
SAT and SMT Solving

Sarah Winkler

Computational Logic Group
Department of Computer Science
University of Innsbruck

lecture 12
SS 2019

Outline

Summary of Last Week

Quantifiers for SMT

Instantiation Techniques

1

Definitions

I theory consists of

I signature Σ: set of function and predicate symbols

I axioms T : set of sentences in first-order logic in which only

function and predicate symbols of Σ appear

I theory is stably infinite if every satisfiable quantifier-free formula has

model with infinite carrier set

I theory T is convex if F �T
∨n

i=1 ui = vi implies F �T ui = vi for

some 1 6 i 6 n ∀ quantifier-free conjunction F and variables ui , vi

Definition

theory combination T1 ⊕ T2 of two theories

I T1 over signature Σ1

I T2 over signature Σ2

has signature Σ1 ∪ Σ2 and axioms T1 ∪ T2

Assumptions

two stably infinite theories

I T1 over signature Σ1

I T2 over signature Σ2

such that

I Σ1 ∩ Σ2 = {=}
I T1-satisfiability of quantifier-free Σ1-formulas is decidable

I T2-satisfiability of quantifier-free Σ2-formulas is decidable

2

Nelson-Oppen Method: Nondeterministic Version

Input quantifier-free conjunction ϕ in theory combination T1 ⊕ T2

Output satisfiable or unsatisfiable

1 purification

ϕ ≈ ϕ1 ∧ ϕ2 for Σ1-formula ϕ1 and Σ2-formula ϕ2

2 guess and check

I V is set of shared variables in ϕ1 and ϕ2

I guess equivalence relation E on V

I arrangement α(V ,E ) is formula∧
x E y

x = y ∧
∧

¬(x E y)

x 6= y

I if ϕ1 ∧ α(V ,E ) is T1-satisfiable and ϕ2 ∧ α(V ,E ) is T2-satisfiable

then return satisfiable else return unsatisfiable
3

http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction ϕ in combination T1 ⊕ T2
of convex theories T1 and T2

Output satisfiable or unsatisfiable

1 purification ϕ ≈ ϕ1 ∧ ϕ2 for Σ1-formula ϕ1 and Σ2-formula ϕ2

2 V : set of shared variables in ϕ1 and ϕ2

E : already discovered equalities between variables in V

3 test satisfiability of ϕ1 ∧ E (and add implied equations)

I if ϕ1 ∧ E is T1-unsatisfiable then return unsatisfiable

I else add new implied equalities to E

4 test satisfiability of ϕ2 ∧ E (and add implied equations)

I if ϕ2 ∧ E is T2-unsatisfiable then return unsatisfiable

I else add new implied equalities to E

5 if E has been extended in steps 3 or 4 then go to step 2

else return satisfiable
4

Outline

Summary of Last Week

Quantifiers for SMT

Skolemization

Instantiation Techniques

5

Applications of Quantifiers in SMT

Example (Homework 5)

Imagine a village of monkeys where each monkey owns at least

two bananas. As the monkeys are well-organised, each tree

contains exactly three monkeys. Monkeys are also very friendly, so

every monkey has a partner.

quantifiers!

More important applications

I automated theorem proving

∀x y z . inv(x) · x = 0 ∧ 0 · x = x ∧ x · (y · z) = (x · y) · z
I software verification

∀x . pre(x) −→ post(x)

I function synthesis

∀input. ∃output. F(input, output)

I planning

∃plan. ∀time. spec(plan, time)

6

SMT Solving with Quantifiers

SMT solver

ϕ

SAT (v)

UNSAT

unknown
∀x . f(x) 6= x ∧ f(a) = b ∧ a = bf(a) = a ∨ (f(b) 6= a ∧ a = b)

f(a) = a

Decision Properties

I SMT solvers can decide propositional logic + LIA/LRA/EUF/BV/...
I many SMT solvers also have support for quantifiers,

but have in general no decision procedure for theories + quantifiers

first-order logic is undecidable!

7



Skolemization

Getting rid of ∃ quantifiers
I replace ∃x . P(x) by P(a)
I replace ∀y ∃x . P(x) by ∀y P(f(y))
I replace ∀z ∀y ∃x . R(x) by ∀z ∀y R(f(y , z))

name witness for existential quantifier

Thoralf Skolem

Definitions
I ϕ is in prenex form if ϕ = Q1x1 . . .Qnxn ψ for ψ quantifier-free and Qi ∈ {∀, ∃}
I ϕ is in Skolem form if in prenex form without existential quantifier

Skolemization
1 bring formula into prenex form

2 replace ∀x1, . . . , xk∃y ψ[y ] by ∀x1, . . . , xk ψ[f(x1, . . . , xk)] for fresh f

until no existential quantifiers left

Theorem

if ϕ′ is skolemization of ϕ then ϕ and ϕ′ are equisatisfiable

can consider formulas of shape ∀x1, . . . , xn ϕ[x1, . . . , xn]

