

SAT and SMT Solving

Computational Logic Group Department of Computer Science University of Innsbruck

lecture 12

Sarah Winkler

SS 2019

Definitions

- ► theory consists of
 - signature Σ : set of function and predicate symbols
 - set of sentences in first-order logic in which only \blacktriangleright axioms T: function and predicate symbols of Σ appear
- ▶ theory is stably infinite if every satisfiable quantifier-free formula has model with infinite carrier set
- ▶ theory T is convex if $F \vDash_T \bigvee_{i=1}^n u_i = v_i$ implies $F \vDash_T u_i = v_i$ for some $1 \leq i \leq n \forall$ quantifier-free conjunction *F* and variables u_i, v_i

Definition

theory combination $T_1 \oplus T_2$ of two theories

- \blacktriangleright T_1 over signature Σ_1
- T_2 over signature Σ_2

has signature $\Sigma_1 \cup \Sigma_2$ and axioms $T_1 \cup T_2$

Assumptions

• Summary of Last Week

- Quantifiers for SMT
- Instantiation Techniques

Nelson-Oppen Method: Nondeterministic Version

quantifier-free conjunction φ in theory combination $T_1 \oplus T_2$ Input *Output* satisfiable or unsatisfiable

1 purification

2

 $\varphi \approx \varphi_1 \wedge \varphi_2$ for Σ_1 -formula φ_1 and Σ_2 -formula φ_2

guess and check 2

- V is set of shared variables in φ_1 and φ_2
- guess equivalence relation E on V
- arrangement $\alpha(V, E)$ is formula

$$\bigwedge_{x E y} x = y \land \bigwedge_{\neg (x E y)} x \neq y$$

• if $\varphi_1 \wedge \alpha(V, E)$ is T_1 -satisfiable and $\varphi_2 \wedge \alpha(V, E)$ is T_2 -satisfiable then return satisfiable else return unsatisfiable

Nelson-Oppen Method: Deterministic Version

- Input quantifier-free conjunction φ in combination $T_1 \oplus T_2$ of convex theories T_1 and T_2
- Output satisfiable or unsatisfiable
 - **1** purification $\varphi \approx \varphi_1 \wedge \varphi_2$ for Σ_1 -formula φ_1 and Σ_2 -formula φ_2
 - 2 V: set of shared variables in φ_1 and φ_2
 - E: already discovered equalities between variables in V
 - 3 test satisfiability of $\varphi_1 \wedge E$ (and add implied equations)
 - if $\varphi_1 \wedge E$ is T_1 -unsatisfiable then return unsatisfiable
 - else add new implied equalities to E
 - test satisfiability of $\varphi_2 \wedge E$ (and add implied equations)
 - if $\varphi_2 \wedge E$ is T_2 -unsatisfiable then return unsatisfiable
 - else add new implied equalities to E
 - if E has been extended in steps 3 or 4 then go to step 2
 else return satisfiable

Outline

- Summary of Last Week
- Quantifiers for SMT
 - Skolemization
- Instantiation Techniques

Applications of Quantifiers in SMT

Example (Homework 5)

Imagine a village of monkeys where each monkey owns at least two bananas. As the monkeys are well-organised, each tree contains exactly three monkeys. Monkeys are also very friendly, so every monkey has a partner.

quantifiers!

4

More important applications

automated theorem proving

 $\forall x \ y \ z. \ \mathsf{inv}(x) \cdot x = 0 \land 0 \cdot x = x \land x \cdot (y \cdot z) = (x \cdot y) \cdot z$

- ▶ software verification $\forall x. \operatorname{pre}(x) \longrightarrow \operatorname{post}(x)$
- ► function synthesis ∀input. ∃output. F(input, output)
- planning
 ∃plan. ∀time. spec(plan, time)

SMT Solving with Quantifiers

SMT solver

Decision Properties

► SMT solvers can decide propositional logic + LIA/LRA/EU//BV/...

many SMT solvers also have support for quantifiers,
 but have in general no decision procedure for theories + quantifiers

first-order logic is undecidable!

Skolemization

Getting rid of \exists quantifiers

- ▶ replace $\exists x. P(x)$ by P(a)
- ▶ replace $\forall y \exists x. P(x)$ by $\forall y P(f(y))$
- ▶ replace $\forall z \forall y \exists x. R(x)$ by $\forall z \forall y R(f(y, z))$

Thoralf Skolem

Definitions

• φ is in prenex form if $\varphi = Q_1 x_1 \dots Q_n x_n \psi$ for ψ quantifier-free and $Q_i \in \{\forall, \exists\}$

name witness for existential quantifier

 $\blacktriangleright \ \varphi$ is in Skolem form if in prenex form without existential quantifier

Skolemization

- 1 bring formula into prenex form
- 2 replace ∀x₁,..., x_k∃y ψ[y] by ∀x₁,..., x_k ψ[f(x₁,..., x_k)] for fresh f until no existential quantifiers left

Example: Is this syllogism correct?

