
SAT and SMT Solving

Sarah Winkler

Computational Logic Group
Department of Computer Science
University of Innsbruck

lecture 8
SS 2019

http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Outline

Summary of Last Week

Cyclic Simplex Example

Deciding Equality Logic

Branch and Bound

1

Definition (Theory of Linear Arithmetic over C)

I for variables x1, . . . , xn, formulas built according to grammar

ϕ ::= ϕ ∧ ϕ | t = t | t < t | t 6 t

t ::= a1x1 + · · ·+ anxn + b for a1, . . . , an, b ∈ in carrier C

I axioms are equality axioms plus calculation rules of arithmetic over C

I solution assigns values in C to x1, . . . , xn

Definitions

I carrier R: linear real arithmetic (LRA),

DPLL(T) simplex algorithm is decision procedure

I carrier Z: linear integer arithmetic (LIA)

2

DPLL(T) Simplex Algorithm (1)

I linear arithmetic constraint solving over real or rational variables

I x1, . . . , xn are split into basic variables ~xB and nonbasic variables ~xN

Input

constraints plus upper and lower bounds for x1, . . . , xn:

A ~xN = ~xB with tableau A ∈ R|B|×|N| (1)

−∞ 6li 6 xi 6 ui 6 +∞ (2)

Output

satisfying assignment or “unsatisfiable”

Invariant

(1) is satisfied and (2) holds for all nonbasic variables xi

3

DPLL(T) Simplex Algorithm (2)

A~xN = ~xB (1)

−∞ 6li 6 xi 6 ui 6 +∞ (2)

Method

I if (2) holds for all basic variables, return current assignment

I otherwise select basic variable xi (so i ∈ B) which violates (2)

I select suitable nonbasic variable xj (so j ∈ N) such that xi and xj can be

swapped in a pivoting step, resulting in new tableau

A′ xN′ = xB′

with N ′ = N ∪ {i} − {j} and B ′ = B ∪ {j} − {i}
I change value of xi to li or ui and update values of basic variables accordingly

4

DPLL(T) Simplex Algorithm (3)

A~xN = ~xB (1)

−∞ 6li 6 xi 6 ui 6 +∞ (2)

Pivoting

I swap basic xi and non-basic xj

xi =
∑
k∈N

Aikxk =⇒ xj =
1

Aij

xi −
∑

k∈N−{j}

Aikxk

 (?)

I new tableau A′ consists of (?) and AB−{i}~xN = ~xB−{i} with (?) substituted

Update

I assignment of xi is updated to previously violated bound li or ui ,

I assignment of xk is recomputed using (?) and A′ for all k ∈ B − {i} ∪ {j}

5

DPLL(T) Simplex Algorithm (4)

A~xN = ~xB (1)

−∞ 6li 6 xi 6 ui 6 +∞ (2)

Suitability

I basic variable xi violates lower and/or upper bound

I pick nonbasic variable xj such that

I if xi < li : Aij > 0 and xj < uj or Aij < 0 and xj > lj
I if xi > ui : Aij > 0 and xj > lj or Aij < 0 and xj < uj

I problem is unsatisfiable if no suitable pivot exists

Bland’s Rule

I pick lexicographically smallest (i , j) that is suitable pivot

I guarantees termination

6

Outline

Summary of Last Week

Cyclic Simplex Example

Deciding Equality Logic

Branch and Bound

7

Example (due to B. Felgenhauer)

−1 6 x1 6 0 −4 6 x2 6 0 −5 6 x3 6 −4 −7 6 x4 6 1

x3

x4

(x1 x2

1 2

2 1

)

x1 x2 x3 x4

0 0 0 0
x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 − 2

2 − 3

) x1 x2 x3 x4

− 4 0 −4 − 8
x1

x2

(x3 x4

− 1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −

11
3 −5 1

x1

x2

(x3 x4

− 1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

− 10
3−

1
3 −4 −7

x1

x4

(x3 x2

1 −2

2 − 3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

−1 − 5−11−7
x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

−1 −4 − 9−6

8

Example (due to B. Felgenhauer)

−1 6 x1 6 0 −4 6 x2 6 0 −5 6 x3 6 −4 −7 6 x4 6 1

x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

0 0 0 0

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 − 2

2 − 3

) x1 x2 x3 x4

− 4 0 −4 − 8
x1

x2

(x3 x4

− 1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −

11
3 −5 1

x1

x2

(x3 x4

− 1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

− 10
3−

1
3 −4 −7

x1

x4

(x3 x2

1 −2

2 − 3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

−1 − 5−11−7
x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

−1 −4 − 9−6

8

Example (due to B. Felgenhauer)

−1 6 x1 6 0 −4 6 x2 6 0 −5 6 x3 6 −4 −7 6 x4 6 1

x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

0 0 0 0

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 − 2

2 − 3

) x1 x2 x3 x4

− 4 0 −4 − 8
x1

x2

(x3 x4

− 1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −

11
3 −5 1

x1

x2

(x3 x4

− 1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

− 10
3−

1
3 −4 −7

x1

x4

(x3 x2

1 −2

2 − 3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

−1 − 5−11−7
x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

−1 −4 − 9−6

8

Example (due to B. Felgenhauer)

−1 6 x1 6 0 −4 6 x2 6 0 −5 6 x3 6 −4 −7 6 x4 6 1

x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

0 0 0 0

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 − 2

2 − 3

) x1 x2 x3 x4

− 4 0 −4 − 8

x1

x2

(x3 x4

− 1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −

11
3 −5 1

x1

x2

(x3 x4

− 1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

− 10
3−

1
3 −4 −7

x1

x4

(x3 x2

1 −2

2 − 3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

−1 − 5−11−7
x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

−1 −4 − 9−6

8

Example (due to B. Felgenhauer)

