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Definition (Bit Vector Theory)

I variable xk is list of length k of propositional variables xk−1 . . . x2x1x0

I constant nk is bit list of length k

I formulas built according to grammar

formula := (formula ∨ formula) | (formula ∧ formula) | (¬formula) | atom
atom := term rel term | true | false

rel := = | 6= | >u | >s | >u | >s

term := (term binop term) | (unop term) | var | constant | term[i :j ] |
(formula ? term : term)

binop := + | − | × | ÷u | ÷s | %u | %s | � | �u | �s | & | | | ˆ| ::

unop :=∼| −

I axioms are equality axioms plus rules for arithmetic/comparison/bitwise oper-

ations on bit vectors of length k

I solution assigns bit list of length k to variables xk
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Remarks

I theory is decidable because carrier is finite

I common decision procedures use translation to SAT (bit blasting)

I eager: no DPLL(T ), bit-blast entire formula to SAT problem

I lazy: second SAT solver as BV theory solver, bit-blast only BV atoms

I solvers heavily rely on preprocessing via rewriting

Definition (Bit Blasting: Formulas)
bit blasting transformation B transforms BV formula into propositional formula:

B(ϕ ∨ ψ) = B(ϕ) ∨ B(ψ)

B(ϕ ∧ ψ) = B(ϕ) ∧ B(ψ)

B(¬ϕ) = ¬B(ϕ)

B(t1 rel t2) = Br (u1 rel u2) ∧ ϕ1 ∧ ϕ2 if Bt(t1) = (u1, ϕ1) and Bt(t2) = (u2, ϕ2)

bit blasting Bt for term t

returns (result u, side condition ϕ)

Br transforms atom into propositional formula
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Definition (Bit Blasting: Atoms)
for bit vectors xk and yk set

I equality

Br (xk+1 = yk+1) = (xk ↔ yk) ∧ · · · ∧ (x1 ↔ y1) ∧ (x0 ↔ y0)

I inequality

Br (xk+1 6= yk+1) = (xk ⊕ yk) ∨ · · · ∨ (x1 ⊕ y1) ∨ (x0 ⊕ y0)

I unsigned greater-than or equal

Br (x1 >u y1) = y0 → x0

Br (xk+1 >u yk+1) = (xk ∧¬yk)∨ ((xk ↔ yk)∧B(x[k − 1:0] > y[k − 1:0]))

I unsigned greater-than

B(xk >u yk) = B(xk > yk) ∧ B(xk 6= yk)

4



Definition (Bit Blasting: Bitwise Operations)
for bit vectors xk and yk use fresh variable zk and set

I bitwise and

Bt(xk&yk) = (zk , ϕ) ϕ =
k−1∧
i=0

zi ↔ (xi ∧ yi )

I bitwise or

Bt(xk |yk) = (zk , ϕ) ϕ =
k−1∧
i=0

zi ↔ (xi ∨ yi )

I bitwise exclusive or

Bt(xk ˆ yk) = (zk , ϕ) ϕ =
k−1∧
i=0

zi ↔ (xi ⊕ yi )

I bitwise negation

Bt(−xk) = (zk , ϕ) ϕ =
k−1∧
i=0

zi ↔ ¬xi
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Definition (Bit Blasting: Addition and Subtraction)

I addition

Bt(xk + yk) = (sk , ϕ)

where
ϕ = (c0 ↔ x0 ∧ y0) ∧ (s0 ↔ x0 ⊕ y0) ∧

k−1∧
i=1

(ci ↔ min2(xi , yi , ci−1)) ∧ (si ↔ xi ⊕ yi ⊕ ci−1)

for fresh variables sk and ck and min2(a, b, d) = (a ∧ b) ∨ (a ∧ d) ∨ (b ∧ d)

I unary minus

Bt(−xk) = Bt(∼ xk + 1k)

I subtraction

Bt(xk + yk) = Bt(xk + (−yk)

ripple-carry adder:

ck are carry bits
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Cryptographic Hash Functions
I cryptographic hash function f is one-way hash function (SHA-1, MD5, ...)
I considered infeasible to invert, and to find messages with same hash
I problem: hash collisions

