universität innsbruck

SAT and SMT Solving

Sarah Winkler

Computational Logic Group
Department of Computer Science
University of Innsbruck
lecture 8
SS 2019

Outline

- Summary of Last Week
- Cyclic Simplex Example
- Deciding Equality Logic
- Branch and Bound

Definition (Theory of Linear Arithmetic over C)

- for variables x_{1}, \ldots, x_{n}, formulas built according to grammar

$$
\begin{aligned}
\varphi & : \\
t & =\varphi \wedge \varphi|t=t| t<t \mid t \leqslant t \\
t & =a_{1} x_{1}+\cdots+a_{n} x_{n}+b \quad \text { for } a_{1}, \ldots, a_{n}, b \in \text { in carrier } C
\end{aligned}
$$

- axioms are equality axioms plus calculation rules of arithmetic over C
- solution assigns values in C to x_{1}, \ldots, x_{n}

Definitions

- carrier \mathbb{R} : linear real arithmetic (LRA),
$\operatorname{DPLL}(T)$ simplex algorithm is decision procedure
- carrier \mathbb{Z} : linear integer arithmetic (LIA)

DPLL(T) Simplex Algorithm (1)

- linear arithmetic constraint solving over real or rational variables
- x_{1}, \ldots, x_{n} are split into basic variables \vec{x}_{B} and nonbasic variables \vec{x}_{N}

Input

constraints plus upper and lower bounds for x_{1}, \ldots, x_{n} :

$$
\begin{array}{cl}
A \vec{x}_{N}=\vec{x}_{B} & \text { with tableau } A \in \mathbb{R}^{|B| \times|N|} \\
-\infty \leqslant l_{i} \leqslant x_{i} \leqslant u_{i} \leqslant+\infty &
\end{array}
$$

Output

satisfying assignment or "unsatisfiable"

Invariant

(1) is satisfied and (2) holds for all nonbasic variables x_{i}

DPLL(T) Simplex Algorithm (2)

$$
\begin{gather*}
A \vec{x}_{N}=\vec{x}_{B} \tag{1}\\
-\infty \leqslant I_{i} \leqslant x_{i} \leqslant u_{i} \leqslant+\infty \tag{2}
\end{gather*}
$$

Method

- if (2) holds for all basic variables, return current assignment
- otherwise select basic variable $x_{i}($ so $i \in B)$ which violates (2)
- select suitable nonbasic variable $x_{j}\left(\right.$ so $j \in N$) such that x_{i} and x_{j} can be swapped in a pivoting step, resulting in new tableau

$$
A^{\prime} x_{N^{\prime}}=x_{B^{\prime}}
$$

with $N^{\prime}=N \cup\{i\}-\{j\}$ and $B^{\prime}=B \cup\{j\}-\{i\}$

- change value of x_{i} to I_{i} or u_{i} and update values of basic variables accordingly

PL(T) Simplex Algorithm (3)

$$
\begin{gather*}
A \vec{x}_{N}=\vec{x}_{B} \tag{1}\\
-\infty \leqslant l_{i} \leqslant x_{i} \leqslant u_{i} \leqslant+\infty \tag{2}
\end{gather*}
$$

Pivoting

- swap basic x_{i} and non-basic x_{j}

$$
x_{i}=\sum_{k \in N} A_{i k} x_{k} \quad \Longrightarrow \quad x_{j}=\frac{1}{A_{i j}}\left(x_{i}-\sum_{k \in N-\{j\}} A_{i k} x_{k}\right)
$$

- new tableau A^{\prime} consists of (\star) and $A_{B-\{i\}} \vec{\gamma}_{N}=\vec{x}_{B-\{i\}}$ with (\star) substituted

Update

- assignment of x_{i} is updated to previously violated bound l_{i} or u_{i},
- assignment of x_{k} is recomputed using $(*)$ and A^{\prime} for all $k \in B-\{i\} \cup\{j\}$

DPLL(T) Simplex Algorithm (4)

$$
\begin{gather*}
A \vec{x}_{N}=\vec{x}_{B} \tag{1}\\
-\infty \leqslant l_{i} \leqslant x_{i} \leqslant u_{i} \leqslant+\infty \tag{2}
\end{gather*}
$$

Suitability

- basic variable x_{i} violates lower and/or upper bound
- pick nonbasic variable x_{j} such that
- if $x_{i}<l_{i}: A_{i j}>0$ and $x_{j}<u_{j}$ or $A_{i j}<0$ and $x_{j}>l_{j}$
- if $x_{i}>u_{i}: A_{i j}>0$ and $x_{j}>l_{j}$ or $A_{i j}<0$ and $x_{j}<u_{j}$
- problem is unsatisfiable if no suitable pivot exists

Bland's Rule

- pick lexicographically smallest (i, j) that is suitable pivot
- guarantees termination

Outline

- Summary of Last Week
- Cyclic Simplex Example
- Deciding Equality Logic
- Branch and Bound

Example (due to B. Felgenhauer)

$$
\begin{array}{lll}
& -1 \leqslant x_{1} \leqslant 0 & -4 \leqslant x_{2} \leqslant 0
\end{array}-5 \leqslant x_{3} \leqslant-4 \quad-7 \leqslant x_{4} \leqslant 1 .
$$

Example (due to B. Felgenhauer)

$$
\left.\begin{array}{l}
-1 \leqslant x_{1} \leqslant 0 \quad-4 \leqslant x_{2} \leqslant 0 \quad-5 \leqslant x_{3} \leqslant-4 \quad-7 \leqslant x_{4} \leqslant 1 \\
\\
x_{3} \\
x_{4}
\end{array} \begin{array}{cc}
x_{1} & x_{2} \\
1 & 2 \\
2 & 1
\end{array}\right) \quad \begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
0 & 0 & 0 & 0 & \\
\hline
\end{array}
$$

Example (due to B. Felgenhauer)

$$
\left.\begin{array}{l}
-1 \leqslant x_{1} \leqslant 0 \quad-4 \leqslant x_{2} \leqslant 0 \quad-5 \leqslant x_{3} \leqslant-4 \quad-7 \leqslant x_{4} \leqslant 1 \\
x_{3} \\
x_{4}
\end{array} \begin{array}{cc}
x_{1} & x_{2} \\
1 & 2 \\
2 & 1
\end{array}\right) \quad \begin{array}{lllll}
x_{1} & x_{2} & x_{3} & x_{4} \\
0 & 0 & 0 & 0 &
\end{array}
$$

Example (due to B. Felgenhauer)

$$
\begin{aligned}
& -1 \leqslant x_{1} \leqslant 0 \quad-4 \leqslant x_{2} \leqslant 0
\end{aligned} \quad-5 \leqslant x_{3} \leqslant-4 \quad-7 \leqslant x_{4} \leqslant 10
$$

