universität
innsbruck

SAT and SMT Solving

Sarah Winkler

Computational Logic Group
Department of Computer Science
University of Innsbruck
lecture 12
SS 2019

Definitions

- theory consists of
- signature Σ : set of function and predicate symbols
- axioms T : set of sentences in first-order logic in which only function and predicate symbols of Σ appear
- theory is stably infinite if every satisfiable quantifier-free formula has model with infinite carrier set
- theory T is convex if $F \vDash_{T} \bigvee_{i=1}^{n} u_{i}=v_{i}$ implies $F \vDash_{T} u_{i}=v_{i}$ for some $1 \leqslant i \leqslant n \forall$ quantifier-free conjunction F and variables u_{i}, v_{i}

Definition

theory combination $T_{1} \oplus T_{2}$ of two theories

- T_{1} over signature Σ_{1}
- T_{2} over signature Σ_{2}
has signature $\Sigma_{1} \cup \Sigma_{2}$ and axioms $T_{1} \cup T_{2}$
- Summary of Last Week
- Quantifiers for SMT
- Instantiation Techniques

Nelson-Oppen Method: Nondeterministic Version

Input quantifier-free conjunction φ in theory combination $T_{1} \oplus T_{2}$
Output satisfiable or unsatisfiable
1 purification

$$
\varphi \approx \varphi_{1} \wedge \varphi_{2} \text { for } \Sigma_{1} \text {-formula } \varphi_{1} \text { and } \Sigma_{2} \text {-formula } \varphi_{2}
$$

2. guess and check

- V is set of shared variables in φ_{1} and φ_{2}
- guess equivalence relation E on V
- arrangement $\alpha(V, E)$ is formula

$$
\bigwedge_{x E y} x=y \wedge \bigwedge_{\neg(x E y)} x \neq y
$$

- if $\varphi_{1} \wedge \alpha(V, E)$ is T_{1}-satisfiable and $\varphi_{2} \wedge \alpha(V, E)$ is T_{2}-satisfiable then return satisfiable else return unsatisfiable

Outline

Sumany of Last Week
$\varphi \approx \varphi_{1} \wedge \varphi_{2}$ for Σ_{1}-formula φ_{1} and Σ_{2}-formula φ_{2}

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction φ in combination $T_{1} \oplus T_{2}$ of convex theories T_{1} and T_{2}

Output satisfiable or unsatisfiable
1 purification $\varphi \approx \varphi_{1} \wedge \varphi_{2}$ for Σ_{1}-formula φ_{1} and Σ_{2}-formula φ_{2}
$2 V$: set of shared variables in φ_{1} and φ_{2}
E : already discovered equalities between variables in V
3 test satisfiability of $\varphi_{1} \wedge E$ (and add implied equations)

- if $\varphi_{1} \wedge E$ is T_{1}-unsatisfiable then return unsatisfiable
- else add new implied equalities to E

4 test satisfiability of $\varphi_{2} \wedge E$ (and add implied equations)

- if $\varphi_{2} \wedge E$ is T_{2}-unsatisfiable then return unsatisfiable
- else add new implied equalities to E

5 if E has been extended in steps 3 or 4 then go to step else return satisfiable

Applications of Quantifiers in SMT

Example (Homework 5) quantifiers!
Imagine a village of monkeys where each monkey owns at least two bananas. As the monkeys are well-organised, each tree
contains exactly three monkeys. Monkeys are also very friendly, so every monkey has a partner.

More important applications

- automated theorem proving
$\forall x y z \cdot \operatorname{inv}(x) \cdot x=0 \wedge 0 \cdot x=x \wedge x \cdot(y \cdot z)=(x \cdot y) \cdot z$
- software verification
$\forall x . \operatorname{pre}(x) \longrightarrow \operatorname{post}(x)$
- function synthesis $\forall i n p u t$. ヨoutput. F(input, output)
- planning
\exists plan. \forall time. $\operatorname{spec}($ plan, time $)$

Outline

- Summary of Last Week
- Quantifiers for SMT
- Skolemization
- Instantiation Techniques

SMT Solving with Quantifiers

SMT solver

Decision Properties

> first-order logic is undecidable!

- SMT solvers can decide propositional logic + LIA/LRA/EU//BV/..
- many SMT solvers also have support for quantifiers, but have in general no decision procedure for theories + quantifiers

Skolemization

Getting rid of \exists quantifiers

- replace $\exists x . \mathrm{P}(x)$ by $\mathrm{P}(\mathrm{a})$
- replace $\forall y \exists x . \mathrm{P}(x)$ by $\forall y \mathrm{P}(\mathrm{f}(y))$
- replace $\forall z \forall y \exists x . \mathrm{R}(x)$ by $\forall z \forall y \mathrm{R}(f(y, z))$

Definitions

- φ is in prenex form if $\varphi=Q_{1} x_{1} \ldots Q_{n} x_{n} \psi$ for ψ quantifier-free and $Q_{i} \in\{\forall, \exists\}$
- φ is in Skolem form if in prenex form without existential quantifier

