universität innsbruck

SAT and SMT Solving

Sarah Winkler

Computational Logic Group
Department of Computer Science
University of Innsbruck
lecture 13
SS 2019

Outline

- Summary of Last Week
- Bounded Model Checking for Verification
- Test
- Evaluation
- More on SAT and SMT

Instantiation Framework

- split φ into
- literals φ_{Q} with quantifiers
- literals φ_{E} without quantifiers
- instantiation module generates instances of φ_{Q} to extend φ_{E}

Skolemization

1 bring formula into prenex form
2 replace $\forall x_{1}, \ldots, x_{k} \exists y \psi[y]$ by $\forall x_{1}, \ldots, x_{k} \psi\left[f\left(x_{1}, \ldots, x_{k}\right)\right]$ for fresh f until no existential quantifiers left

Theorem

$$
\text { can consider formulas of shape } \forall x_{1}, \ldots, x_{n} \varphi\left[x_{1}, \ldots, x_{n}\right]
$$

if φ^{\prime} is skolemization of φ then φ and φ^{\prime} are equisatisfiable

Instantiation via E-matching

for each $\forall \bar{x} . \psi$

- select set of instantiation patterns $\left\{t_{1}, \ldots, t_{n}\right\}$
- for each t_{i} let S_{i} be set of substitutions σ such that $t_{i} \sigma$ occurs in φ_{E}
- add $\left\{\psi \sigma \mid \sigma \in S_{i}\right\}$ to φ_{E}

Theorem (Stronger Herbrand)

$\varphi_{E} \wedge \varphi_{Q}$ is unsatisfiable if and only if there exist infinite series
$-\mathbf{E}_{i}$ of finite literals sets \mathbf{Q}_{i} of finite sets of φ_{Q} instances
such that

- $\mathbf{Q}_{i} \subseteq\left\{\psi \sigma \mid \forall \bar{x} . \psi\right.$ occurs in φ_{Q} and $\operatorname{dom}(\sigma)=\bar{x}$ and $\left.\operatorname{ran}(\sigma) \subseteq \mathcal{T}\left(\mathbf{E}_{i}\right)\right\}$
- $\mathbf{E}_{0}=\varphi_{E}$ and $\mathbf{E}_{i+1}=\mathbf{E}_{i} \cup \mathbf{Q}_{i}$
- some \mathbf{E}_{n} is unsatisfiable

Instantiation via enumeration

Fix ordering > on tuples of terms without quantified variables.
Given assignment \mathbf{E}_{i} from T-solver

- for each $\forall \bar{x} . \psi$ in φ_{Q}
- search minimal $\bar{x} \sigma$ with respect to \succeq such that $\bar{x} \sigma \in \mathcal{T}\left(\mathbf{E}_{i}\right)$ and $\mathbf{E}_{i} \not \nexists \psi \sigma$
- if exists, add $\{\psi \sigma\}$ to \mathbf{Q}_{i}

If $\mathbf{Q}_{i}=\varnothing$ then sat, otherwise return \mathbf{Q}_{i}

Outline

- Summary of Last Week
- Bounded Model Checking for Verification
- Test
- Evaluation
- More on SAT and SMT

Disastrous Software Bugs

Ariane 5 Flight 501 (1996)

- destroyed 37 seconds after launch
- software for Ariane 4 for was reused
- software error: data conversion from 64-bit floating point to 16 -bit integer caused arithmetic overflow
- cost: 370 million \$
http://en.wikipedia.org/wiki/Ariane_5_Flight_501

Mars Exploration Rover "Spirit" (2004)

- landed on January 4
- stopped communicating on January 21
- software error: stuck in reboot loop
- reboot failed because of flash memory failure, ultimate problem: too many files
http://en.wikipedia.org/wiki/Spirit_(rover)

Heathrow Terminal 5 Opening (2008)

- baggage system collapsed on opening day
- 42,000 bags not shipped with their owners, 500 flights cancelled
- software was tested but did not work properly with real-world load
- cost 50 million £

http://www.zdnet.com/article/it-failure-at-heathrow-t5-what-really-happened

Trading Glitch at Knight Capital (2012)

- bug in trading software resulted in 45 minutes of uncontrolled buys
- company did 11% of US trading that year
- software was run in invalid configuration
- 440 million \$ lost
http://en.wikipedia.org/wiki/Knight_Capital_Group

Death in Self-Driving Car Crash (2018)

- person died in accident with Uber's self-driving car
- victim was wrongly classified by software as non-obstacle

http://www.siliconrepublic.com/companies/uber-bug-crash

Software is Ubiquituous in Critical Systems

transport, energy, medicine, communication, finance, embedded systems, ...