Example (due to B. Felgenhauer)

$$
\begin{aligned}
& -1 \leqslant x_{1} \leqslant 0 \quad-4 \leqslant x_{2} \leqslant 0
\end{aligned} \quad-5 \leqslant x_{3} \leqslant-4 \quad-7 \leqslant x_{4} \leqslant 10
$$

Example (due to B. Felgenhauer)

$$
\begin{aligned}
& -1 \leqslant x_{1} \leqslant 0 \quad-4 \leqslant x_{2} \leqslant 0 \quad-5 \leqslant x_{3} \leqslant-4 \quad-7 \leqslant x_{4} \leqslant 1 \\
& \left.\begin{array}{l}
x_{3} \\
x_{4} \\
x_{4}
\end{array} \begin{array}{c}
x_{2} \\
1
\end{array} \quad 2, \begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
2 & 1
\end{array}\right) \begin{array}{llll}
0 & 0 & 0 & 0
\end{array} \\
& \downarrow \\
& \left.\begin{array}{c}
\\
x_{1} \\
x_{4}
\end{array} \begin{array}{cc}
x_{3} & x_{2} \\
1 & -2 \\
2 & -3
\end{array}\right) \quad \begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline-4 & 0 & -4-8
\end{array} \\
& \downarrow \\
& x_{3} \quad x_{4} \\
& \begin{array}{l}
x_{1} \\
x_{2}
\end{array}\left(\begin{array}{cc}
-\frac{1}{3} & \frac{2}{3} \\
\frac{2}{3} & -\frac{1}{3}
\end{array}\right) \quad \begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
-\frac{10}{3} & \frac{1}{3} & -4 & -7
\end{array}
\end{aligned}
$$

Example (due to B. Felgenhauer)

$$
\begin{aligned}
& -1 \leqslant x_{1} \leqslant 0 \quad-4 \leqslant x_{2} \leqslant 0 \quad-5 \leqslant x_{3} \leqslant-4 \quad-7 \leqslant x_{4} \leqslant 1 \\
& \left.\begin{array}{c}
\\
x_{3} \\
x_{4}
\end{array} \begin{array}{cc}
x_{1} & x_{2} \\
1 & 2 \\
2 & 1
\end{array}\right) \quad \begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline 0 & 0 & 0 & 0
\end{array} \\
& \downarrow \\
& \left.\begin{array}{c}
\\
x_{1} \\
x_{4}
\end{array} \begin{array}{cc}
x_{3} & x_{2} \\
1 & -2 \\
2 & -3
\end{array}\right) \quad \begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline-4 & 0 & -4-8
\end{array} \\
& \downarrow \\
& x_{3} \quad x_{4} \\
& \begin{array}{l}
x_{1} \\
x_{2}
\end{array}\left(\begin{array}{cc}
-\frac{1}{3} & \frac{2}{3} \\
\frac{2}{3} & -\frac{1}{3}
\end{array}\right) \quad \begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline-\frac{10}{3} & \frac{1}{3} & -4 & -7
\end{array}
\end{aligned}
$$

Example (due to B. Felgenhauer)

$$
\begin{aligned}
& -1 \leqslant x_{1} \leqslant 0 \quad-4 \leqslant x_{2} \leqslant 0 \quad-5 \leqslant x_{3} \leqslant-4 \quad-7 \leqslant x_{4} \leqslant 1 \\
& \left.\begin{array}{c}
\\
x_{3} \\
x_{4}
\end{array} \begin{array}{cc}
x_{1} & x_{2} \\
1 & 2 \\
2 & 1
\end{array}\right) \quad \begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline 0 & 0 & 0 & 0
\end{array} \\
& \downarrow \\
& x_{3} \quad x_{2} \\
& \begin{array}{l}
x_{1} \\
x_{4}
\end{array}\left(\begin{array}{cc}
1 & -2 \\
2 & -3
\end{array}\right) \quad \begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline-4 & 0 & -4-8
\end{array} \\
& \downarrow \\
& x_{3} \quad x_{4} \\
& \begin{array}{l}
x_{1} \\
x_{2}
\end{array}\left(\begin{array}{cc}
-\frac{1}{3} & \frac{2}{3} \\
\frac{2}{3} & -\frac{1}{3}
\end{array}\right) \quad \begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
-\frac{10}{3} & \frac{1}{3} & -4 & -7
\end{array} \\
& \downarrow \\
& \left.\begin{array}{c}
\\
x_{3} \\
x_{2}
\end{array} \begin{array}{cc}
x_{1} & x_{4} \\
-3 & 2 \\
-2 & 1
\end{array}\right) \quad \begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
-1-5-11-7
\end{array}
\end{aligned}
$$

Example (due to B. Felgenhauer)

$$
\begin{aligned}
& -1 \leqslant x_{1} \leqslant 0 \quad-4 \leqslant x_{2} \leqslant 0 \quad-5 \leqslant x_{3} \leqslant-4 \quad-7 \leqslant x_{4} \leqslant 1 \\
& \left.\begin{array}{c}
\\
x_{3} \\
x_{4}
\end{array} \begin{array}{cc}
x_{1} & x_{2} \\
1 & 2 \\
2 & 1
\end{array}\right) \quad \begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline 0 & 0 & 0 & 0
\end{array} \\
& \downarrow \\
& x_{3} \quad x_{2} \\
& \begin{array}{l}
x_{1} \\
x_{4}
\end{array}\left(\begin{array}{ll}
1 & -2 \\
2 & -3
\end{array}\right) \quad \begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline 4 & 0 & -4-8
\end{array} \\
& \downarrow \\
& x_{3} \quad x_{4} \\
& \begin{array}{l}
x_{1} \\
x_{2}
\end{array}\left(\begin{array}{cc}
-\frac{1}{3} & \frac{2}{3} \\
\frac{2}{3} & -\frac{1}{3}
\end{array}\right) \quad \begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline-\frac{10}{3} & \frac{1}{3} & -4 & -7
\end{array} \\
& \downarrow \\
& \left.\begin{array}{c}
\\
x_{3} \\
x_{2}
\end{array} \begin{array}{cc}
x_{1} & x_{4} \\
-3 & 2 \\
-2 & 1
\end{array}\right) \begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
-1-5-11-7
\end{array} \longrightarrow \begin{array}{cccc}
x_{1} & x_{2} \\
x_{3} \\
x_{4}
\end{array}\left(\begin{array}{cc}
1 & 2 \\
2 & 1
\end{array}\right) \begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline-1 & -4 & -9-6
\end{array}
\end{aligned}
$$

