
SAT and SMT Solving

Sarah Winkler

Computational Logic Group
Department of Computer Science
University of Innsbruck

lecture 13
SS 2019

http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Outline

Summary of Last Week

Bounded Model Checking for Verification

Test

Evaluation

More on SAT and SMT

1

Instantiation Framework

instantiation
module

SAT solver

T -solver

boolean
assignment

conflict
clause

unsat

sat

ϕ abstract

SMT solver

∀-SMT solver

assignment
instance

I split ϕ into

I literals ϕQ with quantifiers

I literals ϕE without quantifiers
I instantiation module generates instances of ϕQ to extend ϕE

SMT solver is in general no decision procedure in presence of ∀ quantifiers 2

Skolemization
1 bring formula into prenex form

2 replace ∀x1, . . . , xk∃y ψ[y] by ∀x1, . . . , xk ψ[f(x1, . . . , xk)] for fresh f

until no existential quantifiers left

Theorem

if ϕ′ is skolemization of ϕ then ϕ and ϕ′ are equisatisfiable

can consider formulas of shape ∀x1, . . . , xn ϕ[x1, . . . , xn]

Instantiation via E-matching

for each ∀x .ψ
I select set of instantiation patterns {t1, . . . , tn}
I for each ti let Si be set of substitutions σ such that tiσ occurs in ϕE

I add {ψσ | σ ∈ Si} to ϕE

3

Theorem (Stronger Herbrand)

ϕE ∧ ϕQ is unsatisfiable if and only if there exist infinite series

I Ei of finite literals sets I Qi of finite sets of ϕQ instances

such that

I Qi ⊆ {ψσ | ∀x . ψ occurs in ϕQ and dom(σ) = x and ran(σ) ⊆ T (Ei)}
I E0 = ϕE and Ei+1 = Ei ∪Qi

I some En is unsatisfiable

Instantiation via enumeration

Fix ordering > on tuples of terms without quantified variables.

Given assignment Ei from T -solver

I for each ∀x .ψ in ϕQ

I search minimal xσ with respect to � such that xσ ∈ T (Ei) and Ei 6� ψσ
I if exists, add {ψσ} to Qi

If Qi = ∅ then sat, otherwise return Qi

4

Outline

Summary of Last Week

Bounded Model Checking for Verification

Test

Evaluation

More on SAT and SMT

5

Disastrous Software Bugs

Ariane 5 Flight 501 (1996)

I destroyed 37 seconds after launch

I software for Ariane 4 for was reused

I software error: data conversion from 64-bit

floating point to 16-bit integer caused

arithmetic overflow

I cost: 370 million $

http://en.wikipedia.org/wiki/Ariane 5 Flight 501

6

https://en.wikipedia.org/wiki/Cluster_(spacecraft)#Launch_failure
https://www.youtube.com/watch?v=PK_yguLapgA&start=40&end=100

Mars Exploration Rover “Spirit” (2004)

I landed on January 4

I stopped communicating on January 21

I software error: stuck in reboot loop

I reboot failed because of flash memory

failure, ultimate problem: too many files

http://en.wikipedia.org/wiki/Spirit (rover)

Heathrow Terminal 5 Opening (2008)

I baggage system collapsed on opening day

I 42,000 bags not shipped with their owners,

500 flights cancelled

I software was tested but did not work

properly with real-world load

I cost 50 million £

http://www.zdnet.com/article/it-failure-at-heathrow-t5-what-really-happened

7

https://en.wikipedia.org/wiki/Spirit_(rover)#Sol_17_(January_21,_2004)_flash_memory_management_anomaly
https://www.zdnet.com/article/it-failure-at-heathrow-t5-what-really-happened/

Trading Glitch at Knight Capital (2012)

I bug in trading software resulted in 45

minutes of uncontrolled buys

I company did 11% of US trading that year

I software was run in invalid configuration

I 440 million $ lost

http://en.wikipedia.org/wiki/Knight Capital Group

Death in Self-Driving Car Crash (2018)

I person died in accident with Uber’s

self-driving car

I victim was wrongly classified by software as

non-obstacle

http://www.siliconrepublic.com/companies/uber-bug-crash

8

https://en.wikipedia.org/wiki/Knight_Capital_Group#2012_stock_trading_disruption
https://www.siliconrepublic.com/companies/uber-bug-crash

Software is Ubiquituous in Critical Systems
transport, energy, medicine, communication, finance, embedded systems, . . .