How to Ensure Correctness of Software?

- testing
+ cheap, simple
- checks desired result only for given set of testcases
- verification
+ can prove automatically that system meets specification, i.e., desired output is delivered for all inputs
- more costly

Model Checking

- widely used verification approach to
- find bugs in software and hardware
- prove correctness of models

- Turing Award 2007 for Clarke, Emerson, and Sifak's
- bounded model checking can be reduced to SAT/SMT

Model Checking: Workflow

Model Checking Example: Mutex (1)

- concurrent processes P_{0}, P_{1} share some resource, access controlled by mutex
- program run by P_{0}, P_{1} matches pattern

```
# non-critical section
while (other process critical) :
    wait ()
# critical section
# non-critical section
```

- process can be abstracted to model $\mathcal{M}=\langle S, R\rangle$ with states $S=\{n, w, c\}$ and transitions R :

Model Checking Example: Mutex (2)

- obtain model for 2 processes by product construction: write $s_{0} s_{1}$ for P_{0} being in state s_{0} and P_{1} in state s_{1}
- desired properties:

safe: \quad only one process is in its critical section at any time live: whenever any process wants to enter its critical section, it will eventually be permitted to do so
non-blocking: a process can always request to enter its critical section
- how to formalize desired properties?
safe: $\quad G \neg\left(c_{0} \wedge c_{1}\right)$
live: $\quad G\left(w_{0} \rightarrow F c_{0}\right)$
non-blocking: $\mathrm{AG}\left(n_{0} \rightarrow \mathrm{EX} w_{0}\right)$
temporal logic, e.g. LTL or CTL \checkmark as $c_{0} c_{1}$ unreachable

Common Kinds of Properties

- $\mathrm{G} \psi$ for propositional formula ψ is safety property
- $\mathrm{G}(\psi \rightarrow \mathrm{F} \chi)$ for propositional formulas ψ, χ is liveness property

Example: Can This Program Cause An Overflow?

```
1 void main() {
2 int x = -1;
3 int y = input();
w while (y<100) {
5 y = y+x;
6 }
7 }
```

- model checking problem: addition $x+y$ in line 5 does not over/underflow
- state is assignment of $\mathrm{x}, \mathrm{y}+$ value of program counter pc
- property $\mathrm{G}\left(\mathrm{pc}=5 \rightarrow\left(\left(x>\mathbf{0}_{32} \wedge x+y>y\right) \vee\left(x \leqslant \mathbf{0}_{32} \wedge x+y \leqslant y\right)\right)\right)$
- (part of) model:

- but state space is very large: $\left(2^{32}\right)^{2} \cdot 7$ for bit width 32
- cannot check all possible values

Example: Can This Program Cause An Overflow? (2)

- construct program graph G
- $\{1, \ldots, 7\}$ are possible values of program counter (line numbers)
- state is tuple $\langle\mathrm{pc}, x, y\rangle$ of values of program counter, x , and y

```
1 void main() {
2 int x = -1;
3 int y = input();
4 while (y<100) {
5 y = y+x;
6 }
7 }
```

- state of form $\langle 1, \ldots, \ldots\rangle$ is initial state
- examples of state transitions according to G :
- $\left\langle 4,-\mathbf{1}_{32}, \mathbf{1 0}_{32}\right\rangle \rightarrow\left\langle 5,-\mathbf{1}_{32}, \mathbf{1 0}_{32}\right\rangle$ is possible
- $\left\langle 4,-\mathbf{1}_{32}, \mathbf{1 0 1}_{32}\right\rangle \rightarrow\left\langle 7,-\mathbf{1}_{32}, \mathbf{1 0 1}_{32}\right\rangle$ is possible
- $\left\langle 4, \mathbf{1 0}_{32}, \mathbf{1 0 1}_{32}\right\rangle \rightarrow\left\langle 5, \mathbf{1 0}_{32}, \mathbf{1 0 1}_{32}\right\rangle$ is not possible
- $\left\langle 4,-\mathbf{1}_{32}, \mathbf{1}_{32}\right\rangle \rightarrow\left\langle 5,-\mathbf{1}_{32}, \mathbf{2}_{32}\right\rangle$ is not possible

Example: Can This Program Cause An Overflow? (3)

