M universitat
M innsbruck

SAT and SMT Solving

Sarah Winkler

Computational Logic Group
Department of Computer Science
University of Innsbruck

lecture 5
SS 2019

http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Summary of Last Week

Satisfiability Modulo Theories

e DPLL(T)

Equality and Uninterpreted Functions in Practice

Definitions
for unsatisfiable CNF formula ¢ given as set of clauses

» 1 C o such that A\, C is unsatisfiable is unsatisfiable core (UC) of ¢
» minimal unsatisfiable core 1) is UC such that every subset of v is satisfiable
» SUC (minimum unsatisfiable core) is UC such that |¢| is minimal

Remark

SUC is always minimal unsatisfiable core

Definition (Resolution Graph)
directed acyclic graph G = (V/, E) is resolution graph for set of clauses ¢

1. V=V, V_ is set of clauses and V; = ¢,

2. Vj nodes have no incoming edges,

3. there is exactly one node [J without outgoing edges,

4. VC € V. dedges D — C, D' — C such that C is resolvent of D and D’, and
5. there are no other edges.

Definitions
for unsatisfiable CNF formula ¢ given as set of clauses

» 1 C o such that A\, C is unsatisfiable is unsatisfiable core (UC) of ¢
» minimal unsatisfiable core 1) is UC such that every subset of v is satisfiable
» SUC (minimum unsatisfiable core) is UC such that |¢| is minimal

Remark

SUC is always minimal unsatisfiable core

Definition (Resolution Graph)
directed acyclic graph G = (V/, E) is resolution graph for set of clauses ¢ if

1. V=V, V_ is set of clauses and V; = ¢,

2. Vj nodes have no incoming edges,

3. there is exactly one node [J without outgoing edges,

4. VC € V. dedges D — C, D' — C such that C is resolvent of D and D’, and
5. there are no other edges.

Algorithm minUnsatCore(y)

Input: unsatisfiable formula ¢
Output: minimal unsatisfiable core of ¢
build resolution graph G = (V; W V,, E) for ¢
while 3 unmarked clause in V; do
C < unmarked clause in V;

if SAT(Reachg(C)) then > subgraph without C satisfiable?
mark C > C is UC member
else

build resolution graph G’ = (V! W V., E’) for Reachg(C)

Vi« Vi\ {C} and V. < VLU (V. \ Reachs(C))

E + E'U(E\ Reacht(C))

G+ (V;UV,,E)

G < G|BReachs (D) > restrict to nodes with path to [J
return V;

Theorem

if ¢ unsatisfiable then minUnsatCore() is minimal unsatisfiable core of ¢

Definition (Partial minUNSAT)
pminUNSAT(x, ¢) is minimal [¢)[such that 1) C ¢ and x A ¢, —C satisfiable

Lemma
|| = |pminUNSAT (x, ¢)| + [pmaxSAT (x, ¢)|

Theorem
FuMalik(x, ¢) = pminUNSAT (x, ¢)

Algorithm FuMalik(x, ¢)

Input: clause set ¢ and satisfiable clause set x
Output: minUNSAT (x, ¢)
cost < 0

while —=SAT(x U ¢) do
UC < unsatCore(x U ¢)
B+ o
for C € UCNy do > loop over soft clauses in core
b < new blocking variable
o+ e\ {CU{CV b}
B+ BU{b}
X ¢ XUCNF(} ,cpb=1) > cardinality constraint is hard
cost < cost + 1
return cost

@ Satisfiability Modulo Theories

SMT Solving

input: formula ¢ involving theory T
output: SAT —+ valuation v such that v(p) = T if o satisfiable
UNSAT otherwise

SMT solver

SMT Solving

input: formula ¢ involving theory T
output: SAT —+ valuation v such that v(p) = T if o satisfiable
UNSAT otherwise

SAT (v)

SMT solver

SMT Solving

input: formula ¢ involving theory T
output: SAT —+ valuation v such that v(p) = T if o satisfiable
UNSAT otherwise

SAT (v)

UNSAT

SMT solver

Example (Theories)

» arithmetic 2a+b=cV(a—b=c+3Ap)

SMT Solving

formula ¢ involving theory T

input:
output: SAT —+ valuation v such that v(p) = T if o satisfiable
UNSAT otherwise
v(a) =3 v(b)=0
o ()=0 v(p)=T
a+b>cV(a=0ADp)

SMT solver

Example (Theories)

» arithmetic
» uninterpreted functions

2a+b>cVv(a—b=c+3Ap)
f(x,y) # (v, x) A g(a) — g(f(x, x)) = g(y)

SMT Solving

input: formula ¢ involving theory T
output: SAT —+ valuation v such that v(p) = T if o satisfiable
UNSAT otherwise

Y —
a+b>cV(a=0ADp)

Example (Theories)
» arithmetic
» uninterpreted functions
» bit vectors

SMT solver

2a+b>cVv(a—b=c+3Ap)

f(x,y) # (v, x) A g(a) — g(f(x, x)) = g(y)
((zexts2 ag) + b32) X c32 >4, 032

Definitions
for formulas F and G and list of literals M:

Definitions
for formulas F and G and list of literals M:

» theory T is set of first-order logic formulas without free variables

Definitions
for formulas F and G and list of literals M:

» theory T is set of first-order logic formulas without free variables
» [is T-consistent (or T-satisfiable) if F A T is satisfiable in first-order sense

Definitions
for formulas F and G and list of literals M:
» theory T is set of first-order logic formulas without free variables

» Fis T-consistent (or T-satisfiable) if F A T is satisfiable in first-order sense
» Fis T-inconsistent (or T-unsatisfiable) if not T-consistent

Definitions

for formulas F and G and list of literals M:

vvyVvyy

theory T is set of first-order logic formulas without free variables

F is T-consistent (or T-satisfiable) if F A T is satisfiable in first-order sense
F is T-inconsistent (or T-unsatisfiable) if not T-consistent

M=1,..., I is T-consistent if L A--- Al is

Definitions

for formulas F and G and list of literals M:

vvyVvYyVvyy

theory T is set of first-order logic formulas without free variables

F is T-consistent (or T-satisfiable) if F A T is satisfiable in first-order sense
F is T-inconsistent (or T-unsatisfiable) if not T-consistent
M=1,...,lxis T-consistent if f A--- Al is

M is T-model of F if ME F and M is T-consistent

Definitions

for formulas F and G and list of literals M:

vVVvyVvVvVvyVyvyy

theory T is set of first-order logic formulas without free variables

F is T-consistent (or T-satisfiable) if F A T is satisfiable in first-order sense
F is T-inconsistent (or T-unsatisfiable) if not T-consistent
M=1,...,lxis T-consistent if f A--- Al is

M is T-model of F if M E F and M is T-consistent

F entails G in T (denoted F =+ G) if F A =G is T-inconsistent

Definitions

for formulas F and G and list of literals M:

vyVVvyVvVVvVvyVvyy

theory T is set of first-order logic formulas without free variables

F is T-consistent (or T-satisfiable) if F A T is satisfiable in first-order sense
F is T-inconsistent (or T-unsatisfiable) if not T-consistent
M=1,...,lxis T-consistent if f A--- Al is

M is T-model of F if M E F and M is T-consistent

F entails G in T (denoted F E1+ G) if F A =G is T-inconsistent

F and G are T-equivalent (denoted F =+ G)if FET G and G E1 F

Definitions
for formulas F and G and list of literals M:

theory T is set of first-order logic formulas without free variables

F is T-consistent (or T-satisfiable) if F A T is satisfiable in first-order sense
F is T-inconsistent (or T-unsatisfiable) if not T-consistent
M=1,...,lxis T-consistent if f A--- Al is

M is T-model of F if M E F and M is T-consistent

F entails G in T (denoted F E1+ G) if F A =G is T-inconsistent

F and G are T-equivalent (denoted F =7 G) if FET G and G 1 F

vyVVvyVvVVvVvyVvyy

Definition (Theory of Equality)
theory of equality (EQ) uses binary predicate ~ and consists of axioms

