M universitat
M innsbruck

SAT and SMT Solving

Sarah Winkler
Computational Logic Group

Department of Computer Science
University of Innsbruck

lecture 12
SS 2019

Definitions

» theory consists of

» signature X: set of function and predicate symbols

» axioms T: set of sentences in first-order logic in which only
function and predicate symbols of ¥ appear
» theory is stably infinite if every satisfiable quantifier-free formula has
model with infinite carrier set
» theory T is convex if F Er /7, ui = v; implies F Et u; = v; for
some 1 < i < n 'V quantifier-free conjunction F and variables u;, v;

Definition
theory combination Ty @ T, of two theories

» T; over signature X
» T, over signature 2,

has signature ¥; U ¥, and axioms T1 U T,

Acciimntinonc

@ Summary of Last Week

@ Quantifiers for SMT

@ Instantiation Techniques

1
Nelson-Oppen Method: Nondeterministic Version
Input quantifier-free conjunction ¢ in theory combination 71 & T,
Output satisfiable or unsatisfiable
purification
p &~ @1 Ay for Xi-formula p; and Xo-formula o
guess and check
» Vs set of shared variables in 1 and @2
» guess equivalence relation E on V
» arrangement «(V/, E) is formula
/\ x=y A /\ XFy
xEy —(xEy)
» if o1 ANa(V,E)is Ty-satisfiable and @p A oV, E) is Ty-satisfiable
then return satisfiable else return unsatisfiable 5

http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Input quantifier-free conjunction ¢ in combination 71 & T,
of convex theories T1 and T»

Output satisfiable or unsatisfiable

L @ Summary of Last Week
purification ¢ =& @1 A for Li-formula ¢ and Xr-formula o

\/: set of shared variables in and
1 p2 @ Quantifiers for SMT

E: already discovered equalities between variables in V

test satisfiability of o, A £ (and add implied equations) e Skolemization
» if o1 A E is Ti-unsatisfiable then return unsatisfiable
> else add new implied equalities to E @ Instantiation Techniques

test satisfiability of o, A £ (and add implied equations)
» if oo A E is To-unsatisfiable then return unsatisfiable
» else add new implied equalities to E

if E has been extended in steps | or] then go to step
else return satisfiable

SMT Solving with Quantifiers

Applications of Quantifiers in SMT

Example (Homework 5) quantifiers!
Imagine a village of monkeys where each monkey owns at least <D SMT solver

two bananas. As the monkeys are well-organised, each tree
SAT (v) f(a)=a

Y $
—> unknown

A3

contains exactly three monkeys. Monkeys are also very friendly, so
P —

/i(.afl(x) SAXF(blay = b &=)b

every monkey has a partner.
UNSAT

More important applications

» automated theorem proving

Vxyz. inv(x) x=0A0-x=xAx-(y-z)=(x-y) z
» software verification

Vx. pre(x) — post(x)
» function synthesis

Vinput. Joutput. F(input, output)

Decision Properties ‘ first-order logic is undecidable!

» SMT solvers can decide propositional logic + LIA/LRA/EL%BV/...
» many SMT solvers also have support for quantifiers,

but have in general no decision procedure for theories + quantifiers

» planning
Jplan. Vtime. spec(plan, time)

Skolemization

name witness for existential quantifier

Getting rid of 3 quantifiers
> replace Ix. P(x) by P(a)
> replace Vy Ix. P(x) by Vy P(f(y))
> replace Vz Vy Ix. R(x) by Vz ¥y R(f(y, z))

Thoralf Skolem

Definitions
> @isin prenex form if o = Qyxq ... Qnx, ¢ for ¥ quantifier-free and Q; € {V, 3}
> isin Skolem form if in prenex form without existential quantifier

Skolemization
bring formula into prenex form
replace Vxy, ..., xx3y ¥[y] by Vxi, ..., xx ¥[f(x1, ..., xy)] for fresh f

until no existential quantifiers left

’ can consider formulas of shape Vxy, ..., x, ¢[x1,...,X,]

Theorem
if ¢ is skolemization of ¢ then ¢ and ¢’ are equisatisfiable

Example: Is this syllogism correct?

All humans are mortal. Vx. H(x) — M(x)
All Greeks are humans. Vx. G(x) — H(x)
So all Greeks are mortal. Vx. G(x) — M(x)

Avristotle

» translate to first-order logic cannot be answered by SMT SOWEF‘

» check validity of
((Vx. H(x) — M(x)) A (¥x. G(x) — H(x))) — (¥x. G(x) — M(x))
» check unsatisfiability of
Vx. H(x) — M(x), Vx. G(x) — H(x), 3x. G(x)A-M(x)

» skolemize when adding right Herbrand instances
Vx. H(x) — M(x), unsatisfiability can be detected by SMT solver

> already unsatisfiable when replacing quantified formulas by Herbrand instances

H(a) — M(a), G(a)— H(a), G(a)A—-M(a)
10

Definition |set of function symbols and constants‘

Herbrand instance of Skolep//f{)rmula VX1, ..., Xn P[X1, -, Xa] is @[t1, .-, ta]
where t; is term over signature of ¢

Remark
Herbrand instances are ground formulas, i.e., without (quantified) variables

Theorem (Herbrand)
Skolem formula ¢ is unsatisfiable <=
there exists finite unsatisfiable set of Herbrand instances of ¢

Jacques Herbrand

Caveats

> at least one constant required per sort
» holds for pure first order logic, not necessarily in presence of theories

@ Summary of Last Week

@ Quantifiers for SMT

@ Instantiation Techniques
o E-Matching

e Enumerative Instantiation

11

V-SMT solver

ground SMT solver)
f ract _ ()|) R
¥ ” EEIEEIN SAT solver > unsat
conflict boolean
clause assignment
Example ' o
i dule >
> a=bng(a)=aRTE) £ {(b) VB e(e() T st

abstract to pa—p A\ Pg(a)=a A\ (Pr(a)£f(b) V Poa(se(a)))