1 define predicates

- $I(\langle p c, x, y\rangle)=(p c=1)$ to characterize initial state
- to characterize possible state transitions:

$$
\begin{aligned}
& T\left(\langle p c, x, y\rangle,\left\langle p c^{\prime}, x^{\prime}, y^{\prime}\right\rangle\right)= \\
& \quad\left(p c=1 \wedge p c^{\prime}=2\right) \vee\left(p c=2 \wedge p c^{\prime}=3 \wedge x^{\prime}=-1\right) \vee \\
& \quad\left(p c=3 \wedge p c^{\prime}=4 \wedge x=x^{\prime}\right) \vee \\
& \left(p c=4 \wedge p c^{\prime}=5 \wedge y<100 \wedge x=x^{\prime} \wedge y=y^{\prime}\right) \vee \\
& \left(p c=5 \wedge p c^{\prime}=6 \wedge y^{\prime}=y+x \wedge x=x^{\prime}\right) \vee \\
& \left(p c=4 \wedge p c^{\prime}=7 \wedge y \geqslant 100 \wedge x=x^{\prime} \wedge y=y^{\prime}\right) \vee \\
& \left(p c=6 \wedge p c^{\prime}=4 \wedge x=x^{\prime} \wedge y=y^{\prime}\right)
\end{aligned}
$$

- $P(\langle p c, x, y\rangle)=(p c=5) \wedge\left(\left(x>\mathbf{0}_{32} \wedge x+y \leqslant y\right) \vee\left(x \leqslant \mathbf{0}_{32} \wedge(y+x>y)\right)\right)$

2 for states s_{0}, \ldots, s_{k} formula φ_{k} expresses overflow occurring within k steps:

$$
\varphi_{k}=I\left(s_{0}\right) \wedge \bigwedge_{i=0}^{k-1} T\left(s_{i}, s_{i+1}\right) \wedge \bigvee_{i=0}^{k} P\left(s_{i}\right)
$$

3 if φ_{k} satisfiable then overflow can occur within k steps, e.g. for $k=5$

Bounded Model Checking

- find counterexamples to desired property of transition system (bugs)
- counterexamples are bounded in size

Definition (Transition System)

transition system $\mathcal{T}=\left(S, \rightarrow, S_{0}, L\right)$ where

- S is set of states
- $\rightarrow \subseteq S \times S$ is transition relation
- $S_{0} \subseteq S$ is set of initial states
- A is a set of propositional atoms
- $L: S \rightarrow 2^{A}$ is labeling function associating state with subset of A

Remark

S and A may be (countably) infinite

Bounded Model Checking: Safety Properties

Idea

given transition system and property $G \psi$, look for counterexamples in $\leqslant k$ steps

SAT/SMT Encoding

given transition system \mathcal{T} and safety property $\mathrm{G} \psi$

- use encoding $\langle s\rangle$ of state $s \in S$ by set of SAT/SMT variables
- use predicates
- I for initial states such that use $I(\langle s\rangle)$ is true iff $s \in S_{0}$
- T for transitions such that $T\left(\langle s\rangle,\left\langle s^{\prime}\right\rangle\right)$ is true iff $s \rightarrow s^{\prime}$ in \mathcal{T}
- P such that $P(\langle s\rangle)$ is true iff ψ holds in s
- use different fresh variables for $k+1$ states $\left\langle s_{0}\right\rangle, \ldots,\left\langle s_{k}\right\rangle$
- check satisfiability of

$$
I\left(\left\langle s_{0}\right\rangle\right) \wedge \bigwedge_{i=0}^{k-1} T\left(\left\langle s_{i}\right\rangle,\left\langle s_{i+1}\right\rangle\right) \wedge \bigvee_{i=0}^{k} \neg P\left(\left\langle s_{i}\right\rangle\right)
$$

Bounded Model Checking: Liveness Properties

Idea

- counterexample to liveness property $\mathrm{G}(\psi \rightarrow \mathrm{F} \chi)$ requires infinite path
- look for counterexamples in $\leqslant k$ steps of lasso shape:

SAT/SMT Encoding

given transition system \mathcal{T} and liveness property $\mathrm{G}(\psi \rightarrow \mathrm{F} \chi)$

- use encoding of states, predicates $/$ and T as for safety properties
- predicate P such that $P(\langle s\rangle)$ is true iff ψ holds in s
- predicate C such that $C(\langle s\rangle)$ is true iff χ holds in s
- check satisfiability of

$$
I\left(\left\langle s_{0}\right\rangle\right) \wedge \bigwedge_{i=0}^{k-1} T\left(\left\langle s_{i}\right\rangle,\left\langle s_{i+1}\right\rangle\right) \wedge \bigvee_{i=0}^{k}\left(P\left(\left\langle s_{i}\right\rangle\right) \wedge \bigwedge_{j=i}^{k} \neg C\left(\left\langle s_{i}\right\rangle\right) \wedge \bigvee_{I=i}^{k} T\left(\left\langle s_{k}\right\rangle,\left\langle s_{i}\right\rangle\right)\right)_{18}
$$

