

SAT and SMT Solving

Sarah Winkler

Computational Logic Group Department of Computer Science University of Innsbruck

lecture 5 SS 2019

- Summary of Last Week
- Satisfiability Modulo Theories
- DPLL(T)
- Equality and Uninterpreted Functions in Practice

Definitions

for unsatisfiable CNF formula φ given as set of clauses

- ▶ $\psi \subseteq \varphi$ such that $\bigwedge_{C \in \psi} C$ is unsatisfiable is unsatisfiable core (UC) of φ
- \blacktriangleright minimal unsatisfiable core ψ is UC such that every subset of ψ is satisfiable
- $\blacktriangleright\,$ SUC (minimum unsatisfiable core) is UC such that $|\psi|$ is minimal

Remark

SUC is always minimal unsatisfiable core

Definition (Resolution Graph)

directed acyclic graph G = (V, E) is resolution graph for set of clauses φ if

- 1. $V = V_i \uplus V_c$ is set of clauses and $V_i = \varphi$,
- 2. V_i nodes have no incoming edges,
- 3. there is exactly one node \Box without outgoing edges,
- 4. $\forall C \in V_c \exists$ edges $D \to C$, $D' \to C$ such that C is resolvent of D and D', and
- 5. there are no other edges.

Algorithm minUnsatCore(φ)

Input: unsatisfiable formula φ **Output:** minimal unsatisfiable core of φ build resolution graph $G = (V_i \uplus V_c, E)$ for φ while \exists unmarked clause in V_i do $C \leftarrow$ unmarked clause in V_i if $SAT(Reach_G(C))$ then \triangleright subgraph without C satisfiable? mark C \triangleright C is UC member else build resolution graph $G' = (V'_i \uplus V'_c, E')$ for $Reach_G(C)$ $V_i \leftarrow V_i \setminus \{C\}$ and $V_c \leftarrow V'_c \cup (V_c \setminus Reach_G(C))$ $E \leftarrow E' \cup (E \setminus Reach_{C}^{E}(C))$ $G \leftarrow (V_i \cup V_c, E)$ $G \leftarrow G|_{BReachc}(\Box)$ \triangleright restrict to nodes with path to \Box return V_i

Theorem

if φ unsatisfiable then minUnsatCore($\varphi)$ is minimal unsatisfiable core of φ

Definition (Partial minUNSAT) pminUNSAT (χ, φ) is minimal $|\psi|$ such that $\psi \subseteq \varphi$ and $\chi \land \bigwedge_{C \in \psi} \neg C$ satisfiable

Lemma

 $|\varphi| = |\mathsf{pminUNSAT}(\chi, \varphi)| + |\mathsf{pmaxSAT}(\chi, \varphi)|$

Theorem

 $\mathsf{FuMalik}(\chi,\varphi) = \mathsf{pminUNSAT}(\chi,\varphi)$

Algorithm FuMalik(χ, φ)

```
clause set \varphi and satisfiable clause set \chi
Input:
Output: minUNSAT(\chi, \varphi)
   cost \leftarrow 0
   while \neg SAT(\chi \cup \varphi) do
         UC \leftarrow unsatCore(\chi \cup \varphi)
         B \leftarrow \emptyset
        for C \in UC \cap \varphi do
                                                                   ▷ loop over soft clauses in core
              b \leftarrow new blocking variable
              \varphi \leftarrow \varphi \setminus \{C\} \cup \{C \lor b\}
              B \leftarrow B \cup \{b\}
        \chi \leftarrow \chi \cup \text{CNF}(\sum_{b \in B} b = 1)
                                                                    cardinality constraint is hard
         cost \leftarrow cost + 1
   return cost
```

- Summary of Last Week
- Satisfiability Modulo Theories
- DPLL(T)
- Equality and Uninterpreted Functions in Practice

SMT Solving

input: output: formula φ involving theory TSAT + valuation v such that $v(\varphi) = T$ if φ satisfiableUNSATotherwise

SMT solver

Example (Theories)