−1 6 x1 6 0 −4 6 x2 6 0 −5 6 x3 6 −4 −7 6 x4 6 1

x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

0 0 0 0

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 − 2

2 − 3

) x1 x2 x3 x4

− 4 0 −4 − 8

x1

x2

(x3 x4

− 1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −

11
3 −5 1

x1

x2

(x3 x4

− 1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

− 10
3−

1
3 −4 −7

x1

x4

(x3 x2

1 −2

2 − 3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

−1 − 5−11−7
x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

−1 −4 − 9−6

8

Example (due to B. Felgenhauer)

−1 6 x1 6 0 −4 6 x2 6 0 −5 6 x3 6 −4 −7 6 x4 6 1

x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

0 0 0 0

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 − 2

2 − 3

) x1 x2 x3 x4

− 4 0 −4 − 8

x1

x2

(x3 x4

− 1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −

11
3 −5 1

x1

x2

(x3 x4

− 1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

− 10
3−

1
3 −4 −7

x1

x4

(x3 x2

1 −2

2 − 3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

−1 − 5−11−7
x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

−1 −4 − 9−6

8

Example (due to B. Felgenhauer)

−1 6 x1 6 0 −4 6 x2 6 0 −5 6 x3 6 −4 −7 6 x4 6 1

x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

0 0 0 0

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 − 2

2 − 3

) x1 x2 x3 x4

− 4 0 −4 − 8

x1

x2

(x3 x4

− 1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −

11
3 −5 1

x1

x2

(x3 x4

− 1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

− 10
3−

1
3 −4 −7

x1

x4

(x3 x2

1 −2

2 − 3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

−1 − 5−11−7
x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

−1 −4 − 9−6

8

Example (due to B. Felgenhauer)

−1 6 x1 6 0 −4 6 x2 6 0 −5 6 x3 6 −4 −7 6 x4 6 1

x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

0 0 0 0

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 − 2

2 − 3

) x1 x2 x3 x4

− 4 0 −4 − 8

x1

x2

(x3 x4

− 1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −

11
3 −5 1

x1

x2

(x3 x4

− 1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

− 10
3−

1
3 −4 −7

x1

x4

(x3 x2

1 −2

2 − 3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

−1 − 5−11−7

x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

−1 −4 − 9−6

8

Example (due to B. Felgenhauer)

−1 6 x1 6 0 −4 6 x2 6 0 −5 6 x3 6 −4 −7 6 x4 6 1

x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

0 0 0 0

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 − 2

2 − 3

) x1 x2 x3 x4

− 4 0 −4 − 8

x1

x2

(x3 x4

− 1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −

11
3 −5 1

x1

x2

(x3 x4

− 1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

− 10
3−

1
3 −4 −7

x1

x4

(x3 x2

1 −2

2 − 3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

−1 − 5−11−7
x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

−1 −4 − 9−6
8

Example (due to B. Felgenhauer)

−1 6 x1 6 0 −4 6 x2 6 0 −5 6 x3 6 −4 −7 6 x4 6 1

x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

0 0 0 0

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 − 2

2 − 3

) x1 x2 x3 x4

− 4 0 −4 − 8

x1

x2

(x3 x4

− 1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −

11
3 −5 1

x1

x2

(x3 x4

− 1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

− 10
3−

1
3 −4 −7

x1

x4

(x3 x2

1 −2

2 − 3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

−1 − 5−11−7
x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

−1 −4 − 9−6
8

Example (due to B. Felgenhauer)

−1 6 x1 6 0 −4 6 x2 6 0 −5 6 x3 6 −4 −7 6 x4 6 1

x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

0 0 0 0

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 − 2

2 − 3

) x1 x2 x3 x4

− 4 0 −4 − 8
x1

x2

(x3 x4

− 1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −

11
3 −5 1

x1

x2

(x3 x4

− 1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

− 10
3−

1
3 −4 −7

x1

x4

(x3 x2

1 −2

2 − 3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

−1 − 5−11−7
x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

−1 −4 − 9−6
8

Example (due to B. Felgenhauer)

−1 6 x1 6 0 −4 6 x2 6 0 −5 6 x3 6 −4 −7 6 x4 6 1

x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

0 0 0 0
x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 − 2

2 − 3

) x1 x2 x3 x4

− 4 0 −4 − 8
x1

x2

(x3 x4

− 1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −

11
3 −5 1

x1

x2

(x3 x4

− 1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

− 10
3−

1
3 −4 −7

x1

x4

(x3 x2

1 −2

2 − 3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

−1 − 5−11−7
x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

−1 −4 − 9−6
8

Example (due to B. Felgenhauer)

