

SAT and SMT Solving

Sarah Winkler

Computational Logic Group
Department of Computer Science
University of Innsbruck
lecture 11
SS 2019

Outline

- Summary of Last Week
- Collision Attacks
- Nelson-Oppen Combination Method

Definition (Bit Vector Theory)

- variable x_{k} is list of length k of propositional variables $x_{k-1} \ldots x_{2} x_{1} x_{0}$
- constant n_{k} is bit list of length k
- formulas built according to grammar
- axioms are equality axioms plus rules for arithmetic/comparison/bitwise operations on bit vectors of length k
- solution assigns bit list of length k to variables \mathbf{x}_{k}

Remarks

- theory is decidable because carrier is finite
- common decision procedures use translation to SAT (bit blasting)
- eager: no $\operatorname{DPLL}(T)$, bit-blast entire formula to SAT problem
- lazy: second SAT solver as BV theory solver, bit-blast only BV atoms
- solvers heavily rely on preprocessing via rewriting

Definition (Bit Blasting: Formulas)

bit blasting transformation \mathbf{B} transforms BV formula into propositional formula:

$$
\begin{aligned}
& \mathbf{B}(\varphi \vee \psi)=\mathbf{B}(\varphi) \vee \mathbf{B}(\psi) \\
& \mathbf{B}(\varphi \wedge \psi)=\mathbf{B}(\varphi) \wedge \mathbf{B}(\psi) \\
& \mathbf{B}(\neg \varphi)=\neg \mathbf{B}(\varphi) \\
&\left(t_{1} \text { rel } t_{2}\right)=\mathbf{B}_{r}\left(u_{1} \text { rel } u_{2}\right) \wedge \varphi_{1} \wedge \varphi_{2} \quad \text { if } \mathbf{B}_{t}\left(t_{1}\right)=\left(u_{1}, \varphi_{1}\right) \text { and } \mathbf{B}_{t}\left(t_{2}\right)=\left(u_{2}, \varphi_{2}\right) \\
& \mathbf{B}_{r} \text { transforms atom into propositional formula }
\end{aligned}
$$

Definition (Bit Blasting: Atoms)

 for bit vectors \mathbf{x}_{k} and \mathbf{y}_{k} set- equality

$$
\mathbf{B}_{r}\left(\mathbf{x}_{k+1}=\mathbf{y}_{k+1}\right)=\left(x_{k} \leftrightarrow y_{k}\right) \wedge \cdots \wedge\left(x_{1} \leftrightarrow y_{1}\right) \wedge\left(x_{0} \leftrightarrow y_{0}\right)
$$

- inequality

$$
\mathbf{B}_{r}\left(\mathbf{x}_{k+1} \neq \mathbf{y}_{k+1}\right)=\left(x_{k} \oplus y_{k}\right) \vee \cdots \vee\left(x_{1} \oplus y_{1}\right) \vee\left(x_{0} \oplus y_{0}\right)
$$

- unsigned greater-than or equal

$$
\begin{aligned}
\mathbf{B}_{r}\left(\mathbf{x}_{1} \geqslant_{u} \mathbf{y}_{1}\right) & =y_{0} \rightarrow x_{0} \\
\mathbf{B}_{r}\left(\mathbf{x}_{k+1} \geqslant_{u} \mathbf{y}_{k+1}\right) & =\left(x_{k} \wedge \neg y_{k}\right) \vee\left(\left(x_{k} \leftrightarrow y_{k}\right) \wedge \mathbf{B}(\mathbf{x}[k-1: 0] \geqslant \mathbf{y}[k-1: 0])\right)
\end{aligned}
$$

- unsigned greater-than

$$
\mathbf{B}\left(\mathbf{x}_{k}>_{u} \mathbf{y}_{k}\right)=\mathbf{B}\left(\mathbf{x}_{k} \geqslant \mathbf{y}_{k}\right) \wedge \mathbf{B}\left(\mathbf{x}_{k} \neq \mathbf{y}_{k}\right)
$$

Definition (Bit Blasting: Bitwise Operations)

for bit vectors \mathbf{x}_{k} and \mathbf{y}_{k} use fresh variable \mathbf{z}_{k} and set

- bitwise and

$$
\mathbf{B}_{t}\left(\mathbf{x}_{k} \& \mathbf{y}_{k}\right)=\left(\mathbf{z}_{k}, \varphi\right) \quad \varphi=\bigwedge_{i=0}^{k-1} z_{i} \leftrightarrow\left(x_{i} \wedge y_{i}\right)
$$

