
SAT and SMT Solving

Sarah Winkler

Computational Logic Group
Department of Computer Science
University of Innsbruck

lecture 6
SS 2019

http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Outline

Summary of Last Week

Correctness of DPLL(T )

Congruence Closure

Some More Practical SMT

1



Definitions

for formulas F and G and list of literals M:

I theory T is set of first-order logic formulas without free variables

I F is T -consistent (or T -satisfiable) if F ∧ T is satisfiable in first-order sense

I F is T -inconsistent (or T -unsatisfiable) if not T -consistent

I M = l1, . . . , lk is T -consistent if l1 ∧ · · · ∧ lk is

I M is T -model of F if M � F and M is T -consistent

I F entails G in T (denoted F �T G ) if F ∧ ¬G is T -inconsistent

I F and G are T -equivalent (denoted F ≡T G ) if F �T G and G �T F

2



Definition (Theory of Equality)

theory of equality (EQ) uses binary predicate ≈ and consists of axioms

∀x (x ≈ x) ∀x y (x ≈ y → y ≈ x) ∀x y z (x ≈ y ∧ y ≈ z → x ≈ z)

Definition (Theory of Equality With Uninterpreted Functions)

EUF over set of function symbols F consists of equality axioms:

∀x (x ≈ x) ∀x y (x ≈ y → y ≈ x) ∀x y z (x ≈ y ∧ y ≈ z → x ≈ z)

plus for all f /n ∈ F {the functional consistency axiom:

∀x1y1 . . . xnyn (x1 ≈ y1 ∧ · · · ∧ xn ≈ yn → f (x1, . . . , xn) ≈ f (y1, . . . , yn))

3



Definition (DPLL(T ) Transition Rules)

DPLL(T ) consists of DPLL rules unit propagate, decide, fail, and restart plus

I T -backjump M ld N ‖ F ,C =⇒ M l ′ ‖ F ,C
if M ld N � ¬C and ∃ clause C ′ ∨ l ′ such that

I F ,C �T C ′ ∨ l ′

I M � ¬C ′ and l ′ is undefined in M, and l ′ or l ′c occurs in F or in M ld N

I T -learn M ‖ F =⇒ M ‖ F , C
if F �T C and all atoms of C occur in M or F

I T -forget M ‖ F , C =⇒ M ‖ F
if F �T C

I T -propagate M ‖ F =⇒ M l ‖ F
if M �T l , literal l or lc occurs in F , and l is undefined in M

4



Naive Lazy Approach in DPLL(T )

I whenever state M ‖ F is final wrt unit propagate, decide, fail, T -backjump:

check T -consistency of M with T -solver

I if M is T -consistent then satisfiability is proven

I otherwise ∃l1, . . . , lk subset of M such that �T ¬(l1 ∧ · · · ∧ lk)

I use T -learn to add ¬l1 ∨ · · · ∨ ¬lk
I apply restart

Improvement 1: Incremental T -Solver

I T -solver checks T -consistency of model M whenever literal is added to M

Improvement 2: On-Line SAT solver

I after T -learn added clause, apply fail or T -backjump instead of restart

Improvement 3: Eager Theory Propagation

I apply T -propagate before decide

Remark

all three improvements can be combined 5



Outline

Summary of Last Week

Correctness of DPLL(T )

Congruence Closure

Some More Practical SMT

6



Definition (Basic DPLL(T ) )

system B consists of unit propagate, decide, fail, T -backjump, and T -propagate

Definition (Full DPLL(T ))

system F extends B by T -learn, T -forget, and restart

Lemma

if ‖ F =⇒∗F M ‖ G then

I all atoms in M and G are atoms in F

I M does not contain complementary literals, and every literal at most once

I G is T -equivalent to F (F ≡T G )

I if M = M0 l
d
1 M1 l

d
2 M2 . . . l

d
k Mk with l1, . . . , lk all the decision literals

then F , l1, . . . , li �T Mi for all 0 6 i 6 k

7



Consider derivation with final state Sn:

‖ F =⇒F S1 =⇒F S2 =⇒F . . . =⇒F Sn

Theorem
if Sn = FailState then F is T -unsatisfiable

Proof.