−1 6 x1 6 0 −4 6 x2 6 0 −5 6 x3 6 −4 −7 6 x4 6 1

x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

0 0 0 0
x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 − 2

2 − 3

) x1 x2 x3 x4

− 4 0 −4 − 8
x1

x2

(x3 x4

− 1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −

11
3 −5 1

x1

x2

(x3 x4

− 1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

− 10
3−

1
3 −4 −7

x1

x4

(x3 x2

1 −2

2 − 3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

−1 − 5−11−7
x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

−1 −4 − 9−6
8

trajectory of assignments (x1, x2)

x 1
=

0

x2 = 0

x3 =−4

x
4

=
−

7

x
1

=
−

1
x2 =−4

x3 =−5

x
4

=
1

9

trajectory of assignments (x1, x2)

x 1
=

0

x2 = 0

x3 =−4

x
4

=
−

7

x
1

=
−

1
x2 =−4

x3 =−5

x
4

=
1

9

trajectory of assignments (x1, x2)

x 1
=

0

x2 = 0

x3 =−4

x
4

=
−

7

x
1

=
−

1
x2 =−4

x3 =−5

x
4

=
1

9

trajectory of assignments (x1, x2)

x 1
=

0

x2 = 0

x3 =−4

x
4

=
−

7

x
1

=
−

1
x2 =−4

x3 =−5

x
4

=
1

9

trajectory of assignments (x1, x2)

x 1
=

0

x2 = 0

x3 =−4

x
4

=
−

7

x
1

=
−

1
x2 =−4

x3 =−5

x
4

=
1

9

trajectory of assignments (x1, x2)

x 1
=

0

x2 = 0

x3 =−4

x
4

=
−

7

x
1

=
−

1
x2 =−4

x3 =−5

x
4

=
1

9

trajectory of assignments (x1, x2)

x 1
=

0

x2 = 0

x3 =−4

x
4

=
−

7

x
1

=
−

1
x2 =−4

x3 =−5

x
4

=
1

9

trajectory of assignments (x1, x2)

x 1
=

0

x2 = 0

x3 =−4

x
4

=
−

7

x
1

=
−

1
x2 =−4

x3 =−5

x
4

=
1

9

trajectory of assignments (x1, x2)

x 1
=

0

x2 = 0

x3 =−4

x
4

=
−

7

x
1

=
−

1
x2 =−4

x3 =−5

x
4

=
1

9

Example (due to B. Felgenhauer)

−1 6 x1 6 0 −4 6 x2 6 0 −5 6 x3 6 −4 −7 6 x4 6 1

x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

0 0 0 0

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 − 2

2 − 3

) x1 x2 x3 x4

− 4 0 −4 − 8
violation of Bland’s rule

x1 x2 x3 x4

7
3 −

11
3 −5 1

x1

x2

(x3 x4

− 1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

− 10
3−

1
3 −4 −7

x1

x4

(x3 x2

1 −2

2 − 3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

−1 − 5−11−7
x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

−1 −4 − 9−6

10

Example (due to B. Felgenhauer)

−1 6 x1 6 0 −4 6 x2 6 0 −5 6 x3 6 −4 −7 6 x4 6 1

x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

0 0 0 0

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 − 2

2 − 3

) x1 x2 x3 x4

− 4 0 −4 − 8

x1

x2

(x3 x4

− 1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −

11
3 −5 1

x1

x2

(x3 x4

− 1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

− 10
3−

1
3 −4 −7

x1

x4

(x3 x2

1 −2

2 − 3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

−1 − 5−11−7
x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

−1 −4 − 9−6

10

Example (due to B. Felgenhauer)

−1 6 x1 6 0 −4 6 x2 6 0 −5 6 x3 6 −4 −7 6 x4 6 1

x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

0 0 0 0

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 − 2

2 − 3

) x1 x2 x3 x4

− 4 0 −4 − 8

x1

x2

(x3 x4

− 1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −

11
3 −5 1

x2

x4

(x3 x1

1
2 −

1
2

1
2

3
2

) x1 x2 x3 x4

−1 − 3
2 −4 − 7

2

x1

x4

(x3 x2

1 −2

2 − 3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

−1 − 5−11−7
x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

−1 −4 − 9−6

10

Example (due to B. Felgenhauer)

−1 6 x1 6 0 −4 6 x2 6 0 −5 6 x3 6 −4 −7 6 x4 6 1

x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

0 0 0 0

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 − 2

2 − 3

) x1 x2 x3 x4

− 4 0 −4 − 8

x1

x2

(x3 x4

− 1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −

11
3 −5 1

x2

x4

(x3 x1

1
2 −

1
2

1
2

3
2

) x1 x2 x3 x4

−1 − 3
2 −4 − 7

2

satisfying assignment

x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

−1 − 5−11−7
x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

−1 −4 − 9−6

10

trajectory of assignments (x1, x2)

x 1
=

0

x2 = 0

x3 =−4

x
4

=
−

7

x
1

=
−

1
x2 =−4

x3 =−5

x
4

=
1

11

Outline

Summary of Last Week

Cyclic Simplex Example

Deciding Equality Logic

Branch and Bound

12

How to Be Lazy

SAT solver T -solver

candidate model

explanation
unsat sat

ϕ
abstract

SMT solver

Theory T

T -solving method

I equality logic

equality graphs

I equality + uninterpreted functions (EUF)

congruence closure X

I linear real arithmetic (LRA)

DPLL(T) Simplex X

I linear integer arithmetic (LIA)

DPLL(T) Simplex + cuts

I bitvectors (BV)

I arrays (A)

13

How to Be Lazy

SAT solver T -solver

candidate model

explanation
unsat sat

ϕ
abstract

SMT solver

Theory T

T -solving method

I equality logic

equality graphs

I equality + uninterpreted functions (EUF)

congruence closure X

I linear real arithmetic (LRA)

DPLL(T) Simplex X

I linear integer arithmetic (LIA)

DPLL(T) Simplex + cuts

I bitvectors (BV)

I arrays (A)
13

How to Be Lazy

SAT solver T -solver

candidate model

explanation
unsat sat

ϕ
abstract

SMT solver

Theory T T -solving method

I equality logic

equality graphs

I equality + uninterpreted functions (EUF) congruence closure X
I linear real arithmetic (LRA) DPLL(T) Simplex X
I linear integer arithmetic (LIA)