Vx. (xm=x) Vxy. (xmy - yrx) Vxyz. (xmRyAymz — x=2z)

Definitions
for formulas F and G and list of literals M:

theory T is set of first-order logic formulas without free variables

F is T-consistent (or T-satisfiable) if F A T is satisfiable in first-order sense
F is T-inconsistent (or T-unsatisfiable) if not T-consistent
M=1,...,lxis T-consistent if f A--- Al is

M is T-model of F if M E F and M is T-consistent

F entails G in T (denoted F E1+ G) if F A =G is T-inconsistent

F and G are T-equivalent (denoted F =7 G) if FET G and G 1 F

vyVVvyVvVVvVvyVvyy

Definition (Theory of Equality)
theory of equality (EQ) uses binary predicate = and consists of axioms

Vx. (xm=x) Vxy. (xmy - yrx) Vxyz. (xmRyAymz — x=2z)

Example

» u~vA-(v=w)is EQ-consistent

Definitions
for formulas F and G and list of literals M:

theory T is set of first-order logic formulas without free variables

F is T-consistent (or T-satisfiable) if F A T is satisfiable in first-order sense
F is T-inconsistent (or T-unsatisfiable) if not T-consistent
M=1,...,lxis T-consistent if f A--- Al is

M is T-model of F if M E F and M is T-consistent

F entails G in T (denoted F E1+ G) if F A =G is T-inconsistent

F and G are T-equivalent (denoted F =7 G) if FET G and G 1 F

vyVVvyVvVVvVvyVvyy

Definition (Theory of Equality)
theory of equality (EQ) uses binary predicate = and consists of axioms

Vx. (xm=x) Vxy. (xmy - yrx) Vxyz. (xmRyAymz — x=2z)

Example

» u~vA-(v~w)is EQ-consistent
> urvA-(vrew)A(w=uVusw)is EQ-inconsistent

Definitions
for formulas F and G and list of literals M:

theory T is set of first-order logic formulas without free variables

F is T-consistent (or T-satisfiable) if F A T is satisfiable in first-order sense
F is T-inconsistent (or T-unsatisfiable) if not T-consistent
M=1,...,lxis T-consistent if f A--- Al is

M is T-model of F if M E F and M is T-consistent

F entails G in T (denoted F E1+ G) if F A =G is T-inconsistent

F and G are T-equivalent (denoted F =7 G) if FET G and G 1 F

vyVVvyVvVVvVvyVvyy

Definition (Theory of Equality)
theory of equality (EQ) uses binary predicate = and consists of axioms

Vx. (xm=x) Vxy. (xmy - yrx) Vxyz. (xmRyAymz — x=2z)

Example
» u~vA-(v~w)is EQ-consistent
> ur~vA-(vrew)A(wuVusw)is EQ-inconsistent
> have um v A-(vaw)Fe ~(w=u)

Definitions
for formulas F and G and list of literals M:

theory T is set of first-order logic formulas without free variables

F is T-consistent (or T-satisfiable) if F A T is satisfiable in first-order sense
F is T-inconsistent (or T-unsatisfiable) if not T-consistent
M=1,...,lxis T-consistent if f A--- Al is

M is T-model of F if M E F and M is T-consistent

F entails G in T (denoted F E1+ G) if F A =G is T-inconsistent

F and G are T-equivalent (denoted F =7 G) if FET G and G 1 F

vyVVvyVvVVvVvyVvyy

Definition (Theory of Equality)
theory of equality (EQ) uses binary predicate = and consists of axioms

Vx. (xm=x) Vxy. (xmy - yrx) Vxyz. (xmRyAymz — x=2z)

Example
» u~vA-(v~w)is EQ-consistent
> ur~vA-(vrew)A(wuVusw)is EQ-inconsistent
» have urvA-(vaw)kFgg (wru)and ur v = v=u

Definition (Theory of Equality With Uninterpreted Functions)

EUF over set of function symbols F consists of equality axioms:

Vx. (xm=x) Vxy. (xmy - yrx) Vxyz. (xmRyAymz — x=2z)

Definition (Theory of Equality With Unlnterpreted Functions)

EUF o f equality axioms:
functlon symboI f takes n > 0 arguments q Y

Vx. (X = X) ny%/kwy =S yYRX) Vxyz.(xmyANyxRz = x=2)

plus for all f € F with n arguments

Definition (Theory of Equality With Uninterpreted Functions)

EUF over set of function symbols F consists of equality axioms:
Vx. (xm=x) Vxy. (xmy - yrx) Vxyz. (xmRyAymz — x=2z)
plus for all f € F with n arguments the functional consistency axiom:

Vxiyr <o Xo¥n (o =i A A Xy Ay, — F(xa, xp) &~ f(y1,..., Va))

Uninterpreted Functions in Real Life

10

Definition (Theory of Equality With Uninterpreted Functions)

EUF over set of function symbols F consists of equality axioms:
Vx (x=x) Yxy((xmy > yrx) Vxyz(xmyAymz — x=2z)
plus for all f € F with n > 0 arguments the functional consistency axiom:

VXYL - - XnYn- (Xl RN ANy R Yy — f(Xlw-'vXn)%f(Ylw-‘v}/n))

Example
EUF over 7 = {a/0, b/0, f/1, add/2} consists of axioms

Vx (xxx) VYxy((xmy - yxx) Vxyz(xmyAymz — x=~2)

11

Definition (Theory of Equality With Uninterpreted Functions)

EUF over set of function symbols F consists of equality axioms:
Vx (x=x) Yxy((xmy > yrx) Vxyz(xmyAymz — x=2z)
plus for all f € F with n > 0 arguments the functional consistency axiom:

VXYL - - XnYn- (X1%)/1/\'“/\Xn%)/n — f(Xlw-'vXn)zf(Ylw-‘a}/n))

Example
EUF over 7 = {a/0, b/0, f/1, add/2} consists of axioms
Vx (x=x) Vxy(xry - yxx) Vxyz(xrRyAyrmRz = x=~z)
plus
Vxy. (x=y — f(x) = f(y))
Vx1y1x2 ¥a. (X1 = y1 Axa =y — add(x, y1) ~ add(x2, y2))

Definition (Theory of Equality With Uninterpreted Functions)

EUF over set of function symbols F consists of equality axioms:
Vx (x=x) Yxy((xmy > yrx) Vxyz(xmyAymz — x=2z)
plus for all f € F with n > 0 arguments the functional consistency axiom:

VXayr o XoYne (AR YIA S AX R Ye = (X, X)) R F(Y1, e, Yn)

Example
EUF over 7 = {a/0, b/0, f/1, add/2} consists of axioms
Vx (x=x) Vxy((xmy = yrx) Vxyz(XxmyAyr~z — x=~2z)

plus
Vxy. (x=y — f(x)=f(y))
VXl Y1 X2 Vo. (X1 = Y1 N Xp =~ Yo — add(xl,yl) ~ add(XQ,yQ))

11

Definition (Theory of Equality With Uninterpreted Functions)

EUF over set of function symbols F consists of equality axioms:
Vx (x=x) Yxy((xmy > yrx) Vxyz(xmyAymz — x=2z)
plus for all f € F with n > 0 arguments the functional consistency axiom:

VXYL - - XnYn- (X1%)/1/\'“/\Xn%)/n — f(Xlw-'vXn)zf(Ylw-‘a}/n))

Example
EUF over 7 = {a/0, b/0, f/1, add/2} consists of axioms
Vx (x=x) Vxy(xry - yxx) Vxyz(xrRyAyrmRz = x=~z)
plus
xy. (x=y — f(x) = f(y))
Vx1y1x2 ¥a. (X1 = y1 Axa =y — add(x, y1) ~ add(x2, y2))

» a#bAf(a)~f(b)is EUF-consistent

11

Definition (Theory of Equality With Uninterpreted Functions)