Classical Collision Attack Scenario

Alice BobMalloy

3713..42

3713..42

XAlice

3713..42

XAlice

I Malloy aims to send malicious document to Bob pretending it be from Alice

SMT-Based Collision Finding
I encode f as operation on bit vectors x , y representing strings
I assert x 6= y ∧ f (x) = f (y): if satisfiable obtain values for x and y
I collisions for (flawed) MD4, MD5 already found in 2005, using SAT/SMT

Extension: Chosen-Prefix Collision Attack
find values x and y such that ∀m1 m2. f (x ·m1) = f (y ·m2)
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Cryptographic Hash Function
I maps data of arbitrary size to bit string of fixed size (hash value)
I is one-way function

(currently) practically infeasible to invert

Example

SHA-0, SHA-1, SHA-256, MD5, MD6, BLAKE2, RIPEMD-160, . . .

Collision Attack: Shift-Add-Xor Hash
I widely used non-cryptographic string hash function

I given string s, compute hash sax(s)

unsigned sax(char ∗s, int len){
unsigned h = 0;

for ( int i = 0; i < len; i++)

h = h ˆ ((h << 5) + (h >> 2) + s[i]);

return h;

}

I collision attack: sax collision.py
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More Cryptanalysis using SAT/SMT

I collision attacks (preimage attacks) for current hash functions such as MD4,

MD5, SHA-256, CryptoHash, Keccak, . . .

I exhibit classes of weak keys (or prove their absence)

for block ciphers such as IDEA, WIDEA-n, or MESH-8

I solve inversion problems, e.g. for 20 bit DES key

I reason about crypto primitives

I help prove complexity bounds of certain operations

Tools for SAT/SMT-Based Cryptanalysis

I CryptoMiniSat

I CryptoSMT

I Transalg

I . . .
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How to Be Lazy

SAT solver

unsat

sat

candidate model

explanation

EUF solver

LRA solver

T -solver

ϕ
abstract

SMT solver

f(x + 1) < f(y) ∧
x + 1 > y ∧

g(x) 6= c

Theory T T -solving method

I equality logic equality graphs X
I equality + uninterpreted functions (EUF) congruence closure X
I linear arithmetic (LRA and LIA) DPLL(T ) Simplex (+ cuts) X
I bitvectors (BV) bit-blasting X

Theory combinations Nelson-Oppen method
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Definitions
I (first-order) theory T consists of

I signature Σ: set of function and predicate symbols

I axioms A: set of sentences in first-order logic in which only

function and predicate symbols of Σ appear

I theory is stably infinite if every satisfiable quantifier-free formula has

model with infinite carrier set

Definition
theory combination T1 ⊕ T2 of two theories

I T1 over signature Σ1

I T2 over signature Σ2

has signature Σ1 ∪ Σ2 and axioms T1 ∪ T2
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Example
combination of linear arithmetic and uninterpreted functions:

x > y ∧ y − z > x ∧ f(f(y)− f(x)) 6= f(z) ∧ z > 0

Assumptions
two stably infinite theories

I T1 over signature Σ1

I T2 over signature Σ2

such that

I Σ1 ∩ Σ2 = {=}
I T1-satisfiability of quantifier-free Σ1-formulas is decidable

I T2-satisfiability of quantifier-free Σ2-formulas is decidable
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Nelson-Oppen Method: Nondeterministic Version

input: quantifier-free conjunction ϕ in theory combination T1 ⊕ T2

output: satisfiable or unsatisfiable

1 purification

ϕ ≈ ϕ1 ∧ ϕ2 for Σ1-formula ϕ1 and Σ2-formula ϕ2

2 guess and check

I V is set of shared variables in ϕ1 and ϕ2

I guess equivalence relation E on V

I arrangement α(V ,E ) is formula∧
x E y

x = y ∧
∧

¬(x E y)

x 6= y

I if ϕ1 ∧ α(V ,E ) is T1-satisfiable and ϕ2 ∧ α(V ,E ) is T2-satisfiable

then return satisfiable else return unsatisfiable 16



Example

formula ϕ in combination of LIA and EUF:

1 6 x ∧ x 6 2 ∧ y = 1 ∧ z = 2︸ ︷︷ ︸
ϕ1

∧ f(x) 6= f(y) ∧ f(x) 6= f(z)︸ ︷︷ ︸
ϕ2

I V = {x , y , z}

I 5 different equivalence relations E :