DPLL(T) Simplex + cuts

I bitvectors (BV)

I arrays (A)
13

How to Be Lazy

SAT solver T -solver

candidate model

explanation
unsat sat

ϕ
abstract

SMT solver

Theory T T -solving method

I equality logic equality graphs

I equality + uninterpreted functions (EUF) congruence closure X
I linear real arithmetic (LRA) DPLL(T) Simplex X
I linear integer arithmetic (LIA) DPLL(T) Simplex + cuts

I bitvectors (BV)

I arrays (A)
13

Input to Satisfiability Problem for Equality Logic

conjunction ϕ of equality logic literals over set of variables V

Definitions

I ϕ= is set of positive literals (equality literals) in ϕ

I ϕ6= is set of negative literals (inequality literals) in ϕ

I equality graph is undirected graph G=(ϕ) = (V , ϕ=, ϕ6=)

Definitions

equality graph G=(ϕ) = (V , ϕ=, ϕ6=)

I contradictory cycle is cycle with exactly one ϕ6= edge

I contradictory cycle is simple if it contains no node twice

Lemma

ϕ is satisfiable iff G=(ϕ) contains no simple contradictory cycles

14

Input to Satisfiability Problem for Equality Logic

conjunction ϕ of equality logic literals over set of variables V

Definitions

I ϕ= is set of positive literals (equality literals) in ϕ

I ϕ6= is set of negative literals (inequality literals) in ϕ

I equality graph is undirected graph G=(ϕ) = (V , ϕ=, ϕ6=)

Definitions

equality graph G=(ϕ) = (V , ϕ=, ϕ6=)

I contradictory cycle is cycle with exactly one ϕ6= edge

I contradictory cycle is simple if it contains no node twice

Lemma

ϕ is satisfiable iff G=(ϕ) contains no simple contradictory cycles

14

Input to Satisfiability Problem for Equality Logic

conjunction ϕ of equality logic literals over set of variables V

Definitions

I ϕ= is set of positive literals (equality literals) in ϕ

I ϕ6= is set of negative literals (inequality literals) in ϕ

I equality graph is undirected graph G=(ϕ) = (V , ϕ=, ϕ6=)

Definitions

equality graph G=(ϕ) = (V , ϕ=, ϕ6=)

I contradictory cycle is cycle with exactly one ϕ6= edge

I contradictory cycle is simple if it contains no node twice

Lemma

ϕ is satisfiable iff G=(ϕ) contains no simple contradictory cycles

14

Input to Satisfiability Problem for Equality Logic

conjunction ϕ of equality logic literals over set of variables V

Definitions

I ϕ= is set of positive literals (equality literals) in ϕ

I ϕ6= is set of negative literals (inequality literals) in ϕ

I equality graph is undirected graph G=(ϕ) = (V , ϕ=, ϕ6=)

Definitions

equality graph G=(ϕ) = (V , ϕ=, ϕ6=)

I contradictory cycle is cycle with exactly one ϕ6= edge

I contradictory cycle is simple if it contains no node twice

Lemma

ϕ is satisfiable iff G=(ϕ) contains no simple contradictory cycles

14

Example

conjunction of equality literals

ϕ = x1 = x2 ∧ x1 6= x3 ∧ x3 = x5 ∧ x4 6= x6 ∧ x6 6= x7 ∧ x5 = x9 ∧
x5 = x7 ∧ x8 6= x9 ∧ x9 = x10 ∧ x7 = x9 ∧ x5 6= x10

I ϕ= : x1 = x2, x3 = x5, x5 = x7, x9 = x10, x7 = x9, x5 = x9

I ϕ6= : x1 6= x3, x4 6= x6, x6 6= x7, x8 6= x9, x5 6= x10

I equality graph

x1 x2 x3 x4 x5

x6 x7 x8 x9 x10

I contradictory cycles

x9 x5 x10

simple

x7 x9 x10 x5

simple

x5 x3 x5 x10 x9

I unsatisfiable

15

Example

conjunction of equality literals

ϕ = x1 = x2 ∧ x1 6= x3 ∧ x3 = x5 ∧ x4 6= x6 ∧ x6 6= x7 ∧ x5 = x9 ∧
x5 = x7 ∧ x8 6= x9 ∧ x9 = x10 ∧ x7 = x9 ∧ x5 6= x10

I ϕ= : x1 = x2, x3 = x5, x5 = x7, x9 = x10, x7 = x9, x5 = x9

I ϕ6= : x1 6= x3, x4 6= x6, x6 6= x7, x8 6= x9, x5 6= x10

I equality graph

x1 x2 x3 x4 x5

x6 x7 x8 x9 x10

I contradictory cycles

x9 x5 x10

simple

x7 x9 x10 x5

simple

x5 x3 x5 x10 x9

I unsatisfiable

15

Example

conjunction of equality literals

ϕ = x1 = x2 ∧ x1 6= x3 ∧ x3 = x5 ∧ x4 6= x6 ∧ x6 6= x7 ∧ x5 = x9 ∧
x5 = x7 ∧ x8 6= x9 ∧ x9 = x10 ∧ x7 = x9 ∧ x5 6= x10