Example (due to B. Felgenhauer)

$$
\begin{aligned}
& -1 \leqslant x_{1} \leqslant 0 \quad-4 \leqslant x_{2} \leqslant 0 \quad-5 \leqslant x_{3} \leqslant-4 \quad-7 \leqslant x_{4} \leqslant 1 \\
& \left.\begin{array}{c}
\\
x_{3} \\
x_{4}
\end{array} \begin{array}{cc}
x_{1} & x_{2} \\
1 & 2 \\
2 & 1
\end{array}\right) \quad \begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline 0 & 0 & 0 & 0
\end{array} \\
& \downarrow \\
& x_{3} \quad x_{2} \\
& \begin{array}{l}
x_{1} \\
x_{4}
\end{array}\left(\begin{array}{ll}
1 & -2 \\
2 & -3
\end{array}\right) \quad \begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline 4 & 0 & -4-8
\end{array} \\
& \downarrow \\
& x_{3} \quad x_{4} \\
& \begin{array}{l}
x_{1} \\
x_{2}
\end{array}\left(\begin{array}{cc}
-\frac{1}{3} & \frac{2}{3} \\
\frac{2}{3} & -\frac{1}{3}
\end{array}\right) \quad \begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
-\frac{10}{3} & \frac{1}{3} & -4 & -7
\end{array} \\
& \downarrow \\
& \left.\begin{array}{c}
\\
x_{3} \\
x_{2}
\end{array} \begin{array}{cc}
x_{1} & x_{4} \\
-3 & 2 \\
-2 & 1
\end{array}\right) \begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
-1-5-11-7
\end{array} \longrightarrow \begin{array}{cccc}
x_{1} & x_{2} \\
x_{3} \\
x_{4}
\end{array}\left(\begin{array}{cc}
1 & 2 \\
2 & 1
\end{array}\right) \begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline-1 & -4 & -9-6
\end{array}
\end{aligned}
$$

Example (due to B. Felgenhauer)

$$
\begin{aligned}
& -1 \leqslant x_{1} \leqslant 0 \quad-4 \leqslant x_{2} \leqslant 0 \quad-5 \leqslant x_{3} \leqslant-4 \quad-7 \leqslant x_{4} \leqslant 1 \\
& \left.\begin{array}{l}
\\
x_{3} \\
x_{4}
\end{array} \begin{array}{cc}
x_{1} & x_{2} \\
1 & 2 \\
2 & 1
\end{array}\right) \quad \begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline 0 & 0 & 0 & 0
\end{array} \\
& \downarrow \\
& x_{3} \quad x_{2} \\
& \begin{array}{l}
x_{1} \\
x_{4}
\end{array}\left(\begin{array}{ll}
1 & -2 \\
2 & -3
\end{array}\right) \quad \begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline 4 & 0 & -4-8
\end{array} \\
& \downarrow \\
& x_{3} \quad x_{4} \\
& \left.\begin{array}{l}
\\
x_{1} \\
x_{2}
\end{array} \begin{array}{cc}
x_{3} & x_{4} \\
\frac{2}{3} & -\frac{1}{3}
\end{array}\right) \frac{2}{3} \begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline-\frac{10}{3}-\frac{1}{3}-4 & -7
\end{array} \\
& \downarrow \\
& \begin{array}{c}
\\
x_{1} \\
x_{2}
\end{array} \begin{array}{cc}
x_{3} & x_{4} \\
\left(\begin{array}{cc}
-\frac{1}{3} & \frac{2}{3} \\
\frac{2}{3} & -\frac{1}{3}
\end{array}\right)
\end{array} \\
& \uparrow \\
& \begin{array}{c}
x_{1} \\
x_{4} \\
x_{3} \\
x_{2}
\end{array}\left(\begin{array}{cc}
-3 & 2 \\
-2 & 1
\end{array}\right) \begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
-1-5-11-7
\end{array} \longrightarrow \begin{array}{cccc}
x_{1} & x_{2} \\
x_{3} \\
x_{4}
\end{array}\left(\begin{array}{cc}
1 & 2 \\
2 & 1
\end{array}\right) \begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline-1 & -4 & -9-6
\end{array}
\end{aligned}
$$

Example (due to B. Felgenhauer)

$$
-1 \leqslant x_{1} \leqslant 0 \quad-4 \leqslant x_{2} \leqslant 0 \quad-5 \leqslant x_{3} \leqslant-4 \quad-7 \leqslant x_{4} \leqslant 1
$$

$$
\begin{aligned}
& x_{3} \\
& x_{4}
\end{aligned}\left(\begin{array}{cc}
x_{1} & x_{2} \\
1 & 2 \\
2 & 1
\end{array}\right) \quad \begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline 0 & 0 & 0 & 0
\end{array}
$$

$$
\left.\begin{array}{c}
\\
x_{3} \\
x_{2}
\end{array} \begin{array}{cc}
x_{1} & x_{4} \\
-3 & 2 \\
-2 & 1
\end{array}\right) \quad \begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline 0 & 1 & 2 & 1
\end{array}
$$

$$
x_{3} \quad x_{2}
$$

$$
\uparrow
$$

$$
\begin{aligned}
& x_{1} \\
& x_{4}
\end{aligned}\left(\begin{array}{cc}
1 & -2 \\
2 & -3
\end{array}\right) \quad \begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
-4 & 0 & -4-8
\end{array}
$$

$$
x_{3} \quad x_{4}
$$

$$
\begin{aligned}
& \\
& x_{1} \\
& x_{2}
\end{aligned}\left(\begin{array}{cc}
x_{3} & x_{4} \\
-\frac{1}{3} & \frac{2}{3} \\
\frac{2}{3} & -\frac{1}{3}
\end{array}\right) \quad \begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline \frac{7}{3} & -\frac{11}{3}-5 & 1
\end{array}
$$

$$
x_{3} \quad x_{4}
$$

$$
\downarrow
$$

$$
x_{3} \quad x_{2}
$$

$$
\begin{aligned}
& x_{1} \\
& x_{2}
\end{aligned}\left(\begin{array}{cc}
-\frac{1}{3} & \frac{2}{3} \\
\frac{2}{3} & -\frac{1}{3}
\end{array}\right) \quad \begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
-\frac{10}{3} & \frac{1}{3} & -4 & -7
\end{array}
$$

$$
\begin{aligned}
& x_{1} \\
& x_{4}
\end{aligned}\left(\begin{array}{cc}
x_{3} & x_{2} \\
1 & -2 \\
2 & -3
\end{array}\right) \quad \begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline 3 & -4 & -5 & 2
\end{array}
$$

$$
\downarrow
$$

$$
\begin{gathered}
\\
x_{3} \\
x_{2}
\end{gathered}\left(\begin{array}{cc}
x_{1} & x_{4} \\
-3 & 2 \\
-2 & 1
\end{array}\right) \frac{x_{1}}{} \begin{array}{llll}
x_{2} & x_{3} & x_{4} \\
-1-5-11-7
\end{array} \longrightarrow \begin{array}{cccc}
x_{1} & x_{2} \\
x_{3} \\
x_{4}
\end{array}\left(\begin{array}{cc}
1 & 2 \\
2 & 1
\end{array}\right) \begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
-1 & -4 & -9-6
\end{array}
$$