EUF over set of function symbols F consists of equality axioms:
Vx (x=x) Yxy((xmy > yrx) Vxyz(xmyAymz — x=2z)
plus for all f € F with n > 0 arguments the functional consistency axiom:

VXYL - - XnYn- (X1%)/1/\'“/\Xn%)/n — f(Xlw-'vXn)zf(Ylw-‘a}/n))

Example
EUF over 7 = {a/0, b/0, f/1, add/2} consists of axioms
Vx (x=x) Vxy(xry - yxx) Vxyz(xrRyAyrmRz = x=~z)
plus
xy. (x=y — f(x) = f(y))
Vxiy1x2 2. (a ®y1 Axe & y2 — add(xq, y1) & add(xe, y2))
» a#bAf(a)~f(b)is EUF-consistent
» azyAf(a) =~ xis EUF-consistent

11

Definition (Theory of Equality With Uninterpreted Functions)

EUF over set of function symbols F consists of equality axioms:
Vx (x=x) Yxy((xmy > yrx) Vxyz(xmyAymz — x=2z)
plus for all f € F with n > 0 arguments the functional consistency axiom:

VXYL - - XnYn- (X1%)/1/\'“/\Xn%)/n — f(Xlw-'vXn)zf(Ylw-‘a}/n))

Example
EUF over 7 = {a/0, b/0, f/1, add/2} consists of axioms
Vx (x=x) Vxy(xry - yxx) Vxyz(xrRyAyrmRz = x=~z)
plus
xy. (x=y — f(x) = f(y))
Vxiy1x2 2. (a ®y1 Axe & y2 — add(xq, y1) & add(xe, y2))

» a#bAf(a)~f(b)is EUF-consistent

> a# yAf(a)~ xis EUF-consistent

» a~f(b)Ab~f(a) Af(b) % f(f(f(b))) is EUF-inconsistent

11

Definition (Theory of Equality With Uninterpreted Functions)
EUF over set of function symbols F consists of equality axioms:

Vx (x=x) Yxy((xmy > yrx) Vxyz(xmyAymz — x=2z)
plus for all f € F with n > 0 arguments the functional consistency axiom:

VXYL - - XnYn- (X1%)/1/\'“/\Xn%)/n — f(Xlw-'vXn)zf(Ylw-‘a}/n))

Example
EUF over 7 = {a/0, b/0, f/1, add/2} consists of axioms
Vx (x=x) Vxy(xry - yxx) Vxyz(xrRyAyrmRz = x=~z)

plus
Vxy. (xmy = f(x) = f(y))
Vx1y1x2 ¥a. (X1 = y1 Axa =y — add(x, y1) ~ add(x2, y2))
a# bAf(a) = f(b) is EUF-consistent
a# y Af(a) = x is EUF-consistent
a~ f(b) Ab~f(a) Af(b) # f(f(f(b))) is EUF-inconsistent
arb Fegyr f(b) =~ f(a)

vVvyVvVvyy

Definition (Theory of Equality With Uninterpreted Functions)
EUF over set of function symbols F consists of equality axioms:

Vx (x=x) Yxy((xmy > yrx) Vxyz(xmyAymz — x=2z)
plus for all f € F with n > 0 arguments the functional consistency axiom:

VXYL - - XnYn- (X1%)/1/\'“/\Xn%)/n — f(Xlw-'vXn)zf(Ylw-‘a}/n))

Example
EUF over 7 = {a/0, b/0, f/1, add/2} consists of axioms
Vx (x=x) Vxy(xry - yxx) Vxyz(xrRyAyrmRz = x=~z)

plus
Vxy. (xmy = f(x) = f(y))
Vxiyi xo ya. (e =yt Axo =y, — add(xy,y1) = add(x, y2))
a# b Af(a) =~ f(b) is EUF-consistent
a sy Af(a) =~ x is EUF-consistent
a~ f(b) Ab~f(a) Af(b) # f(f(f(b))) is EUF-inconsistent
a~b Feyr f(b) ~ f(a) butaxb 7zjéEUF f(b) ~ f(a)

vVvyVvVvyy

Application: Verification of Microprocessors

» verify that 3-stage pipelined MIPS processor
satisfies intended instruction set architecture

@ Miroslav N. Velev and Randal E. Bryant.
Bit-level abstraction in the verification of pipelined microprocessors by correspondence

checking.
In Proc. of Formal Methods in Computer-Aided Design, pp. 18-35, 1998.

12

Application: Verification of Microprocessors

» verify that 3-stage pipelined MIPS processor

satisfies intended instruction set architecture
» encoding
» data as bit sequence
» memory as uninterpreted function (UF)
» computation logic as UF

» control logic as uninterpreted predicate

@ Miroslav N. Velev and Randal E. Bryant.
Bit-level abstraction in the verification of pipelined microprocessors by correspondence

checking.
In Proc. of Formal Methods in Computer-Aided Design, pp. 18-35, 1998.

12

Application: Verification of Microprocessors

» verify that 3-stage pipelined MIPS processor

satisfies intended instruction set architecture
» encoding
» data as bit sequence
» memory as uninterpreted function (UF)
» computation logic as UF

» control logic as uninterpreted predicate

» EUF ensures functional consistency:
same data results in same computation

@ Miroslav N. Velev and Randal E. Bryant.
Bit-level abstraction in the verification of pipelined microprocessors by correspondence
checking.
In Proc. of Formal Methods in Computer-Aided Design, pp. 18-35, 1998.

12

Theories of Interest in SMT Solvers

» equality + uninterpreted functions (EUF) f(x,a) ~ g(y)

13

http://www.smt-lib.org
http://www.smt-comp.org

Theories of Interest in SMT Solvers

» equality + uninterpreted functions (EUF) f(x,a) ~ g(y)
» difference logic (DL) x—y<l1

13

http://www.smt-lib.org
http://www.smt-comp.org

Theories of Interest in SMT Solvers
» equality + uninterpreted functions (EUF) f(x,a) ~ g(y)
» difference logic (DL) x—y<l1
> linear arithmetic 3x—-by+7z<1
» over integers Z (LIA)
» over reals R (LRA)

13

http://www.smt-lib.org
http://www.smt-comp.org

Theories of Interest in SMT Solvers

» equality + uninterpreted functions (EUF) f(x,a) ~ g(y)
» difference logic (DL) x—y<l1
> linear arithmetic 3x—-by+7z<1
» over integers Z (LIA)
» over reals R (LRA)
> arrays (A) read(write(A, i, v), /)

13

http://www.smt-lib.org
http://www.smt-comp.org

Theories of Interest in SMT Solvers

» equality + uninterpreted functions (EUF) f(x,a) ~ g(y)
» difference logic (DL) x—y<l1
> linear arithmetic 3x—-by+7z<1
» over integers Z (LIA)
» over reals R (LRA)
> arrays (A) read(write(A, i, v), /)
> bitvectors (BV) ((zextsp ag) + b32) X c32 >, 032

http://www.smt-lib.org
http://www.smt-comp.org

Theories of Interest in SMT Solvers

v

equality + uninterpreted functions (EUF) f(x,a) =~ g(y)
difference logic (DL) x—y<l1
linear arithmetic 3x—-by+7z<1
» over integers Z (LIA)
» over reals R (LRA)

arrays (A) read(write(A, i, v), /)
bitvectors (BV) ((zext32 38) + b32) X c3p >, 032
strings x @y =z Qreplace(y, a,b)

13

http://www.smt-lib.org
http://www.smt-comp.org

Theories of Interest in SMT Solvers

vVvyVvyVvyy

equality + uninterpreted functions (EUF) f(x,a) =~ g(y)
difference logic (DL) x—y<l1
linear arithmetic 3x—-by+7z<1
» over integers Z (LIA)
» over reals R (LRA)

arrays (A) read(write(A, i, v), /)
bitvectors (BV) ((zext32 38) + b32) X €32 >, 032
strings x @y =z Qreplace(y, a,b)

their combinations

13

http://www.smt-lib.org
http://www.smt-comp.org

Theories of Interest in SMT Solvers

» equality + uninterpreted functions (EUF) f(x,a) ~ g(y)

