M universitat
M innsbruck

SAT and SMT Solving

Sarah Winkler

Computational Logic Group
Department of Computer Science
University of Innsbruck

lecture 8
SS 2019

http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Summary of Last Week

Cyclic Simplex Example

Deciding Equality Logic

Branch and Bound

Definition (Theory of Linear Arithmetic over C)

» for variables xi, ..., x,, formulas built according to grammar

pr=pAp|t=t|t<t]|t<t

ti=aixy+---+apx,+ b for ai,...,an, b € in carrier C

» axioms are equality axioms plus calculation rules of arithmetic over C

» solution assigns values in C to xi,..., X,

Definitions

» carrier R: linear real arithmetic (LRA),
DPLL(T) simplex algorithm is decision procedure

» carrier Z: linear integer arithmetic (LIA)

DPLL(T) Simplex Algorithm (1)

» linear arithmetic constraint solving over real or rational variables

> Xxi,...,X, are split into basic variables Xz and nonbasic variables Xy
Input
constraints plus upper and lower bounds for xi, ..., x,:
AXy = Xg with tableau A € RIBIXINI

Output
satisfying assignment or “unsatisfiable”

Invariant
(1) is satisfied and (2) holds for all nonbasic variables x;

DPLL(T) Simplex Algorithm (2)

AXy = Xp (1)
—00 </I < Xi < uj < +00 (2)
Method
» if (2) holds for all basic variables, return current assignment

v

otherwise select basic variable x; (so i € B) which violates (2)
select suitable nonbasic variable x; (so j € N) such that x; and x; can be
swapped in a pivoting step, resulting in new tableau

A/ XN = XB/

with N = NU{i} — {j} and B' = BU {j} — {i}
change value of x; to /; or u; and update values of basic variables accordingly

DPLL(T) Simplex Algorithm (3)

AXy = Xp (1)
—00 gll < Xij < uj g +00 (2)
Pivoting
» swap basic x; and non-basic x;
1
X = Z A,'ka — Xj = Ai,] X; — Z ‘ A,'ka (*)
keN keN—{j}

» new tableau A’ consists of (x) and Ag_(j} Xy = Xg_¢j} with (x) substituted

Update
» assignment of x; is updated to previously violated bound /; or u;,
> assignment of x is recomputed using (x) and A’ for all k € B — {i} U {j}

DPLL(T) Simplex Algorithm (4)

Suitability
» basic variable x; violates lower and/or upper bound
» pick nonbasic variable x; such that

» if xi </l Aj > 0and x; < ujor Aj <0 and x; > |
» if xi > wuir Ay >0and x; > [or Aj <0 and x; < uj

» problem is unsatisfiable if no suitable pivot exists

Bland’s Rule

» pick lexicographically smallest (i,) that is suitable pivot

> guarantees termination

@ Cyclic Simplex Example

Example (due to B. Felgenhauer)

-1<x <0 —4<x <0 -5<x3< 4 —7<x <1

X1 X2

Example (due to B. Felgenhauer)

—1<x <0 —4<x <0 -5 x3< -4 —7<x <1

X1 X2

X1 X X3 Xa
x3 1 2\ ——m—
a 5 1 0 0 0 O

Example (due to B. Felgenhauer)

-1<x <0 —4<x <0
X1 X2
X1 X2 X3 Xy
X3 2
a 5 1 0 0 0 O

Example (due to B. Felgenhauer)

—-1<x <0 —4<x <0 —5<x3< -4 —7<x <1

X1 X2

X1 X X3 Xa
x3 12 _—
a 5 1 0 0 0 O
X3 X2 l

X1 X2 X3 Xa
X1 1 -2 —_—
5 3] —40 -4-8

X4

Example (due to B. Felgenhauer)

—1<X1<0

X3

Xg

X1

X4

(
(

X1
1
2

X3

1
2

X2

!

X2

)

!