How to Ensure Correctness of Software?

I testing

+ cheap, simple

– checks desired result only for given set of testcases

I verification

+ can prove automatically that system meets specification,

i.e., desired output is delivered for all inputs

– more costly

Model Checking

I widely used verification approach to

I find bugs in software and hardware

I prove correctness of models

I Turing Award 2007 for Clarke, Emerson, and Sifakis

I bounded model checking can be reduced to SAT/SMT
9

Model Checking: Workflow

requirements system

specification model

formalize
abstract &

formalize

model check

run out of resources

X 7
counterexample

fix/debug

10

Model Checking Example: Mutex (1)

I concurrent processes P0,P1 share some resource, access controlled by mutex
I program run by P0, P1 matches pattern

non-critical section

while (other process critical) :

wait ()

critical section

non-critical section

I process can be abstracted to model M = 〈S ,R〉
with states S = {n,w , c} and transitions R:

w

n

c
if other process not

in critical section

11

Model Checking Example: Mutex (2)

I obtain model for 2 processes by product construction:
write s0s1 for P0 being in state s0 and P1 in state s1

n0n1

w0n1 n0w1

w0w1c0n1

c0w1

n0c1

w0c1I desired properties:

safe: only one process is in its critical section at any time

live: whenever any process wants to enter its critical section,
it will eventually be permitted to do so

non-blocking: a process can always request to enter its critical section

I how to formalize desired properties? temporal logic, e.g. LTL or CTL

safe: G ¬(c0 ∧ c1) X as c0c1 unreachable

live: G (w0 → F c0) 7 e.g. w0n1 w0w1 w0c1 w0n1 . . .

non-blocking: AG (n0 → EX w0) X

Common Kinds of Properties

I G ψ for propositional formula ψ is safety property

I G (ψ → Fχ) for propositional formulas ψ,χ is liveness property
12

Example: Can This Program Cause An Overflow? (1)

1 void main() {

2 int x = -1;

3 int y = input();

4 while (y<100) {

5 y = y+x;

6 }

7 }

I model checking problem:

I state is assignment of x, y + value of program counter pc

I property G (pc = 5→ ((x > 032 ∧ x + y > y)∨ (x 6 032 ∧ x + y 6 y)))

I (part of) model:

pc = 1 pc = 2 pc = 3

x = −132

pc = 4

x = −132

y = 232

pc = 5

x = −132

y = 232

pc = 6

x = −132

y = 132

pc = 4

x = −132

y = 132

pc = 5

x = −132

y = 132

pc = 6

x = −132

y = 032

. . .

. . .

. . .

. . .

. . .

I but state space is very large: (232)2 · 7 for bit width 32

I cannot check all possible values

addition x + y in line 5 does not over/underflow

13

Example: Can This Program Cause An Overflow? (2)

1 void main() {

2 int x = -1;

3 int y = input();

4 while (y<100) {

5 y = y+x;

6 }

7 }

I construct program graph G

I {1, . . . , 7} are possible values of program counter (line numbers)

I state is tuple 〈pc, x , y〉 of values of program counter, x, and y

I state of form 〈1, . . . , . . . 〉 is initial state

I examples of state transitions according to G :

I 〈4,−132, 1032〉 → 〈5,−132, 1032〉 is possible

I 〈4,−132, 10132〉 → 〈7,−132, 10132〉 is possible

I 〈4, 1032, 10132〉 → 〈5, 1032, 10132〉 is not possible

I 〈4,−132, 132〉 → 〈5,−132, 232〉 is not possible

1

2

3

4

5

6

7

x:=-1

y:=?

y<100

y:=y+xy>=100

14

Example: Can This Program Cause An Overflow? (3)

1 define predicates

I I (〈pc, x , y〉) = (pc = 1) to characterize initial state

I to characterize possible state transitions:

