M universitat
M innsbruck

SAT and SMT Solving

Sarah Winkler

Computational Logic Group
Department of Computer Science
University of Innsbruck

lecture 6
SS 2019

http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Summary of Last Week

Correctness of DPLL(T)

@ Congruence Closure

Some More Practical SMT

Definitions

for formulas F and G and list of literals M:

vVVvyVvVvVvyVvyvyy

theory T is set of first-order logic formulas without free variables

Fis T-consistent (or T-satisfiable) if F A T is satisfiable in first-order sense
Fis T-inconsistent (or T-unsatisfiable) if not T-consistent

M = l,... I is T-consistent if L A-++ Al is

M is T-model of F if ME F and M is T-consistent

F entails G in T (denoted F =+ G) if F A =G is T-inconsistent

F and G are T-equivalent (denoted F =+ G) if FET Gand GET F

Definition (Theory of Equality)
theory of equality (EQ) uses binary predicate ~ and consists of axioms

Vx (x=x) VYxy((xmy > yrx) Vxyz(xmyAymz — x=2z)

Definition (Theory of Equality With Uninterpreted Functions)

EUF over set of function symbols F consists of equality axioms:
Vx (xm=x) Vxy(xmy — yxx) Vxyz(xmRyAyrmz = x=~z)
plus for all f/n € F {the functional consistency axiom:

Vxiyr o Xo¥n o =i A A Xy 2y, — Fxa, . xn) &~ f(y1,..., Vn))

Definition (DPLL(T) Transition Rules)
DPLL(T) consists of DPLL rules unit propagate, decide, fail, and restart plus
» T-backjump MIN|F,C = MI'|FC
if M 19 NE—C and 3 clause C’ V /" such that
> F.CEr C'V I
» ME —=C’and /" is undefined in M, and I’ or I occurs in F orin M 19 N

» T-learn M| F = M|F,C
if F =+ C and all atoms of C occurin M or F

» T-forget M|F,C = M|F
if FEr C

» T-propagate M| F = MI|F

if M E+ I, literal [or /€ occurs in F, and [is undefined in M

Naive Lazy Approach in DPLL(T)

» whenever state M || F is final wrt unit propagate, decide, fail, T-backjump:
check T-consistency of M with T-solver

if M is T-consistent then satisfiability is proven

otherwise 3h, ..., Iy subset of M such that =+ —(/L A~ A L)

use T-learn to add —/; V- -~V =,

apply restart

vVvyVvVvyy

Improvement 1: Incremental T-Solver

» T-solver checks T-consistency of model M whenever literal is added to M

Improvement 2: On-Line SAT solver

» after T-learn added clause, apply fail or T-backjump instead of restart

Improvement 3: Eager Theory Propagation
» apply T-propagate before decide

Remark

all three improvements can be combined

@ Correctness of DPLL(T)

Definition (Basic DPLL(T))
system 5 consists of unit propagate, decide, fail, T-backjump, and T-propagate

Definition (Full DPLL(T))
system F extends B by T-learn, T-forget, and restart

Lemma
if| F=t M || G then

>

>
>
>

all atoms in M and G are atoms in F

M does not contain complementary literals, and every literal at most once
G is T-equivalent to F (F =1 G)

if M = M lld M, /2d Ms... /g My with I, ..., I all the decision literals
then F. |1, ..., li=r M forall 0 < i<k

Consider derivation with final state S, :

H F = S = S = ... =r S,
Theorem
if S, = FailState then F is T-unsatisfiable
Proof.

» must have || F=% M| F’ L4 » FailState, so M = —C for some C in F’

» M cannot contain decision literals (otherwise T-backjump applicable)
» by Lemma before, F' =+ M, so F' =+ ~C
>

also have ' =+ C because Cisin F/, so F =1 F’ is T-inconsistent [|
Theorem
if S, = M| F" and M is T-consistent then F is T-satisfiable and M =+ F
Proof.

» S, is final, so all literals of F’ are defined in M (otherwise decide applicable)
» Jclause Cin F’ such that M = —C (otherwise backjump or fail applicable)
» so ME F' and by T-consistency M =1 F/

» have F =+ F/ so M also T-satisfies F l8

Theorem (Termination)
M |F=%5%=%5=7%...
is finite if
» there is no infinite sub-derivation of only T -learn and T -forget steps, and
» for every sub-derivation

restart * restart * restart
Si=F Sini1 =% S =7F Sj11 =F Sk =F Skn1
with no restart steps in Si.1 =% S; and Sj11 =% Sk:
» there are more I3-steps in S; =" Sy than in S; =% S;, or
» a clause is learned in S; =7 Sy that is never forgotten in I

Proof.
similar as for DPLL:

» restart is applied with increasing periodicity, or
» otherwise clause is learned (and there are only finitely many clauses)