I must have ‖ F =⇒∗F M ‖ F ′ fail
=⇒F FailState, so M � ¬C for some C in F ′

I M cannot contain decision literals (otherwise T -backjump applicable)
I by Lemma before, F ′ �T M, so F ′ �T ¬C
I also have F ′ �T C because C is in F ′, so F ≡T F ′ is T -inconsistent

Theorem
if Sn = M ‖ F ′ and M is T -consistent then F is T -satisfiable and M �T F

Proof.
I Sn is final, so all literals of F ′ are defined in M (otherwise decide applicable)
I @ clause C in F ′ such that M � ¬C (otherwise backjump or fail applicable)
I so M � F ′ and by T -consistency M �T F ′

I have F ≡T F ′ so M also T -satisfies F
8



Theorem (Termination)

Γ: ‖ F =⇒∗F S0 =⇒∗F S1 =⇒∗F . . .

is finite if

I there is no infinite sub-derivation of only T -learn and T -forget steps, and

I for every sub-derivation

Si
restart
=⇒F Si+1 =⇒∗F Sj

restart
=⇒F Sj+1 =⇒∗F Sk

restart
=⇒F Sk+1

with no restart steps in Si+1 =⇒∗F Sj and Sj+1 =⇒∗F Sk :

I there are more B-steps in Sj =⇒∗F Sk than in Si =⇒∗F Sj , or

I a clause is learned in Sj =⇒∗F Sk that is never forgotten in Γ

Proof.

similar as for DPLL:

I restart is applied with increasing periodicity, or

I otherwise clause is learned (and there are only finitely many clauses)

9



Outline

Summary of Last Week

Correctness of DPLL(T )

Congruence Closure

Some More Practical SMT

10



Aim

build T -solver for EUF using congruence closure

Definitions (Terms)

I signature F function symbols with fixed arity

I variables V F ∩ V = ∅
I terms T (F ,V) smallest set such that

I V ⊆ T (F ,V)

I if f ∈ F has arity n and ti ∈ T (F ,V) then f (t1, . . . , tn) ∈ T (F ,V)

I subterms

Sub(t) =

{
{t} if t ∈ V
{t} ∪

⋃
i Sub(ti ) if t = f (t1, . . . , tn)

number of arguments

Example

I for F = {f/1, g/2, a/0} and x , y ∈ V have terms a, f(x), f(a), g(x , f(y)), . . .

I for t = g(g(x , x), f(f(a))) have Sub(t) = {t, g(x , x), x , f(f(a)), f(a), a}

11



Congruence Closure

Input: set of equations E and equation s ≈ t, both without variables

Output: valid (E �T s ≈ t) or invalid (E 6�T s ≈ t)

1 build congruence classes

(a) put different subterms of E ∪ {s ≈ t} in separate sets

(b) merge sets {. . . , t1, . . . } and {. . . , t2, . . . } for all t1 ≈ t2 in E

(c) merge sets {. . . , f (t1, . . . , tn), . . . } and {. . . , f (u1, . . . , un), . . . }
if ti and ui belong to same set for all 1 6 i 6 n

(d) repeat (c) until no change

1 if s and t belong to same set then return valid else return invalid

12



Example (1)

I given set of equations E

f(f(f(a))) ≈ g(f(g(f(b)))) f(g(f(b))) ≈ f(a) g(g(b)) ≈ g(f(a)) g(a) ≈ b

and test equation f(a) ≈ g(a)

I sets

1. { a } 5. { f(f(a)) }
2. { f(a), f(g(f(b))) } 6. { f(f(f(a))), g(f(g(f(b)))), g(g(b)), g(f(a)) }
3. { b, g(a) } 7. { f(b) }
4. { g(b) } 8. { g(f(b)) }

I conclusion: E � f(a) 6≈ g(a)

13



Example (2)

I given set of equations E

f(f(f(a))) ≈ a f(f(f(f(f(a))))) ≈ a

and test equaton f(a) ≈ a

I { a, f(a), f(f(a)), f(f(f(a))), f(f(f(f(a)))), f(f(f(f(f(a))))) }

I conclusion: E � f(a) ≈ a

14



Ok, But How About a Solver for EUF?

