

SAT and SMT Solving

Sarah Winkler

Computational Logic Group Department of Computer Science University of Innsbruck

lecture 11 SS 2019

- Summary of Last Week
- Collision Attacks
- Nelson-Oppen Combination Method

Definition (Bit Vector Theory)

- variable \mathbf{x}_k is list of length k of propositional variables $x_{k-1} \dots x_2 x_1 x_0$
- constant n_k is bit list of length k
- formulas built according to grammar

 $\begin{aligned} &\text{formula} := (\text{formula} \lor \text{formula}) \mid (\text{formula} \land \text{formula}) \mid (\neg \text{formula}) \mid \text{atom} \\ &\text{atom} := \text{term rel term} \mid \text{true} \mid \text{false} \\ &\text{rel} := = \mid \neq \mid \geqslant_u \mid \geqslant_s \mid \geqslant_u \mid \geqslant_s \\ &\text{term} := (\text{term binop term}) \mid (\text{unop term}) \mid \text{var} \mid \text{constant} \mid \text{term}[i:j] \mid \\ & (\text{formula } ? \text{ term} : \text{term}) \\ &\text{binop} := + \mid - \mid \times \mid \div_u \mid \div_s \mid \%_u \mid \%_s \mid \ll \mid \gg_u \mid \gg_s \mid \& \mid \mid \mid \uparrow \mid :: \\ &\text{unop} := \sim \mid - \end{aligned}$

- axioms are equality axioms plus rules for arithmetic/comparison/bitwise operations on bit vectors of length k
- solution assigns bit list of length k to variables x_k

Remarks

- theory is decidable because carrier is finite
- common decision procedures use translation to SAT (bit blasting)
 - eager: no DPLL(T), bit-blast entire formula to SAT problem
 - ▶ lazy: second SAT solver as BV theory solver, bit-blast only BV atoms
- solvers heavily rely on preprocessing via rewriting

Definition (Bit Blasting: Formulas)

bit blasting transformation ${\bf B}$ transforms BV formula into propositional formula:

Definition (Bit Blasting: Atoms)

for bit vectors \mathbf{x}_k and \mathbf{y}_k set

► equality

$$\mathbf{B}_r(\mathbf{x}_{k+1} = \mathbf{y}_{k+1}) = (x_k \leftrightarrow y_k) \land \dots \land (x_1 \leftrightarrow y_1) \land (x_0 \leftrightarrow y_0)$$

▶ inequality

$$\mathbf{B}_r(\mathbf{x}_{k+1} \neq \mathbf{y}_{k+1}) = (x_k \oplus y_k) \lor \cdots \lor (x_1 \oplus y_1) \lor (x_0 \oplus y_0)$$

unsigned greater-than or equal

$$\mathbf{B}_r(\mathbf{x}_1 \geqslant_u \mathbf{y}_1) = y_0 \to x_0$$

 $\mathsf{B}_r(\mathbf{x}_{k+1} \geqslant_u \mathbf{y}_{k+1}) = (x_k \land \neg y_k) \lor ((x_k \leftrightarrow y_k) \land \mathsf{B}(\mathbf{x}[k-1:0] \geqslant \mathbf{y}[k-1:0]))$

unsigned greater-than

$$\mathsf{B}(\mathsf{x}_k >_u \mathsf{y}_k) = \mathsf{B}(\mathsf{x}_k \geqslant \mathsf{y}_k) \land \mathsf{B}(\mathsf{x}_k \neq \mathsf{y}_k)$$

