
SAT and SMT Solving

Sarah Winkler

Computational Logic Group
Department of Computer Science
University of Innsbruck

lecture 11
SS 2019

http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Outline

Summary of Last Week

Collision Attacks

Nelson-Oppen Combination Method

1

Definition (Bit Vector Theory)

I variable xk is list of length k of propositional variables xk−1 . . . x2x1x0

I constant nk is bit list of length k

I formulas built according to grammar

formula := (formula ∨ formula) | (formula ∧ formula) | (¬formula) | atom
atom := term rel term | true | false

rel := = | 6= | >u | >s | >u | >s

term := (term binop term) | (unop term) | var | constant | term[i :j] |
(formula ? term : term)

binop := + | − | × | ÷u | ÷s | %u | %s | � | �u | �s | & | | | ˆ| ::

unop :=∼| −

I axioms are equality axioms plus rules for arithmetic/comparison/bitwise oper-

ations on bit vectors of length k

I solution assigns bit list of length k to variables xk

2

Remarks

I theory is decidable because carrier is finite

I common decision procedures use translation to SAT (bit blasting)

I eager: no DPLL(T), bit-blast entire formula to SAT problem

I lazy: second SAT solver as BV theory solver, bit-blast only BV atoms

I solvers heavily rely on preprocessing via rewriting

Definition (Bit Blasting: Formulas)
bit blasting transformation B transforms BV formula into propositional formula:

B(ϕ ∨ ψ) = B(ϕ) ∨ B(ψ)

B(ϕ ∧ ψ) = B(ϕ) ∧ B(ψ)

B(¬ϕ) = ¬B(ϕ)

B(t1 rel t2) = Br (u1 rel u2) ∧ ϕ1 ∧ ϕ2 if Bt(t1) = (u1, ϕ1) and Bt(t2) = (u2, ϕ2)

bit blasting Bt for term t

returns (result u, side condition ϕ)

Br transforms atom into propositional formula

3

Definition (Bit Blasting: Atoms)
for bit vectors xk and yk set

I equality

Br (xk+1 = yk+1) = (xk ↔ yk) ∧ · · · ∧ (x1 ↔ y1) ∧ (x0 ↔ y0)

I inequality

Br (xk+1 6= yk+1) = (xk ⊕ yk) ∨ · · · ∨ (x1 ⊕ y1) ∨ (x0 ⊕ y0)

I unsigned greater-than or equal

Br (x1 >u y1) = y0 → x0

Br (xk+1 >u yk+1) = (xk ∧¬yk)∨ ((xk ↔ yk)∧B(x[k − 1:0] > y[k − 1:0]))

I unsigned greater-than

B(xk >u yk) = B(xk > yk) ∧ B(xk 6= yk)

4

Definition (Bit Blasting: Bitwise Operations)
for bit vectors xk and yk use fresh variable zk and set

I bitwise and

Bt(xk&yk) = (zk , ϕ) ϕ =
k−1∧
i=0

zi ↔ (xi ∧ yi)

I bitwise or

Bt(xk |yk) = (zk , ϕ) ϕ =
k−1∧
i=0

zi ↔ (xi ∨ yi)

I bitwise exclusive or

Bt(xk ˆ yk) = (zk , ϕ) ϕ =
k−1∧
i=0

zi ↔ (xi ⊕ yi)

I bitwise negation

Bt(−xk) = (zk , ϕ) ϕ =
k−1∧
i=0

zi ↔ ¬xi

5

Definition (Bit Blasting: Addition and Subtraction)

I addition

Bt(xk + yk) = (sk , ϕ)

where
ϕ = (c0 ↔ x0 ∧ y0) ∧ (s0 ↔ x0 ⊕ y0) ∧

k−1∧
i=1

(ci ↔ min2(xi , yi , ci−1)) ∧ (si ↔ xi ⊕ yi ⊕ ci−1)

for fresh variables sk and ck and min2(a, b, d) = (a ∧ b) ∨ (a ∧ d) ∨ (b ∧ d)

I unary minus

Bt(−xk) = Bt(∼ xk + 1k)

I subtraction

Bt(xk + yk) = Bt(xk + (−yk)

ripple-carry adder:

ck are carry bits

6

Outline

Summary of Last Week

Collision Attacks

Nelson-Oppen Combination Method

7

Cryptographic Hash Functions
I cryptographic hash function f is one-way hash function (SHA-1, MD5, ...)
I considered infeasible to invert, and to find messages with same hash
I problem: hash collisions

Classical Collision Attack Scenario

Alice BobMalloy

3713..42

3713..42

XAlice

3713..42

XAlice

I Malloy aims to send malicious document to Bob pretending it be from Alice

SMT-Based Collision Finding
I encode f as operation on bit vectors x , y representing strings
I assert x 6= y ∧ f (x) = f (y): if satisfiable obtain values for x and y
I collisions for (flawed) MD4, MD5 already found in 2005, using SAT/SMT

Extension: Chosen-Prefix Collision Attack
find values x and y such that ∀m1 m2. f (x ·m1) = f (y ·m2)

8

Cryptographic Hash Function
I maps data of arbitrary size to bit string of fixed size (hash value)
I is one-way function

(currently) practically infeasible to invert

Example

SHA-0, SHA-1, SHA-256, MD5, MD6, BLAKE2, RIPEMD-160, . . .