I ϕ= : x1 = x2, x3 = x5, x5 = x7, x9 = x10, x7 = x9, x5 = x9

I ϕ6= : x1 6= x3, x4 6= x6, x6 6= x7, x8 6= x9, x5 6= x10

I equality graph

x1 x2 x3 x4 x5

x6 x7 x8 x9 x10

I contradictory cycles

x9 x5 x10

simple

x7 x9 x10 x5

simple

x5 x3 x5 x10 x9

I unsatisfiable

15

Example

conjunction of equality literals

ϕ = x1 = x2 ∧ x1 6= x3 ∧ x3 = x5 ∧ x4 6= x6 ∧ x6 6= x7 ∧ x5 = x9 ∧
x5 = x7 ∧ x8 6= x9 ∧ x9 = x10 ∧ x7 = x9 ∧ x5 6= x10

I ϕ= : x1 = x2, x3 = x5, x5 = x7, x9 = x10, x7 = x9, x5 = x9

I ϕ6= : x1 6= x3, x4 6= x6, x6 6= x7, x8 6= x9, x5 6= x10

I equality graph

x1 x2 x3 x4 x5

x6 x7 x8 x9 x10

I contradictory cycles

x9 x5 x10

simple

x7 x9 x10 x5

simple

x5 x3 x5 x10 x9

I unsatisfiable

15

Input to Satisfiability Problem for Equality Logic

conjunction ϕ of equality logic literals over set of variables V

Definitions

I ϕ= is set of positive literals (equality literals) in ϕ

I ϕ6= is set of negative literals (inequality literals) in ϕ

I equality graph is undirected graph G=(ϕ) = (V , ϕ=, ϕ6=)

Definitions

equality graph G=(ϕ) = (V , ϕ=, ϕ6=)

I contradictory cycle is cycle with exactly one ϕ6= edge

I contradictory cycle is simple if it contains no node twice

Lemma

ϕ is satisfiable iff G=(ϕ) contains no simple contradictory cycles

16

Input to Satisfiability Problem for Equality Logic

conjunction ϕ of equality logic literals over set of variables V

Definitions

I ϕ= is set of positive literals (equality literals) in ϕ

I ϕ6= is set of negative literals (inequality literals) in ϕ

I equality graph is undirected graph G=(ϕ) = (V , ϕ=, ϕ6=)

Definitions

equality graph G=(ϕ) = (V , ϕ=, ϕ6=)

I contradictory cycle is cycle with exactly one ϕ6= edge

I contradictory cycle is simple if it contains no node twice

Lemma

ϕ is satisfiable iff G=(ϕ) contains no simple contradictory cycles

16

Input to Satisfiability Problem for Equality Logic

conjunction ϕ of equality logic literals over set of variables V

Definitions

I ϕ= is set of positive literals (equality literals) in ϕ

I ϕ6= is set of negative literals (inequality literals) in ϕ

I equality graph is undirected graph G=(ϕ) = (V , ϕ=, ϕ6=)

Definitions

equality graph G=(ϕ) = (V , ϕ=, ϕ6=)

I contradictory cycle is cycle with exactly one ϕ6= edge

I contradictory cycle is simple if it contains no node twice

Lemma

ϕ is satisfiable iff G=(ϕ) contains no simple contradictory cycles

16

Example

conjunction of equality literals

ϕ = x1 = x2 ∧ x1 6= x3 ∧ x3 = x5 ∧ x4 6= x6 ∧ x6 6= x7 ∧ x5 = x9 ∧
x5 = x7 ∧ x8 6= x9 ∧ x9 = x10 ∧ x7 = x9 ∧ x5 6= x10

I ϕ= : x1 = x2, x3 = x5, x5 = x7, x9 = x10, x7 = x9, x5 = x9

I ϕ6= : x1 6= x3, x4 6= x6, x6 6= x7, x8 6= x9, x5 6= x10

I equality graph

x1 x2 x3 x4 x5

x6 x7 x8 x9 x10

I contradictory cycles

x9 x5 x10

simple

x7 x9 x10 x5

simple

x5 x3 x5 x10 x9

not simple

I unsatisfiable

17

Example

conjunction of equality literals

ϕ = x1 = x2 ∧ x1 6= x3 ∧ x3 = x5 ∧ x4 6= x6 ∧ x6 6= x7 ∧ x5 = x9 ∧
x5 = x7 ∧ x8 6= x9 ∧ x9 = x10 ∧ x7 = x9 ∧ x5 6= x10

I ϕ= : x1 = x2, x3 = x5, x5 = x7, x9 = x10, x7 = x9, x5 = x9

I ϕ6= : x1 6= x3, x4 6= x6, x6 6= x7, x8 6= x9, x5 6= x10

I equality graph

x1 x2 x3 x4 x5

x6 x7 x8 x9 x10

I contradictory cycles

x9 x5 x10

simple

x7 x9 x10 x5

simple

x5 x3 x5 x10 x9

not simple

I unsatisfiable

17

Example

conjunction of equality literals

ϕ = x1 = x2 ∧ x1 6= x3 ∧ x3 = x5 ∧ x4 6= x6 ∧ x6 6= x7 ∧ x5 = x9 ∧
x5 = x7 ∧ x8 6= x9 ∧ x9 = x10 ∧ x7 = x9 ∧ x5 6= x10

I ϕ= : x1 = x2, x3 = x5, x5 = x7, x9 = x10, x7 = x9, x5 = x9

I ϕ6= : x1 6= x3, x4 6= x6, x6 6= x7, x8 6= x9, x5 6= x10

I equality graph

x1 x2 x3 x4 x5

x6 x7 x8 x9 x10

I contradictory cycles

x9 x5 x10

simple

x7 x9 x10 x5

simple

x5 x3 x5 x10 x9

not simple

I unsatisfiable

17

Example

conjunction of equality literals

ϕ = x1 = x2 ∧ x1 6= x3 ∧ x3 = x5 ∧ x4 6= x6 ∧ x6 6= x7 ∧ x5 = x9 ∧
x5 = x7 ∧ x8 6= x9 ∧ x9 = x10 ∧ x7 = x9 ∧ x5 6= x10