» difference logic (DL)
> linear arithmetic
» over integers Z (LIA)
» over reals R (LRA)
arrays (A)
bitvectors (BV)
strings

vVvyVvyVvyy

their combinations

SMT-LIB

x—y<1
3x—-by+7z<1

read(write(A, i, v), /)
((zext32 38) =+ b32) X €32 >, 032
x @y =z Qreplace(y, a,b)

» language standard and benchmarks: http://www.smt-1ib.org

13

http://www.smt-lib.org
http://www.smt-comp.org

Theories of Interest in SMT Solvers
» equality + uninterpreted functions (EUF) f(x,a) ~ g(y)
» difference logic (DL) x—y<l1
> linear arithmetic 3x—-by+7z<1
» over integers Z (LIA)
» over reals R (LRA)

> arrays (A) read(write(A, i, v), /)
» bitvectors (BV) ((zext32 38) + b32) X c3p >, 032
» strings x @y =z Qreplace(y, a,b)
> ...
» their combinations
SMT-LIB

» language standard and benchmarks: http://www.smt-1ib.org
» annual solver competition: http://www.smt-comp.org

13

http://www.smt-lib.org
http://www.smt-comp.org

Theories of Interest in SMT Solvers
» equality + uninterpreted functions (EUF) f(x,a) ~ g(y)
» difference logic (DL) x—y<l1
> linear arithmetic 3x—-by+7z<1
» over integers Z (LIA)
» over reals R (LRA)

> arrays (A) read(write(A, i, v), /)
» bitvectors (BV) ((zext32 38) + b32) X c3p >, 032
» strings x @y =z Qreplace(y, a,b)
> ...
» their combinations
SMT-LIB

» language standard and benchmarks: http://www.smt-1ib.org
» annual solver competition: http://www.smt-comp.org
» solvers: Yices, OpenSMT, MathSAT, Z3, CVC4, Barcelogic, ...

13

http://www.smt-lib.org
http://www.smt-comp.org

The Eager Paradigm

Challenge

consider formula ¢ mixing propositional logic with theory T

14

The Eager Paradigm

Challenge

consider formula ¢ mixing propositional logic with theory T

Eager SMT Solving

» use satisfiability-preserving transformation from T literals to SAT formula,
ship one big formula to SAT solver

14

The Eager Paradigm

Challenge

consider formula ¢ mixing propositional logic with theory T

Eager SMT Solving
» use satisfiability-preserving transformation from T literals to SAT formula,
ship one big formula to SAT solver
» requires sophisticated translation for each theory:
done for EUF, difference logic, linear integer arithmetic, arrays

14

The Eager Paradigm

Challenge

consider formula ¢ mixing propositional logic with theory T

Eager SMT Solving
» use satisfiability-preserving transformation from T literals to SAT formula,
ship one big formula to SAT solver
» requires sophisticated translation for each theory:
done for EUF, difference logic, linear integer arithmetic, arrays
» still dominant approach for bit-vector arithmetic (known as “bit blasting”)

14

The Eager Paradigm

Challenge

consider formula ¢ mixing propositional logic with theory T

Eager SMT Solving
» use satisfiability-preserving transformation from T literals to SAT formula,
ship one big formula to SAT solver
» requires sophisticated translation for each theory:
done for EUF, difference logic, linear integer arithmetic, arrays
» still dominant approach for bit-vector arithmetic (known as “bit blasting”)
» advantage: use SAT solver off the shelf

14

The Eager Paradigm

Challenge

consider formula ¢ mixing propositional logic with theory T

Eager SMT Solving
» use satisfiability-preserving transformation from T literals to SAT formula,
ship one big formula to SAT solver
» requires sophisticated translation for each theory:
done for EUF, difference logic, linear integer arithmetic, arrays
» still dominant approach for bit-vector arithmetic (known as “bit blasting”)
advantage: use SAT solver off the shelf

v

» drawbacks:
» expensive translations: infeasible for large formulas
» even more complicated with multiple theories

14

The Lazy Paradigm

Challenge

consider formula ¢ mixing propositional logic with theory T

15

The Lazy Paradigm

Challenge

consider formula ¢ mixing propositional logic with theory T

Idea

use specialized T-solver that can deal with conjunction of theory literals

15

The Lazy Paradigm

Challenge
consider formula ¢ mixing propositional logic with theory T

Idea
use specialized T-solver that can deal with conjunction of theory literals

Lazy SMT Solving

15

The Lazy Paradigm

Challenge
consider formula ¢ mixing propositional logic with theory T

Idea
use specialized T-solver that can deal with conjunction of theory literals

Lazy SMT Solving

abstract ¢ to CNF:
» ‘forget theory" by replacing T-literals with fresh propositional variables

15

The Lazy Paradigm

Challenge
consider formula ¢ mixing propositional logic with theory T

Idea
use specialized T-solver that can deal with conjunction of theory literals

Lazy SMT Solving

abstract ¢ to CNF:
» ‘“forget theory" by replacing T-literals with fresh propositional variables

» obtain pure SAT formula, transform to CNF formula ¢

15

The Lazy Paradigm

Challenge
consider formula ¢ mixing propositional logic with theory T

Idea
use specialized T-solver that can deal with conjunction of theory literals

Lazy SMT Solving

abstract ¢ to CNF:
» ‘“forget theory" by replacing T-literals with fresh propositional variables
» obtain pure SAT formula, transform to CNF formula

ship ¥ to SAT solver

15

The Lazy Paradigm

Challenge
consider formula ¢ mixing propositional logic with theory T

Idea
use specialized T-solver that can deal with conjunction of theory literals

Lazy SMT Solving
abstract ¢ to CNF:
» ‘“forget theory" by replacing T-literals with fresh propositional variables
» obtain pure SAT formula, transform to CNF formula
ship ¥ to SAT solver
» if ¢ unsatisfiable, so is ¢

15

The Lazy Paradigm

Challenge
consider formula ¢ mixing propositional logic with theory T

Idea
use specialized T-solver that can deal with conjunction of theory literals

Lazy SMT Solving
abstract ¢ to CNF:
» ‘“forget theory" by replacing T-literals with fresh propositional variables
» obtain pure SAT formula, transform to CNF formula
ship ¥ to SAT solver
» if) unsatisfiable, so is ¢
» if ¢ satisfiable by v, check v with T-solver:

15

The Lazy Paradigm

Challenge
consider formula ¢ mixing propositional logic with theory T

Idea
use specialized T-solver that can deal with conjunction of theory literals

Lazy SMT Solving

abstract ¢ to CNF:
» ‘“forget theory" by replacing T-literals with fresh propositional variables
» obtain pure SAT formula, transform to CNF formula

ship ¥ to SAT solver
» if) unsatisfiable, so is ¢
» if ¢ satisfiable by v, check v with T-solver:

» if vis T-consistent then also ¢ is satisfiable

15

The Lazy Paradigm

Challenge
consider formula ¢ mixing propositional logic with theory T

Idea
use specialized T-solver that can deal with conjunction of theory literals

Lazy SMT Solving
abstract ¢ to CNF:
» ‘“forget theory" by replacing T-literals with fresh propositional variables
» obtain pure SAT formula, transform to CNF formula
ship ¥ to SAT solver
» if) unsatisfiable, so is ¢
» if ¢ satisfiable by v, check v with T-solver:
» if v is T-consistent then also ¢ is satisfiable
» otherwise T-solver generates T-consequence C of ¢ excluding v,

repeat from] with © A C 5

Example
g(a) = c A (~(f(g(a)) = f(c)) vg(a) = d) A ~(c = d)