-4 <

X1 X2

0 0

X1 X2

—40

x2 <0 —5<x3< 4

X3 X

0 0

X3 Xz

—4 -8

—7<X4<1

Example (due to B. Felgenhauer)

X3

Xg

X1

X4

X1

—1<X1<0 —4<X2<0
X1 X2
X1 X X3 Xa
1 2\ ———
5 1 0 0 0 O
X3 X2 l
X1 X2 X3 Xa
1 -2 —_—
5 5] —40 438
X3 Xa l
12 X1 Xo X3 Xa
3 3
(4) S
3 3

X2

—5<X3<—4

—7<X4<1

Example (due to B. Felgenhauer)

X3

Xg

X1

X4

X1

-1<x <0 —4<x <0
X1 X2
X1 X X3 Xa
1 2 S —
5 1 0 0 0 O
X3 X2 l
X1 X2 X3 Xa
1 -2 —_—
5 _3 -40 —4-8
X3 Xa l
12 X1 Xo X3 Xa
3
(3)
3 3

X2

—5<X3<—4

—7<X4<1

Example (due to B. Felgenhauer)

—1<X1<0

X3

Xg

X1

X4

X1

X2

X3

X2

—4<X2<0

X1 Xo X3 Xa

B O S R ¢

X1 X X3 Xa

-1 —-5-11-7

—5<X3<—4

—7<X4<1

Example (due to B. Felgenhauer)

-1<x <0 —4<x <0 —5<x3<—4 —7<x <1

X3

Xg

X1 X2 X3 Xa
X1 1 -2 —_—
w |2 _3) —40 —4-8

X3 Xa
v 12\ s
! 303 —0 1 4.7
X0 % _% 373
X1 X X1 X
13 24 X1 X X3 Xa 11 22 X1 Xo X3 Xa
X3 - ey S -
w | 2 1) -1 - 5-11-7 “ (2 1) ~1-4-9-6

Example (due to B. Felgenhauer)

-1<x <0 —4<x <0 —5<x3<—4 —7<x <1

X3

Xg

X1 X2 X3 Xa
X1 1 -2 —_—
w |2 _3) —40 —4-8

X1 Xo X3 Xa 1 9 X1 X2 X3 Xa

Xl L1y g Xl (_> 3 452
3 3

X2 X4

X1 X X3 Xa X1 Xo X3 Xa
x3 (-3 2 —_— 5 X3 12 _
5 -1 -5-11-7 w Lo 1) 1496

X2

Example (due to B. Felgenhauer)

-1<x <0 —4<x <0 —5<x3<—4 —7<x <1

X3

X4 (

X1 X2 X3 Xa 1 2 X1 X X3 Xa
(PN o e () Tmsa
x3s \ 2 -3/ T x \ (3 -1 3 3

X1

X1 X2 X3 Xa 1 9 X1 X2 X3 Xa
L1y g Xl (_> 3 452
3 3

X2 Xq4

X1 X X3 Xa

X1 Xo X3 Xa
x3 [—3 2 —_— 5 X3 1 2 _
) 1 -1 -5-11-7 -1-4-9-6

8

X2 X4

Example (due to B. Felgenhauer)

-1<x <0 —4<x <0 —5<x3<—4 —7<x <1

X3

X4 X2

X1 Xo X3 Xa 19 X1 X X3 Xa
S (S Iy e o Y
x3s \ 2 -3/ T x \ % -1 33

1 2 ——=— X3
, 1] 0000

X1 X2 X3 Xa X1 X2 X3 Xa

X1 X1
~W.1l 4.7 3 —4-52

X 3 3 Xa

X1 X X3 Xa
X3 1 2 _—
-1 -5-11-7 5 1| “1-4-9-6

X2 X4

X1 X2 X3 Xa
-3 2 - X3
21

Example (due to B. Felgenhauer)

—-1<x <0 —4<x <0 -5<x3< -4 —7<x <1

X3
X2

Xg

X1 Xo X3 Xa 1 2 X1 X X3 Xa
LY Seoas (W) sousa
x3s \ 2 -3/ T x \ (3 -3 3 3

1 2 —/—m «— x3
21OOOO

X1 X2 X3 Xa X1 X2 X3 Xa

X1 X1

~W.1l 4.7 3 —4-52

X 3 3 Xa

X3

~1-5-11-7 ~1-4-9-6

X2 X4

X1 X2 X3 Xa X1 X X3 Xa
32y —]//mm— 5 x5 (1 2\ —/———
21 2 1

trajectory of assignments (xi, x2)

X2:0

*

X

~q

I— =1

o

Vi

~5

ok

Xz:—4

trajectory of assignments (xi, x2)

X2:0

*

X

~q

I— =1

ok

o

Vi

~5

Xz:—4

trajectory of assignments (x1, x)

X2:0

Ss

ok

o
Vi

~5

Xz:—4

\

b

&)

/
Va
P

X2:—4

trajectory of assignments (x1, x)