- ► arithmetic
- uninterpreted functions
- bit vectors

 $\begin{aligned} &2a+b \geqslant c \lor (a-b=c+3 \land p) \\ &f(x,y) \neq f(y,x) \land g(a) \rightarrow g(f(x,x)) = g(y) \\ &((\texttt{zext}_{32} \ a_8) + b_{32}) \times c_{32} >_u 0_{32} \end{aligned}$

Definitions

for formulas F and G and list of literals M:

- theory T is set of first-order logic formulas without free variables
- ▶ *F* is *T*-consistent (or *T*-satisfiable) if $F \land T$ is satisfiable in first-order sense
- ► F is T-inconsistent (or T-unsatisfiable) if not T-consistent
- $M = I_1, \ldots, I_k$ is *T*-consistent if $I_1 \land \cdots \land I_k$ is
- *M* is *T*-model of *F* if $M \vDash F$ and *M* is *T*-consistent
- ▶ *F* entails *G* in *T* (denoted $F \vDash_T G$) if $F \land \neg G$ is *T*-inconsistent
- ▶ *F* and *G* are *T*-equivalent (denoted $F \equiv_T G$) if $F \vDash_T G$ and $G \vDash_T F$

Definition (Theory of Equality)

theory of equality (EQ) uses binary predicate \approx and consists of axioms

$$\forall x. (x \approx x) \quad \forall x \ y. (x \approx y \ \rightarrow \ y \approx x) \quad \forall x \ y \ z. (x \approx y \land y \approx z \ \rightarrow \ x \approx z)$$

Example

- $u \approx v \land \neg (v \approx w)$ is EQ-consistent
- $u \approx v \land \neg (v \approx w) \land (w \approx u \lor u \approx w)$ is EQ-inconsistent
- ► have $u \approx v \land \neg(v \approx w) \vDash_{\mathsf{EQ}} \neg(w \approx u)$ and $u \approx v \equiv_{\mathsf{EQ}} v \approx u$

Definition (Theory of Equality With Uninterpreted Functions)

EUF over set of function symbols \mathcal{F} consists of equality axioms:

 $\forall x. (x \approx x) \quad \forall x \ y. (x \approx y \rightarrow y \approx x) \quad \forall x \ y \ z. (x \approx y \land y \approx z \rightarrow x \approx z)$

plus for all $f \in \mathcal{F}$ with *n* arguments the functional consistency axiom:

 $\forall x_1y_1 \ldots x_ny_n (x_1 \approx y_1 \wedge \cdots \wedge x_n \approx y_n \rightarrow f(x_1, \ldots, x_n) \approx f(y_1, \ldots, y_n))$

Uninterpreted Functions in Real Life

Definition (Theory of Equality With Uninterpreted Functions) EUF over set of function symbols \mathcal{F} consists of equality axioms:

 $\forall x \ (x \approx x) \quad \forall x \ y \ (x \approx y \rightarrow y \approx x) \quad \forall x \ y \ z \ (x \approx y \land y \approx z \rightarrow x \approx z)$ plus for all $f \in \mathcal{F}$ with n > 0 arguments the functional consistency axiom:

 $\forall x_1y_1 \ldots x_ny_n. (x_1 \approx y_1 \wedge \cdots \wedge x_n \approx y_n \rightarrow f(x_1, \ldots, x_n) \approx f(y_1, \ldots, y_n))$

Example

EUF over $\mathcal{F} = \{a/0, b/0, f/1, add/2\}$ consists of axioms

 $\forall x \ (x \approx x) \quad \forall x \ y \ (x \approx y \rightarrow y \approx x) \quad \forall x \ y \ z \ (x \approx y \land y \approx z \rightarrow x \approx z)$

plus

 $\begin{array}{l} \forall x \ y. \ (x \approx y \ \rightarrow \ \mathsf{f}(x) \approx \mathsf{f}(y)) \\ \forall x_1 \ y_1 \ x_2 \ y_2. \ (x_1 \approx y_1 \land x_2 \approx y_2 \ \rightarrow \ \mathsf{add}(x_1, y_1) \approx \mathsf{add}(x_2, y_2)) \end{array}$