Example
g(a) ~ c A (=(f(g(a)) = f(c)) vgla) = d) A=~(c~d)
—— ———— ——— ——

X1 X2 X3 X4

» abstract to propositional skeleton 17 = x; A (—x2 V x3) A —x4

16

Example
g(a) ~ c A (=(f(g(a)) = f(c)) vgla) = d) A=~(c~d)
—— ———— ——— ——

X1 X2 X3 X4

» abstract to propositional skeleton 17 = x3 A (—x2 V x3) A —x4
satisfiable: vi(x1) =T and vi(x2) = vi(xs) = F

16

Example
g(a) ~ c A (=(f(g(a)) = f(c)) vgla) = d) A=~(c~d)
—— ———— ——— ——

X1 X2 X3 X4

» abstract to propositional skeleton 17 = x3 A (—x2 V x3) A —x4
satisfiable: vi(x1) =T and vi(x2) = vi(xs) = F
» T-solver gets g(a) =~ cAf(g(a)) #f(c) Ac#d

16

Example
g(a) ~ c A (=(f(g(a)) = f(c)) vgla) = d) A=~(c~d)
—— ———— ——— ——

X1 X2 X3 X4

» abstract to propositional skeleton 17 = x3 A (—x2 V x3) A —x4
satisfiable: vi(x1) =T and vi(x2) = vi(xs) = F

» T-solver gets g(a) ~ c A f(g(a)) # f(c) Ac#d
T-unsatisfiable: g(a) ~ c implies f(g(a)) ~ f(c)

16

Example

g(a) = c A (=(f(g(a)) ~ f(c)) vgla) = d)A~(c~d)
——— —_—— ——— ——

X1 X2 X3 X4

abstract to propositional skeleton ¥; = x3 A (—x2 V x3) A —x4

satisfiable: vi(x1) =T and vi(x2) = vi(xs) = F

» T-solver gets g(a) ~ c A f(g(a)) # f(c) Ac#d
T-unsatisfiable: g(a) =~ c implies f(g(a)) ~ f(c)

» block valuation v; in future: add —x; V xo V x4

16

Example
g(a) ~ c A (=(f(g(a)) = f(c)) vgla) = d) A=~(c~d)
—— ———— ——— ——

X1 X2 X3 X4

» abstract to propositional skeleton 17 = x3 A (—x2 V x3) A —x4
satisfiable: vi(x1) =T and vi(x2) = vi(xs) = F

» T-solver gets g(a) ~ c A f(g(a)) # f(c) Ac#d
T-unsatisfiable: g(a) =~ c implies f(g(a)) ~ f(c)

» block valuation vy in future: add —x; V xo V x4

> 77[}2 =x1 N\ (_\X2 \/X3) A —xg N\ (_|X1 V X \/X4)

16

Example
g(a) ~ c A (=(f(g(a)) = f(c)) vgla) = d) A=~(c~d)
—— ———— ——— ——

X1 X2 X3 X4

» abstract to propositional skeleton 17 = x3 A (—x2 V x3) A —x4
satisfiable: vi(x1) =T and vi(x2) = vi(xs) = F

» T-solver gets g(a) ~ c A f(g(a)) # f(c) Ac#d
T-unsatisfiable: g(a) =~ c implies f(g(a)) ~ f(c)

» block valuation vy in future: add —x; V xo V x4

| 4 1,[}2 =x1 N\ (_\X2 \/X3) A —Xg N\ (_|X1 V Xo \/X4)
satisfiable: va(x1) = va(x2) = va(x3) = T and va(xq) = F

16

Example

v

g(a) = c A (=(f(g(a)) ~ f(c)) vgla) = d)A~(c~d)
——— —_—— ——— ——

X1 X2 X3 X4

abstract to propositional skeleton ¥; = x3 A (—x2 V x3) A —x4
satisfiable: vi(x1) =T and vi(x2) = vi(xs) = F

T-solver gets g(a) ~ c A f(g(a)) #f(c) Ac#d
T-unsatisfiable: g(a) =~ c implies f(g(a)) ~ f(c)

block valuation v; in future: add —x; V x5 V xa

77[}2 = X1 A (_\X2 vV X3) A Xy A (_|X1 V X2 V X4)
satisfiable: va(x1) = va(x2) = va(x3) = T and va(xq) = F
T-solver gets g(a) ~ c A f(g(a)) = f(c) Ag(a) dAc#d

16

Example
g(a) ~ c A (=(f(g(a)) = f(c)) vgla) = d) A=~(c~d)
—— ———— ——— ——

X1 X2 X3 X4

» abstract to propositional skeleton 17 = x3 A (—x2 V x3) A —x4
satisfiable: vi(x1) =T and vi(x2) = vi(xs) = F

» T-solver gets g(a) ~ c A f(g(a)) # f(c) Ac#d
T-unsatisfiable: g(a) =~ c implies f(g(a)) ~ f(c)

» block valuation vy in future: add —x; V xo V x4

> Yo =x1 A (mx2Vx3)A—xg A (—x1 VXV xg)
satisfiable: va(x1) = va(x2) = va(x3) = T and va(xq) = F
» T-solver gets g(a) =~ c A f(g(a)) ~f(c) Ag(a) ®dAc#d
T-unsatisfiable

16

Example

g(a) = c A (=(f(g(a)) ~ f(c)) vgla) = d)A~(c~d)
——— —_—— ——— ——

X1 X2 X3 X4

abstract to propositional skeleton ¥; = x3 A (—x2 V x3) A —x4
satisfiable: vi(x1) =T and vi(x2) = vi(xs) = F

T-solver gets g(a) ~ c A f(g(a)) #f(c) Ac#d
T-unsatisfiable: g(a) =~ c implies f(g(a)) ~ f(c)

block valuation v; in future: add —x; V x5 V xa

o =x1 A (mx2 Vx3) A —xg A (—x1 V xo V xq)

satisfiable: vo(x1) = wa(x2) = vo(x3) = T and va(xs) = F
T-solver gets g(a) ~ c A f(g(a)) =~ f(c)Ag(a) ~dAc#d
T-unsatisfiable

block valuation v» in future: add —x; V —x0 V —x3 V x4

16

Example
g(a) ~ c A (=(f(g(a)) = f(c)) vgla) = d) A=~(c~d)
—— ———— ——— ——

X1 X2 X3 X4

» abstract to propositional skeleton 17 = x3 A (—x2 V x3) A —x4
satisfiable: vi(x1) =T and vi(x2) = vi(xs) = F

» T-solver gets g(a) ~ c A f(g(a)) # f(c) Ac#d
T-unsatisfiable: g(a) =~ c implies f(g(a)) ~ f(c)

» block valuation vy in future: add —x; V xo V x4

> Yo =x1 A (mx2Vx3)A—xg A (—x1 VXV xg)
satisfiable: vo(x1) = wa(x2) = vo(x3) = T and va(xs) = F
» T-solver gets g(a) =~ c A f(g(a)) ~f(c) Ag(a) ®dAc#d
T-unsatisfiable
» block valuation v, in future: add —x; V —x0 V —x3 V x4

> ¢3 =x1 N\ (_\X2 V X3) A —Xg N\ (_|X1 V xo V X4) A (_\Xl V —=xy V —X3 V X4)

Example
g(a) ~ c A (=(f(g(a)) = f(c)) vgla) = d) A=~(c~d)
—— ———— ——— ——

X1 X2 X3 X4

» abstract to propositional skeleton 17 = x3 A (—x2 V x3) A —x4
satisfiable: vi(x1) =T and vi(x2) = vi(xs) = F

» T-solver gets g(a) ~ c A f(g(a)) # f(c) Ac#d
T-unsatisfiable: g(a) =~ c implies f(g(a)) ~ f(c)

» block valuation vy in future: add —x; V xo V x4

> Yo =x1 A (mx2Vx3)A—xg A (—x1 VXV xg)
satisfiable: vo(x1) = wa(x2) = vo(x3) = T and va(xs) = F
» T-solver gets g(a) =~ c A f(g(a)) ~f(c) Ag(a) ®dAc#d
T-unsatisfiable
» block valuation v, in future: add —x; V —x0 V —x3 V x4