I ϕ= : x1 = x2, x3 = x5, x5 = x7, x9 = x10, x7 = x9, x5 = x9

I ϕ6= : x1 6= x3, x4 6= x6, x6 6= x7, x8 6= x9, x5 6= x10

I equality graph

x1 x2 x3 x4 x5

x6 x7 x8 x9 x10

I contradictory cycles

x9 x5 x10

simple

x7 x9 x10 x5

simple

x5 x3 x5 x10 x9

not simple

I unsatisfiable

17

Example

conjunction of equality literals

ϕ = x1 = x2 ∧ x1 6= x3 ∧ x3 = x5 ∧ x4 6= x6 ∧ x6 6= x7 ∧ x5 = x9 ∧
x5 = x7 ∧ x8 6= x9 ∧ x9 = x10 ∧ x7 = x9 ∧ x5 6= x10

I ϕ= : x1 = x2, x3 = x5, x5 = x7, x9 = x10, x7 = x9, x5 = x9

I ϕ6= : x1 6= x3, x4 6= x6, x6 6= x7, x8 6= x9, x5 6= x10

I equality graph

x1 x2 x3 x4 x5

x6 x7 x8 x9 x10

I contradictory cycles

x9 x5 x10

simple

x7 x9 x10 x5

simple

x5 x3 x5 x10 x9

not simple

I unsatisfiable

17

Example

conjunction of equality literals

ϕ = x1 = x2 ∧ x1 6= x3 ∧ x3 = x5 ∧ x4 6= x6 ∧ x6 6= x7 ∧ x5 = x9 ∧
x5 = x7 ∧ x8 6= x9 ∧ x9 = x10 ∧ x7 = x9 ∧ x5 6= x10

I ϕ= : x1 = x2, x3 = x5, x5 = x7, x9 = x10, x7 = x9, x5 = x9

I ϕ6= : x1 6= x3, x4 6= x6, x6 6= x7, x8 6= x9, x5 6= x10

I equality graph

x1 x2 x3 x4 x5

x6 x7 x8 x9 x10

I contradictory cycles

x9 x5 x10

simple

x7 x9 x10 x5

simple

x5 x3 x5 x10 x9

not simple

I unsatisfiable 17

Outline

Summary of Last Week

Cyclic Simplex Example

Deciding Equality Logic

Branch and Bound

18

Example

3x − 2y > −1
y 6 4

2x + y > 5
3x − y 6 7

I looking for solution in Z2

I infinite R2 solution space,

six solutions in Z2

I Simplex returns (9
7 ,

17
7)

2 4 6

2

4

6

Idea (Branch and Bound)

I add constraints that exclude solution in R2 but do not change solutions in Z2

I in current solution 1 < x < 2, so use Simplex on two augmented problems:

I C ∧ x 6 1

unsatisfiable

I C ∧ x > 2

satisfiable

,

Simplex can return (2, 1)

19

Example

3x − 2y > −1
y 6 4

2x + y > 5
3x − y 6 7

I looking for solution in Z2

I infinite R2 solution space,

six solutions in Z2

I Simplex returns (9
7 ,

17
7)

2 4 6

2

4

6

Idea (Branch and Bound)

I add constraints that exclude solution in R2 but do not change solutions in Z2

I in current solution 1 < x < 2, so use Simplex on two augmented problems:

I C ∧ x 6 1

unsatisfiable

I C ∧ x > 2

satisfiable

,

Simplex can return (2, 1)

19

Example

3x − 2y > −1
y 6 4

2x + y > 5
3x − y 6 7

I looking for solution in Z2

I infinite R2 solution space,

six solutions in Z2

I Simplex returns (9
7 ,

17
7)

2 4 6

2

4

6

Idea (Branch and Bound)

I add constraints that exclude solution in R2 but do not change solutions in Z2

I in current solution 1 < x < 2, so use Simplex on two augmented problems:

I C ∧ x 6 1

unsatisfiable

I C ∧ x > 2

satisfiable

,

Simplex can return (2, 1)

19

Example

3x − 2y > −1
y 6 4

2x + y > 5
3x − y 6 7

I looking for solution in Z2

I infinite R2 solution space,

six solutions in Z2

I Simplex returns (9
7 ,

17
7)

2 4 6

2

4

6

Idea (Branch and Bound)

I add constraints that exclude solution in R2 but do not change solutions in Z2

I in current solution 1 < x < 2, so use Simplex on two augmented problems:

I C ∧ x 6 1

unsatisfiable

I C ∧ x > 2

satisfiable

,

Simplex can return (2, 1)

19

Example

3x − 2y > −1
y 6 4

2x + y > 5
3x − y 6 7

I looking for solution in Z2

I infinite R2 solution space,

six solutions in Z2

I Simplex returns (9
7 ,

17
7)

2 4 6

2

4

6

Idea (Branch and Bound)

I add constraints that exclude solution in R2 but do not change solutions in Z2

I in current solution 1 < x < 2, so use Simplex on two augmented problems:

I C ∧ x 6 1

unsatisfiable

I C ∧ x > 2

satisfiable

,

Simplex can return (2, 1)

19

Example

3x − 2y > −1
y 6 4

2x + y > 5
3x − y 6 7

I looking for solution in Z2

I infinite R2 solution space,

six solutions in Z2

I Simplex returns (9
7 ,

17
7)

2 4 6

2

4

6

Idea (Branch and Bound)