- bitwise or

$$
\mathbf{B}_{t}\left(\mathbf{x}_{k} \mid \mathbf{y}_{k}\right)=\left(\mathbf{z}_{k}, \varphi\right) \quad \varphi=\bigwedge_{i=0}^{k-1} z_{i} \leftrightarrow\left(x_{i} \vee y_{i}\right)
$$

- bitwise exclusive or

$$
\mathbf{B}_{t}\left(\mathbf{x}_{k} \wedge \mathbf{y}_{k}\right)=\left(\mathbf{z}_{k}, \varphi\right) \quad \varphi=\bigwedge_{i=0} z_{i} \leftrightarrow\left(x_{i} \oplus y_{i}\right)
$$

- bitwise negation

$$
\mathbf{B}_{t}\left(-\mathbf{x}_{k}\right)=\left(\mathbf{z}_{k}, \varphi\right) \quad \varphi=\bigwedge_{i=0}^{k-1} z_{i} \leftrightarrow \neg x_{i}
$$

Definition (Bit Blasting: Addition and Subtraction)

- addition

$$
\mathbf{B}_{t}\left(\mathbf{x}_{k}+\mathbf{y}_{k}\right)=\left(\mathbf{s}_{k}, \varphi\right)
$$

where

$$
\begin{aligned}
\varphi= & \left(c_{0} \leftrightarrow x_{0} \wedge y_{0}\right) \wedge\left(s_{0} \leftrightarrow x_{0} \oplus y_{0}\right) \wedge \\
& \bigwedge_{i-1}^{k-1}\left(c_{i} \leftrightarrow \min 2\left(x_{i}, y_{i}, c_{i-1}\right)\right) \wedge\left(s_{i} \leftrightarrow x_{i} \oplus y_{i} \oplus c_{i-1}\right)
\end{aligned}
$$

for fresh variables \mathbf{s}_{k} and \mathbf{c}_{k} and $\min 2(a, b, d)=(a \wedge b) \vee(a \wedge d) \vee(b \wedge d)$

- unary minus

$$
\mathbf{B}_{t}\left(-\mathbf{x}_{k}\right)=\mathbf{B}_{t}\left(\sim \mathbf{x}_{k}+\mathbf{1}_{k}\right)
$$

- subtraction

$$
\mathbf{B}_{t}\left(\mathbf{x}_{k}+\mathbf{y}_{k}\right)=\mathbf{B}_{t}\left(\mathbf{x}_{k}+\left(-\mathbf{y}_{k}\right)\right.
$$

Outline

- Summary of Last Week

- Collision Attacks
- Nelson-Oppen Combination Method

Cryptographic Hash Functions

- cryptographic hash function f is one-way hash function (SHA-1, MD5, ...)
- considered infeasible to invert, and to find messages with same hash
- problem: hash collisions

Classical Collision Attack Scenario

Alice

Bob

- Malloy aims to send malicious document to Bob pretending it be from Alice 8

Cryptographic Hash Function

- maps data of arbitrary size to bit string of fixed size (kash value)
- is one-way function

Example

SHA-0, SHA-1, SHA-256, MD5, MD6, BLAKE2, RIPEMD-160, ...

Collision Attack: Shift-Add-Xor Hash

- widely used non-cryptographic string hash function
- given string s, compute hash $\operatorname{sax}(s)$

```
unsigned sax(char *s, int len ){
    unsigned h = 0;
    for (int i = 0; i <len; i++)
        h = h^ ((h<< 5) + (h>> 2) +s[i]);
    return h;
}
```

- collision attack: sax_collision.py

More Cryptanalysis using SAT/SMT

- collision attacks (preimage attacks) for current hash functions such as MD4, MD5, SHA-256, CryptoHash, Keccak, ...
- exhibit classes of weak keys (or prove their absence) for block ciphers such as IDEA, WIDEA- n, or MESH-8
- solve inversion problems, e.g. for 20 bit DES key
- reason about crypto primitives
- help prove complexity bounds of certain operations

Tools for SAT/SMT-Based Cryptanalysis

- CryptoMiniSat
- CryptoSMT
- Transalg

Outline

- Summary of Last Week
- Collision Attacks
- Nelson-Oppen Combination Method
- Nondeterministic Version
- Deterministic Version

How to Be Lazy

Theory T

- equality logic
- equality + uninterpreted functions (EUF) congruence closure
- linear arithmetic (LRA and LIA)
- bitvectors (BV)