» SAT solver: p,—p, Pg(a)=ar Pf(a)£f(b) T -solver: —p,—p V P ()£ (b)
» SAT solver: pa—p, Pg(a)=a: Pb#g(g(a)) T -solver: TPa=b Y Pg(a)=a V TPbsg(g(a))
> SAT solver: unsat
12
Example
Instantiation Framework
V-SMT solver
SMT solver
4 N\
bstract ()
¥ —A——"» SAT solver > unsat
conflict boolean
clause assignment
instantiation [“issignment
instance module > sat

» split ¢ into

» literals g with quantifiers

» literals ¢ without quantifiers
> instantiation module generates instances of ¢ to extend ¢g

14

Instantiation

Definition (Instance)
(Vx o(x)) — o

is instance where Xo does not contain variables X

Example
Vx. H(x) — M(x) has instance (Vx. H(x) — M(x)) — (H(a) — M(a))

Remarks
> as first-order logic formula, every instance is tautology

» in SAT solver, VX ((X) gets abstracted to propositional variable pyx ,(x),
which has meaning only for instantiation module

> (o gets abstracted to propositional formula:
involved variables have meaning for theory solver

> idea: @o gets “activated” if propositional variable pyx ,(x) is assigned true

13

E-Matching

Example
we: —P(a), =P(b), =R(b)

v: Vx. P(x) V R(x)
assume literal P(x) is instantiation pattern

find substitutions o such that P(x)o occurs in pg
obtain {x — a}, {x — b}
add P(a) vV R(a) and P(b) V R(b) to e

matching

vVvyVvyy

Instantiation via E-matching

for each Vx.1
> select set of instantiation patterns {ti,...,t,}

» for each t; let S; be set of substitutions o such that t;o occurs in g
» add {Ypo | o € 5;} to pe

15

Example

VxVy. sibling(x, y) <— mother(x) = mother(y) A father(x) = father(y)
sibling(adam, bea)
sibling(bea, chris)
—sibling(adam, chris)
» unsatisfiable /

» suitable instantiation patterns?
sibling(x, y) sufficient

Remarks

» works as decision procedure for some theories (e.g., lists and arrays)
but can easily omit necessary instances in other cases

» mostly efficient
requires instantiation patterns (manually or heuristically determined)

instantiation patterns can be specified in SMT-LIB /

16

Enumerative Instantiation

Why not use Herbrand's theorem directly?

Theorem (Herbrand)
Skolem formula ¢ is unsatisfiable <=
there exists finite unsatisfiable set of Herbrand instances of ¢

Early days of theorem proving

» first theorem provers enumerated Herbrand instances, looked for refutation
» infeasible in practice
» approach was forgotten

Enumerative instantiation

» instantiation module based on stronger version of Herbrand’s theorem
» efficient implementation techniques

18

@ Instantiation Techniques

o Enumerative Instantiation

17

Theorem (Stronger Herbrand)
wE A @q is unsatisfiable if and only if there exist infinite series

» E; of finite literals sets » Q; of finite sets of pq instances
such that

» Qi C {vo | Vx. 1 occurs in pq and dom(o) = x and ran(o) € T(E;)}
» Eop= ©YE and E..1=E;U Q;
» some E, is unsatisfiable

Direct application in V-SMT solver

'O

ground SMT solver — unsat

instantiation

assignment E; U pq
module

instances

— sat
J

» ground solver enumerates assignments E; U ¢
> instantiation returns Vx 1(X) — Q for all Q € Q; generated from VX 1(X)

19
Lemma

https://rise4fun.com/Z3/slTXa
https://rise4fun.com/Z3/aB6V

Instantiation via enumeration

Fix ordering > on tuples of terms without quantified variables.

Given assignment E; from T-solver

> for each VX.1 in ¢q

» search minimal Xo with respect to > such that Xo € T(E;) and E; & o
» if exists, add {¢o} to Q;

If Q; = @ then sat, otherwise return Q;

Example

vVvyVvyVvVvyyeypy

pe: P(a)Va=b, =P(b), ~P(g(b))
v Vx. P(x) V P(f(x)), Vx. g(x) = f(x)

suppose order a < b < f(a) < f(b) < ...
ground solver: model P(a), =P(b), =P(g(b) (and ¢q)
instantiation: Qq consists of P(b) V P(f(b) =
ground solver: model P(a), —=P(b), =P(g(b),

instantiation: Q2 consists of P(f(a)) Vv P(f(f(a))) an
ground solver: unsat 20

Bibliography

@ David Detlefs, Greg Nelson, and James B. Saxe.
Simplify: A Theorem Prover for Program Checking.
J. ACM, 52(3):365-473, 2005.

ﬁ Andrew Reynolds, Haniel Barbosa and Pascal Fontaine.
Revisiting Enumerative Instantiation.
Proc. TACAS, pp 112-131, 2018.

Slide material partially taken from Pascal Fontaine’s talk at SMT Summer School 2018.

21

http://dx.doi.org/10.1145/1066100.1066102
http://dx.doi.org/10.1145/1066100.1066102
http://dx.doi.org/10.1145/1066100.1066102
https://doi.org/10.1007/978-3-319-89963-3_7
https://doi.org/10.1007/978-3-319-89963-3_7
https://doi.org/10.1007/978-3-319-89963-3_7
https://doi.org/10.1007/978-3-319-89963-3_7

	lecture 12
	Summary of Last Week
	Quantifiers for SMT
	Skolemization

	Instantiation Techniques
	E-Matching
	Enumerative Instantiation