Definition (Bit Blasting: Bitwise Operations) for bit vectors \mathbf{x}_k and \mathbf{y}_k use fresh variable \mathbf{z}_k and set

bitwise and

$$\mathbf{B}_t(\mathbf{x}_k \& \mathbf{y}_k) = (\mathbf{z}_k, \varphi) \qquad \varphi = \bigwedge_{i=0}^{k-1} z_i \leftrightarrow (x_i \wedge y_i)$$

bitwise or

$$\mathbf{B}_t(\mathbf{x}_k|\mathbf{y}_k) = (\mathbf{z}_k, \varphi) \qquad \varphi = \bigwedge_{i=0}^{k-1} z_i \leftrightarrow (x_i \vee y_i)$$

bitwise exclusive or

$$\mathbf{B}_t(\mathbf{x}_k \,\,\widehat{}\,\, \mathbf{y}_k) = (\mathbf{z}_k, \varphi) \qquad \varphi = \bigwedge_{i=0}^{k-1} z_i \leftrightarrow (x_i \oplus y_i)$$

bitwise negation

$$\mathbf{B}_t(-\mathbf{x}_k) = (\mathbf{z}_k, \varphi) \qquad \varphi = \bigwedge_{i=0}^{k-1} z_i \leftrightarrow \neg x_i$$

Definition (Bit Blasting: Addition and Subtraction)

► addition

$$\mathsf{B}_t(\mathsf{x}_k + \mathsf{y}_k) = (\mathsf{s}_k, \varphi)$$

where

ripple-carry adder: \mathbf{c}_k are carry bits

for fresh variables \mathbf{s}_k and \mathbf{c}_k and $\min 2(a, b, d) = (a \land b) \lor (a \land d) \lor (b \land d)$ unary minus

$$\mathsf{B}_t(-\mathsf{x}_k) = \mathsf{B}_t(\sim \mathsf{x}_k + \mathbf{1}_k)$$

subtraction

$$\mathbf{B}_t(\mathbf{x}_k + \mathbf{y}_k) = \mathbf{B}_t(\mathbf{x}_k + (-\mathbf{y}_k)$$

- Summary of Last Week
- Collision Attacks
- Nelson-Oppen Combination Method

Cryptographic Hash Functions

- cryptographic hash function f is one-way hash function (SHA-1, MD5, ...)
- considered infeasible to invert, and to find messages with same hash
- problem: hash collisions

Classical Collision Attack Scenario

Malloy aims to send malicious document to Bob pretending it be from Alice a

Cryptographic Hash Function

(currently) practically infeasible to invert

- maps data of arbitrary size to bit string of fixed size (Kash value)
- ► is one-way function

Example

SHA-0, SHA-1, SHA-256, MD5, MD6, BLAKE2, RIPEMD-160, ...

Collision Attack: Shift-Add-Xor Hash

- widely used non-cryptographic string hash function
- ▶ given string *s*, compute hash sax(*s*)

```
unsigned sax(char *s, int len){

unsigned h = 0;

for (int i = 0; i < len; i++)

h = h ^ ((h << 5) + (h >> 2) + s[i]);

return h;

}
```

collision attack: sax_collision.py

More Cryptanalysis using SAT/SMT

- collision attacks (preimage attacks) for current hash functions such as MD4, MD5, SHA-256, CryptoHash, Keccak, ...
- exhibit classes of weak keys (or prove their absence) for block ciphers such as IDEA, WIDEA-n, or MESH-8
- ▶ solve inversion problems, e.g. for 20 bit DES key
- reason about crypto primitives
- help prove complexity bounds of certain operations

Tools for SAT/SMT-Based Cryptanalysis

- CryptoMiniSat
- CryptoSMT
- Transalg

• ...

- Summary of Last Week
- Collision Attacks

• Nelson-Oppen Combination Method

- Nondeterministic Version
- Deterministic Version

How to Be Lazy

Theory T

- equality logic
- equality + uninterpreted functions (EUF) congruence closure
- linear arithmetic (LRA and LIA)
- bitvectors (BV)

Theory combinations

*T***-solving method**

equality graphs \checkmark congruence closure \checkmark DPLL(T) Simplex (+ cuts) \checkmark bit-blasting \checkmark

Nelson-Oppen method

Definitions

- ► (first-order) theory *T* consists of
 - signature Σ : set of function and predicate symbols
 - axioms A: set of sentences in first-order logic in which only function and predicate symbols of Σ appear
- theory is stably infinite if every satisfiable quantifier-free formula has model with infinite carrier set