I add constraints that exclude solution in R2 but do not change solutions in Z2

I in current solution 1 < x < 2, so use Simplex on two augmented problems:

I C ∧ x 6 1 unsatisfiable

I C ∧ x > 2

satisfiable

,

Simplex can return (2, 1)

19

Example

3x − 2y > −1
y 6 4

2x + y > 5
3x − y 6 7

I looking for solution in Z2

I infinite R2 solution space,

six solutions in Z2

I Simplex returns (9
7 ,

17
7)

2 4 6

2

4

6

Idea (Branch and Bound)

I add constraints that exclude solution in R2 but do not change solutions in Z2

I in current solution 1 < x < 2, so use Simplex on two augmented problems:

I C ∧ x 6 1 unsatisfiable

I C ∧ x > 2 satisfiable,

Simplex can return (2, 1)

19

Example

3x − 2y > −1
y 6 4

2x + y > 5
3x − y 6 7

I looking for solution in Z2

I infinite R2 solution space,

six solutions in Z2

I Simplex returns (9
7 ,

17
7)

2 4 6

2

4

6

Idea (Branch and Bound)

I add constraints that exclude solution in R2 but do not change solutions in Z2

I in current solution 1 < x < 2, so use Simplex on two augmented problems:

I C ∧ x 6 1 unsatisfiable

I C ∧ x > 2 satisfiable, Simplex can return (2, 1)
19

Algorithm BranchAndBound(ϕ)

Input: LIA constraint ϕ
Output: unsatisfiable, or satisfying assignment

let res be result of deciding ϕ over R . e.g. by Simplex
if res is unsatisfiable then

return unsatisfiable
else if res is solution over Z then

return res
else

let x be variable assigned non-integer value q in res
res = BranchAndBound(ϕ ∧ x 6 bqc)
return res 6= unsatisfiable ? res : BranchAndBound(ϕ ∧ x > dqe)

20

Definition

R2-solution space of linear arithmetic problem Ax 6 b is bounded

if for all xi there exist li , ui ∈ R such that all R2-solutions v satisfy li 6 v(xi) 6 ui

Example

1 2 3

1

2

3

I 3x − 3y > 1 ∧ 3x − 3y 6 2

I unbounded problem

I no solution in Z2

I BranchAndBound keeps adding x > n, y > m

Remarks

I BranchAndBound might not terminate if solution space is unbounded

I methods exist to derive solution bounds from tableau, but bounds are often

too high for efficient practical procedures

I use cutting planes to restrict solution space more efficiently

21

Definition

R2-solution space of linear arithmetic problem Ax 6 b is bounded

if for all xi there exist li , ui ∈ R such that all R2-solutions v satisfy li 6 v(xi) 6 ui

Example

1 2 3

1

2

3

I 3x − 3y > 1 ∧ 3x − 3y 6 2

I unbounded problem

I no solution in Z2

I BranchAndBound keeps adding x > n, y > m

Remarks

I BranchAndBound might not terminate if solution space is unbounded

I methods exist to derive solution bounds from tableau, but bounds are often

too high for efficient practical procedures

I use cutting planes to restrict solution space more efficiently

21

Definition

R2-solution space of linear arithmetic problem Ax 6 b is bounded

if for all xi there exist li , ui ∈ R such that all R2-solutions v satisfy li 6 v(xi) 6 ui

Example

1 2 3

1

2

3

I 3x − 3y > 1 ∧ 3x − 3y 6 2

I unbounded problem

I no solution in Z2

I BranchAndBound keeps adding x > n, y > m

Remarks

I BranchAndBound might not terminate if solution space is unbounded

I methods exist to derive solution bounds from tableau, but bounds are often

too high for efficient practical procedures

I use cutting planes to restrict solution space more efficiently

21

Definition

R2-solution space of linear arithmetic problem Ax 6 b is bounded

if for all xi there exist li , ui ∈ R such that all R2-solutions v satisfy li 6 v(xi) 6 ui

Example

1 2 3

1

2

3

I 3x − 3y > 1 ∧ 3x − 3y 6 2

I unbounded problem

I no solution in Z2

I BranchAndBound keeps adding x > n, y > m

Remarks

I BranchAndBound might not terminate if solution space is unbounded

I methods exist to derive solution bounds from tableau, but bounds are often

too high for efficient practical procedures

I use cutting planes to restrict solution space more efficiently

21

Definition

R2-solution space of linear arithmetic problem Ax 6 b is bounded

if for all xi there exist li , ui ∈ R such that all R2-solutions v satisfy li 6 v(xi) 6 ui

Example

1 2 3

1

2

3

I 3x − 3y > 1 ∧ 3x − 3y 6 2

I unbounded problem

I no solution in Z2

I BranchAndBound keeps adding x > n, y > m

Remarks

I BranchAndBound might not terminate if solution space is unbounded

I methods exist to derive solution bounds from tableau, but bounds are often

too high for efficient practical procedures

I use cutting planes to restrict solution space more efficiently

21

Definition

R2-solution space of linear arithmetic problem Ax 6 b is bounded

if for all xi there exist li , ui ∈ R such that all R2-solutions v satisfy li 6 v(xi) 6 ui

Example

1 2 3

1

2

3

I 3x − 3y > 1 ∧ 3x − 3y 6 2

I unbounded problem

I no solution in Z2

I BranchAndBound keeps adding x > n, y > m

Remarks

I BranchAndBound might not terminate if solution space is unbounded

I methods exist to derive solution bounds from tableau, but bounds are often

too high for efficient practical procedures

I use cutting planes to restrict solution space more efficiently

21

Definition

R2-solution space of linear arithmetic problem Ax 6 b is bounded

if for all xi there exist li , ui ∈ R such that all R2-solutions v satisfy li 6 v(xi) 6 ui

