.org
» annual solver competition: http://www.smt-comp.org
» solvers: Yices, OpenSMT, MathSAT, Z3, CVC4, Barcelogic, ...
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v

» drawbacks:
» expensive translations: infeasible for large formulas
» even more complicated with multiple theories
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The Lazy Paradigm

Challenge
consider formula ¢ mixing propositional logic with theory T

Idea
use specialized T-solver that can deal with conjunction of theory literals

Lazy SMT Solving
abstract ¢ to CNF:
» ‘“forget theory" by replacing T-literals with fresh propositional variables
» obtain pure SAT formula, transform to CNF formula
ship ¥ to SAT solver
» if ) unsatisfiable, so is ¢
» if ¢ satisfiable by v, check v with T-solver:
» if v is T-consistent then also ¢ is satisfiable
» otherwise T-solver generates T-consequence C of ¢ excluding v,

repeat from ] with © A C 5
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Definition (DPLL(T) Transition Rules)
DPLL(T) consists of DPLL rules unit propagate, decide, fail, and restart plus

» T-backjump MI“N|F,C = MI'|FC
if M 19 NE —C and 3 clause C’ V /" such that
» F,.C=-C'Vv /I
» ME —=C’'and /" is undefined in M, and I’ or I’ occurs in F orin M4 N

» T-learn M|F = M|FC
if F =+ C and all atoms of C occur in M or F

» T-forget M| F,C = M|F
if FEr C

» T-propagate M| F = MI|F

if M E+ I, literal | or /€ occurs in F, and [ is undefined in M 18
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Naive Lazy Approach in DPLL(T)

» whenever state M || F is final wrt unit propagate, decide, fail, T-backjump:
check T-consistency of M with T-solver

if M is T-consistent then satisfiability is proven

otherwise 3h, ..., I subset of M such that F E+ =(h A--- A ly)

use T-learn to add =/ V --- V —lk

apply restart

vVvyVvyy

Improvement 1: Incremental T-Solver

» T-solver checks T-consistency of model M whenever literal is added to M

Improvement 2: On-Line SAT solver

» after T-learn added clause, apply fail or T-backjump instead of restart

Improvement 3: Eager Theory Propagation
» apply T-propagate before decide

Remark

all three improvements can be combined
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Lazyness in DPLL(T)
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@ Equality and Uninterpreted Functions in Practice
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Example (SMT-LIB 2 for Propositional Logic)

formula (x1 V =x3) A (x2 V x3 V =ix1) A (—x1 V x2 V x3) can be expressed by

(declare-const x1 Bool)
(declare-const x2 Bool)
(declare-const x3 Bool) .
(assert (or x1 (not x3))) /
(assert (or x2 x3 (not x1)))
(assert (or (mot x1) x2 x3))
(check-sat)

(get-model)
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>

>
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>

declare-const x Bool creates propositional variable named x
prefix notation for and, or, not, implies

assert demands given formula to be satisfied

check-sat issues satisfiability check of conjunction of assertions
get-model prints model (after satisfiability check)

23


https://rise4fun.com/Z3/K2rah

Example (SMT-LIB 2 for EUF)
f(f(a)) ~aAf(a) = bA—(ab)is expressed as

(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A) /
(assert (= (f (f a)) a)) )
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)

(get-model)
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EUF in SMT-LIB 2

>

vvyyy

terms must have sort, so declare fresh sort and use for all symbols:
declare-sort S creates sort named S

declare-const x s creates variable named x of sort S

declare-fun F (5;...5,) T creates uninterpreted F: Sy x -+ x S, = T
prefix notation as in (£ (£ a)) to denote f(f(a)) and (= x y) for equality

(distinct x y) is equivalent to not (= x y) o4
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Example
2x 2y + z A (x & y) is expressed as

(declare-const x Int)
(declare-const y Int)
(declare-const z Int)

(assert (>= (x 2 x) (+ 7y 2)))
(assert (not (= x y)))
(check-sat)

(get-model)
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Example
2x 2y + z A (x & y) is expressed as

(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(assert (>= (x 2 x) (+y 2))) /
(assert (not (= x y)))
(check-sat)

(get-model)

Integer Arithmetic in SMT-LIB 2

» declare-const x Int creates integer variable named x
numbers O, 1, -1, 42,.. . are built-in

+, %, - are +7, -z, —z, used in prefix notation: (+ 2 3)
= also covers equality on Z

<, <=, >, >=are <z, <z, >z, 2z
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EUF in python/z3

A = DeclareSort(’A’) # new uninterpreted sort named ’A’
a = Const(’a’, A) # create constant of sort A

b = Const(’b’, A) # create another constant of sort A

f = Function(’f’, A, A) # create function of sort A -> A
s = Solver()

s.add(f(f(a)) == a, f(a) == b, a != b)

print s.check() # sat

m = s.model()

print "interpretation assigned to A:"

print m[A] # [Alvall!O, Alvalli]

print "interpretations:"

print m[f] # [A!val!0 -> Alval!l, Alval!l -> Alval!oO, ...]

print m[a] # Alval!O

print m[b] # Alvalll 26




Example (Quantifiers and Monkeys)

+

In a village of monkeys every monkey owns at least two bananas: /

(declare-sort monkey)

(declare-sort banana)

(declare-fun owns (monkey banana) Bool)
(declare-fun bl (monkey) banana)
(declare-fun b2 (monkey) banana)

(assert (forall ((M monkey)) (not (= (b1 M) (b2 M)))))

(assert (forall ((M monkey)) (owns M (bl M))))

(assert (forall ((M monkey)) (owns M (b2 M))))

(assert (forall ((M1 monkey) (M2 monkey) (B banana))
(implies (and (owns M1 B) (owns M2 B)) (= M1 M2))))
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DPLL(T)

ﬁ Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli.
Solving SAT and SAT Modulo Theories: From an Abstract
Davis-Putnam-Logemann-Loveland Procedure to DPLL(T).
Journal of the ACM 53(6), pp. 937-977, 2006.

Application

ﬁ Miroslav N. Velev and Randal E. Bryant.
Bit-level abstraction in the verification of pipelined microprocessors by correspondence

checking.
In Proc. of Formal Methods in Computer-Aided Design, pp. 18-35, 1998.
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