> ¢3 =x1 N\ (_\X2 V X3) A —Xg N\ (_|X1 V xo V X4) A (_\Xl V —=xy V —X3 V X4)
» unsatisfiable

e DPLL(T)

17

Approach

» most state-of-the-art SMT solvers use DPLL(T):
lazy approach combining DPLL with theory propagation

18

Approach

» most state-of-the-art SMT solvers use DPLL(T):
lazy approach combining DPLL with theory propagation

» advantages: not specific to theory, also extends to theory combinations

18

Approach

» most state-of-the-art SMT solvers use DPLL(T):
lazy approach combining DPLL with theory propagation

» advantages: not specific to theory, also extends to theory combinations

Definition (DPLL(T) Transition Rules)
DPLL(T) consists of DPLL rules unit propagate, decide, fail, and restart plus

18

Approach

» most state-of-the-art SMT solvers use DPLL(T):
lazy approach combining DPLL with theory propagation

» advantages: not specific to theory, also extends to theory combinations

Definition (DPLL(T) Transition Rules)
DPLL(T) consists of DPLL rules unit propagate, decide, fail, and restart plus
» T-backjump MI“N|F,C = MI'|FC
if M9 NE —C and 3 clause C’' VV /" such that
» F,.C=-C'Vv /I
» ME —=C’'and /" is undefined in M, and I’ or I’ occurs in F orin M4 N

18

Approach

» most state-of-the-art SMT solvers use DPLL(T):
lazy approach combining DPLL with theory propagation

» advantages: not specific to theory, also extends to theory combinations

Definition (DPLL(T) Transition Rules)
DPLL(T) consists of DPLL rules unit propagate, decide, fail, and restart plus
» T-backjump MI“N|F,C = MI'|FC
if M9 NE —C and 3 clause C’' VV /" such that
» F,.C=-C'Vv /I
» ME —=C’'and /" is undefined in M, and I’ or I’ occurs in F orin M4 N

» T-learn MI|F = MIJF,C
if F =+ C and all atoms of C occur in M or F

18

Approach

» most state-of-the-art SMT solvers use DPLL(T):
lazy approach combining DPLL with theory propagation

» advantages: not specific to theory, also extends to theory combinations

Definition (DPLL(T) Transition Rules)
DPLL(T) consists of DPLL rules unit propagate, decide, fail, and restart plus

» T-backjump MI“N|F,C = MI'|FC
if M 19 NE —C and 3 clause C’ V /" such that
» F,.C=-C'Vv /I
» ME —=C’'and /" is undefined in M, and I’ or I’ occurs in F orin M4 N

» T-learn M|F = M|FC
if F =+ C and all atoms of C occur in M or F

» T-forget M| F,C = M|F
it FEr C

18

Approach

» most state-of-the-art SMT solvers use DPLL(T):
lazy approach combining DPLL with theory propagation

» advantages: not specific to theory, also extends to theory combinations

Definition (DPLL(T) Transition Rules)
DPLL(T) consists of DPLL rules unit propagate, decide, fail, and restart plus

» T-backjump MI“N|F,C = MI'|FC
if M 19 NE —C and 3 clause C’ V /" such that
» F,.C=-C'Vv /I
» ME —=C’'and /" is undefined in M, and I’ or I’ occurs in F orin M4 N

» T-learn M|F = M|FC
if F =+ C and all atoms of C occur in M or F

» T-forget M| F,C = M|F
if FEr C

» T-propagate M| F = MI|F

if M E+ I, literal | or /€ occurs in F, and [is undefined in M 18

Naive Lazy Approach in DPLL(T)

» whenever state M || F is final wrt unit propagate, decide, fail, T-backjump:
check T-consistency of M with T-solver

19

Naive Lazy Approach in DPLL(T)
» whenever state M || F is final wrt unit propagate, decide, fail, T-backjump:
check T-consistency of M with T-solver
» if M is T-consistent then satisfiability is proven

19

Naive Lazy Approach in DPLL(T)

>

whenever state M || F is final wrt unit propagate, decide, fail, T-backjump:
check T-consistency of M with T-solver

if M is T-consistent then satisfiability is proven
otherwise 3h, ..., I subset of M such that F =+ —=(h A Aly)

19

Naive Lazy Approach in DPLL(T)

>

v

whenever state M || F is final wrt unit propagate, decide, fail, T-backjump
check T-consistency of M with T-solver

if M is T-consistent then satisfiability is proven

otherwise 3h, ..., I subset of M such that F E+ =(h A--- A ly)

use T-learn to add —/; V- -~V =,

19

Naive Lazy Approach in DPLL(T)

>

vVvyVvyy

whenever state M || F is final wrt unit propagate, decide, fail, T-backjump:

check T-consistency of M with T-solver

if M is T-consistent then satisfiability is proven

otherwise 3h, ..., I subset of M such that F E+ =(h A--- A ly)
use T-learn to add —h V ---V =l

apply restart

19

Naive Lazy Approach in DPLL(T)
» whenever state M || F is final wrt unit propagate, decide, fail, T-backjump:
check T-consistency of M with T-solver
if M is T-consistent then satisfiability is proven
otherwise 3h, ..., I subset of M such that F E+ =(h A--- A ly)
use T-learn to add =/ V --- V —lk
apply restart

vVvyVvyy

Improvement 1: Incremental T-Solver

» T-solver checks T-consistency of model M whenever literal is added to M

19

Naive Lazy Approach in DPLL(T)
» whenever state M || F is final wrt unit propagate, decide, fail, T-backjump:
check T-consistency of M with T-solver
if M is T-consistent then satisfiability is proven
otherwise 3h, ..., I subset of M such that F E+ =(h A--- A ly)
use T-learn to add =/ V --- V —lk
apply restart

vVvyVvyy

Improvement 1: Incremental T-Solver

» T-solver checks T-consistency of model M whenever literal is added to M

Improvement 2: On-Line SAT solver

» after T-learn added clause, apply fail or T-backjump instead of restart

19

Naive Lazy Approach in DPLL(T)
» whenever state M || F is final wrt unit propagate, decide, fail, T-backjump:
check T-consistency of M with T-solver
if M is T-consistent then satisfiability is proven
otherwise 3h, ..., I subset of M such that F E+ =(h A--- A ly)
use T-learn to add =/ V --- V —lk
apply restart

vVvyVvyy

Improvement 1: Incremental T-Solver

» T-solver checks T-consistency of model M whenever literal is added to M

Improvement 2: On-Line SAT solver

» after T-learn added clause, apply fail or T-backjump instead of restart

Improvement 3: Eager Theory Propagation
» apply T-propagate before decide

19

Naive Lazy Approach in DPLL(T)

» whenever state M || F is final wrt unit propagate, decide, fail, T-backjump:
check T-consistency of M with T-solver

if M is T-consistent then satisfiability is proven

otherwise 3h, ..., I subset of M such that F E+ =(h A--- A ly)

use T-learn to add =/ V --- V —lk

apply restart

vVvyVvyy

Improvement 1: Incremental T-Solver

» T-solver checks T-consistency of model M whenever literal is added to M

Improvement 2: On-Line SAT solver

» after T-learn added clause, apply fail or T-backjump instead of restart

Improvement 3: Eager Theory Propagation
» apply T-propagate before decide

Remark

all three improvements can be combined

19

Example (Revisited with DPLL(T))

g(a) = c A (=(f(g(a)) = f(c)) Vgla) ®d) A ~(c~d)

11, (2v3), 4

20

Example (Revisited with DPLL(T))

g(a) = c A (=(f(g(a)) = f(c)) vgla) = d) A =(c~d)

—— — ——
1 2 3 4
11, (2v3), 4
== 1]1,(2v3), 4 unit propagate

20

Example (Revisited with DPLL(T))

g(a) = c A (=(f(g(a)) = f(c)) vgla) = d) A =(c~d)