Example (due to B. Felgenhauer)

$$
-1 \leqslant x_{1} \leqslant 0 \quad-4 \leqslant x_{2} \leqslant 0 \quad-5 \leqslant x_{3} \leqslant-4 \quad-7 \leqslant x_{4} \leqslant 1
$$

$$
\left.\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\left(\begin{array}{cccc}
1 & 2 \\
2 & 1
\end{array}\right) \begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
0 & 0 & 0 & 0
\end{array} \leftarrow \begin{array}{cc}
x_{1} & x_{4} \\
x_{3} \\
x_{2}
\end{array} \begin{array}{cccc}
-3 & 2 \\
-2 & 1
\end{array}\right) \begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline 0 & 1 & 2 & 1
\end{array}
$$

$$
x_{3} \quad x_{2}
$$

$$
\begin{aligned}
& x_{1} \\
& x_{4}
\end{aligned}\left(\begin{array}{cc}
1 & -2 \\
2 & -3
\end{array}\right) \quad \begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline-4 & 0 & -4-8
\end{array}
$$

$$
\begin{aligned}
& \\
& x_{1} \\
& x_{2}
\end{aligned} \begin{array}{cc}
x_{3} & x_{4} \\
\left(\begin{array}{cc}
-\frac{1}{3} & \frac{2}{3} \\
\frac{2}{3} & -\frac{1}{3}
\end{array}\right)
\end{array} \begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline \frac{7}{3} & -\frac{11}{3}-5 & 1
\end{array}
$$

$$
\begin{array}{ll}
x_{3} & x_{4}
\end{array}
$$

$$
\downarrow
$$

$$
\left.\begin{array}{l}
\\
x_{1} \\
x_{2}
\end{array} \begin{array}{cc}
x_{3} & x_{4} \\
-\frac{1}{3} & \frac{2}{3} \\
\frac{2}{3} & -\frac{1}{3}
\end{array}\right) \quad \begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline-\frac{10}{3} & \frac{1}{3} & -4-7
\end{array}
$$

$$
\vee_{1} \quad \downarrow
$$

$$
\begin{gathered}
x_{1} \\
x_{4} \\
x_{3} \\
x_{2}
\end{gathered}\left(\begin{array}{cc}
-3 & 2 \\
-2 & 1
\end{array}\right) \begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
-1-5-11-7
\end{array} \longrightarrow \begin{array}{cccc}
x_{1} & x_{2} \\
x_{3} \\
x_{4}
\end{array}\left(\begin{array}{cccc}
1 & 2 \\
2 & 1
\end{array}\right) \begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
-1 & -4-9-6
\end{array}
$$

trajectory of assignments $\left(x_{1}, x_{2}\right)$

trajectory of assignments (x_{1}, x_{2})

trajectory of assignments $\left(x_{1}, x_{2}\right)$

Example (due to B. Felgenhauer)

$$
\begin{aligned}
& -1 \leqslant x_{1} \leqslant 0 \quad-4 \leqslant x_{2} \leqslant 0 \quad-5 \leqslant x_{3} \leqslant-4 \quad-7 \leqslant x_{4} \leqslant 1 \\
& \left.\begin{array}{l}
x_{3} \\
x_{4}
\end{array} \begin{array}{c}
x_{1} \\
x_{2} \\
1
\end{array} \quad 2 \begin{array}{llll}
\\
2 & 1
\end{array}\right) \begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline 0 & 0 & 0 & 0
\end{array} \\
& \downarrow \\
& x_{3} \quad x_{2} \\
& \begin{array}{l}
x_{1} \\
x_{4}
\end{array}\left(\begin{array}{ll}
1 & -2 \\
2 & -3
\end{array}\right) \frac{\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
-4 & 0 & -4 & -8
\end{array} \quad \text { violation of Bland's rule }}{} \\
&
\end{aligned}
$$

Example (due to B. Felgenhauer)

$$
\begin{aligned}
& -1 \leqslant x_{1} \leqslant 0 \quad-4 \leqslant x_{2} \leqslant 0
\end{aligned} \quad-5 \leqslant x_{3} \leqslant-4 \quad-7 \leqslant x_{4} \leqslant 10
$$

Example (due to B. Felgenhauer)

$$
\begin{aligned}
& -1 \leqslant x_{1} \leqslant 0 \quad-4 \leqslant x_{2} \leqslant 0 \quad-5 \leqslant x_{3} \leqslant-4 \quad-7 \leqslant x_{4} \leqslant 1 \\
& \left.\begin{array}{l}
x_{3} \\
x_{4} \\
x_{4}
\end{array} \begin{array}{c}
x_{1} \\
x_{2} \\
1
\end{array} 2^{2} 10 \begin{array}{llll}
\\
2 & 1
\end{array}\right) \begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
0 & 0 & 0 & 0
\end{array} \\
& \downarrow \\
& x_{3} \quad x_{2} \\
& \begin{array}{l}
x_{1} \\
x_{4}
\end{array}\left(\begin{array}{ll}
1 & -2 \\
2 & -3
\end{array}\right) \quad \begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline-4 & 0 & -4-8
\end{array} \\
& \downarrow \\
& \left.\begin{array}{c}
\\
x_{2} \\
x_{4}
\end{array} \begin{array}{cc}
x_{3} & x_{1} \\
\frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & \frac{3}{2}
\end{array}\right) \quad \begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline-1-\frac{3}{2} & -4-\frac{7}{2}
\end{array}
\end{aligned}
$$