Theory combinations

T-solving method
equality graphs

DPLL(T) Simplex (+ cuts) bit-blasting

Definitions

- (first-order) theory T consists of
- signature Σ : set of function and predicate symbols
- axioms \mathcal{A} : set of sentences in first-order logic in which only function and predicate symbols of Σ appear
- theory is stably infinite if every satisfiable quantifier-free formula has model with infinite carrier set

Definition

theory combination $T_{1} \oplus T_{2}$ of two theories

- T_{1} over signature Σ_{1}
- T_{2} over signature Σ_{2}
has signature $\Sigma_{1} \cup \Sigma_{2}$ and axioms $T_{1} \cup T_{2}$

Outline

- Summary of Last Week
- Collision Attacks
- Nelson-Oppen Combination Method
- Nondeterministic Version
- Deterministic Version

Example

combination of linear arithmetic and uninterpreted functions:

$$
x \geqslant y \wedge y-z \geqslant x \wedge \mathrm{f}(\mathrm{f}(y)-\mathrm{f}(x)) \neq \mathrm{f}(z) \wedge z \geqslant 0
$$

Assumptions

two stably infinite theories

- T_{1} over signature Σ_{1}
- T_{2} over signature Σ_{2}
such that
- $\Sigma_{1} \cap \Sigma_{2}=\{=\}$
- T_{1}-satisfiability of quantifier-free Σ_{1}-formulas is decidable
- T_{2}-satisfiability of quantifier-free Σ_{2}-formulas is decidable

Nelson-Oppen Method: Nondeterministic Version

input: quantifier-free conjunction φ in theory combination $T_{1} \oplus T_{2}$
output: satisfiable or unsatisfiable
1 purification

$$
\varphi \approx \varphi_{1} \wedge \varphi_{2} \text { for } \Sigma_{1} \text {-formula } \varphi_{1} \text { and } \Sigma_{2} \text {-formula } \varphi_{2}
$$

2 guess and check

- V is set of shared variables in φ_{1} and φ_{2}
- guess equivalence relation E on V
- arrangement $\alpha(V, E)$ is formula

$$
\bigwedge_{x E y} x=y \quad \wedge \bigwedge_{\neg(x E y)} x \neq y
$$

- if $\varphi_{1} \wedge \alpha(V, E)$ is T_{1}-satisfiable and $\varphi_{2} \wedge \alpha(V, E)$ is T_{2}-satisfiable then return satisfiable else return unsatisfiable

Example

formula φ in combination of LIA and EUF:

$$
\underbrace{1 \leqslant x \wedge x \leqslant 2 \wedge y=1 \wedge z=2}_{\varphi_{1}} \wedge \underbrace{f(x) \neq f(y) \wedge f(x) \neq f(z)}_{\varphi_{2}}
$$

- $V=\{x, y, z\}$
- 5 different equivalence relations E :

1 $\{\{x, y, z\}\}$
$2\{\{x, y\},\{z\}\}$
3 $\{\{x, z\},\{y\}\}$
$4\{\{x\},\{y, z\}\}$
$5\{\{x\},\{y\},\{z\}\}$
$\varphi_{1} \wedge \alpha(V, E)$ is unsatisfiable
$\varphi_{2} \wedge \alpha(V, E)$ is unsatisfiable
$\varphi_{2} \wedge \alpha(V, E)$ is unsatisfiable
$\varphi_{1} \wedge \alpha(V, E)$ is unsatisfiable
$\varphi_{1} \wedge \alpha(V, E)$ is unsatisfiable

- φ is unsatisfiable

Outline

- Summary of Last Week
- Collision Attacks
- Nelson-Oppen Combination Method
- Nondeterministic Version
- Deterministic Version

Definition

theory T is convex if

$$
F \vDash_{T} \bigvee_{i=1}^{n} u_{i}=v_{i} \quad \text { implies } \quad\left(F \vDash_{T} u_{i}=v_{i} \quad \text { for some } 1 \leqslant i \leqslant n\right)
$$

\forall quantifier-free conjunctive formula F and variables $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}$

Example

- linear arithmetic over integers (LIA) is not convex:

$$
1 \leqslant x \leqslant 2 \wedge y=1 \wedge z=2 \quad \vDash_{T} \quad x=y \vee x=z
$$

holds but none of

$$
\begin{array}{llll}
1 \leqslant x \leqslant 2 \wedge y=1 & \wedge z=2 & \vDash_{T} & x=y \\
1 \leqslant x \leqslant 2 \wedge y=1 \wedge z=2 & \vDash_{T} & x=z
\end{array}
$$

- linear arithmetic over rationals and reals (LRA) is convex
- equality logic with uninterpreted functions (EUF) is convex