Collision Attack: Shift-Add-Xor Hash
I widely used non-cryptographic string hash function

I given string s, compute hash sax(s)

unsigned sax(char ∗s, int len){
unsigned h = 0;

for (int i = 0; i < len; i++)

h = h ˆ ((h << 5) + (h >> 2) + s[i]);

return h;

}

I collision attack: sax collision.py
9

http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt/sources/sax_collision.py

More Cryptanalysis using SAT/SMT

I collision attacks (preimage attacks) for current hash functions such as MD4,

MD5, SHA-256, CryptoHash, Keccak, . . .

I exhibit classes of weak keys (or prove their absence)

for block ciphers such as IDEA, WIDEA-n, or MESH-8

I solve inversion problems, e.g. for 20 bit DES key

I reason about crypto primitives

I help prove complexity bounds of certain operations

Tools for SAT/SMT-Based Cryptanalysis

I CryptoMiniSat

I CryptoSMT

I Transalg

I . . .

10

Outline

Summary of Last Week

Collision Attacks

Nelson-Oppen Combination Method

Nondeterministic Version

Deterministic Version

11

How to Be Lazy

SAT solver

unsat

sat

candidate model

explanation

EUF solver

LRA solver

T -solver

ϕ
abstract

SMT solver

f(x + 1) < f(y) ∧
x + 1 > y ∧

g(x) 6= c

Theory T T -solving method

I equality logic equality graphs X
I equality + uninterpreted functions (EUF) congruence closure X
I linear arithmetic (LRA and LIA) DPLL(T) Simplex (+ cuts) X
I bitvectors (BV) bit-blasting X

Theory combinations Nelson-Oppen method
12

Definitions
I (first-order) theory T consists of

I signature Σ: set of function and predicate symbols

I axioms A: set of sentences in first-order logic in which only

function and predicate symbols of Σ appear

I theory is stably infinite if every satisfiable quantifier-free formula has

model with infinite carrier set

Definition
theory combination T1 ⊕ T2 of two theories

I T1 over signature Σ1

I T2 over signature Σ2

has signature Σ1 ∪ Σ2 and axioms T1 ∪ T2

13

Outline

Summary of Last Week

Collision Attacks

Nelson-Oppen Combination Method

Nondeterministic Version

Deterministic Version

14

Example
combination of linear arithmetic and uninterpreted functions:

x > y ∧ y − z > x ∧ f(f(y)− f(x)) 6= f(z) ∧ z > 0

Assumptions
two stably infinite theories

I T1 over signature Σ1

I T2 over signature Σ2

such that

I Σ1 ∩ Σ2 = {=}
I T1-satisfiability of quantifier-free Σ1-formulas is decidable

I T2-satisfiability of quantifier-free Σ2-formulas is decidable

15

Nelson-Oppen Method: Nondeterministic Version

input: quantifier-free conjunction ϕ in theory combination T1 ⊕ T2

output: satisfiable or unsatisfiable

1 purification

ϕ ≈ ϕ1 ∧ ϕ2 for Σ1-formula ϕ1 and Σ2-formula ϕ2

2 guess and check

I V is set of shared variables in ϕ1 and ϕ2

I guess equivalence relation E on V

I arrangement α(V ,E) is formula∧
x E y

x = y ∧
∧

¬(x E y)

x 6= y

I if ϕ1 ∧ α(V ,E) is T1-satisfiable and ϕ2 ∧ α(V ,E) is T2-satisfiable

then return satisfiable else return unsatisfiable 16

Example

formula ϕ in combination of LIA and EUF:

1 6 x ∧ x 6 2 ∧ y = 1 ∧ z = 2︸ ︷︷ ︸
ϕ1

∧ f(x) 6= f(y) ∧ f(x) 6= f(z)︸ ︷︷ ︸
ϕ2

I V = {x , y , z}

I 5 different equivalence relations E :

1 {{x , y , z}} ϕ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}} ϕ2 ∧ α(V ,E) is unsatisfiable

3 {{x , z}, {y}} ϕ2 ∧ α(V ,E) is unsatisfiable

4 {{x}, {y , z}} ϕ1 ∧ α(V ,E) is unsatisfiable

5 {{x}, {y}, {z}} ϕ1 ∧ α(V ,E) is unsatisfiable

I ϕ is unsatisfiable

17

Outline

Summary of Last Week

Collision Attacks

Nelson-Oppen Combination Method

Nondeterministic Version

Deterministic Version

18

Definition

theory T is convex if

F �T

n∨
i=1

ui = vi implies (F �T ui = vi for some 1 6 i 6 n)