8

Definition

Herbrand instance of Skolem formula ∀x1, . . . , xn ϕ[x1, . . . , xn] is ϕ[t1, . . . , tn]

where ti is term over signature of ϕ

set of function symbols and constants

Remark

Herbrand instances are ground formulas, i.e., without (quantified) variables

Theorem (Herbrand)

Skolem formula ϕ is unsatisfiable ⇐⇒
there exists finite unsatisfiable set of Herbrand instances of ϕ

Jacques Herbrand

Caveats
I at least one constant required per sort
I holds for pure first order logic, not necessarily in presence of theories

9

Example: Is this syllogism correct?

All humans are mortal.

All Greeks are humans.

So all Greeks are mortal.

∀x . H(x) −→ M(x)

∀x . G (x) −→ H(x)

∀x . G (x) −→ M(x)

Aristotle

I translate to first-order logic

I check validity of

((∀x . H(x) −→ M(x)) ∧ (∀x . G (x) −→ H(x))) −→ (∀x . G (x) −→ M(x))

cannot be answered by SMT solver

I check unsatisfiability of

∀x . H(x) −→ M(x), ∀x . G (x) −→ H(x), ∃x . G (x) ∧ ¬M(x)

I skolemize

∀x . H(x) −→ M(x), ∀x . G (x) −→ H(x), G (a) ∧ ¬M(a)

I already unsatisfiable when replacing quantified formulas by Herbrand instances

H(a) −→ M(a), G (a) −→ H(a), G (a) ∧ ¬M(a)

when adding right Herbrand instances

unsatisfiability can be detected by SMT solver

10

Outline

Summary of Last Week

Quantifiers for SMT

Instantiation Techniques

E-Matching

Enumerative Instantiation

11



instantiation
module

SAT solver

T -solver

boolean
assignment

conflict
clause

unsat

sat

ϕ abstract

ground SMT solver

∀-SMT solver

assignment
instance

Example
I a = b ∧ g(a) = a ∧ (f(a) 6= f(b) ∨ b 6= g(g(a))))

I abstract to pa=b ∧ pg(a)=a ∧
(
pf(a) 6=f(b) ∨ pb 6=g(g(a))

)
I SAT solver: pa=b, pg(a)=a, pf(a) 6=f(b) T -solver: ¬pa=b ∨ ¬pf(a) 6=f(b)

I SAT solver: pa=b, pg(a)=a, pb 6=g(g(a)) T -solver: ¬pa=b∨¬pg(a)=a∨¬pb 6=g(g(a))

I SAT solver: unsat

Example

I a = b ∧ g(a) 6= b ∧ (f(a) 6= f(b) ∨ ∀x . x = g(x)))

I abstract to pa=b ∧ pg(a) 6=b ∧
(
pf(a)6=f(b) ∨ p∀x.x=g(x)

)
I SAT solver: pa=b, pg(a) 6=b, p∀x.x=g(x) T -solver: ok, but what is ∀?

I instantiation module: find clause to do with ∀x . x = g(x) to exclude model!

I SAT solver: pa=b, pg(a) 6=b, p∀x.x=g(x), pa=g(a) T : ¬pa=b ∨ pg(a)=b ∨ pa 6=g(a)

want a = g(a) whenever p∀x.x=g(x) true

12

Instantiation

Definition (Instance)

(∀x ϕ(x)) −→ ϕσ

is instance where xσ does not contain variables x

Example

∀x . H(x) −→ M(x) has instance (∀x . H(x) −→ M(x)) −→ (H(a) −→ M(a))

Remarks
I as first-order logic formula, every instance is tautology

I in SAT solver, ∀x ϕ(x) gets abstracted to propositional variable p∀x ϕ(x),
which has meaning only for instantiation module

I ϕσ gets abstracted to propositional formula:
involved variables have meaning for theory solver

I idea: ϕσ gets “activated” if propositional variable p∀x ϕ(x) is assigned true

13

Instantiation Framework

instantiation
module

SAT solver

T -solver

boolean
assignment

conflict
clause

unsat

sat

ϕ abstract

SMT solver

∀-SMT solver

assignment
instance

I split ϕ into

I literals ϕQ with quantifiers

I literals ϕE without quantifiers

I instantiation module generates instances of ϕQ to extend ϕE

14

E-Matching

Example

ϕE : ¬P(a), ¬P(b), ¬R(b)

ϕQ : ∀x . P(x) ∨ R(x)

I assume literal P(x) is instantiation pattern

I find substitutions σ such that P(x)σ occurs in ϕE matching

I obtain {x 7→ a}, {x 7→ b}
I add P(a) ∨ R(a) and P(b) ∨ R(b) to ϕE

trigger

Instantiation via E-matching

for each ∀x .ψ
I select set of instantiation patterns {t1, . . . , tn}
I for each ti let Si be set of substitutions σ such that tiσ occurs in ϕE