Example

1 2 3

1

2

3

I 3x − 3y > 1 ∧ 3x − 3y 6 2

I unbounded problem

I no solution in Z2

I BranchAndBound keeps adding x > n, y > m

Remarks

I BranchAndBound might not terminate if solution space is unbounded

I methods exist to derive solution bounds from tableau, but bounds are often

too high for efficient practical procedures

I use cutting planes to restrict solution space more efficiently

21

Definition

R2-solution space of linear arithmetic problem Ax 6 b is bounded

if for all xi there exist li , ui ∈ R such that all R2-solutions v satisfy li 6 v(xi) 6 ui

Example

1 2 3

1

2

3

I 3x − 3y > 1 ∧ 3x − 3y 6 2

I unbounded problem

I no solution in Z2

I BranchAndBound keeps adding x > n, y > m

Remarks

I BranchAndBound might not terminate if solution space is unbounded

I methods exist to derive solution bounds from tableau, but bounds are often

too high for efficient practical procedures

I use cutting planes to restrict solution space more efficiently 21

LIA Application: Finding Work Schedules

Example (Scheduling Problem)

Is there a six-week cyclic work schedule for 22 employees who work 8-hour shifts,

24/7, 5 working days per week such that the following holds: In morning and

afternoon shifts 6 employees are present, in night shifts 3. Joe does only morning

shifts, Sally does not work on Sundays. Nobody works more than 6 days in a row.

Shift Schedule Requirements

I number of employees n

I set of shifts A (activities to be distributed)

I length of schedule (e.g. one week) and cyclicity

I requirement matrix R: Rij is # employees required in shift i of day j

I prohibited shift sequences, maximal length of work blocks, . . .

LIA Encoding

I integer variable corresponding to employee for each activity

I cardinality constraints for requirement matrix

I . . .

22

LIA Application: Finding Work Schedules

Example (Scheduling Problem)

Is there a six-week cyclic work schedule for 22 employees who work 8-hour shifts,

24/7, 5 working days per week such that the following holds: In morning and

afternoon shifts 6 employees are present, in night shifts 3. Joe does only morning

shifts, Sally does not work on Sundays. Nobody works more than 6 days in a row.

Shift Schedule Requirements

I number of employees n

I set of shifts A (activities to be distributed)

I length of schedule (e.g. one week) and cyclicity

I requirement matrix R: Rij is # employees required in shift i of day j

I prohibited shift sequences, maximal length of work blocks, . . .

LIA Encoding

I integer variable corresponding to employee for each activity

I cardinality constraints for requirement matrix

I . . .

22

LIA Application: Finding Work Schedules

Example (Scheduling Problem)

Is there a six-week cyclic work schedule for 22 employees who work 8-hour shifts,

24/7, 5 working days per week such that the following holds: In morning and

afternoon shifts 6 employees are present, in night shifts 3. Joe does only morning

shifts, Sally does not work on Sundays. Nobody works more than 6 days in a row.

Shift Schedule Requirements

I number of employees n

I set of shifts A (activities to be distributed)

I length of schedule (e.g. one week) and cyclicity

I requirement matrix R: Rij is # employees required in shift i of day j

I prohibited shift sequences, maximal length of work blocks, . . .

LIA Encoding

I integer variable corresponding to employee for each activity

I cardinality constraints for requirement matrix

I . . . 22

Bibliography

Bruno Dutertre and Leonardo de Moura.

A Fast Linear-Arithmetic Solver for DPLL(T).
Proc. of International Conference on Computer Aided Verification, pp. 81–94, 2006.

Bruno Dutertre and Leonardo de Moura

Integrating Simplex with DPLL(T)
Technical Report SRI–CSL–06–01, SRI International, 2006

Daniel Kroening and Ofer Strichman

The Simplex Algorithm

Section 5.2 of Decision Procedures — An Algorithmic Point of View

Springer, 2008

Bertram Felgenhauer and Aart Middeldorp

Constructing Cycles in the Simplex Method for DPLL(T)

Proc. 14th International Colloquium on Theoretical Aspects of Computing,

LNCS 10580, pp. 213 – 228, 2017

Christoph Erkinger and Nysret Musliu

Personnel Scheduling as Satisfiability Modulo Theories

Proc. 26th International Joint Conference on Artificial Intelligence,

pp. 614 – 621, 2017
23

https://link.springer.com/chapter/10.1007/11817963_11
http://yices.csl.sri.com/papers/sri-csl-06-01.pdf
http://dx.doi.org/10.1007/978-3-540-74105-3_5
http://dx.doi.org/10.1007/978-3-540-74105-3_5
http://dx.doi.org/10.1007/978-3-540-74105-3_5
http://dx.doi.org/10.1007/978-3-540-74105-3_5
http://dx.doi.org/10.1007/978-3-319-67729-3_13
http://dx.doi.org/10.1007/978-3-319-67729-3_13
http://dx.doi.org/10.1007/978-3-319-67729-3_13
http://dx.doi.org/10.1007/978-3-319-67729-3_13
https://doi.org/10.24963/ijcai.2017/86
https://doi.org/10.24963/ijcai.2017/86
https://doi.org/10.24963/ijcai.2017/86
https://doi.org/10.24963/ijcai.2017/86

	lecture 8
	Summary of Last Week
	Cyclic Simplex Example
	Deciding Equality Logic
	Branch and Bound