11

- $a \not\approx b \wedge f(a) \approx f(b)$ is EUF-consistent
- $a \not\approx y \wedge f(a) \approx x$ is EUF-consistent
- ▶ $a \approx f(b) \land b \approx f(a) \land f(b) ≈ f(f(f(b)))$ is EUF-inconsistent
- ► $a \approx b \models_{\mathsf{EUF}} f(b) \approx f(a)$ but $a \approx b \not\equiv_{\mathsf{EUF}} f(b) \approx f(a)$

Application: Verification of Microprocessors

- verify that 3-stage pipelined MIPS processor satisfies intended instruction set architecture
- encoding
 - data as bit sequence
 - memory as uninterpreted function (UF)
 - computation logic as UF
 - control logic as uninterpreted predicate
- EUF ensures functional consistency: same data results in same computation

Bit-level abstraction in the verification of pipelined microprocessors by correspondence checking.

In Proc. of Formal Methods in Computer-Aided Design, pp. 18-35, 1998.

Theories of Interest in SMT Solvers

- equality + uninterpreted functions (EUF) $f(x, a) \approx g(y)$
- ► difference logic (DL)
- linear arithmetic
 - over integers \mathbb{Z} (LIA)
 - over reals \mathbb{R} (LRA)
- arrays (A)
- bitvectors (BV)
- strings
 - ...
- their combinations

 $x - y \leq 1$ $3x - 5y + 7z \leq 1$

 $\begin{aligned} & \mathsf{read}(\mathsf{write}(A, i, v), j) \\ & ((\mathsf{zext}_{32} \ a_8) + b_{32}) \times c_{32} >_u \mathsf{0}_{32} \\ & x \ @ \ y = z \ @ \ \mathsf{replace}(y, \mathsf{a}, \mathsf{b}) \end{aligned}$

SMT-LIB

- language standard and benchmarks: http://www.smt-lib.org
- annual solver competition: http://www.smt-comp.org
- ▶ solvers: Yices, OpenSMT, MathSAT, Z3, CVC4, Barcelogic, ...

Challenge

consider formula φ mixing propositional logic with theory ${\cal T}$

Eager SMT Solving

- ► use satisfiability-preserving transformation from *T* literals to SAT formula, ship one big formula to SAT solver
- requires sophisticated translation for each theory: done for EUF, difference logic, linear integer arithmetic, arrays
- ▶ still dominant approach for bit-vector arithmetic (known as "bit blasting")
- advantage: use SAT solver off the shelf
- drawbacks:
 - expensive translations: infeasible for large formulas
 - even more complicated with multiple theories

The Lazy Paradigm

Challenge

consider formula φ mixing propositional logic with theory ${\cal T}$

Idea

use specialized *T*-solver that can deal with conjunction of theory literals

Lazy SMT Solving

- 1 abstract φ to CNF:
 - ▶ "forget theory" by replacing *T*-literals with fresh propositional variables
 - \blacktriangleright obtain pure SAT formula, transform to CNF formula ψ
- 2 ship ψ to SAT solver
 - $\blacktriangleright \quad \text{if } \psi \text{ unsatisfiable, so is } \varphi$
 - if ψ satisfiable by v, check v with T-solver:
 - if v is T-consistent then also φ is satisfiable
 - ▶ otherwise *T*-solver generates *T*-consequence *C* of φ excluding *v*, repeat from 1 with $\varphi \land C$

Example

$g(a)\approx c\wedge (\neg(f(g(a))\approx f(c))\vee g(a)\approx d)\wedge \neg(c\approx d\;)$

- abstract to propositional skeleton ψ₁ = x₁ ∧ (¬x₂ ∨ x₃) ∧ ¬x₄ satisfiable: v₁(x₁) = T and v₁(x₂) = v₁(x₄) = F
- *T*-solver gets g(a) ≈ c ∧ f(g(a)) ≈ f(c) ∧ c ≈ d
 T-unsatisfiable: g(a) ≈ c implies f(g(a)) ≈ f(c)
- ▶ block valuation v_1 in future: add $\neg x_1 \lor x_2 \lor x_4$