All humans are mortal. All Greeks are humans. So all Greeks are mortal.

► translate to first-order logic

cannot be answered by SMT solver

when adding right Herbrand instances

Aristotle

check validity of

 $((\forall x. \ H(x) \longrightarrow M(x)) \land (\forall x. \ G(x) \longrightarrow H(x))) \longrightarrow (\forall x. \ G(x) \longrightarrow M(x))$

► check unsatisfiability of

$$\forall x. \ H(x) \longrightarrow M(x), \quad \forall x. \ G(x) \longrightarrow H(x), \quad \exists x. \ G(x) \land \neg M(x)$$

skolemize

 $\forall x. \ H(x) \longrightarrow M(x),$ unsatisfiability can be detected by SMT solver

► already unsatisfiable when replacing quantified formulas by Herbrand instances

$$H(a) \longrightarrow M(a), \quad G(a) \longrightarrow H(a), \quad G(a) \wedge \neg M(a)$$

Definition set of function symbols and constants

Herbrand instance of Skolene formula $\forall x_1, \ldots, x_n \varphi[x_1, \ldots, x_n]$ is $\varphi[t_1, \ldots, t_n]$ where t_i is term over signature of φ

Remark

Herbrand instances are ground formulas, i.e., without (quantified) variables

Theorem (Herbrand)

 $\begin{array}{l} \textit{Skolem formula } \varphi \textit{ is unsatisfiable } \Longleftrightarrow \\ \textit{there exists finite unsatisfiable set of Herbrand instances of } \varphi \end{array}$

Jacques Herbrand

9

Caveats

- ▶ at least one constant required per sort
- ▶ holds for pure first order logic, not necessarily in presence of theories

Outline

- Summary of Last Week
- Quantifiers for SMT
- Instantiation Techniques
 - E-Matching
 - Enumerative Instantiation

- ► SAT solver: $p_{a=b}$, $p_{g(a)=a}$, $p_{f(a)\neq f(b)}$ T-solver: $\neg p_{a=b} \lor \neg p_{f(a)\neq f(b)}$
- ► SAT solver: $p_{a=b}$, $p_{g(a)=a}$, $p_{b\neq g(g(a))}$ T-solver: $\neg p_{a=b} \lor \neg p_{g(a)=a} \lor \neg p_{b\neq g(g(a))}$
- ► SAT solver: unsat

Example

Instantiation Framework

∀-SMT solver

- $\blacktriangleright \quad {\rm split} \ \varphi \ {\rm into}$
 - \blacktriangleright literals $\varphi_{\textit{Q}}$ with quantifiers
 - literals φ_E without quantifiers
- \blacktriangleright instantiation module generates instances of φ_{Q} to extend φ_{E}

Instantiation

Definition (Instance)

 $(\forall \overline{x} \ \varphi(\overline{x})) \longrightarrow \varphi \sigma$

is instance where $\overline{x}\sigma$ does not contain variables \overline{x}

Example

 $\forall x. \ H(x) \longrightarrow M(x)$ has instance $(\forall x. \ H(x) \longrightarrow M(x)) \longrightarrow (H(a) \longrightarrow M(a))$

Remarks

- ► as first-order logic formula, every instance is tautology
- in SAT solver, $\forall \overline{x} \ \varphi(\overline{x})$ gets abstracted to propositional variable $p_{\forall \overline{x} \ \varphi(\overline{x})}$, which has meaning only for instantiation module
- $\varphi\sigma$ gets abstracted to propositional formula: involved variables have meaning for theory solver
- ► idea: $\varphi \sigma$ gets "activated" if propositional variable $p_{\forall \overline{x} \ \varphi(\overline{x})}$ is assigned true

E-Matching

Example

$$\varphi_E : \neg P(a), \ \neg P(b), \ \neg R(b)$$

 $\varphi_Q : \forall x. \ P(x) \lor R(x)$

▶ assume literal P(x) is instantiation pattern

trigger

- find substitutions σ such that $P(x)\sigma$ occurs in φ_E
- obtain $\{x \mapsto a\}, \{x \mapsto b\}$
- ▶ add $P(a) \lor R(a)$ and $P(b) \lor R(b)$ to φ_E