\

/
Va
P

trajectory of assignments (x1, x)

&)

X2:—4

\

trajectory of assignments (x1, x)

&)

/
Vi
P

X2:—4

trajectory of assignments (x1, x)

\

trajectory of assignments (x1, x)

\

\

trajectory of assignments (x1, x)

Example (due to B. Felgenhauer)

—1<X1<0

X3

X4

X1

Xg

X1

X2

X1

1
2

X2

—4<X2<0

X1 X2

X4

—5<X3<—4 —7<X4<1

X4

violation of Bland’s rule
-8

Xg

10

Example (due to B. Felgenhauer)

—1<X1<0

X3

X4

X1

Xg

—4 <

X2<0

X3 X

0 0

X3 X

—4 -8

—5<X3<—4

—7<X4<1

10

Example (due to B. Felgenhauer)

X3

X4

X1

Xg

X2

X4

~1<x <0 —4 <
X1 X2
X1 X2
1 2 S —
2 1 00
X3 X2 l
X1 X2
1 -2
s _3 —40
X3 X1 l
11 X1 X2
2 2
(13) -1-3
2 2

X2<0

X3 X

0 0

X3 X

—4 -8

X3 X

T2

—5<X3<—4

—7<X4<1

10

Example (due to B. Felgenhauer)

X3

X4

X1

Xq

X2

X4

1< <0 —4<
X1 X
X1 X
1 2
5 1 0 O
X3 X2 l
X1 X2
1 -2
s _3 —4 0
X3 X1 l
11\ e
2 2
(1 3) -1-3
2 2

X2<0 —5<X3<—4 —7<X4<1
X3 X
0 0
X3 X
—4 -8
X3 Xa . . .
satisfying assignment
Y/ —

2

10

trajectory of assignments (x1, x)

X2:0

Ss

ok

o
Vi

~5

X2:—4

11

@ Deciding Equality Logic

12

How to Be Lazy

SMT solver

13

How to Be Lazy

SMT solver

Theory T

equality logic

equality + uninterpreted functions (EUF)
linear real arithmetic (LRA)

linear integer arithmetic (LIA)

bitvectors (BV)

arrays (A)

vVvyVvyVvyyvyy

13

How to Be Lazy

SMT solver

¥
Theory T T-solving method
equality logic
equality + uninterpreted functions (EUF) congruence closure v
linear real arithmetic (LRA) DPLL(T) Simplex v

linear integer arithmetic (LIA)
bitvectors (BV)
arrays (A)

vVvyVvyVvyyvyy

13

How to Be Lazy

SMT solver

P

Theory T T-solving method
» equality logic equality graphs
» equality + uninterpreted functions (EUF) congruence closure v
» linear real arithmetic (LRA) DPLL(T) Simplex v
> linear integer arithmetic (LIA) DPLL(T) Simplex + cuts
> bitvectors (BV)
» arrays (A)

13

Input to Satisfiability Problem for Equality Logic

conjunction ¢ of equality logic literals over set of variables V
Definitions

> _ is set of positive literals (equality literals) in ¢
> . is set of negative literals (inequality literals) in ¢

14

Input to Satisfiability Problem for Equality Logic

conjunction ¢ of equality logic literals over set of variables V
Definitions

> . is set of positive literals (equality literals) in ¢
> . is set of negative literals (inequality literals) in ¢

14

Input to Satisfiability Problem for Equality Logic

conjunction ¢ of equality logic literals over set of variables V
Definitions

> _ is set of positive literals (equality literals) in ¢
> . is set of negative literals (inequality literals) in ¢

14

Input to Satisfiability Problem for Equality Logic

conjunction ¢ of equality logic literals over set of variables V

Definitions

> _ is set of positive literals (equality literals) in ¢
> . is set of negative literals (inequality literals) in ¢
» equality graph is undirected graph G_(¢) = (V. ¢o—, ©x)

14

Example

conjunction of equality literals
O=x1 =X AX1 £X3ANX3=x5N\Xq 7 Xg \Xg % X7\ X5 = X9 \

X5 = X7 \ Xg 7# Xg A\ X9 = X10 A\ X7 = X9 \ X5 7 X10

15

Example

conjunction of equality literals
o=x1 =X Ax1 #x3N\X3

X5 = X7 \ Xg 7# X9 A\ Xg

:X5/\X4§£X6/\X6§£X7AX5:X9/\

= x10 A\ X7 = X9 A\ X5 # X10

> p=1 X1 = X2, X3 = X5, X5 = X7, X9 = X10, X7 = X9, X5 = X9

15

Example

conjunction of equality literals
O=x1 =X AX1 £X3ANX3=x5N\Xq 7 Xg \Xg % X7\ X5 = X9 \