▶
$$\psi_2 = x_1 \land (\neg x_2 \lor x_3) \land \neg x_4 \land (\neg x_1 \lor x_2 \lor x_4)$$

satisfiable: $v_2(x_1) = v_2(x_2) = v_2(x_3) = T$ and $v_2(x_4) = F$

- ► *T*-solver gets $g(a) \approx c \wedge f(g(a)) \approx f(c) \wedge g(a) \approx d \wedge c \not\approx d$ *T*-unsatisfiable
- ▶ block valuation v_2 in future: add $\neg x_1 \lor \neg x_2 \lor \neg x_3 \lor x_4$

unsatisfiable

- Summary of Last Week
- Satisfiability Modulo Theories
- DPLL(T)
- Equality and Uninterpreted Functions in Practice

Approach

- most state-of-the-art SMT solvers use DPLL(*T*): lazy approach combining DPLL with theory propagation
- ▶ advantages: not specific to theory, also extends to theory combinations

Definition (DPLL(T) Transition Rules)

 $\mathsf{DPLL}(\mathcal{T})$ consists of DPLL rules unit propagate, decide, fail, and restart plus

- ► T-backjump $M I^d N \parallel F, C \implies M I' \parallel F, C$ if $M I^d N \vDash \neg C$ and \exists clause $C' \lor I'$ such that
 - ► $F, C \models_T C' \lor I'$
 - $M \vDash \neg C'$ and I' is undefined in M, and I' or I'^c occurs in F or in $M I^d N$
- ► T-learn $M \parallel F \implies M \parallel F, C$ if $F \models_T C$ and all atoms of C occur in M or F
- ► *T***-forget** if $F \models_T C$ $M \parallel F, C \implies M \parallel F$
- ► *T*-propagate $M \parallel F \implies M \mid \parallel F$ if $M \vDash_T I$, literal *I* or *I^c* occurs in *F*, and *I* is undefined in *M*

Naive Lazy Approach in DPLL(T)

- ▶ whenever state M || F is final wrt unit propagate, decide, fail, T-backjump: check T-consistency of M with T-solver
- ▶ if *M* is *T*-consistent then satisfiability is proven
- otherwise $\exists I_1, \ldots, I_k$ subset of M such that $F \vDash_T \neg (I_1 \land \cdots \land I_k)$
- use *T*-learn to add $\neg l_1 \lor \cdots \lor \neg l_k$
- apply restart

Improvement 1: Incremental *T*-Solver

 \blacktriangleright T-solver checks T-consistency of model M whenever literal is added to M

Improvement 2: On-Line SAT solver

▶ after *T*-learn added clause, apply fail or *T*-backjump instead of restart

Improvement 3: Eager Theory Propagation

► apply *T*-propagate before decide

Remark

all three improvements can be combined

Example (Revisited with DPLL(T))

$g(a) \approx c \land (\neg(f(g(a)) \approx f(c)) \lor g(a) \approx d) \land \neg(c \approx d)$		
	1 2 3	4
	$\parallel 1, \ (\overline{2} \lor 3), \ \overline{4}$	
\implies	$1 \parallel 1, \ (\overline{2} \lor 3), \ \overline{4}$	unit propagate
\implies	$1\overline{4}\parallel 1,\ (\overline{2}\lor 3),\ \overline{4}$	unit propagate
\implies	$1\overline{4}\overline{2}^d \parallel 1, (\overline{2} \lor 3), \overline{4}$	decide
\implies	$1\overline{4}\overline{2}^d \parallel 1, (\overline{2} \lor 3), \overline{4}, (\overline{1} \lor 2 \lor 4)$	<i>T</i> -learn
\implies	$1 \overline{4} 2 \parallel 1, (\overline{2} \lor 3), \overline{4}, (\overline{1} \lor 2 \lor 4)$	<i>T</i> -backjump
\implies	$1\overline{4}23\parallel 1,\ (\overline{2}\vee 3),\ \overline{4},\ (\overline{1}\vee 2\vee 4)$	unit propagate
\implies	$1\overline{4}23 \parallel 1, (\overline{2} \lor 3), \overline{4}, (\overline{1} \lor 2 \lor 4), (\overline{1} \lor \overline{2} \lor \overline{3} \lor 4)$	<i>T</i> -learn
\implies	FailState	fail

Lazyness in DPLL(T)

© Scott Adams, Inc./Dist. by UFS, Inc.