Instantiation via E-matching

for each $\forall \overline{x}.\psi$

- select set of instantiation patterns $\{t_1, \ldots, t_n\}$
- for each t_i let S_i be set of substitutions σ such that $t_i \sigma$ occurs in φ_E
- ▶ add $\{\psi\sigma \mid \sigma \in S_i\}$ to φ_E

matching

Example

 $\forall x \forall y. \text{ sibling}(x, y) \longleftrightarrow \text{ mother}(x) = \text{mother}(y) \land \text{father}(x) = \text{father}(y)$ sibling(adam, bea)

- sibling(bea, chris)
- ¬sibling(adam, chris)
- 🕨 unsatisfiable 🥕
- suitable instantiation patterns? sibling(x, y) sufficient

Remarks

- works as decision procedure for some theories (e.g., lists and arrays) but can easily omit necessary instances in other cases
- mostly efficient
- requires instantiation patterns (manually or heuristically determined)
- ▶ instantiation patterns can be specified in SMT-LIB 🥕

16

Enumerative Instantiation

Why not use Herbrand's theorem directly?

Theorem (Herbrand)

Skolem formula φ is unsatisfiable \iff there exists finite unsatisfiable set of Herbrand instances of φ

Early days of theorem proving

- ▶ first theorem provers enumerated Herbrand instances, looked for refutation
- ► infeasible in practice
- approach was forgotten

Enumerative instantiation

- instantiation module based on stronger version of Herbrand's theorem
- ► efficient implementation techniques

Theorem (Stronger Herbrand)

 $\varphi_E \wedge \varphi_Q$ is unsatisfiable if and only if there exist infinite series

► \mathbf{E}_i of finite literals sets ► \mathbf{Q}_i of finite sets of φ_Q instances such that

- $\mathbf{Q}_i \subseteq \{\psi\sigma \mid \forall \overline{\mathbf{x}}, \psi \text{ occurs in } \varphi_Q \text{ and } \operatorname{dom}(\sigma) = \overline{\mathbf{x}} \text{ and } \operatorname{ran}(\sigma) \subseteq \mathcal{T}(\mathbf{E}_i)\}$
- ▶ $\mathbf{E}_0 = \varphi_E$ and $\mathbf{E}_{i+1} = \mathbf{E}_i \cup \mathbf{Q}_i$
- ▶ some E_n is unsatisfiable

Direct application in ∀-SMT solver

- ground solver enumerates assignments $\mathbf{E}_i \cup \varphi_Q$
- instantiation returns $\forall \overline{x} \ \psi(\overline{x}) \longrightarrow Q$ for all $Q \in \mathbf{Q}_i$ generated from $\forall \overline{x} \ \psi(\overline{x})$

Outline

- Summary of Last Week
- Quantifiers for SMT
- Instantiation Techniques
 - E-Matching
 - Enumerative Instantiation

Lemma

Instantiation via enumeration

Fix ordering > on tuples of terms without quantified variables. Given assignment \mathbf{E}_i from T-solver

- for each $\forall \overline{x}.\psi$ in φ_Q
 - search minimal $\overline{x}\sigma$ with respect to \succeq such that $\overline{x}\sigma \in \mathcal{T}(\mathbf{E}_i)$ and $\mathbf{E}_i \not\vDash \psi\sigma$
 - if exists, add $\{\psi\sigma\}$ to \mathbf{Q}_i

If $\mathbf{Q}_i = \varnothing$ then sat, otherwise return \mathbf{Q}_i

Example

 $\varphi_E \colon P(a) \lor a = b, \ \neg P(b), \ \neg P(g(b))$ $\varphi_Q \colon \forall x. \ P(x) \lor P(f(x)), \ \forall x. \ g(x) = f(x)$

- suppose order $a < b < f(a) < f(b) < \dots$
- ground solver: model P(a), $\neg P(b)$, $\neg P(g(b) \text{ (and } \varphi_Q)$
- ▶ instantiation: \mathbf{Q}_1 consists of $P(b) \lor P(f(b))$ and f(a) = g(a)
- ▶ ground solver: model P(a), $\neg P(b)$, $\neg P(g(b), f(a) = g(a), P(f(b))$ (and φ_Q)
- instantiation: \mathbf{Q}_2 consists of $P(f(a)) \vee P(f(f(a)))$ and f(b) = g(b)
- ► ground solver: unsat

20

Bibliography

David Detlefs, Greg Nelson, and James B. Saxe.
 Simplify: A Theorem Prover for Program Checking.
 J. ACM, 52(3):365-473, 2005.

Andrew Reynolds, Haniel Barbosa and Pascal Fontaine.
 Revisiting Enumerative Instantiation.
 Proc. TACAS, pp 112–131, 2018.

Slide material partially taken from Pascal Fontaine's talk at SMT Summer School 2018.