@ Congruence Closure

10

Aim

build T-solver for EUF using congruence closure

’ number of arguments

Definitions (Terms)

» signature F function symbols with fixed arity
» variables 1% FNV =0
> terms T(F,V) smallest set such that

» VCT(F,V)

» if f € F hasarity nand t; € T(F,V) then f(t1,...,t,) € T(F,V)
» subterms
Sub(t):{{t} ifteV
{t}ul;Sub(t;) ift="Ff(t,...,t,)
Example
» for F = {f/1, g/2,a/0} and x,y € V have terms a, f(x), f(a), g(x,f(y)), ...
» for t = g(g(x, x),f(f(a))) have Sub(t) = {t, g(x, x), x, f(f(a)), f(a), a}

11

Congruence Closure

Input:

set of equations £ and equation s ~ t, both without variables

Output: valid (E 1 s~ t) or invalid (E /1 s ~ t)

build congruence classes
(a) put different subterms of E U {s ~ t} in separate sets

(b) mergesets {...,t1,...}and {... to,... }forall ty = tp in E

(c) mergesets {...,f(t1,...,tn),... and {... flur,...,up),...
if t; and u; belong to same set for all 1 <7< n
(d) repeat (c) until no change

if s and t belong to same set then return valid else return invalid

12

Example (1)

» given set of equations E

and test equation f(a) ~ g(a)

» sets
1.{a} 5. {f(f(a)) }
2. {f(a), f(e(f(®))) } 6. {f(f(f(a))), e(f(e(f(b)))), &(e(b)), &(f(a)) }
3.{b, g(a)} 7.{f(b)}
4. {g(b)} 8. {g(f(b)) }

» conclusion: E = f(a) # g(a)

13

Example (2)

» given set of equations E

f(f(f(a))) = a f(F(F(f(f(a))))) = a

and test equaton f(a) ~ a

> {a, f(a), f(f(a)),

f(f(f(a))), f(f(f(f(a)))), F(F(F(F(f(a))))) }

» conclusion: £ = f(a) ~ a

14

Ok, But How About a Solver for EUF?

Definition (Skolemization)

given formula ¢ with free variables x, ..., Xy,
P =[x1 = c1, ..., Xy — ¢y] where cy, ..., c, are fresh constants

Deciding Satisfiability of EUF Conjunctions

given EUF conjunction ¢ with free variables x, ..., X,:
split o = (/\ P) A (/\ =/V) into positive literals P and negative literals N

e =(AP)AN(A-N) unsatisfiable
< Ix ... x.(AP) AN (A—N) unsatisfiable
< (A P)A(N\—N) unsatisfiable skolemization
— ((/\ P) A (A ﬁ/\A/)) valid o unsat iff = valid
= AP \/N valid de Morgan
<= Js~tin N such that A\ P — s ~ valid semantics of V

& 3s~tin N such that /\ PErs~t semantics of i5

Obtained Satisfiability Check
(/\P /\ﬁN) unsatisfiable <= Js=a tin N such that/\ﬁhrszt

Example
g(a) ~ c A f(g(a)) % f(c)
» split into P = {g(a)
» have g(a) = ckE7 f(

AcC
zc} and N = {f(g(a)) =~ f(c), c~d}
) ~

g(a)) = f(c), so unsatisfiable

gla) = cAf(g(a)) = f(c)Ag(a) mdAcd
» splitinto P = {g(a) =~ c, f(g(a)) ~ f(c), g(a) ~d} and N = {c ~ d}
» have g(a) ~ c,f(g(a)) =~ f(c),g(a) = d Fr c =~ d, so unsatisfiable

B s(@)chc~dAf(x)=xAndZgx)Af(x)sd
» P={g(a)=c, c=d f(x) = x}and N = {d =~ g(x), f(x) =~ d}
» skolemize P = {g(a) =~ ¢, c~d, f(e) = e}, N={d = g(e), f(e) = d}
» g(a)x~c, crd, f(e) el d=g(e)
» gla)=c, crd, fle) el f(e) =

so satisfiable
16

Integer Arithmetic in pytho

from z3 import *

a
b =Int(’b’)
c = Int(’c?)

Int(’a’) # create integer variables

phi And(c > 0, b >= 0, a < -1) # some comparisons

psi = (a==1If (b==c, b -2, c -4)) # if-then-else expression
print (phi)

solver = Solver()

solver.add(phi, psi) # assert constraints

solver.add(a + b < 2 * ¢) # arithmetic

result = solver.check() # check for satisfiability
if result == z3.sat:
model = solver.model() # get valuation

print model([a], model[b], modell[c] # -3 0 1 17

	lecture 6
	Summary of Last Week
	Correctness of DPLL(T)
	Congruence Closure
	Some More Practical SMT