Definition (Skolemization)

given formula ϕ with free variables x1, . . . , xn,

ϕ̂ = ϕ[x1 7→ c1, . . . , xn 7→ cn] where c1, . . . , cn are fresh constants

Deciding Satisfiability of EUF Conjunctions

given EUF conjunction ϕ with free variables x1, . . . , xn:

split ϕ = (
∧
P) ∧ (

∧
¬N) into positive literals P and negative literals N

ϕ = (
∧
P) ∧ (

∧
¬N) unsatisfiable

⇐⇒ ∃x1 . . . xn.(
∧
P) ∧ (

∧
¬N) unsatisfiable

⇐⇒ (
∧
P̂) ∧ (

∧
¬N̂) unsatisfiable skolemization

⇐⇒ ¬
(

(
∧
P̂) ∧ (

∧
¬N̂)

)
valid ϕ unsat iff ¬ϕ valid

⇐⇒
∧
P̂ →

∨
N̂ valid de Morgan

⇐⇒ ∃ s ≈ t in N̂ such that
∧
P̂ → s ≈ t valid semantics of ∨

⇐⇒ ∃ s ≈ t in N̂ such that
∧
P̂ �T s ≈ t semantics of �15



Obtained Satisfiability Check

(
∧

P) ∧ (
∧
¬N) unsatisfiable ⇐⇒ ∃ s ≈ t in N̂ such that

∧
P̂ �T s ≈ t

Example

1 g(a) ≈ c ∧ f(g(a)) 6≈ f(c) ∧ c 6≈ d

I split into P = {g(a) ≈ c} and N = {f(g(a)) ≈ f(c), c ≈ d}
I have g(a) ≈ c �T f(g(a)) ≈ f(c), so unsatisfiable

2 g(a) ≈ c ∧ f(g(a)) ≈ f(c) ∧ g(a) ≈ d ∧ c 6≈ d

I split into P = {g(a) ≈ c, f(g(a)) ≈ f(c), g(a) ≈ d} and N = {c ≈ d}
I have g(a) ≈ c, f(g(a)) ≈ f(c), g(a) ≈ d �T c ≈ d, so unsatisfiable

3 g(a) ≈ c ∧ c ≈ d ∧ f(x) ≈ x ∧ d 6≈ g(x) ∧ f(x) 6≈ d

I P = {g(a) ≈ c, c ≈ d, f(x) ≈ x} and N = {d ≈ g(x), f(x) ≈ d}
I skolemize P = {g(a) ≈ c, c ≈ d, f(e) ≈ e}, N = {d ≈ g(e), f(e) ≈ d}

I g(a) ≈ c, c ≈ d, f(e) ≈ e 6�T d ≈ g(e)

I g(a) ≈ c, c ≈ d, f(e) ≈ e 6�T f(e) ≈ d

so satisfiable
16



Integer Arithmetic in python/z3

from z3 import *

a = Int(’a’) # create integer variables

b = Int(’b’)

c = Int(’c’)

phi = And(c > 0, b >= 0, a < -1) # some comparisons

psi = (a == If (b == c, b - 2, c - 4)) # if-then-else expression

print(phi)

solver = Solver()

solver.add(phi, psi) # assert constraints

solver.add(a + b < 2 * c) # arithmetic

result = solver.check() # check for satisfiability

if result == z3.sat:

model = solver.model() # get valuation

print model[a], model[b], model[c] # -3 0 1 17


	lecture 6
	Summary of Last Week
	Correctness of DPLL(T)
	Congruence Closure
	Some More Practical SMT