X5 = X7 \ Xg 7# Xg A\ X9 = X10 A\ X7 = X9 \ X5 7 X10

> p=1 X1 = X2, X3 = X5, X5 = X7, X9 = X10, X7 = X9, X5 = X9

> sl X| F X3, Xa F X, X6 7 X7, Xg F# Xg, X5 # X10

15

Example

conjunction of equality literals

O=x1 =X AX1 £X3ANX3=x5N\Xq 7 Xg \Xg % X7\ X5 = X9 \

X5 = X7 \ Xg 7# Xg A\ X9 = X10 A\ X7 = X9 \ X5 7 X10

> p=1 X1 = X2, X3 = X5, X5 = X7, X9 = X10, X7 = X9, X5 = X9

> sl X| F X3, Xa F X, X6 7 X7, Xg F# Xg, X5 # X10

» equality graph

- S~ A
X1 — X2 X3 _ X4 X5
-7 |

.- |

/ e
Xo = - X7 Xg - -+ Xog — X10

15

Input to Satisfiability Problem for Equality Logic

conjunction ¢ of equality logic literals over set of variables V

Definitions

> _ is set of positive literals (equality literals) in ¢
> . is set of negative literals (inequality literals) in ¢
» equality graph is undirected graph G=(¢) = (V, o=, ¢)

Definitions

equality graph G_(¢) = (V, ¢—, ©)

» contradictory cycle is cycle with exactly one ¢ edge

16

Input to Satisfiability Problem for Equality Logic

conjunction ¢ of equality logic literals over set of variables V

Definitions

> _ is set of positive literals (equality literals) in ¢
> . is set of negative literals (inequality literals) in ¢
» equality graph is undirected graph G=(¢) = (V, o=, ¢)

Definitions
equality graph G_(¢) = (V, ¢—, ©)

» contradictory cycle is cycle with exactly one ¢ edge
» contradictory cycle is simple if it contains no node twice

16

Input to Satisfiability Problem for Equality Logic

conjunction ¢ of equality logic literals over set of variables V

Definitions

> _ is set of positive literals (equality literals) in ¢
> . is set of negative literals (inequality literals) in ¢
» equality graph is undirected graph G=(¢) = (V, o=, ¢)

Definitions
equality graph G_(¢) = (V, ¢—, ©)

» contradictory cycle is cycle with exactly one ¢ edge
» contradictory cycle is simple if it contains no node twice

Lemma

 is satisfiable iff G=() contains no simple contradictory cycles

16

Example

conjunction of equality literals
O=x1 =X AX1 £X3ANX3=x5N\Xq 7 Xg \Xg % X7\ X5 = X9 \

X5 = X7 \ Xg 7# Xg A\ X9 = X10 A\ X7 = X9 \ X5 7 X10

> p=1 X1 = X2, X3 = X5, X5 = X7, X9 = X10, X7 = X9, X5 = X9

> Ozl X1 F X3, Xa F Xe, Xo F X7, Xg F X9, X5 F X10

» equality graph

o7 T T~ RS
X1 X2 X3 _ Xy X5
-7 I

-7 I

/,/’/ /\
X6 --- X7 Xg --- X9 — X10

» contradictory cycles

Example

conjunction of equality literals
O=x1 =X AX1 £X3ANX3=x5N\Xq 7 Xg \Xg % X7\ X5 = X9 \

X5 = X7 \ Xg 7# Xg A\ X9 = X10 A\ X7 = X9 \ X5 7 X10

> p=1 X1 = X2, X3 = X5, X5 = X7, X9 = X10, X7 = X9, X5 = X9

> Ozl X1 F X3, Xa F Xe, Xo F X7, Xg F X9, X5 F X10

» equality graph

o7 T T~ RS
X1 X2 X3 _ Xy X5
_--7 I
- 1
/z’ /|
X6 = - X7 Xg - -+ Xg — X10

» contradictory cycles

X9 — X5 - - X10
S

Example
conjunction of equality literals

O=x1 =X AX1 £X3ANX3=x5N\Xq 7 Xg \Xg % X7\ X5 = X9 \

X5 = X7 \ Xg 7# Xg A\ X9 = X10 A\ X7 = X9 \ X5 7 X10

> p=1 X1 = X2, X3 = X5, X5 = X7, X9 = X10, X7 = X9, X5 = X9
> sl X| F X3, Xa F X, Xe 7 X7, Xg F# Xg, X5 # X10