Transition System $\mathcal{T}(P)$ from Program P

- state $\left\langle p c, v_{0}, \ldots, v_{n}\right\rangle$ consists of
- value for program counter pc, i.e. line number in P
- assignment for variables in scope $\mathrm{v}_{0}, \ldots, \mathrm{v}_{n}$
\downarrow there is step $s \rightarrow s^{\prime}$ for $s=\left\langle p c, v_{0}, \ldots, v_{n}\right\rangle$ and $s^{\prime}=\left\langle p c^{\prime}, v_{0}^{\prime}, \ldots, v_{n}^{\prime}\right\rangle$ iff P admits step from s to s^{\prime}
- S_{0} consists of initial program states
- atom set A consists of all propositional formulas over $p c, v_{0}, \ldots, v_{n}$
- labeling $L(s)$ is set of all atoms A which hold in $s=\left\langle p c, v_{0}, \ldots, v_{n}\right\rangle$

Program Graph

- nodes are line numbers
- edge from line $/$ to line I^{\prime} if program counter can go from line $/$ to I^{\prime}
- two kinds of edge labels:
- conditions for program counter to take this path
- assignments of updated variables
- program graph is useful to derive encoding of $\mathcal{T}(P)$

Checking an Explicit Assertion

```
    1 int n;
2 int main() {
3 int i=0, j=10, s=0;
4 for(i=0; i<=n; i++) {
5 if (i<j)
6 s = s + 2;
7 j--;
8 }
9 assert(s==n*2 || s == 0);
10 }
```

- construct program graph
- states are of form $\langle\mathrm{pc}, i, j, n, s\rangle$
- safety property to check is

$$
\mathrm{G}(\mathrm{pc}=9 \rightarrow(s=2 n \vee s=0))
$$

- see verification.py

Software Verification Competition (SV-COMP)

- annual competition
https://sv-comp.sosy-lab.org/2018/
- industrial (and crafted) benchmarks
https://github.com/sosy-lab/sv-benchmarks
- many tools use SMT solvers

Common Safety Properties

- no overflow in addition:
- array accesses in bounds:
- memory safety:
$(x>0 \wedge x+y \geqslant y) \vee(x \leqslant 0 \wedge x+y \leqslant y)$
$0 \leqslant i<\operatorname{size}(\mathrm{a})$ for all accesses a[i] set predicate ok(addr) when memory allocated, check ok(p) for every dereference *p
- explicit assertions

Bibliography

R Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu. Bounded Model Checking
Advances in Computers 58, pp 117-148, 2003.

P Armin Biere.
Bounded Model Checking.
Chapter 14 in: Handbook of Satisfiability, IOS Press, pp. 457-481, 2009.

Test

- July 1, 14:00, HSB 9 (with René Thiemann)
- material includes everything up to week 12
- 60 minutes
- see test of last year

Outline

- Summary of Last Week
- Bounded Model Checking for Verification
- Test
- Evaluation
- More on SAT and SMT

Evaluation

- LV-Code: 703048
- additional questions
(a) There was too much theory and too little about applications in the course content.
(b) In my opinion it makes sense that computer science students learn about using SAT/SMT to solve constraint problems.
(c) I think I might use a SAT/SMT solver in the future.
(d) I would prefer a different programming language than Python.

Outline

- Summary of Last Week
- Bounded Model Checking for Verification
- Test
- Evaluation
- More on SAT and SMT

Upcoming Courses

Computational Logic

- exciting course about theorem proving
- in summer term 2020 taught by Cezary Kaliszyk and Vincent van Oostrom

Advanced Topics in Term Rewriting

- exciting course about special topics in term rewriting
- with some applications of SAT/SMT therein
- in winter term 2019 taught by Aart Middeldorp

Available Bachelor Projects

Fast Multiset Comparisons

- multisets are data structures appearing in many applications
- comparing two multisets is NP-complete problem
- aim is to implement fast algorithm based on verified SAT solver

Maximal Interpretations

- investigate applications of maxSAT/maxSMT in termination methods for term rewrite systems
- implement in Tyrolean Complexity Tool
http://cl-informatik.uibk.ac.at/teaching/smb/available.php?q=\%23Logic