Example

consider φ over combination of LRA and EUF:

$$
x \geqslant y \wedge y-z \geqslant x \wedge \mathrm{f}(\mathrm{f}(y)-\mathrm{f}(x)) \neq \mathrm{f}(z) \wedge z \geqslant 0
$$

- first purify φ :

$$
\begin{aligned}
& \varphi_{1}: x \geqslant y \wedge y-z \geqslant x \wedge \begin{array}{r}
\text { test all (finitely many) equations, } \\
\varphi_{2}: \\
\mathrm{f}\left(w_{1}\right) \neq \mathrm{f}(z) \wedge \mathrm{w}_{2}=\mathrm{propagation}
\end{array}
\end{aligned}
$$

- compute implied equalities between shared variables:

$$
E: x=y \wedge w_{2}=w_{3} \wedge z=w_{1}
$$

- test satisfiability of $\varphi_{2} \wedge E$ in EUF and compute implied equalities

$$
\varphi_{2} \wedge E \Longrightarrow \perp
$$

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction φ in combination $T_{1} \oplus T_{2}$ of convex theories T_{1} and T_{2}

Output satisfiable or unsatisfiable

1 purification $\varphi \approx \varphi_{1} \wedge \varphi_{2}$ for Σ_{1}-formula φ_{1} and Σ_{2}-formula φ_{2}
$2 V$: set of shared variables in φ_{1} and φ_{2}
E : already discovered equalities between variables in V
3 test satisfiability of $\varphi_{1} \wedge E$ (and add implied equations)

- if $\varphi_{1} \wedge E$ is T_{1}-unsatisfiable then return unsatisfiable
- else add new implied equalities to E

4 test satisfiability of $\varphi_{2} \wedge E$ (and add implied equations)

- if $\varphi_{2} \wedge E$ is T_{2}-unsatisfiable then return unsatisfiable
- else add new implied equalities to E

5 if E has been extended in steps 3 or 4 then go to step 2 else return satisfiable

Remark

Nelson-Oppen decision procedure can be extended to non-convex theories:
case-splitting for implied disjunction of equalities

Example

consider φ over combination of LIA and EUF:

$$
1 \leqslant x \wedge x \leqslant 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

- first purify φ :

$$
\begin{array}{ll}
\varphi_{1}: & 1 \leqslant x \wedge x \leqslant 2 \wedge w_{1}=1 \wedge w_{2}=2 \\
\varphi_{2}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right)
\end{array}
$$

- check satisfiability and compute (disjunction of) implied equalities:

$$
E: x=w_{2}
$$

- test satisfiability of $\varphi_{2} \wedge E$ in EUF

$$
\varphi_{2} \wedge E \Longrightarrow \perp
$$

- case split: $x=w_{1}$ or $x=w_{2}$
- φ is unsatisfiable

Application: Checking Program Equivalence

Relevance of Program Equivalence

 correctness of compiler optimizations, software verificationExample (Are the following two programs equivalent?)

```
int one(int x){
    return foo(z) + y;
}
```

 unsigned \(z=x\) \& (-1); int two(int \(x)\{\)
 unsigned \(y=z * 2\); return foo \((x)+(x \ll 1)\);
 \}
 Assert non-equivalenc by SMT encoding:

$$
\begin{aligned}
& \mathbf{o n e}_{32}=\text { foo }\left(\mathbf{z}_{32}\right)+\mathbf{y}_{32} \wedge \mathbf{z}_{32}=\mathbf{x}_{32} \&(-\mathbf{1})_{32} \wedge \mathbf{y}_{32}=\mathbf{z}_{32} \times \mathbf{2}_{32} \wedge \\
& \mathbf{t w o}_{32}=\text { foo }\left(\mathbf{x}_{32}\right)+\left(\mathbf{x}_{32} \ll \mathbf{1}_{32}\right) \wedge \\
& \mathbf{o n e}_{32} \neq \mathbf{t w o}_{32}
\end{aligned}
$$

Remarks

- useful to combine BV and EUF theories
- chocking oruivalonco of nrogramc with lonnc ic moro challonging

Bibliography

Greg Nelson and Derek C. Oppen
Simplification by Cooperating Decision Procedures
ACM Transactions on Programming Languages and Systems 2(1), pp 245-257, 1979.
显
Nuno P. Lopes and José Monteiro.
Automatic equivalence checking of programs with uninterpreted functions and integer arithmetic.
International Journal on Software Tools for Technology Transfer 18(4), pp 359-374, 2016.