Example (due to B. Felgenhauer)

$$
\begin{aligned}
& -1 \leqslant x_{1} \leqslant 0 \quad-4 \leqslant x_{2} \leqslant 0 \quad-5 \leqslant x_{3} \leqslant-4 \quad-7 \leqslant x_{4} \leqslant 1 \\
& x_{1} \quad x_{2} \\
& \begin{array}{l}
x_{3} \\
x_{4}
\end{array}\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) \quad \begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
0 & 0 & 0 & 0
\end{array} \\
& \downarrow \\
& x_{3} \quad x_{2} \\
& \begin{array}{l}
x_{1} \\
x_{4}
\end{array}\left(\begin{array}{ll}
1 & -2 \\
2 & -3
\end{array}\right) \quad \begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline-4 & 0 & -4-8
\end{array} \\
& \left.\begin{array}{c}
\\
\\
x_{2} \\
x_{4}
\end{array} \begin{array}{ccccc}
x_{3} & x_{1} \\
& \downarrow \\
\frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & \frac{3}{2}
\end{array}\right) \quad \begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline-1 & -\frac{3}{2} & -4-\frac{7}{2}
\end{array}
\end{aligned}
$$

trajectory of assignments $\left(x_{1}, x_{2}\right)$

Outline

- Summary of Last Week

- Cyclic Simplex Example

- Deciding Equality Logic
- Branch and Bound

How to Be Lazy

How to Be Lazy

Theory T

- equality logic
- equality + uninterpreted functions (EUF)
- linear real arithmetic (LRA)
- linear integer arithmetic (LIA)
- bitvectors (BV)
- arrays (A)

How to Be Lazy

Theory T

T-solving method

- equality logic
- equality + uninterpreted functions (EUF) congruence closure
- linear real arithmetic (LRA)
$\operatorname{DPLL}(T)$ Simplex
- linear integer arithmetic (LIA)
- bitvectors (BV)
- arrays (A)

How to Be Lazy

Theory T

- equality logic
- equality + uninterpreted functions (EUF)
- linear real arithmetic (LRA)
- linear integer arithmetic (LIA)
- bitvectors (BV)
- arrays (A)

T-solving method

equality graphs

congruence closure
$\operatorname{DPLL}(T)$ Simplex
$\operatorname{DPLL}(T)$ Simplex + cuts

Input to Satisfiability Problem for Equality Logic

 conjunction φ of equality logic literals over set of variables V
Definitions

- $\varphi=$ is set of positive literals (equality literals) in φ
- φ_{\neq}is set of negative literals (inequality literals) in φ

Input to Satisfiability Problem for Equality Logic

 conjunction φ of equality logic literals over set of variables V
Definitions

- $\varphi=$ is set of positive literals (equality literals) in φ
- φ_{\neq}is set of negative literals (inequality literals) in φ

Input to Satisfiability Problem for Equality Logic

 conjunction φ of equality logic literals over set of variables V
Definitions

- $\varphi=$ is set of positive literals (equality literals) in φ
- φ_{\neq}is set of negative literals (inequality literals) in φ

Input to Satisfiability Problem for Equality Logic

 conjunction φ of equality logic literals over set of variables V
Definitions

- $\varphi=$ is set of positive literals (equality literals) in φ
- φ_{\neq}is set of negative literals (inequality literals) in φ
- equality graph is undirected graph $G_{=}(\varphi)=\left(V, \varphi_{=}, \varphi_{\neq}\right)$

Example

conjunction of equality literals

$$
\begin{gathered}
\varphi=x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{3}=x_{5} \wedge x_{4} \neq x_{6} \wedge x_{6} \neq x_{7} \wedge x_{5}=x_{9} \wedge \\
x_{5}=x_{7} \wedge x_{8} \neq x_{9} \wedge x_{9}=x_{10} \wedge x_{7}=x_{9} \wedge x_{5} \neq x_{10}
\end{gathered}
$$

Example

conjunction of equality literals

$$
\begin{aligned}
& \varphi=x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{3}=x_{5} \wedge x_{4} \neq x_{6} \wedge x_{6} \neq x_{7} \wedge x_{5}=x_{9} \wedge \\
& x_{5}=x_{7} \wedge x_{8} \neq x_{9} \wedge x_{9}=x_{10} \wedge x_{7}=x_{9} \wedge x_{5} \neq x_{10}
\end{aligned}
$$

- $\varphi_{=}: \quad x_{1}=x_{2}, x_{3}=x_{5}, x_{5}=x_{7}, x_{9}=x_{10}, x_{7}=x_{9}, x_{5}=x_{9}$

Example

conjunction of equality literals

$$
\begin{aligned}
& \varphi=x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{3}=x_{5} \wedge x_{4} \neq x_{6} \wedge x_{6} \neq x_{7} \wedge x_{5}=x_{9} \wedge \\
& x_{5}=x_{7} \wedge x_{8} \neq x_{9} \wedge x_{9}=x_{10} \wedge x_{7}=x_{9} \wedge x_{5} \neq x_{10}
\end{aligned}
$$

- $\varphi_{=}: \quad x_{1}=x_{2}, x_{3}=x_{5}, x_{5}=x_{7}, x_{9}=x_{10}, x_{7}=x_{9}, x_{5}=x_{9}$
- $\varphi_{\neq:} \quad x_{1} \neq x_{3}, x_{4} \neq x_{6}, x_{6} \neq x_{7}, x_{8} \neq x_{9}, x_{5} \neq x_{10}$

Example

conjunction of equality literals

$$
\begin{aligned}
\varphi= & x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{3}=x_{5} \wedge x_{4} \neq x_{6} \wedge x_{6} \neq x_{7} \wedge x_{5}=x_{9} \wedge \\
& x_{5}=x_{7} \wedge x_{8} \neq x_{9} \wedge x_{9}=x_{10} \wedge x_{7}=x_{9} \wedge x_{5} \neq x_{10}
\end{aligned}
$$

- $\varphi_{=}: \quad x_{1}=x_{2}, x_{3}=x_{5}, x_{5}=x_{7}, x_{9}=x_{10}, x_{7}=x_{9}, x_{5}=x_{9}$
- $\varphi_{\neq:} \quad x_{1} \neq x_{3}, x_{4} \neq x_{6}, x_{6} \neq x_{7}, x_{8} \neq x_{9}, x_{5} \neq x_{10}$
- equality graph

Input to Satisfiability Problem for Equality Logic

 conjunction φ of equality logic literals over set of variables V
Definitions

- $\varphi=$ is set of positive literals (equality literals) in φ
- φ_{\neq}is set of negative literals (inequality literals) in φ
- equality graph is undirected graph $G_{=}(\varphi)=\left(V, \varphi_{=}, \varphi_{\neq}\right)$

Definitions

equality graph $G_{=}(\varphi)=\left(V, \varphi_{=}, \varphi_{\neq}\right)$

- contradictory cycle is cycle with exactly one φ_{\neq}edge

Input to Satisfiability Problem for Equality Logic

 conjunction φ of equality logic literals over set of variables V
Definitions

- $\varphi=$ is set of positive literals (equality literals) in φ
- φ_{\neq}is set of negative literals (inequality literals) in φ
- equality graph is undirected graph $G_{=}(\varphi)=\left(V, \varphi_{=}, \varphi_{\neq}\right)$

Definitions

equality graph $G=(\varphi)=\left(V, \varphi_{=}, \varphi_{\neq}\right)$

- contradictory cycle is cycle with exactly one φ_{\neq}edge
- contradictory cycle is simple if it contains no node twice

