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Definition (Theory of Linear Arithmetic over C)

I for variables x1, . . . , xn, formulas built according to grammar

ϕ ::= ϕ ∧ ϕ | t = t | t < t | t 6 t

t ::= a1x1 + · · ·+ anxn + b for a1, . . . , an, b ∈ in carrier C

I axioms are equality axioms plus calculation rules of arithmetic over C

I solution assigns values in C to x1, . . . , xn

Definitions

I carrier R: linear real arithmetic (LRA),

DPLL(T ) simplex algorithm is decision procedure

I carrier Z: linear integer arithmetic (LIA)
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DPLL(T ) Simplex Algorithm (1)

I linear arithmetic constraint solving over real or rational variables

I x1, . . . , xn are split into basic variables ~xB and nonbasic variables ~xN

Input

constraints plus upper and lower bounds for x1, . . . , xn:

A ~xN = ~xB with tableau A ∈ R|B|×|N| (1)

−∞ 6li 6 xi 6 ui 6 +∞ (2)

Output

satisfying assignment or “unsatisfiable”

Invariant

(1) is satisfied and (2) holds for all nonbasic variables xi
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DPLL(T ) Simplex Algorithm (2)

A~xN = ~xB (1)

−∞ 6li 6 xi 6 ui 6 +∞ (2)

Method

I if (2) holds for all basic variables, return current assignment

I otherwise select basic variable xi (so i ∈ B) which violates (2)

I select suitable nonbasic variable xj (so j ∈ N) such that xi and xj can be

swapped in a pivoting step, resulting in new tableau

A′ xN′ = xB′

with N ′ = N ∪ {i} − {j} and B ′ = B ∪ {j} − {i}
I change value of xi to li or ui and update values of basic variables accordingly
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DPLL(T ) Simplex Algorithm (3)

A~xN = ~xB (1)

−∞ 6li 6 xi 6 ui 6 +∞ (2)

Pivoting

I swap basic xi and non-basic xj

xi =
∑
k∈N

Aikxk =⇒ xj =
1

Aij

xi −
∑

k∈N−{j}

Aikxk

 (?)

I new tableau A′ consists of (?) and AB−{i}~xN = ~xB−{i} with (?) substituted

Update

I assignment of xi is updated to previously violated bound li or ui ,

I assignment of xk is recomputed using (?) and A′ for all k ∈ B − {i} ∪ {j}
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DPLL(T ) Simplex Algorithm (4)

A~xN = ~xB (1)

−∞ 6li 6 xi 6 ui 6 +∞ (2)

Suitability

I basic variable xi violates lower and/or upper bound

I pick nonbasic variable xj such that

I if xi < li : Aij > 0 and xj < uj or Aij < 0 and xj > lj
I if xi > ui : Aij > 0 and xj > lj or Aij < 0 and xj < uj

I problem is unsatisfiable if no suitable pivot exists

Bland’s Rule

I pick lexicographically smallest (i , j) that is suitable pivot

I guarantees termination
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How to Be Lazy

SAT solver T -solver

candidate model

explanation
unsat sat

ϕ
abstract

SMT solver

Theory T

T -solving method

I equality logic

equality graphs

I equality + uninterpreted functions (EUF)

congruence closure X

I linear real arithmetic (LRA)

DPLL(T ) Simplex X

I linear integer arithmetic (LIA)

DPLL(T ) Simplex + cuts

I bitvectors (BV)

I arrays (A)
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Input to Satisfiability Problem for Equality Logic

conjunction ϕ of equality logic literals over set of variables V

Definitions

I ϕ= is set of positive literals (equality literals) in ϕ

I ϕ6= is set of negative literals (inequality literals) in ϕ

I equality graph is undirected graph G=(ϕ) = (V , ϕ=, ϕ6=)

Definitions

equality graph G=(ϕ) = (V , ϕ=, ϕ6=)

I contradictory cycle is cycle with exactly one ϕ6= edge

I contradictory cycle is simple if it contains no node twice

Lemma

ϕ is satisfiable iff G=(ϕ) contains no simple contradictory cycles
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Example

conjunction of equality literals

ϕ = x1 = x2 ∧ x1 6= x3 ∧ x3 = x5 ∧ x4 6= x6 ∧ x6 6= x7 ∧ x5 = x9 ∧
x5 = x7 ∧ x8 6= x9 ∧ x9 = x10 ∧ x7 = x9 ∧ x5 6= x10