T-solver

SAT solver

- Summary of Last Week
- Satisfiability Modulo Theories
- DPLL(T)
- Equality and Uninterpreted Functions in Practice

Example (SMT-LIB 2 for Propositional Logic)

formula $(x_1 \lor \neg x_3) \land (x_2 \lor x_3 \lor \neg x_1) \land (\neg x_1 \lor x_2 \lor x_3)$ can be expressed by

```
(declare-const x1 Bool)
(declare-const x2 Bool)
(declare-const x3 Bool)
(assert (or x1 (not x3)))
(assert (or x2 x3 (not x1)))
(assert (or (not x1) x2 x3))
(check-sat)
(get-model)
```


Propositional Logic in SMT-LIB 2

- declare-const x Bool creates propositional variable named x
- prefix notation for and, or, not, implies
- assert demands given formula to be satisfied
- \blacktriangleright check-sat issues satisfiability check of conjunction of assertions
- get-model prints model (after satisfiability check)

Example (SMT-LIB 2 for EUF)

 $f(f(a))\approx a\wedge f(a)\approx b\wedge \neg(a\approx b)$ is expressed as

```
(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
(assert (= (f (f a)) a))
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)
(get-model)
```

EUF in SMT-LIB 2

- terms must have sort, so declare fresh sort and use for all symbols: declare-sort S creates sort named S
- declare-const x s creates variable named x of sort S
- ▶ declare-fun $F(S_1...S_n)$ T creates uninterpreted $F: S_1 \times \cdots \times S_n \to T$
- ▶ prefix notation as in (f (f a)) to denote f(f(a)) and (= x y) for equality
- (distinct x y) is equivalent to not(= x y)

Example

 $2x \ge y + z \land \neg(x \approx y)$ is expressed as

Integer Arithmetic in SMT-LIB 2

- declare-const x Int creates integer variable named x
- ▶ numbers 0, 1, -1, 42,... are built-in
- ▶ +, *, are $+_{\mathbb{Z}}$, $\cdot_{\mathbb{Z}}$, $-_{\mathbb{Z}}$, used in prefix notation: (+ 2 3)
- \blacktriangleright = also covers equality on \mathbb{Z}
- $\blacktriangleright \quad <, <=, >, >= \text{ are } <_{\mathbb{Z}}, \leqslant_{\mathbb{Z}}, >_{\mathbb{Z}}, \geqslant_{\mathbb{Z}}$

EUF in python/z3

A = DeclareSort('A') # new uninterpreted sort named 'A' a = Const('a', A) # create constant of sort A b = Const('b', A) # create another constant of sort A f = Function('f', A, A) # create function of sort A -> A

```
s = Solver()
s.add(f(f(a)) == a, f(a) == b, a != b)
```

```
print s.check() # sat
m = s.model()
print "interpretation assigned to A:"
print m[A] # [A!val!0, A!val!1]
print "interpretations:"
print m[f] # [A!val!0 -> A!val!1, A!val!1 -> A!val!0, ...]
print m[a] # A!val!0
print m[b] # A!val!1
```


In a village of monkeys every monkey owns at least two bananas: \checkmark

```
(declare-sort monkey)
(declare-sort banana)
(declare-fun owns (monkey banana) Bool)
(declare-fun b1 (monkey) banana)
(declare-fun b2 (monkey) banana)
(assert (forall ((M monkey)) (not (= (b1 M) (b2 M)))))
(assert (forall ((M monkey)) (owns M (b1 M))))
(assert (forall ((M monkey)) (owns M (b2 M))))
(assert (forall ((M monkey)) (owns M (b2 M))))
(assert (forall ((M1 monkey) (M2 monkey) (B banana))
(implies (and (owns M1 B) (owns M2 B)) (= M1 M2))))
```

DPLL(T)

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT Modulo Theories: From an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the ACM 53(6), pp. 937–977, 2006.

Application

Miroslav N. Velev and Randal E. Bryant.
 Bit-level abstraction in the verification of pipelined microprocessors by correspondence checking.
 In Proc. of Formal Methods in Computer-Aided Design, pp. 18–35, 1998.