—— —_— T L — ——
1 2 3 4
11, (2v3), 4
== 1]1,(2v3), 4 unit propagate
= 14| 1,(2v3), 4 unit propagate

Example (Revisited with DPLL(T))

g(a) = c A (=(f(g(a)) = f(c)) vgla) = d) A =(c~d)

1, (2v3), 4
1]1,(2v3), 4 unit propagate
= 141, (2v3), 4 unit propagate
1227 |1, (2v3), 4 decide

Example (Revisited with DPLL(T))

g(a) = c A (=(f(g(a)) = f(c)) Vgla) ®d) A ~(c~d)

1, (2v3), 4
= 1)1, (2v3), 4 unit propagate
= 141, (2Vv3), 4 unit propagate
— 13271, (2v3), 2 decide
— 14271, (2Vv3),3, (Tv2v4) T-learn

Example (Revisited with DPLL(T))

g(a) = c A (=(f(g(a)) = f(c)) vgla) = d) A =(c~d)

1, (2Vv3), 4
== 1)1, (2v3), 4 unit propagate
= 141, (2v3),4 unit propagate
— 1421, (2v3), 2 decide
— 14271, (2Vv3),3, (Tv2v4) T-learn
— 1221, (2v3), 4 (Iv2v4) T-backjump

Example (Revisited with DPLL(T))

g(a) = c A (=(f(g(a)) = f(c)) Vgla) ®d) A ~(c~d)

11, 2v3), 4
= 1)1, (2v3), 4 unit propagate
= 141, (2Vv3), 4 unit propagate
— 13271, (2v3), 2 decide
— 14271, (2Vv3),3, (Tv2v4) T-learn
— 12211, (2v3), 4, (1V2V4) T-backjump
= 14231, (2Vv3),4, (1v2v4) unit propagate

Example (Revisited with DPLL(T))

g(a) = c A (=(f(g(a)) = f(c)) Vgla) ®d) A ~(c~d)

11, 2v3), 4
= 1)1, (2v3), 4 unit propagate
= 141, (2Vv3), 4 unit propagate
— 13271, (2v3), 2 decide
— 14271, (2Vv3),3, (Tv2v4) T-learn
= 12211, (2v3), 4, (1V2V4) T-backjump
= 14231, (2Vv3),4, (1v2v4) unit propagate
= 14231, (2v3),4,(1v2v4), (1v2v3va4) T-learn
= FailState fail

Lazyness in DPLL(T)

ID LIKE TO HIRE
SOMEONE TO DO ALL
OF THE UNPLEASANT

PARTS OF MY JOB.

sconadams ol com

www.dilbert.com

THAT WAY T1LL BE
FREE TO CONCENTRATE
ON STRATEGY.

195 62005500 Adams, e DisL by UFS, inc.

SECONDLY, ID LIKE
TO HIRE SOMEONE
TO DO STRATEGY,

© Scott Adams, Inc./Dist. by UFS, Inc.

21

Lazyness in DPLL(T)

ID LIKE TO HIRE
SOMEONE TO DO ALL
OF THE UNPLEASANT

PARTS OF MY JOB.

sconadams ol com

www.dilbert.com

THAT WAY T1LL BE
FREE TO CONCENTRATE
ON STRATEGY.

195 62005500 Adams, e DisL by UFS, inc.

SECONDLY, ID LIKE
TO HIRE SOMEONE
TO DO STRATEGY,

© Scott Adams, Inc./Dist. by UFS, Inc.

T-solver

SAT solver

21

@ Equality and Uninterpreted Functions in Practice

22

Example (SMT-LIB 2 for Propositional Logic)

formula (x1 V =x3) A (x2 V x3 V =ix1) A (—x1 V x2 V x3) can be expressed by

(declare-const x1 Bool)
(declare-const x2 Bool)
(declare-const x3 Bool) .
(assert (or x1 (not x3))) /
(assert (or x2 x3 (not x1)))
(assert (or (mot x1) x2 x3))
(check-sat)

(get-model)

https://rise4fun.com/Z3/K2rah

Example (SMT-LIB 2 for Propositional Logic)

formula (x1 V =x3) A (x2 V x3 V =ix1) A (—x1 V x2 V x3) can be expressed by

(declare-const x1 Bool)
(declare-const x2 Bool)
(declare-const x3 Bool) .
(assert (or x1 (not x3))) /
(assert (or x2 x3 (not x1)))
(assert (or (mot x1) x2 x3))
(check-sat)

(get-model)

Propositional Logic in SMT-LIB 2

» declare-const x Bool creates propositional variable named x

23

https://rise4fun.com/Z3/K2rah

Example (SMT-LIB 2 for Propositional Logic)

formula (x1 V =x3) A (x2 V x3 V =ix1) A (—x1 V x2 V x3) can be expressed by

(declare-const x1 Bool)
(declare-const x2 Bool)
(declare-const x3 Bool) .
(assert (or x1 (not x3))) /
(assert (or x2 x3 (not x1)))
(assert (or (mot x1) x2 x3))
(check-sat)

(get-model)

Propositional Logic in SMT-LIB 2

» declare-const x Bool creates propositional variable named x
» prefix notation for and, or, not, implies

23

https://rise4fun.com/Z3/K2rah

Example (SMT-LIB 2 for Propositional Logic)

formula (x1 V =x3) A (x2 V x3 V =ix1) A (—x1 V x2 V x3) can be expressed by

(declare-const x1 Bool)
(declare-const x2 Bool)
(declare-const x3 Bool) ‘
(assert (or x1 (not x3))) /
(assert (or x2 x3 (not x1)))
(assert (or (mot x1) x2 x3))
(check-sat)

(get-model)

Propositional Logic in SMT-LIB 2

» declare-const x Bool creates propositional variable named x
» prefix notation for and, or, not, implies
» assert demands given formula to be satisfied

23

https://rise4fun.com/Z3/K2rah

Example (SMT-LIB 2 for Propositional Logic)

formula (x1 V =x3) A (x2 V x3 V =ix1) A (—x1 V x2 V x3) can be expressed by

(declare-const x1 Bool)
(declare-const x2 Bool)
(declare-const x3 Bool)
(assert (or x1 (not x3))) /
(assert (or x2 x3 (not x1)))
(assert (or (mot x1) x2 x3))
(check-sat)

(get-model)

Propositional Logic in SMT-LIB 2

>

>
>
>

declare-const x Bool creates propositional variable named x
prefix notation for and, or, not, implies

assert demands given formula to be satisfied

check-sat issues satisfiability check of conjunction of assertions

23

https://rise4fun.com/Z3/K2rah

Example (SMT-LIB 2 for Propositional Logic)

formula (x1 V =x3) A (x2 V x3 V =ix1) A (—x1 V x2 V x3) can be expressed by

(declare-const x1 Bool)
(declare-const x2 Bool)
(declare-const x3 Bool)
(assert (or x1 (not x3))) /
(assert (or x2 x3 (not x1)))
(assert (or (mot x1) x2 x3))
(check-sat)

(get-model)

Propositional Logic in SMT-LIB 2

>

>
>
>
>

declare-const x Bool creates propositional variable named x
prefix notation for and, or, not, implies

assert demands given formula to be satisfied

check-sat issues satisfiability check of conjunction of assertions
get-model prints model (after satisfiability check)

23

https://rise4fun.com/Z3/K2rah

Example (SMT-LIB 2 for EUF)
f(f(a)) ~aAf(a) = bA—(ab)is expressed as

(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A) /
(assert (= (f (f a)) a)))
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)

(get-model)

24

https://rise4fun.com/Z3/pcYj

Example (SMT-LIB 2 for EUF)

f(f(a)) =aAf(a) = bA—(a~b)is expressed as

(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
(assert (= (f (f a)) a))
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)

(get-model)

EUF in SMT-LIB 2

» terms must have sort, so declare fresh sort and use for all symbols:

.