T (〈pc, x , y〉, 〈pc ′, x ′, y ′〉) =
(pc = 1 ∧ pc ′ = 2) ∨ (pc = 2 ∧ pc ′ = 3 ∧ x ′ = −1) ∨
(pc = 3 ∧ pc ′ = 4 ∧ x = x ′) ∨
(pc = 4 ∧ pc ′ = 5 ∧ y < 100 ∧ x = x ′ ∧ y = y ′) ∨
(pc = 5 ∧ pc ′ = 6 ∧ y ′ = y + x ∧ x = x ′) ∨
(pc = 4 ∧ pc ′ = 7 ∧ y > 100 ∧ x = x ′ ∧ y = y ′) ∨
(pc = 6 ∧ pc ′ = 4 ∧ x = x ′ ∧ y = y ′)

I P(〈pc, x , y〉) = (pc = 5)∧ ((x > 032 ∧ x + y 6 y)∨ (x 6 032 ∧ (y + x > y)))

2 for states s0, . . . , sk formula ϕk expresses overflow occurring within k steps:

ϕk = I (s0) ∧
k−1∧
i=0

T (si , si+1) ∧
k∨

i=0

P(si)

3 if ϕk satisfiable then overflow can occur within k steps, e.g. for k = 5

1

2

3

4

5

6

7

x:=-1

y:=?

y<100

y:=y+xy>=100

15

https://rise4fun.com/Z3/gyUI

Bounded Model Checking

I find counterexamples to desired property of transition system (bugs)

I counterexamples are bounded in size

Definition (Transition System)

transition system T = (S ,→,S0, L) where

I S is set of states

I → ⊆ S × S is transition relation

I S0 ⊆ S is set of initial states

I A is a set of propositional atoms

I L : S → 2A is labeling function associating state with subset of A

Remark

S and A may be (countably) infinite

16

Bounded Model Checking: Safety Properties

Idea
given transition system and property G ψ, look for counterexamples in 6 k steps

s0 s1 s2 . . . sk

¬ψ ¬ψ ¬ψ ¬ψ∨ ∨ ∨ ∨. . .

SAT/SMT Encoding
given transition system T and safety property G ψ

I use encoding 〈s〉 of state s ∈ S by set of SAT/SMT variables

I use predicates

I I for initial states such that use I (〈s〉) is true iff s ∈ S0

I T for transitions such that T (〈s〉, 〈s ′〉) is true iff s → s ′ in T
I P such that P(〈s〉) is true iff ψ holds in s

I use different fresh variables for k + 1 states 〈s0〉, . . . , 〈sk〉
I check satisfiability of

I (〈s0〉) ∧
k−1∧
i=0

T (〈si 〉, 〈si+1〉) ∧
k∨

i=0

¬P(〈si 〉)
17

Bounded Model Checking: Liveness Properties

Idea

I counterexample to liveness property G (ψ → Fχ) requires infinite path

I look for counterexamples in 6 k steps of lasso shape:

s0 . . . si . . . sl . . . sk

¬χ
ψ

∧ ∧. . . ¬χ ¬χ∧ ∧. . .

SAT/SMT Encoding

given transition system T and liveness property G (ψ → Fχ)

I use encoding of states, predicates I and T as for safety properties

I predicate P such that P(〈s〉) is true iff ψ holds in s

I predicate C such that C (〈s〉) is true iff χ holds in s

I check satisfiability of

I (〈s0〉) ∧
k−1∧
i=0

T (〈si 〉, 〈si+1〉) ∧
k∨

i=0

P(〈si 〉) ∧
k∧
j=i

¬C (〈si 〉) ∧
k∨
l=i

T (〈sk〉, 〈sl〉)

18

Transition System T (P) from Program P

I state 〈pc, v0, . . . , vn〉 consists of

I value for program counter pc, i.e. line number in P

I assignment for variables in scope v0, . . . , vn

I there is step s → s ′ for s = 〈pc, v0, . . . , vn〉 and s ′ = 〈pc ′, v ′0, . . . , v ′n〉 iff P

admits step from s to s ′

I S0 consists of initial program states

I atom set A consists of all propositional formulas over pc, v0, . . . , vn

I labeling L(s) is set of all atoms A which hold in s = 〈pc, v0, . . . , vn〉

Program Graph

I nodes are line numbers

I edge from line l to line l ′ if program counter can go from line l to l ′

I two kinds of edge labels:

I conditions for program counter to take this path

I assignments of updated variables

I program graph is useful to derive encoding of T (P) 19

Checking an Explicit Assertion

1 int n;

2 int main() {

3 int i=0, j=10, s=0;

4 for(i=0; i<=n; i++) {

5 if (i<j)

6 s = s + 2;

7 j--;

8 }

9 assert(s==n*2 || s == 0);

10 }

I construct program graph

I states are of form 〈pc, i , j , n, s〉
I safety property to check is

G (pc = 9→ (s = 2n ∨ s = 0))

I see verification.py

2

3

4

5

6

7

89

i:=0
j:=10
s:=0

i<=n

i<j

i>=j

s:=s+2

j:=j-1i:=i+1

i>n

20

http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt/sources/verification.py

Software Verification Competition (SV-COMP)

I annual competition

https://sv-comp.sosy-lab.org/2018/

I industrial (and crafted) benchmarks

https://github.com/sosy-lab/sv-benchmarks

I many tools use SMT solvers

Common Safety Properties

I no overflow in addition: (x > 0 ∧ x + y > y) ∨ (x 6 0 ∧ x + y 6 y)

I array accesses in bounds: 0 6 i < size(a) for all accesses a[i]

I memory safety: set predicate ok(addr) when memory allocated,
check ok(p) for every dereference ∗p

I explicit assertions

21

https://sv-comp.sosy-lab.org/2018/
https://github.com/sosy-lab/sv-benchmarks

Bibliography

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu.

Bounded Model Checking

Advances in Computers 58, pp 117–148, 2003.

Armin Biere.

Bounded Model Checking.
Chapter 14 in: Handbook of Satisfiability, IOS Press, pp. 457–481, 2009.

22

http://dx.doi.org/10.1145/357073.357079
http://dx.doi.org/10.1145/357073.357079
http://dx.doi.org/10.1145/357073.357079
https://www.iospress.nl/book/handbook-of-satisfiability/
https://www.iospress.nl/book/handbook-of-satisfiability/
https://www.iospress.nl/book/handbook-of-satisfiability/
https://www.iospress.nl/book/handbook-of-satisfiability/

Test

I July 1, 14:00, HSB 9 (with René Thiemann)

I material includes everything up to week 12

I 60 minutes

I see test of last year

23

http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt/exams/test1.pdf

Outline

Summary of Last Week

Bounded Model Checking for Verification

Test

Evaluation

More on SAT and SMT

24

Evaluation

I LV-Code: 703048

I additional questions

(a) There was too much theory and too little about applications in

the course content.

(b) In my opinion it makes sense that computer science students learn

about using SAT/SMT to solve constraint problems.

(c) I think I might use a SAT/SMT solver in the future.

(d) I would prefer a different programming language than Python.

25

Outline

Summary of Last Week

Bounded Model Checking for Verification

Test

Evaluation

More on SAT and SMT

26

Upcoming Courses

Computational Logic

I exciting course about theorem proving

I in summer term 2020 taught by Cezary Kaliszyk and Vincent van Oostrom

Advanced Topics in Term Rewriting

I exciting course about special topics in term rewriting

I with some applications of SAT/SMT therein

I in winter term 2019 taught by Aart Middeldorp

27

Available Bachelor Projects

Fast Multiset Comparisons

I multisets are data structures appearing in many applications
I comparing two multisets is NP-complete problem
I aim is to implement fast algorithm based on verified SAT solver

Maximal Interpretations

I investigate applications of maxSAT/maxSMT in termination methods for term

rewrite systems
I implement in Tyrolean Complexity Tool

http://cl-informatik.uibk.ac.at/teaching/smb/available.php?q=%23Logic

28

http://cl-informatik.uibk.ac.at/teaching/smb/available.php?q=%23Logic

29

	lecture 13
	Summary of Last Week
	Bounded Model Checking for Verification
	Test
	Evaluation
	More on SAT and SMT