Skolemization

1 bring formula into prenex form
${ }_{2}$ replace $\forall x_{1}, \ldots, x_{k} \exists y \psi[y]$ by $\forall x_{1}, \ldots, x_{k} \psi\left[f\left(x_{1}, \ldots, x_{k}\right)\right]$ for fresh f until no existential quantifiers left

Theorem

can consider formulas of shape $\forall x_{1}, \ldots, x_{n} \varphi\left[x_{1}, \ldots, x_{n}\right]$
if φ^{\prime} is skolemization of φ then φ and φ^{\prime} are equisatisfiable

Example: Is this syllogism correct?

$$
\begin{array}{ll}
\text { All humans are mortal. } & \forall x \cdot H(x) \longrightarrow M(x) \\
\text { All Greeks are humans. } & \\
\cline { 1 - 1 } \text { So all Greeks are mortal. } & \forall x \cdot G(x) \longrightarrow H(x) \\
\forall x \cdot G(x) \longrightarrow M(x)
\end{array}
$$

- translate to first-order logic
cannot be answered by SMT solver
- check validity of

$$
((\forall x . H(x) \longrightarrow M(x)) \wedge(\forall x . G(x) \longrightarrow H(x))) \longrightarrow(\forall x \cdot G(x) \longrightarrow M(x))
$$

- check unsatisfiability of

$$
\forall x . H(x) \longrightarrow M(x), \quad \forall x . G(x) \longrightarrow H(x), \quad \exists x . G(x) \wedge \neg M(x)
$$

- skolemize
when adding right Herbrand instances unsatisfiability can be detected by SMT solver
- already unsatisfiable when replacing quantified formulas by Herbrand instances

$$
H(a) \longrightarrow M(a), \quad G(a) \longrightarrow H(a), \quad G(a) \wedge \neg M(a)
$$

Definition set of function symbols and constants
Herbrand instance of Skolen, formula $\forall x_{1}, \ldots, x_{n} \varphi\left[x_{1}, \ldots, x_{n}\right]$ is $\varphi\left[t_{1}, \ldots, t_{n}\right]$ where t_{i} is term over signature of φ

Remark

Herbrand instances are ground formulas, i.e., without (quantified) variables

Theorem (Herbrand)

Skolem formula φ is unsatisfiable \Longleftrightarrow
there exists finite unsatisfiable set of Herbrand instances of φ

Caveats

- at least one constant required per sort
- holds for pure first order logic, not necessarily in presence of theories

Outline

- Summary of Last Week
- Quantifiers for SMT
- Instantiation Techniques
- E-Matching
- Enumerative Instantiation

Example
 \qquad \rightarrow sat

- abstract to $p_{a=b} \wedge p_{\mathrm{g}(\mathrm{a})=\mathrm{a}} \wedge\left(p_{\mathrm{f}(\mathrm{a}) \neq \mathrm{f}(b)} \vee p_{b \neq \mathrm{g}(\mathrm{g}(\mathrm{a}))}\right)$
- SAT solver: $p_{a=b}, p_{\mathrm{g}(\mathrm{a})=a}, p_{\mathrm{f}(\mathrm{a}) \neq \mathrm{f}(b)} \quad T$-solver: $\neg p_{a=b} \vee \neg p_{\mathrm{f}(\mathrm{a}) \neq \mathrm{f}(b)}$
- SAT solver: $p_{a=b}, p_{\mathrm{g}(\mathrm{a})=a}, p_{b \neq \mathrm{g}(\mathrm{g}(a))} \quad T$-solver: $\neg p_{a=b} \vee \neg p_{\mathrm{g}(a)=a} \vee \neg p_{b \neq \mathrm{g}(\mathrm{g}(a))}$
- SAT solver: unsat

Instantiation

Definition (Instance)

$$
(\forall \bar{x} \varphi(\bar{x})) \longrightarrow \varphi \sigma
$$

is instance where $\bar{x} \sigma$ does not contain variables \bar{x}
Example
$\forall x . H(x) \longrightarrow M(x)$ has instance $(\forall x . H(x) \longrightarrow M(x)) \longrightarrow(H(a) \longrightarrow M(a))$

Remarks

- as first-order logic formula, every instance is tautology
- in SAT solver, $\forall \bar{x} \varphi(\bar{x})$ gets abstracted to propositional variable $p_{\nabla \bar{x} \varphi(\bar{x})}$, which has meaning only for instantiation module
- $\varphi \sigma$ gets abstracted to propositional formula: involved variables have meaning for theory solver
- idea: $\varphi \sigma$ gets "activated" if propositional variable $p_{\forall \bar{x} \varphi(\bar{x})}$ is assigned true

Example

Instantiation Framework

- split φ into
- literals φ_{Q} with quantifiers
- literals φ_{E} without quantifiers
- instantiation module generates instances of φ_{Q} to extend φ_{E}