Input to Satisfiability Problem for Equality Logic

 conjunction φ of equality logic literals over set of variables V
Definitions

- $\varphi=$ is set of positive literals (equality literals) in φ
- φ_{\neq}is set of negative literals (inequality literals) in φ
- equality graph is undirected graph $G_{=}(\varphi)=\left(V, \varphi_{=}, \varphi_{\neq}\right)$

Definitions

equality graph $G_{=}(\varphi)=\left(V, \varphi_{=}, \varphi_{\neq}\right)$

- contradictory cycle is cycle with exactly one φ_{\neq}edge
- contradictory cycle is simple if it contains no node twice

Lemma

φ is satisfiable iff $G_{=}(\varphi)$ contains no simple contradictory cycles

Example

conjunction of equality literals

$$
\begin{aligned}
\varphi= & x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{3}=x_{5} \wedge x_{4} \neq x_{6} \wedge x_{6} \neq x_{7} \wedge x_{5}=x_{9} \wedge \\
& x_{5}=x_{7} \wedge x_{8} \neq x_{9} \wedge x_{9}=x_{10} \wedge x_{7}=x_{9} \wedge x_{5} \neq x_{10}
\end{aligned}
$$

- $\varphi_{=:} \quad x_{1}=x_{2}, x_{3}=x_{5}, x_{5}=x_{7}, x_{9}=x_{10}, x_{7}=x_{9}, x_{5}=x_{9}$
- $\varphi_{\neq:} \quad x_{1} \neq x_{3}, x_{4} \neq x_{6}, x_{6} \neq x_{7}, x_{8} \neq x_{9}, x_{5} \neq x_{10}$
- equality graph

- contradictory cycles

Example

conjunction of equality literals

$$
\begin{aligned}
\varphi= & x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{3}=x_{5} \wedge x_{4} \neq x_{6} \wedge x_{6} \neq x_{7} \wedge x_{5}=x_{9} \wedge \\
& x_{5}=x_{7} \wedge x_{8} \neq x_{9} \wedge x_{9}=x_{10} \wedge x_{7}=x_{9} \wedge x_{5} \neq x_{10}
\end{aligned}
$$

- $\varphi_{=:} \quad x_{1}=x_{2}, x_{3}=x_{5}, x_{5}=x_{7}, x_{9}=x_{10}, x_{7}=x_{9}, x_{5}=x_{9}$
- $\varphi_{\neq:} \quad x_{1} \neq x_{3}, x_{4} \neq x_{6}, x_{6} \neq x_{7}, x_{8} \neq x_{9}, x_{5} \neq x_{10}$
- equality graph

- contradictory cycles

$$
x_{9}=x_{5}-\ldots x_{10}
$$

Example

conjunction of equality literals

$$
\begin{aligned}
\varphi= & x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{3}=x_{5} \wedge x_{4} \neq x_{6} \wedge x_{6} \neq x_{7} \wedge x_{5}=x_{9} \wedge \\
& x_{5}=x_{7} \wedge x_{8} \neq x_{9} \wedge x_{9}=x_{10} \wedge x_{7}=x_{9} \wedge x_{5} \neq x_{10}
\end{aligned}
$$

- $\varphi_{=:} \quad x_{1}=x_{2}, x_{3}=x_{5}, x_{5}=x_{7}, x_{9}=x_{10}, x_{7}=x_{9}, x_{5}=x_{9}$
- $\varphi_{\neq:} \quad x_{1} \neq x_{3}, x_{4} \neq x_{6}, x_{6} \neq x_{7}, x_{8} \neq x_{9}, x_{5} \neq x_{10}$
- equality graph

- contradictory cycles

$$
x_{9}=x_{5} \ldots x_{10} \quad x_{7}=x_{9}-x_{10} \ldots x_{5}
$$

Example

conjunction of equality literals

$$
\begin{aligned}
& \varphi=x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{3}=x_{5} \wedge x_{4} \neq x_{6} \wedge x_{6} \neq x_{7} \wedge x_{5}=x_{9} \wedge \\
& x_{5}=x_{7} \wedge x_{8} \neq x_{9} \wedge x_{9}=x_{10} \wedge x_{7}=x_{9} \wedge x_{5} \neq x_{10}
\end{aligned}
$$

- $\varphi_{=:} \quad x_{1}=x_{2}, x_{3}=x_{5}, x_{5}=x_{7}, x_{9}=x_{10}, x_{7}=x_{9}, x_{5}=x_{9}$
- $\varphi_{\neq:} \quad x_{1} \neq x_{3}, x_{4} \neq x_{6}, x_{6} \neq x_{7}, x_{8} \neq x_{9}, x_{5} \neq x_{10}$
- equality graph

- contradictory cycles

$$
x_{9}=x_{5}-\ldots x_{10} \quad x_{7}=x_{9}-x_{10-\ldots} x_{5} \quad x_{5}=x_{3}-x_{5}--x_{10}-x_{9}
$$

Example

conjunction of equality literals

$$
\begin{aligned}
\varphi= & x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{3}=x_{5} \wedge x_{4} \neq x_{6} \wedge x_{6} \neq x_{7} \wedge x_{5}=x_{9} \wedge \\
& x_{5}=x_{7} \wedge x_{8} \neq x_{9} \wedge x_{9}=x_{10} \wedge x_{7}=x_{9} \wedge x_{5} \neq x_{10}
\end{aligned}
$$

- $\varphi_{=}: \quad x_{1}=x_{2}, x_{3}=x_{5}, x_{5}=x_{7}, x_{9}=x_{10}, x_{7}=x_{9}, x_{5}=x_{9}$
- $\varphi_{\neq:} \quad x_{1} \neq x_{3}, x_{4} \neq x_{6}, x_{6} \neq x_{7}, x_{8} \neq x_{9}, x_{5} \neq x_{10}$
- equality graph

- contradictory cycles

$$
x_{9}=x_{5} \ldots x_{10}
$$

simple

simple

Example

conjunction of equality literals

$$
\begin{gathered}
\varphi=x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{3}=x_{5} \wedge x_{4} \neq x_{6} \wedge x_{6} \neq x_{7} \wedge x_{5}=x_{9} \wedge \\
x_{5}=x_{7} \wedge x_{8} \neq x_{9} \wedge x_{9}=x_{10} \wedge x_{7}=x_{9} \wedge x_{5} \neq x_{10}
\end{gathered}
$$