declare-sort S creates sort named S

24

https://rise4fun.com/Z3/pcYj

Example (SMT-LIB 2 for EUF)
f(f(a)) =aAf(a) = bA—(a~b)is expressed as

(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A) £
(assert (= (£ (£)) /S
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)

(get-model)

EUF in SMT-LIB 2

» terms must have sort, so declare fresh sort and use for all symbols:
declare-sort S creates sort named S
» declare-const x s creates variable named x of sort S

24

https://rise4fun.com/Z3/pcYj

Example (SMT-LIB 2 for EUF)
f(f(a)) =aAf(a) = bA—(a~b)is expressed as

(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A) £
(assert (= (£ (£)) /S
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)

(get-model)

EUF in SMT-LIB 2

» terms must have sort, so declare fresh sort and use for all symbols:
declare-sort S creates sort named S

» declare-const x s creates variable named x of sort S

» declare—fun F (5;1...5,) T creates uninterpreted F: Sy x -+ xS, = T

24

https://rise4fun.com/Z3/pcYj

Example (SMT-LIB 2 for EUF)
f(f(a)) =aAf(a) = bA—(a~b)is expressed as

(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A) £
(assert (= (£ (£)) /S
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)

(get-model)

EUF in SMT-LIB 2

» terms must have sort, so declare fresh sort and use for all symbols:
declare-sort S creates sort named S

» declare-const x s creates variable named x of sort S

» declare—fun F (5;1...5,) T creates uninterpreted F: Sy x -+ xS, = T

» prefix notation asin (f (£ a)) to denote f(f(a))

24

https://rise4fun.com/Z3/pcYj

Example (SMT-LIB 2 for EUF)
f(f(a)) =aAf(a) = bA—(a~b)is expressed as

(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
(assert (= (f (f a)) a)) /
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)

(get-model)

EUF in SMT-LIB 2

» terms must have sort, so declare fresh sort and use for all symbols:
declare-sort S creates sort named S

» declare-const x s creates variable named x of sort S

» declare—fun F (5;1...5,) T creates uninterpreted F: Sy x -+ xS, = T

» prefix notation as in (f (f a)) to denote f(f(a)) and (= x y) for equality

24

https://rise4fun.com/Z3/pcYj

Example (SMT-LIB 2 for EUF)
f(f(a)) =aAf(a) = bA—(a~b)is expressed as

(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A) ‘
(assert (= (f (f a)) a)) /
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)

(get-model)

EUF in SMT-LIB 2

>

vvyyy

terms must have sort, so declare fresh sort and use for all symbols:
declare-sort S creates sort named S

declare-const x s creates variable named x of sort S

declare-fun F (5;...5,) T creates uninterpreted F: Sy x -+ x S, = T
prefix notation as in (£ (£ a)) to denote f(f(a)) and (= x y) for equality

(distinct x y) is equivalent to not (= x y) o4

https://rise4fun.com/Z3/pcYj

Example
2x 2y + z A (x & y) is expressed as

(declare-const x Int)
(declare-const y Int)
(declare-const z Int)

(assert (>= (x 2 x) (+ 7y 2)))
(assert (not (= x y)))
(check-sat)

(get-model)

25

https://rise4fun.com/Z3/J7C5

Example
2x 2y + z A (x & y) is expressed as

(declare-const x Int)
(declare-const y Int)
(declare-const z Int) y
(assert (>= (x 2 x) (+y 2))) / 7
(assert (not (= x y)))
(check-sat)

(get-model)

Integer Arithmetic in SMT-LIB 2

» declare-const x Int creates integer variable named x

25

https://rise4fun.com/Z3/J7C5

Example
2x 2y + z A (x & y) is expressed as

(declare-const x Int)
(declare-const y Int)
(declare-const z Int) y
(assert (>= (x 2 x) (+y 2))) / 7
(assert (not (= x y)))
(check-sat)

(get-model)

Integer Arithmetic in SMT-LIB 2

» declare-const x Int creates integer variable named x
» numbers 0, 1, =1, 42,...are built-in

25

https://rise4fun.com/Z3/J7C5

Example
2x 2y + z A (x & y) is expressed as

(declare-const x Int)
(declare-const y Int)
(declare-const z Int) y
(assert (>= (x 2 x) (+y 2))) / 7
(assert (not (= x y)))
(check-sat)

(get-model)

Integer Arithmetic in SMT-LIB 2

» declare-const x Int creates integer variable named x
» numbers 0, 1, =1, 42,...are built-in
> ok —are 4z, 7, —z

25

https://rise4fun.com/Z3/J7C5

Example
2x 2y + z A (x & y) is expressed as

(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(assert (>= (x 2 x) (+y 2))) /
(assert (not (= x y)))
(check-sat)

(get-model)

Integer Arithmetic in SMT-LIB 2

» declare-const x Int creates integer variable named x
» numbers 0, 1, =1, 42,...are built-in
» +, %, —are +yz, -z, —z, used in prefix notation: (+ 2 3)

25

https://rise4fun.com/Z3/J7C5

Example
2x 2y + z A (x & y) is expressed as

(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(assert (>= (x 2 x) (+y 2))) /
(assert (not (= x y)))
(check-sat)

(get-model)

Integer Arithmetic in SMT-LIB 2

» declare-const x Int creates integer variable named x
» numbers 0, 1, =1, 42,...are built-in

» +, %, —are +yz, -z, —z, used in prefix notation: (+ 2 3)
» = also covers equality on Z

25

https://rise4fun.com/Z3/J7C5

Example
2x 2y + z A (x & y) is expressed as

(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(assert (>= (x 2 x) (+y 2))) /
(assert (not (= x y)))
(check-sat)

(get-model)

Integer Arithmetic in SMT-LIB 2

» declare-const x Int creates integer variable named x
numbers O, 1, -1, 42,.. . are built-in

+, %, - are +7, -z, —z, used in prefix notation: (+ 2 3)
= also covers equality on Z

<, <=, >, >=are <z, <z, >z, 2z

vVvyVvyy

https://rise4fun.com/Z3/J7C5

EUF in python/z3

A = DeclareSort(’A’) # new uninterpreted sort named ’A’
a = Const(’a’, A) # create constant of sort A

b = Const(’b’, A) # create another constant of sort A

f = Function(’f’, A, A) # create function of sort A -> A
s = Solver()

s.add(f(f(a)) == a, f(a) == b, a != b)

print s.check() # sat

m = s.model()

print "interpretation assigned to A:"

print m[A] # [Alvall!O, Alvalli]

print "interpretations:"

print m[f] # [A!val!0 -> Alval!l, Alval!l -> Alval!oO, ...]

print m[a] # Alval!O

print m[b] # Alvalll 26

Example (Quantifiers and Monkeys)

+

In a village of monkeys every monkey owns at least two bananas: /

(declare-sort monkey)

(declare-sort banana)

(declare-fun owns (monkey banana) Bool)
(declare-fun bl (monkey) banana)
(declare-fun b2 (monkey) banana)

(assert (forall ((M monkey)) (not (= (b1 M) (b2 M)))))

(assert (forall ((M monkey)) (owns M (bl M))))

(assert (forall ((M monkey)) (owns M (b2 M))))

(assert (forall ((M1 monkey) (M2 monkey) (B banana))
(implies (and (owns M1 B) (owns M2 B)) (= M1 M2))))

27

https://rise4fun.com/Z3/CPTIf

DPLL(T)

ﬁ Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli.
Solving SAT and SAT Modulo Theories: From an Abstract
Davis-Putnam-Logemann-Loveland Procedure to DPLL(T).
Journal of the ACM 53(6), pp. 937-977, 2006.

Application

ﬁ Miroslav N. Velev and Randal E. Bryant.
Bit-level abstraction in the verification of pipelined microprocessors by correspondence

checking.
In Proc. of Formal Methods in Computer-Aided Design, pp. 18-35, 1998.

28

	lecture 5
	Summary of Last Week
	Satisfiability Modulo Theories
	DPLL(T)
	Equality and Uninterpreted Functions in Practice