I ϕ= : x1 = x2, x3 = x5, x5 = x7, x9 = x10, x7 = x9, x5 = x9

I ϕ6= : x1 6= x3, x4 6= x6, x6 6= x7, x8 6= x9, x5 6= x10

I equality graph

x1 x2 x3 x4 x5

x6 x7 x8 x9 x10

I contradictory cycles

x9 x5 x10

simple

x7 x9 x10 x5

simple

x5 x3 x5 x10 x9

I unsatisfiable
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Example

3x − 2y > −1
y 6 4

2x + y > 5
3x − y 6 7

I looking for solution in Z2

I infinite R2 solution space,

six solutions in Z2

I Simplex returns ( 9
7 ,

17
7 )

2 4 6

2

4

6

Idea (Branch and Bound)

I add constraints that exclude solution in R2 but do not change solutions in Z2

I in current solution 1 < x < 2, so use Simplex on two augmented problems:

I C ∧ x 6 1

unsatisfiable

I C ∧ x > 2

satisfiable

,

Simplex can return (2, 1)
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Algorithm BranchAndBound(ϕ)

Input: LIA constraint ϕ
Output: unsatisfiable, or satisfying assignment

let res be result of deciding ϕ over R . e.g. by Simplex
if res is unsatisfiable then

return unsatisfiable
else if res is solution over Z then

return res
else

let x be variable assigned non-integer value q in res
res = BranchAndBound(ϕ ∧ x 6 bqc)
return res 6= unsatisfiable ? res : BranchAndBound(ϕ ∧ x > dqe)

20



Definition

R2-solution space of linear arithmetic problem Ax 6 b is bounded

if for all xi there exist li , ui ∈ R such that all R2-solutions v satisfy li 6 v(xi ) 6 ui

Example

1 2 3

1

2

3

I 3x − 3y > 1 ∧ 3x − 3y 6 2

I unbounded problem

I no solution in Z2

I BranchAndBound keeps adding x > n, y > m

Remarks

I BranchAndBound might not terminate if solution space is unbounded

I methods exist to derive solution bounds from tableau, but bounds are often

too high for efficient practical procedures

I use cutting planes to restrict solution space more efficiently

21



Definition

R2-solution space of linear arithmetic problem Ax 6 b is bounded

if for all xi there exist li , ui ∈ R such that all R2-solutions v satisfy li 6 v(xi ) 6 ui

Example

1 2 3

1

2

3

I 3x − 3y > 1 ∧ 3x − 3y 6 2

I unbounded problem

I no solution in Z2

I BranchAndBound keeps adding x > n, y > m

Remarks

I BranchAndBound might not terminate if solution space is unbounded

I methods exist to derive solution bounds from tableau, but bounds are often

too high for efficient practical procedures

I use cutting planes to restrict solution space more efficiently

21



Definition

R2-solution space of linear arithmetic problem Ax 6 b is bounded

if for all xi there exist li , ui ∈ R such that all R2-solutions v satisfy li 6 v(xi ) 6 ui

Example

1 2 3

1

2

3

I 3x − 3y > 1 ∧ 3x − 3y 6 2

I unbounded problem

I no solution in Z2

I BranchAndBound keeps adding x > n, y > m

Remarks

I BranchAndBound might not terminate if solution space is unbounded

I methods exist to derive solution bounds from tableau, but bounds are often

too high for efficient practical procedures

I use cutting planes to restrict solution space more efficiently

21



Definition

R2-solution space of linear arithmetic problem Ax 6 b is bounded

if for all xi there exist li , ui ∈ R such that all R2-solutions v satisfy li 6 v(xi ) 6 ui

Example

1 2 3

1

2

3

I 3x − 3y > 1 ∧ 3x − 3y 6 2

I unbounded problem

I no solution in Z2

I BranchAndBound keeps adding x > n, y > m

Remarks

I BranchAndBound might not terminate if solution space is unbounded

I methods exist to derive solution bounds from tableau, but bounds are often

too high for efficient practical procedures

I use cutting planes to restrict solution space more efficiently
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LIA Application: Finding Work Schedules

Example (Scheduling Problem)

Is there a six-week cyclic work schedule for 22 employees who work 8-hour shifts,

24/7, 5 working days per week such that the following holds: In morning and

afternoon shifts 6 employees are present, in night shifts 3. Joe does only morning

shifts, Sally does not work on Sundays. Nobody works more than 6 days in a row.

Shift Schedule Requirements

I number of employees n

I set of shifts A (activities to be distributed)

I length of schedule (e.g. one week) and cyclicity

I requirement matrix R: Rij is # employees required in shift i of day j

I prohibited shift sequences, maximal length of work blocks, . . .

LIA Encoding

I integer variable corresponding to employee for each activity

I cardinality constraints for requirement matrix

I . . .
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