» equality graph

o7 T T~ RS
X1 X2 X3 _ Xy X5
_--7 I
- 1
/z’ /|
X6 = - X7 Xg - -+ Xg — X10

» contradictory cycles

X9 — X5 - - X10 Xt — X9 — X10 - - X5
- \/

Example

conjunction of equality literals

>

>

>

>

o=x1 =X Ax1 #x3N\X3

X5 = X7 \ Xg 7# X9 A\ Xg

P=: X1 = X2, X3 = X5, X5 = X7, Xg = X10, X7 = X9, X5 = Xg

:X5/\X4§£X6/\X6§£X7AX5:X9/\

= x10 A\ X7 = X9 A\ X5 # X10

©4 X1 F X3, X4 F Xy X6 7 X7, X3 F X9, X5 F X10

equality graph

contradictory cycles

X9 — X5 - - X10
S

Xt — X9 — X10 - - X5
\/

RN ~
X2 X3 _ Xy X5
_--7 I
- 1
/,/’ /|
- X7 Xg --- X9 — X10

X5 —— X3 —— X5 — — -

X10 — X9

17

Example

conjunction of equality literals
O=x1 =X AX1 £X3ANX3=x5N\Xq 7 Xg \Xg % X7\ X5 = X9 \

X5 = X7 \ Xg 7# Xg A\ X9 = X10 A\ X7 = X9 \ X5 7 X10

> p=1 X1 = X2, X3 = X5, X5 = X7, X9 = X10, X7 = X9, X5 = X9

> Ozl X1 F X3, Xa F Xe, Xo F X7, Xg F X9, X5 F X10

» equality graph

o7 T T~ RS
X1 X2 X3 _ Xy X5

-7 |

-7 |

/,/’/ /\
X6 - - X7 Xg - - X9 — X10

» contradictory cycles
Xg — X5 -— X10 X7 — X9 — X|0---X5 X5 — X3 —— X5 - - X10 — X9
v \/

simple simple not simple

Example

conjunction of equality literals

>

>

>

>

>

O=x1 =X AX1 £X3ANX3=x5N\Xq 7 Xg \Xg % X7\ X5 = X9 \

X5 = X7 \ Xg 7# Xg A\ X9 = X10 A\ X7 = X9 \ X5 7 X10

P=: X1 = X2, X3 = X5, X5 = X7, Xg = X10, X7 = X9, X5 = Xg

©4 X1 F X3, X4 F Xy X6 7 X7, X3 F X9, X5 F X10

equality graph

o7 T T~ RS
X1 X2 X3 X4 X5
-7 |
-7 |
/,/’/ / I
X6 - - X7 Xg - - X9 — X10

contradictory cycles
X5 —— X3 —— X5 - - - X10 — Xg

X9 —— X5 - - X10 X7 —— X9 — X10 - - X5
Sl =
simple simple

unsatisfiable

not simple

17

@ Branch and Bound

18

Example

3x -2y > -1
y<4

2x+y>=5bH

3x—y<7

» looking for solution in Z?

19

Example

3x -2y > -1
y<4

2x+y>=5bH

3x—y<7

» looking for solution in Z?

» infinite R? solution space,
six solutions in Z?2

19

Example

3x -2y > -1

y<4
2x+y>=5bH
3x—y<7

» looking for solution in Z?

» infinite R? solution space,
six solutions in Z?2

» Simplex returns (3, %

19

Example

3x -2y > -1

y<4
2x+y>=5bH
3x—y<7

» looking for solution in Z?

» infinite R? solution space,
six solutions in Z?2

» Simplex returns (3, %

Idea (Branch and Bound)

» add constraints that exclude solution in R? but do not change solutions in 72

19

Example

3x -2y > -1 E\

y<4
2x+y>5 4
3x—y<7
» looking for solution in Z?] $--
» infinite R? solution space, 2 .
six solutions in Z?2
. 9 17
» Simplex returns (3, =)
T T T T
2 4 6

Idea (Branch and Bound)

» add constraints that exclude solution in R? but do not change solutions in Z?