$\triangleright \varphi_{=}: \quad x_{1}=x_{2}, x_{3}=x_{5}, x_{5}=x_{7}, x_{9}=x_{10}, x_{7}=x_{9}, x_{5}=x_{9}$
$\stackrel{\varphi}{\neq:}: \quad x_{1} \neq x_{3}, x_{4} \neq x_{6}, x_{6} \neq x_{7}, x_{8} \neq x_{9}, x_{5} \neq x_{10}$

- equality graph

- contradictory cycles

$$
x_{9}=x_{5} \ldots x_{10}
$$

simple
$x_{7} \xlongequal[\text { simple }]{=x_{9}-x_{10 \ldots} x_{5}}$

Outline

- Summary of Last Week

- Cyclic Simplex Example

- Deciding Equality Logic
- Branch and Bound

Example

$$
\begin{aligned}
3 x-2 y & \geqslant-1 \\
y & \leqslant 4 \\
2 x+y & \geqslant 5 \\
3 x-y & \leqslant 7
\end{aligned}
$$

- looking for solution in \mathbb{Z}^{2}

Example

$$
\begin{aligned}
3 x-2 y & \geqslant-1 \\
y & \leqslant 4 \\
2 x+y & \geqslant 5 \\
3 x-y & \leqslant 7
\end{aligned}
$$

- looking for solution in \mathbb{Z}^{2}
- infinite \mathbb{R}^{2} solution space, six solutions in \mathbb{Z}^{2}

Example

$$
\begin{aligned}
3 x-2 y & \geqslant-1 \\
y & \leqslant 4 \\
2 x+y & \geqslant 5 \\
3 x-y & \leqslant 7
\end{aligned}
$$

- looking for solution in \mathbb{Z}^{2}
- infinite \mathbb{R}^{2} solution space, six solutions in \mathbb{Z}^{2}
- Simplex returns $\left(\frac{9}{7}, \frac{17}{7}\right)$

Example

$$
\begin{gathered}
3 x-2 y \geqslant-1 \\
y \leqslant 4 \\
2 x+y \geqslant 5 \\
3 x-y \leqslant 7
\end{gathered}
$$

- looking for solution in \mathbb{Z}^{2}
- infinite \mathbb{R}^{2} solution space, six solutions in \mathbb{Z}^{2}
- Simplex returns $\left(\frac{9}{7}, \frac{17}{7}\right)$

Idea (Branch and Bound)

- add constraints that exclude solution in \mathbb{R}^{2} but do not change solutions in \mathbb{Z}^{2}

Example

$$
\begin{gathered}
3 x-2 y \geqslant-1 \\
y \leqslant 4 \\
2 x+y \geqslant 5 \\
3 x-y \leqslant 7
\end{gathered}
$$

- looking for solution in \mathbb{Z}^{2}
- infinite \mathbb{R}^{2} solution space, six solutions in \mathbb{Z}^{2}
- Simplex returns $\left(\frac{9}{7}, \frac{17}{7}\right)$

Idea (Branch and Bound)

- add constraints that exclude solution in \mathbb{R}^{2} but do not change solutions in \mathbb{Z}^{2}
- in current solution $1<x<2$, so use Simplex on two augmented problems:
- $C \wedge x \leqslant 1$
- $C \wedge x \geqslant 2$

Example

$$
\begin{gathered}
3 x-2 y \geqslant-1 \\
y \leqslant 4 \\
2 x+y \geqslant 5 \\
3 x-y \leqslant 7
\end{gathered}
$$

- looking for solution in \mathbb{Z}^{2}
- infinite \mathbb{R}^{2} solution space, six solutions in \mathbb{Z}^{2}
- Simplex returns $\left(\frac{9}{7}, \frac{17}{7}\right)$

Idea (Branch and Bound)

- add constraints that exclude solution in \mathbb{R}^{2} but do not change solutions in \mathbb{Z}^{2}
- in current solution $1<x<2$, so use Simplex on two augmented problems:
- $C \wedge x \leqslant 1$
unsatisfiable
- $C \wedge x \geqslant 2$

Example

$$
\begin{aligned}
3 x-2 y & \geqslant-1 \\
y & \leqslant 4 \\
2 x+y & \geqslant 5 \\
3 x-y & \leqslant 7
\end{aligned}
$$

- looking for solution in \mathbb{Z}^{2}
- infinite \mathbb{R}^{2} solution space, six solutions in \mathbb{Z}^{2}
- Simplex returns $\left(\frac{9}{7}, \frac{17}{7}\right)$

Idea (Branch and Bound)

- add constraints that exclude solution in \mathbb{R}^{2} but do not change solutions in \mathbb{Z}^{2}
- in current solution $1<x<2$, so use Simplex on two augmented problems:
- $C \wedge x \leqslant 1$
- $C \wedge x \geqslant 2$ unsatisfiable satisfiable,

Example

$$
\begin{gathered}
3 x-2 y \geqslant-1 \\
y \leqslant 4 \\
2 x+y \geqslant 5 \\
3 x-y \leqslant 7
\end{gathered}
$$

- looking for solution in \mathbb{Z}^{2}
- infinite \mathbb{R}^{2} solution space, six solutions in \mathbb{Z}^{2}
- Simplex returns $\left(\frac{9}{7}, \frac{17}{7}\right)$

Idea (Branch and Bound)

- add constraints that exclude solution in \mathbb{R}^{2} but do not change solutions in \mathbb{Z}^{2}
- in current solution $1<x<2$, so use Simplex on two augmented problems:
- $C \wedge x \leqslant 1$
- $C \wedge x \geqslant 2$
unsatisfiable
satisfiable, Simplex can return $(2,1)$

Algorithm BranchAndBound(φ)

Input: LIA constraint φ
Output: unsatisfiable, or satisfying assignment
let res be result of deciding φ over $\mathbb{R} \quad \triangleright$ e.g. by Simplex
if $r e s$ is unsatisfiable then return unsatisfiable
else if res is solution over \mathbb{Z} then
return res
else
let x be variable assigned non-integer value q in res
$r e s=\operatorname{Branch} A n d B o u n d(\varphi \wedge x \leqslant\lfloor q\rfloor)$
return res \neq unsatisfiable ? res: $\operatorname{Branch} A n d B o u n d(~ \varphi \wedge x \geqslant\lceil q\rceil)$

Definition

\mathbb{R}^{2}-solution space of linear arithmetic problem $A x \leqslant b$ is bounded if for all x_{i} there exist $l_{i}, u_{i} \in \mathbb{R}$ such that all \mathbb{R}^{2}-solutions v satisfy $l_{i} \leqslant v\left(x_{i}\right) \leqslant u_{i}$

Definition

\mathbb{R}^{2}-solution space of linear arithmetic problem $A x \leqslant b$ is bounded if for all x_{i} there exist $l_{i}, u_{i} \in \mathbb{R}$ such that all \mathbb{R}^{2}-solutions v satisfy $l_{i} \leqslant v\left(x_{i}\right) \leqslant u_{i}$