1 {{x , y , z}} ϕ1 ∧ α(V ,E ) is unsatisfiable

2 {{x , y}, {z}} ϕ2 ∧ α(V ,E ) is unsatisfiable

3 {{x , z}, {y}} ϕ2 ∧ α(V ,E ) is unsatisfiable

4 {{x}, {y , z}} ϕ1 ∧ α(V ,E ) is unsatisfiable

5 {{x}, {y}, {z}} ϕ1 ∧ α(V ,E ) is unsatisfiable

I ϕ is unsatisfiable
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Definition

theory T is convex if

F �T

n∨
i=1

ui = vi implies ( F �T ui = vi for some 1 6 i 6 n )

∀ quantifier-free conjunctive formula F and variables u1, . . . , un, v1, . . . , vn

Example
I linear arithmetic over integers (LIA) is not convex:

1 6 x 6 2 ∧ y = 1 ∧ z = 2 �T x = y ∨ x = z

holds but none of

1 6 x 6 2 ∧ y = 1 ∧ z = 2 �T x = y
1 6 x 6 2 ∧ y = 1 ∧ z = 2 �T x = z

I linear arithmetic over rationals and reals (LRA) is convex

I equality logic with uninterpreted functions (EUF) is convex 19



Example

consider ϕ over combination of LRA and EUF:

x > y ∧ y − z > x ∧ f(f(y)− f(x)) 6= f(z) ∧ z > 0

I first purify ϕ:

ϕ1 : x > y ∧ y − z > x ∧ w1 = w2 − w3 ∧ z > 0

ϕ2 : f(w1) 6= f(z) ∧ w2 = f(y) ∧ w3 = f(x)

I compute implied equalities between shared variables:

test all (finitely many) equations,

or T -propagation

E : x = y ∧ w2 = w3 ∧ z = w1

I test satisfiability of ϕ2 ∧ E in EUF and compute implied equalities

ϕ2 ∧ E =⇒ ⊥

I ϕ is unsatisfiable 20



Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction ϕ in combination T1 ⊕ T2

of convex theories T1 and T2

Output satisfiable or unsatisfiable

1 purification ϕ ≈ ϕ1 ∧ ϕ2 for Σ1-formula ϕ1 and Σ2-formula ϕ2

2 V : set of shared variables in ϕ1 and ϕ2

E : already discovered equalities between variables in V

3 test satisfiability of ϕ1 ∧ E (and add implied equations)

I if ϕ1 ∧ E is T1-unsatisfiable then return unsatisfiable

I else add new implied equalities to E

4 test satisfiability of ϕ2 ∧ E (and add implied equations)

I if ϕ2 ∧ E is T2-unsatisfiable then return unsatisfiable

I else add new implied equalities to E

5 if E has been extended in steps 3 or 4 then go to step 2

else return satisfiable 21



Remark
Nelson-Oppen decision procedure can be extended to non-convex theories:

case-splitting for implied disjunction of equalities

Example
consider ϕ over combination of LIA and EUF:

1 6 x ∧ x 6 2 ∧ f(x) 6= f(1) ∧ f(x) 6= f(2)

I first purify ϕ:

ϕ1 : 1 6 x ∧ x 6 2 ∧ w1 = 1 ∧ w2 = 2

ϕ2 : f (x) 6= f (w1) ∧ f (x) 6= f (w2)

I check satisfiability and compute (disjunction of) implied equalities:

E : x = w2

I test satisfiability of ϕ2 ∧ E in EUF

ϕ2 ∧ E =⇒ ⊥

I case split: x = w1 or x = w2

I ϕ is unsatisfiable 22



Application: Checking Program Equivalence

Relevance of Program Equivalence

correctness of compiler optimizations, software verification

Example (Are the following two programs equivalent?)
int one(int x){

unsigned z = x & (-1);

unsigned y = z * 2;

return foo(z) + y;

}

int two(int x){

return foo(x) + (x << 1);

}

Assert non-equivalence by SMT encoding:

one32 = foo(z32) + y32 ∧ z32 = x32 & (−1)32 ∧ y32 = z32 × 232 ∧
two32 = foo(x32) + (x32 � 132) ∧
one32 6= two32

uninterpreted functions bit vectors

Remarks

I useful to combine BV and EUF theories

I checking equivalence of programs with loops is more challenging
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