» in current solution 1 < x < 2, so use Simplex on two augmented problems:
» CAx<1
» CAx=>2)

19

Example

3x -2y > -1 K

y<4
2x+y =5 4
3x—y<7
» looking for solution in Z?]
» infinite R? solution space, 2

six solutions in Z?2

> Simplex returns (3, %)

Idea (Branch and Bound)

» add constraints that exclude solution in R? but do not change solutions in Z?
» in current solution 1 < x < 2, so use Simplex on two augmented problems:
» CAx<1 unsatisfiable

» CAx>=2)
19

Example

3x -2y > -1 E\

y<4
2x+y =25 4
3x—y<7
» looking for solution in Z?] =
» infinite R? solution space, 2 !

six solutions in Z?2

> Simplex returns (3, %)

Idea (Branch and Bound)

» add constraints that exclude solution in R? but do not change solutions in Z?
» in current solution 1 < x < 2, so use Simplex on two augmented problems:
» CAx<1 unsatisfiable

~
» CAx=>2 satisfiable, 10

Example

3x -2y > -1 E\

y<4
2x+y>5 A
3x—y<7
» looking for solution in Z?] ¢
» infinite R? solution space, 2

six solutions in Z?2

> Simplex returns (3, %)

Idea (Branch and Bound)

» add constraints that exclude solution in R? but do not change solutions in Z?
» in current solution 1 < x < 2, so use Simplex on two augmented problems:
» CAx<<1 unsatisfiable

» CAx2=22 satisfiable, Simplex can return (2. 1) 1

Algorithm BranchAndBound(y)

Input: LIA constraint ¢
Output: unsatisfiable, or satisfying assignment
let res be result of deciding ¢ over R > e.g. by Simplex

if res is unsatisfiable then
return unsatisfiable
else if res is solution over Z then
return res
else
let x be variable assigned non-integer value g in res
res = BranchAndBound(y A x < |q])
return res # unsatisfiable ? res : BranchAndBound(o A x > [q])

20

Definition
R2-solution space of linear arithmetic problem Ax < b is bounded
if for all x; there exist /;, u; € R such that all R%-solutions v satisfy /; < v(x;) < u;

21

Definition
R2-solution space of linear arithmetic problem Ax < b is bounded
if for all x; there exist /;, u; € R such that all R?-solutions v satisfy /; < v(x;) < u;

Example
3,
2 » 3x—-3y>1A3x—-3y <2
1,
I I I
1 2 3

21

Definition
R2-solution space of linear arithmetic problem Ax < b is bounded
if for all x; there exist /;, u; € R such that all R?-solutions v satisfy /; < v(x;) < u;

Example
3 |
2 » 3x—-3y>1A3x—-3y <2
» unbounded problem
1 |
I I I
1 2 3

21

Definition
R2-solution space of linear arithmetic problem Ax < b is bounded
if for all x; there exist /;, u; € R such that all R?-solutions v satisfy /; < v(x;) < u;

Example
3 |
2 » 3x—-3y>1A3x—-3y <2
» unbounded problem
1 » no solution in Z?
I I I
1 2 3

21

Definition
R2-solution space of linear arithmetic problem Ax < b is bounded
if for all x; there exist /;, u; € R such that all R?-solutions v satisfy /; < v(x;) < u;

Example
3 |
2 » 3x—3y>1A3x—-3y <2
» unbounded problem
1 » no solution in Z?2
» BranchAndBound keeps adding x > n, y > m
I I I
1 2 3

21

Definition

R2-solution space of linear arithmetic problem Ax < b is bounded

if for all x; there exist /;, u; € R such that all R?-solutions v satisfy /; < v(x;) < u;

Example
3 |
2 » 3x—-3y>1A3x—-3y <2
» unbounded problem
1 » no solution in Z?2
» BranchAndBound keeps adding x > n, y > m
T T T
1 2 3
Remarks

» BranchAndBound might not terminate if solution space is unbounded

21

Definition
R2-solution space of linear arithmetic problem Ax < b is bounded
if for all x; there exist /;, u; € R such that all R?-solutions v satisfy /; < v(x;) < u;

Example
3 |
2 » 3x—-3y>1A3x—-3y <2
» unbounded problem
1 » no solution in Z?2
» BranchAndBound keeps adding x > n, y > m
I I I
1 2 3
Remarks

» BranchAndBound might not terminate if solution space is unbounded
» methods exist to derive solution bounds from tableau, but bounds are often

too high for efficient practical procedures
21

Definition
R2-solution space of linear arithmetic problem Ax < b is bounded
if for all x; there exist /;, u; € R such that all R?-solutions v satisfy /; < v(x;) < u;