∀ quantifier-free conjunctive formula F and variables u1, . . . , un, v1, . . . , vn

Example
I linear arithmetic over integers (LIA) is not convex:

1 6 x 6 2 ∧ y = 1 ∧ z = 2 �T x = y ∨ x = z

holds but none of

1 6 x 6 2 ∧ y = 1 ∧ z = 2 �T x = y
1 6 x 6 2 ∧ y = 1 ∧ z = 2 �T x = z

I linear arithmetic over rationals and reals (LRA) is convex

I equality logic with uninterpreted functions (EUF) is convex 19

Example

consider ϕ over combination of LRA and EUF:

x > y ∧ y − z > x ∧ f(f(y)− f(x)) 6= f(z) ∧ z > 0

I first purify ϕ:

ϕ1 : x > y ∧ y − z > x ∧ w1 = w2 − w3 ∧ z > 0

ϕ2 : f(w1) 6= f(z) ∧ w2 = f(y) ∧ w3 = f(x)

I compute implied equalities between shared variables:

test all (finitely many) equations,

or T -propagation

E : x = y ∧ w2 = w3 ∧ z = w1

I test satisfiability of ϕ2 ∧ E in EUF and compute implied equalities

ϕ2 ∧ E =⇒ ⊥

I ϕ is unsatisfiable 20

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction ϕ in combination T1 ⊕ T2

of convex theories T1 and T2

Output satisfiable or unsatisfiable

1 purification ϕ ≈ ϕ1 ∧ ϕ2 for Σ1-formula ϕ1 and Σ2-formula ϕ2

2 V : set of shared variables in ϕ1 and ϕ2

E : already discovered equalities between variables in V

3 test satisfiability of ϕ1 ∧ E (and add implied equations)

I if ϕ1 ∧ E is T1-unsatisfiable then return unsatisfiable

I else add new implied equalities to E

4 test satisfiability of ϕ2 ∧ E (and add implied equations)

I if ϕ2 ∧ E is T2-unsatisfiable then return unsatisfiable

I else add new implied equalities to E

5 if E has been extended in steps 3 or 4 then go to step 2

else return satisfiable 21

Remark
Nelson-Oppen decision procedure can be extended to non-convex theories:

case-splitting for implied disjunction of equalities

Example
consider ϕ over combination of LIA and EUF:

1 6 x ∧ x 6 2 ∧ f(x) 6= f(1) ∧ f(x) 6= f(2)

I first purify ϕ:

ϕ1 : 1 6 x ∧ x 6 2 ∧ w1 = 1 ∧ w2 = 2

ϕ2 : f (x) 6= f (w1) ∧ f (x) 6= f (w2)

I check satisfiability and compute (disjunction of) implied equalities:

E : x = w2

I test satisfiability of ϕ2 ∧ E in EUF

ϕ2 ∧ E =⇒ ⊥

I case split: x = w1 or x = w2

I ϕ is unsatisfiable 22

Application: Checking Program Equivalence

Relevance of Program Equivalence

correctness of compiler optimizations, software verification

Example (Are the following two programs equivalent?)
int one(int x){

unsigned z = x & (-1);

unsigned y = z * 2;

return foo(z) + y;

}

int two(int x){

return foo(x) + (x << 1);

}

Assert non-equivalence by SMT encoding:

one32 = foo(z32) + y32 ∧ z32 = x32 & (−1)32 ∧ y32 = z32 × 232 ∧
two32 = foo(x32) + (x32 � 132) ∧
one32 6= two32

uninterpreted functions bit vectors

Remarks

I useful to combine BV and EUF theories

I checking equivalence of programs with loops is more challenging

23

https://rise4fun.com/Z3/yCiA

Bibliography

Greg Nelson and Derek C. Oppen

Simplification by Cooperating Decision Procedures

ACM Transactions on Programming Languages and Systems 2(1), pp 245–257, 1979.

Nuno P. Lopes and José Monteiro.

Automatic equivalence checking of programs with uninterpreted functions and integer

arithmetic.

International Journal on Software Tools for Technology Transfer 18(4), pp 359–374, 2016.

24

http://dx.doi.org/10.1145/357073.357079
http://dx.doi.org/10.1145/357073.357079
http://dx.doi.org/10.1145/357073.357079
https://doi.org/10.1007/s10009-015-0366-1
https://doi.org/10.1007/s10009-015-0366-1
https://doi.org/10.1007/s10009-015-0366-1
https://doi.org/10.1007/s10009-015-0366-1
https://doi.org/10.1007/s10009-015-0366-1

	lecture 11
	Summary of Last Week
	Collision Attacks
	Nelson-Oppen Combination Method
	Nondeterministic Version
	Deterministic Version