Definition

theory combination $T_1 \oplus T_2$ of two theories

- T_1 over signature Σ_1
- T₂ over signature Σ₂

has signature $\Sigma_1\cup\Sigma_2$ and axioms $\mathit{T}_1\cup\mathit{T}_2$

- Summary of Last Week
- Collision Attacks
- Nelson-Oppen Combination Method
 - Nondeterministic Version
 - Deterministic Version

Example

combination of linear arithmetic and uninterpreted functions:

 $x \ge y \land y - z \ge x \land f(f(y) - f(x)) \neq f(z) \land z \ge 0$

Assumptions

two stably infinite theories

- T_1 over signature Σ_1
- T₂ over signature Σ₂

such that

- $\blacktriangleright \quad \Sigma_1 \cap \Sigma_2 = \{=\}$
- T₁-satisfiability of quantifier-free Σ₁-formulas is decidable
- T₂-satisfiability of quantifier-free Σ₂-formulas is decidable

Nelson-Oppen Method: Nondeterministic Version

input: quantifier-free conjunction φ in theory combination $T_1 \oplus T_2$ output: satisfiable or unsatisfiable

1 purification

 $arphi \ pprox \ arphi_1 \wedge arphi_2$ for Σ_1 -formula $arphi_1$ and Σ_2 -formula $arphi_2$

- 2 guess and check
 - V is set of shared variables in φ_1 and φ_2
 - guess equivalence relation E on V
 - arrangement $\alpha(V, E)$ is formula

$$\bigwedge_{x \in y} x = y \land \bigwedge_{\neg(x \in y)} x \neq y$$

if φ₁ ∧ α(V, E) is T₁-satisfiable and φ₂ ∧ α(V, E) is T₂-satisfiable then return satisfiable else return unsatisfiable

Example

formula φ in combination of LIA and EUF:

$$\underbrace{1 \leqslant x \land x \leqslant 2 \land y = 1 \land z = 2}_{\varphi_1} \land \underbrace{f(x) \neq f(y) \land f(x) \neq f(z)}_{\varphi_2}$$

- ► $V = \{x, y, z\}$
- ▶ 5 different equivalence relations E:
 - 1 {{x, y, z}} $\varphi_1 \wedge \alpha(V, E)$ is unsatisfiable
 - 2 {{x, y}, {z}}
 - 3 {{x, z}, {y}}
 - 4 {{x}, {y, z}}

- $\varphi_2 \wedge \alpha(V, E)$ is unsatisfiable
 - $\varphi_2 \wedge \alpha(V, E)$ is unsatisfiable
- $\varphi_1 \wedge \alpha(V, E)$ is unsatisfiable
- 5 {{x}, {y}, {z}} $\varphi_1 \wedge \alpha(V, E)$ is unsatisfiable
- φ is unsatisfiable

- Summary of Last Week
- Collision Attacks
- Nelson-Oppen Combination Method
 - Nondeterministic Version
 - Deterministic Version

Definition

theory T is convex if

 $F \vDash_T \bigvee_{i=1}^n u_i = v_i$ implies $(F \vDash_T u_i = v_i \text{ for some } 1 \leqslant i \leqslant n)$

 \forall quantifier-free conjunctive formula F and variables $u_1, \ldots, u_n, v_1, \ldots, v_n$

Example

linear arithmetic over integers (LIA) is not convex:

 $1 \leqslant x \leqslant 2 \land y = 1 \land z = 2 \models_T x = y \lor x = z$

holds but none of

$$1 \leq x \leq 2 \land y = 1 \land z = 2 \models_T x = y$$
$$1 \leq x \leq 2 \land y = 1 \land z = 2 \models_T x = z$$

linear arithmetic over rationals and reals (LRA) is convex

equality logic with uninterpreted functions (EUF) is convex

Example

consider φ over combination of LRA and EUF:

 $x \ge y \land y - z \ge x \land f(f(y) - f(x)) \neq f(z) \land z \ge 0$

- ► first purify φ : $\varphi_1: x \ge y \land y - z \ge x \land$ $\varphi_2: f(w_1) \ne f(z) \land w_2 =$ test all (finitely many) equations, or *T*-propagation
- compute implied equalities between shared variables:

 $E: x = y \land w_2 = w_3 \land z = w_1$

▶ test satisfiability of $\varphi_2 \land E$ in EUF and compute implied equalities

$$\varphi_2 \wedge E \implies \bot$$

• φ is unsatisfiable

Nelson-Oppen Method: Deterministic Version

- Input quantifier-free conjunction φ in combination $T_1 \oplus T_2$ of convex theories T_1 and T_2
- Output satisfiable or unsatisfiable
 - purification φ ≈ φ₁ ∧ φ₂ for Σ₁-formula φ₁ and Σ₂-formula φ₂
 V: set of shared variables in φ₁ and φ₂
 - E: already discovered equalities between variables in V
 - 3 test satisfiability of $\varphi_1 \wedge E$ (and add implied equations)
 - if $\varphi_1 \wedge E$ is T_1 -unsatisfiable then return unsatisfiable
 - else add new implied equalities to E
 - 4 test satisfiability of $\varphi_2 \wedge E$ (and add implied equations)
 - if $\varphi_2 \wedge E$ is T_2 -unsatisfiable then return unsatisfiable
 - else add new implied equalities to E
 - if E has been extended in steps 3 or 4 then go to step 2 else return satisfiable

Remark

Nelson-Oppen decision procedure can be extended to non-convex theories: case-splitting for implied disjunction of equalities

Example

consider φ over combination of LIA and EUF:

 $1 \leqslant x \land x \leqslant 2 \land f(x) \neq f(1) \land f(x) \neq f(2)$

• first purify φ :

 $\begin{array}{l} \varphi_1 \colon \ 1 \leqslant x \ \land \ x \leqslant 2 \ \land \ w_1 = 1 \ \land \ w_2 = 2 \\ \varphi_2 \colon \ f(x) \neq f(w_1) \ \land \ f(x) \neq f(w_2) \end{array}$

check satisfiability and compute (disjunction of) implied equalities:

$$E: x = w_2$$

• test satisfiability of $\varphi_2 \wedge E$ in EUF

$$\varphi_2 \wedge E \implies \bot$$

- case split: $x = w_1$ or $x = w_2$
- φ is unsatisfiable

Application: Checking Program Equivalence

Relevance of Program Equivalence

correctness of compiler optimizations, software verification

Example (Are the following two programs equivalent?)

```
int one(int x){
                                                          int two(int x){
     unsigned z = x \& (-1);
     unsigned y = z * 2;
                                                             return foo(x) + (x << 1);
     return foo(z) + y;
                                                          }
  }
                                                           bit vectors
                    uninterpreted functions
Assert non-equivalence by SMT encoding: /
           one_{32} = foo(z_{32}) + y_{32} \wedge z_{32} = x_{32} \& (-1)_{32} \wedge y_{32} = z_{32} \times 2_{32} \wedge 2_{32}
           \mathsf{two}_{32} = \mathsf{foo}(\mathsf{x}_{32}) + (\mathsf{x}_{32} \ll \mathbf{1}_{32}) \land
           one_{32} \neq two_{32}
```

Remarks

- useful to combine BV and EUF theories
- checking equivalence of programs with loops is more challenging

Greg Nelson and Derek C. Oppen

Simplification by Cooperating Decision Procedures

ACM Transactions on Programming Languages and Systems 2(1), pp 245-257, 1979.

Nuno P. Lopes and José Monteiro.

Automatic equivalence checking of programs with uninterpreted functions and integer arithmetic.

International Journal on Software Tools for Technology Transfer 18(4), pp 359-374, 2016.