Example

- $3 x-3 y \geqslant 1 \wedge 3 x-3 y \leqslant 2$

Definition

\mathbb{R}^{2}-solution space of linear arithmetic problem $A x \leqslant b$ is bounded if for all x_{i} there exist $l_{i}, u_{i} \in \mathbb{R}$ such that all \mathbb{R}^{2}-solutions v satisfy $l_{i} \leqslant v\left(x_{i}\right) \leqslant u_{i}$

Example

- $3 x-3 y \geqslant 1 \wedge 3 x-3 y \leqslant 2$
- unbounded problem

Definition

\mathbb{R}^{2}-solution space of linear arithmetic problem $A x \leqslant b$ is bounded if for all x_{i} there exist $l_{i}, u_{i} \in \mathbb{R}$ such that all \mathbb{R}^{2}-solutions v satisfy $l_{i} \leqslant v\left(x_{i}\right) \leqslant u_{i}$

Example

- $3 x-3 y \geqslant 1 \wedge 3 x-3 y \leqslant 2$
- unbounded problem
- no solution in \mathbb{Z}^{2}

Definition

\mathbb{R}^{2}-solution space of linear arithmetic problem $A x \leqslant b$ is bounded if for all x_{i} there exist $l_{i}, u_{i} \in \mathbb{R}$ such that all \mathbb{R}^{2}-solutions v satisfy $l_{i} \leqslant v\left(x_{i}\right) \leqslant u_{i}$

Example

- $3 x-3 y \geqslant 1 \wedge 3 x-3 y \leqslant 2$
- unbounded problem
- no solution in \mathbb{Z}^{2}
- BranchAndBound keeps adding $x \geqslant n, y \geqslant m$

Definition

\mathbb{R}^{2}-solution space of linear arithmetic problem $A x \leqslant b$ is bounded if for all x_{i} there exist $l_{i}, u_{i} \in \mathbb{R}$ such that all \mathbb{R}^{2}-solutions v satisfy $l_{i} \leqslant v\left(x_{i}\right) \leqslant u_{i}$

Example

- $3 x-3 y \geqslant 1 \wedge 3 x-3 y \leqslant 2$
- unbounded problem
- no solution in \mathbb{Z}^{2}
- BranchAndBound keeps adding $x \geqslant n, y \geqslant m$

Remarks

- BranchAndBound might not terminate if solution space is unbounded

Definition

\mathbb{R}^{2}-solution space of linear arithmetic problem $A x \leqslant b$ is bounded if for all x_{i} there exist $l_{i}, u_{i} \in \mathbb{R}$ such that all \mathbb{R}^{2}-solutions v satisfy $l_{i} \leqslant v\left(x_{i}\right) \leqslant u_{i}$

Example

- $3 x-3 y \geqslant 1 \wedge 3 x-3 y \leqslant 2$
- unbounded problem
- no solution in \mathbb{Z}^{2}
- BranchAndBound keeps adding $x \geqslant n, y \geqslant m$

Remarks

- BranchAndBound might not terminate if solution space is unbounded
- methods exist to derive solution bounds from tableau, but bounds are often too high for efficient practical procedures

Definition

\mathbb{R}^{2}-solution space of linear arithmetic problem $A x \leqslant b$ is bounded if for all x_{i} there exist $l_{i}, u_{i} \in \mathbb{R}$ such that all \mathbb{R}^{2}-solutions v satisfy $l_{i} \leqslant v\left(x_{i}\right) \leqslant u_{i}$

Example

- $3 x-3 y \geqslant 1 \wedge 3 x-3 y \leqslant 2$
- unbounded problem
- no solution in \mathbb{Z}^{2}
- BranchAndBound keeps adding $x \geqslant n, y \geqslant m$

Remarks

- BranchAndBound might not terminate if solution space is unbounded
- methods exist to derive solution bounds from tableau, but bounds are often too high for efficient practical procedures
- use cutting planes to restrict solution space more efficiently

LIA Application: Finding Work Schedules

Example (Scheduling Problem)

Is there a six-week cyclic work schedule for 22 employees who work 8-hour shifts, 24/7, 5 working days per week such that the following holds: In morning and afternoon shifts 6 employees are present, in night shifts 3 . Joe does only morning shifts, Sally does not work on Sundays. Nobody works more than 6 days in a row.

LIA Application: Finding Work Schedules

Example (Scheduling Problem)

Is there a six-week cyclic work schedule for 22 employees who work 8-hour shifts, $24 / 7,5$ working days per week such that the following holds: In morning and afternoon shifts 6 employees are present, in night shifts 3 . Joe does only morning shifts, Sally does not work on Sundays. Nobody works more than 6 days in a row.

Shift Schedule Requirements

- number of employees n
- set of shifts A (activities to be distributed)
- length of schedule (e.g. one week) and cyclicity
- requirement matrix R : $R_{i j}$ is \# employees required in shift i of day j
- prohibited shift sequences, maximal length of work blocks, ...

LIA Application: Finding Work Schedules

Example (Scheduling Problem)

Is there a six-week cyclic work schedule for 22 employees who work 8-hour shifts, $24 / 7,5$ working days per week such that the following holds: In morning and afternoon shifts 6 employees are present, in night shifts 3 . Joe does only morning shifts, Sally does not work on Sundays. Nobody works more than 6 days in a row.

Shift Schedule Requirements

- number of employees n
- set of shifts A (activities to be distributed)
- length of schedule (e.g. one week) and cyclicity
- requirement matrix R : $R_{i j}$ is \# employees required in shift i of day j
- prohibited shift sequences, maximal length of work blocks, ...

LIA Encoding

- integer variable corresponding to employee for each activity
- cardinality constraints for requirement matrix

Bibliography

Bruno Dutertre and Leonardo de Moura.
A Fast Linear-Arithmetic Solver for DPLL(T).
Proc. of International Conference on Computer Aided Verification, pp. 81-94, 2006.
圊 Bruno Dutertre and Leonardo de Moura
Integrating Simplex with DPLL(T)
Technical Report SRI-CSL-06-01, SRI International, 2006
Daniel Kroening and Ofer Strichman
The Simplex Algorithm
Section 5.2 of Decision Procedures - An Algorithmic Point of View
Springer, 2008
Bertram Felgenhauer and Aart Middeldorp
Constructing Cycles in the Simplex Method for DPLL(T)
Proc. 14th International Colloquium on Theoretical Aspects of Computing,
LNCS 10580, pp. 213-228, 2017
國 Christoph Erkinger and Nysret Musliu
Personnel Scheduling as Satisfiability Modulo Theories
Proc. 26th International Joint Conference on Artificial Intelligence,
pp. 614-621, 2017