Example
3 |
2 » 3x—-3y>1A3x—-3y <2
» unbounded problem
1 » no solution in Z?2
» BranchAndBound keeps adding x > n, y > m
I I I
1 2 3
Remarks

» BranchAndBound might not terminate if solution space is unbounded

» methods exist to derive solution bounds from tableau, but bounds are often
too high for efficient practical procedures

» use cutting planes to restrict solution space more efficiently 21

LIA Application: Finding Work Schedules

Example (Scheduling Problem)

Is there a six-week cyclic work schedule for 22 employees who work 8-hour shifts,
24/7, 5 working days per week such that the following holds: In morning and
afternoon shifts 6 employees are present, in night shifts 3. Joe does only morning
shifts, Sally does not work on Sundays. Nobody works more than 6 days in a row.

22

LIA Application: Finding Work Schedules

Example (Scheduling Problem)

Is there a six-week cyclic work schedule for 22 employees who work 8-hour shifts,
24/7, 5 working days per week such that the following holds: In morning and
afternoon shifts 6 employees are present, in night shifts 3. Joe does only morning
shifts, Sally does not work on Sundays. Nobody works more than 6 days in a row.

Shift Schedule Requirements
» number of employees n
> set of shifts A (activities to be distributed)
> length of schedule (e.g. one week) and cyclicity
» requirement matrix R: Rj; is # employees required in shift i of day j
» prohibited shift sequences, maximal length of work blocks, ...

22

LIA Application: Finding Work Schedules

Example (Scheduling Problem)

Is there a six-week cyclic work schedule for 22 employees who work 8-hour shifts,
24/7, 5 working days per week such that the following holds: In morning and
afternoon shifts 6 employees are present, in night shifts 3. Joe does only morning
shifts, Sally does not work on Sundays. Nobody works more than 6 days in a row.

Shift Schedule Requirements

» number of employees n

> set of shifts A (activities to be distributed)

> length of schedule (e.g. one week) and cyclicity

» requirement matrix R: Rj; is # employees required in shift i of day j
» prohibited shift sequences, maximal length of work blocks, ...

LIA Encoding

» integer variable corresponding to employee for each activity

» cardinality constraints for requirement matrix

> 22

Bibliography

@ Bruno Dutertre and Leonardo de Moura.
A Fast Linear-Arithmetic Solver for DPLL(T).
Proc. of International Conference on Computer Aided Verification, pp. 81-94, 2006.

@ Bruno Dutertre and Leonardo de Moura
Integrating Simplex with DPLL(T)
Technical Report SRI-CSL-06-01, SRI International, 2006

@ Daniel Kroening and Ofer Strichman
The Simplex Algorithm
Section 5.2 of Decision Procedures — An Algorithmic Point of View
Springer, 2008

[§] Bertram Felgenhauer and Aart Middeldorp
Constructing Cycles in the Simplex Method for DPLL(T)
Proc. 14th International Colloquium on Theoretical Aspects of Computing,
LNCS 10580, pp. 213-228, 2017

@ Christoph Erkinger and Nysret Musliu
Personnel Scheduling as Satisfiability Modulo Theories
Proc. 26th International Joint Conference on Artificial Intelligence,
pp. 614-621, 2017
23

https://link.springer.com/chapter/10.1007/11817963_11
http://yices.csl.sri.com/papers/sri-csl-06-01.pdf
http://dx.doi.org/10.1007/978-3-540-74105-3_5
http://dx.doi.org/10.1007/978-3-540-74105-3_5
http://dx.doi.org/10.1007/978-3-540-74105-3_5
http://dx.doi.org/10.1007/978-3-540-74105-3_5
http://dx.doi.org/10.1007/978-3-319-67729-3_13
http://dx.doi.org/10.1007/978-3-319-67729-3_13
http://dx.doi.org/10.1007/978-3-319-67729-3_13
http://dx.doi.org/10.1007/978-3-319-67729-3_13
https://doi.org/10.24963/ijcai.2017/86
https://doi.org/10.24963/ijcai.2017/86
https://doi.org/10.24963/ijcai.2017/86
https://doi.org/10.24963/ijcai.2017/86

	lecture 8
	Summary of Last Week
	Cyclic Simplex Example
	Deciding Equality Logic
	Branch and Bound