I add {ψσ | σ ∈ Si} to ϕE

15



Example

∀x∀y . sibling(x , y)←→ mother(x) = mother(y) ∧ father(x) = father(y)

sibling(adam, bea)

sibling(bea, chris)

¬sibling(adam, chris)

I unsatisfiable

I suitable instantiation patterns?

sibling(x , y) sufficient

Remarks

I works as decision procedure for some theories (e.g., lists and arrays)

but can easily omit necessary instances in other cases

I mostly efficient

I requires instantiation patterns (manually or heuristically determined)

I instantiation patterns can be specified in SMT-LIB

16

Outline

Summary of Last Week

Quantifiers for SMT

Instantiation Techniques

E-Matching

Enumerative Instantiation

17

Enumerative Instantiation

Why not use Herbrand’s theorem directly?

Theorem (Herbrand)

Skolem formula ϕ is unsatisfiable ⇐⇒
there exists finite unsatisfiable set of Herbrand instances of ϕ

Early days of theorem proving

I first theorem provers enumerated Herbrand instances, looked for refutation

I infeasible in practice

I approach was forgotten

Enumerative instantiation

I instantiation module based on stronger version of Herbrand’s theorem

I efficient implementation techniques

18

Theorem (Stronger Herbrand)

ϕE ∧ ϕQ is unsatisfiable if and only if there exist infinite series

I Ei of finite literals sets I Qi of finite sets of ϕQ instances

such that

I Qi ⊆ {ψσ | ∀x . ψ occurs in ϕQ and dom(σ) = x and ran(σ) ⊆ T (Ei )}
I E0 = ϕE and Ei+1 = Ei ∪Qi

I some En is unsatisfiable

Direct application in ∀-SMT solver

instantiation
module

ground SMT solver unsat

sat

ϕ

assignment Ei ∪ ϕQ

instances

I ground solver enumerates assignments Ei ∪ ϕQ

I instantiation returns ∀x ψ(x) −→ Q for all Q ∈ Qi generated from ∀x ψ(x)

Lemma

if there exist infinite series Ei , Qi such that

I Qi ⊆ {ψσ | ∀x . ψ occurs in ϕQ and dom(σ) = x and ran(σ) ⊆ T (Ei )}
I E0 = ϕE and Ei+1 � Ei ∪Qi

I and all Ei are satisfiable

then ϕE ∧ ϕQ is satisfiable

19

https://rise4fun.com/Z3/slTXa
https://rise4fun.com/Z3/aB6V


Instantiation via enumeration

Fix ordering > on tuples of terms without quantified variables.

Given assignment Ei from T -solver

I for each ∀x .ψ in ϕQ

I search minimal xσ with respect to � such that xσ ∈ T (Ei ) and Ei 6� ψσ
I if exists, add {ψσ} to Qi

If Qi = ∅ then sat, otherwise return Qi

Example

ϕE : P(a) ∨ a = b, ¬P(b), ¬P(g(b))

ϕQ : ∀x . P(x) ∨ P(f (x)), ∀x . g(x) = f (x)

I suppose order a < b < f (a) < f (b) < . . .

I ground solver: model P(a), ¬P(b), ¬P(g(b) (and ϕQ)

I instantiation: Q1 consists of P(b) ∨ P(f (b)) and f (a) = g(a)

I ground solver: model P(a), ¬P(b), ¬P(g(b), f (a) = g(a), P(f (b)) (and ϕQ)

I instantiation: Q2 consists of P(f (a)) ∨ P(f (f (a))) and f (b) = g(b)

I ground solver: unsat 20

Bibliography

David Detlefs, Greg Nelson, and James B. Saxe.

Simplify: A Theorem Prover for Program Checking.

J. ACM, 52(3):365-473, 2005.

Andrew Reynolds, Haniel Barbosa and Pascal Fontaine.

Revisiting Enumerative Instantiation.

Proc. TACAS, pp 112–131, 2018.

Slide material partially taken from Pascal Fontaine’s talk at SMT Summer School 2018.

21

http://dx.doi.org/10.1145/1066100.1066102
http://dx.doi.org/10.1145/1066100.1066102
http://dx.doi.org/10.1145/1066100.1066102
https://doi.org/10.1007/978-3-319-89963-3_7
https://doi.org/10.1007/978-3-319-89963-3_7
https://doi.org/10.1007/978-3-319-89963-3_7
https://doi.org/10.1007/978-3-319-89963-3_7

	lecture 12
	Summary of Last Week
	Quantifiers for SMT
	Skolemization

	Instantiation Techniques
	E-Matching
	Enumerative Instantiation