E-Matching

Example

$$
\begin{aligned}
& \varphi_{E}: \neg P(a), \neg P(b), \neg R(b) \\
& \varphi_{Q}: \forall x . P(x) \vee R(x)
\end{aligned}
$$

- assume literal $P(x)$ is instantiation pattern
- find substitutions σ such that $P(x) \sigma$ occurs in φ_{E}
- obtain $\{x \mapsto a\},\{x \mapsto b\}$
- add $P(a) \vee R(a)$ and $P(b) \vee R(b)$ to φ_{E}

Instantiation via E-matching

for each $\forall \bar{x} . \psi$

- select set of instantiation patterns $\left\{t_{1}, \ldots, t_{n}\right\}$
- for each t_{i} let S_{i} be set of substitutions σ such that $t_{i} \sigma$ occurs in φ_{E}
- add $\left\{\psi \sigma \mid \sigma \in S_{i}\right\}$ to φ_{E}

Example

$\forall x \forall y . \operatorname{sibling}(x, y) \longleftrightarrow$ mother $(x)=$ mother $(y) \wedge$ father $(x)=$ father (y)
sibling(adam, bea)
sibling(bea, chris)
\neg sibling(adam, chris)

- unsatisfiable
- suitable instantiation patterns?
sibling (x, y) sufficient

Remarks

- works as decision procedure for some theories (e.g., lists and arrays) but can easily omit necessary instances in other cases
- mostly efficient
- requires instantiation patterns (manually or heuristically determined)
- instantiation patterns can be specified in SMT-LIB ${ }^{\text {\% }}$
- Summary of Last Week
- Quantifiers for SMT
- Instantiation Techniques
- E-Matching
- Enumerative Instantiation

Enumerative Instantiation

Why not use Herbrand's theorem directly?

Theorem (Herbrand)

Skolem formula φ is unsatisfiable \Longleftrightarrow
there exists finite unsatisfiable set of Herbrand instances of φ

Early days of theorem proving

- first theorem provers enumerated Herbrand instances, looked for refutation
- infeasible in practice
- approach was forgotten

Enumerative instantiation

- instantiation module based on stronger version of Herbrand's theorem
- efficient implementation techniques

Theorem (Stronger Herbrand)

$\varphi_{E} \wedge \varphi_{Q}$ is unsatisfiable if and only if there exist infinite series
$-\mathbf{E}_{i}$ of finite literals sets $\vee \mathbf{Q}_{i}$ of finite sets of φ_{Q} instances
such that

- $\mathbf{Q}_{i} \subseteq\left\{\psi \sigma \mid \forall \bar{x} \cdot \psi\right.$ occurs in φ_{Q} and $\operatorname{dom}(\sigma)=\bar{x}$ and $\left.\operatorname{ran}(\sigma) \subseteq \mathcal{T}\left(\mathbb{E}_{i}\right)\right\}$
- $\mathbf{E}_{0}=\varphi_{E}$ and $E_{i+1}=E_{i} \cup \mathbf{Q}_{i}$
- some E_{n} is unsatisfiable

Direct application in \forall-SMT solver

- ground solver enumerates assignments $\mathbf{E}_{i} \cup \varphi_{Q}$
- instantiation returns $\forall \bar{x} \psi(\bar{x}) \longrightarrow Q$ for all $Q \in \mathbf{Q}_{i}$ generated from $\forall \bar{x} \psi(\bar{x})$

Lemma

Instantiation via enumeration

Bibliography

Fix ordering > on tuples of terms without quantified variables.
Given assignment \mathbf{E}_{i} from T-solver

- for each $\forall \bar{x} . \psi$ in φ_{Q}
- search minimal $\bar{x} \sigma$ with respect to \succeq such that $\bar{x} \sigma \in \mathcal{T}\left(\mathbf{E}_{i}\right)$ and $\mathbf{E}_{i} \not \forall \psi \sigma$
- if exists, add $\{\psi \sigma\}$ to \mathbf{Q}_{i}

If $\mathbf{Q}_{i}=\varnothing$ then sat, otherwise return \mathbf{Q}_{i}

Example

$$
\begin{aligned}
& \varphi_{E}: P(a) \vee a=b, \neg P(b), \neg P(g(b)) \\
& \varphi_{Q}: \forall x \cdot P(x) \vee P(f(x)), \forall x \cdot g(x)=f(x)
\end{aligned}
$$

- suppose order $a<b<f(a)<f(b)<\ldots$
- ground solver: model $P(a), \neg P(b), \neg P\left(g(b)\right.$ (and $\left.\varphi_{Q}\right)$
- instantiation: \mathbf{Q}_{1} consists of $P(b) \vee P(f(b))$ and $f(a)=g(a)$
- ground solver: model $P(a), \neg P(b), \neg P\left(g(b), f(a)=g(a), P(f(b))\left(\right.\right.$ and $\left.\varphi_{Q}\right)$
- instantiation: \mathbf{Q}_{2} consists of $P(f(a)) \vee P(f(f(a)))$ and $f(b)=g(b)$
- ground solver: unsat

