M universitat
™ innsbruck

Seminar mit Bachelorarbeit Lehramt

Tobias Hell Georg Moser

cbr.uibk.ac.at

cbr.uibk.ac.at

Logik und Data Science

Definition (Cryptoarithmetic)

® a cryptarithmetic problem is a puzzle in which each letter represents a unique
digit <9
® the object is to find the value of each letter

e first digit cannot be 0

Logik und Data Science

Definition (Cryptoarithmetic)

® a cryptarithmetic problem is a puzzle in which each letter represents a unique
digit <9
® the object is to find the value of each letter

e first digit cannot be 0

SEND
MORE

MONEY

Logik und Data Science

Definition (Cryptoarithmetic)

® a cryptarithmetic problem is a puzzle in which each letter represents a unique
digit <9
® the object is to find the value of each letter

e first digit cannot be 0

SEND
MORE

1O0NEY

Logik und Data Science

Definition (Cryptoarithmetic)

® a cryptarithmetic problem is a puzzle in which each letter represents a unique
digit <9
® the object is to find the value of each letter

e first digit cannot be 0

SEND
10RE

IONEY

Logik und Data Science

Definition (Cryptoarithmetic)

® a cryptarithmetic problem is a puzzle in which each letter represents a unique
digit <9
® the object is to find the value of each letter

e first digit cannot be 0

SEND
10RE

IONEY

Logik und Data Science

Definition (Cryptoarithmetic)

® a cryptarithmetic problem is a puzzle in which each letter represents a unique
digit <9
® the object is to find the value of each letter

e first digit cannot be 0

9END
10RE

IONEY

Logik und Data Science

Definition (Cryptoarithmetic)

® a cryptarithmetic problem is a puzzle in which each letter represents a unique
digit <9
® the object is to find the value of each letter

e first digit cannot be 0

9END
108E

IONEY

Logik und Data Science

Definition (Cryptoarithmetic)

® a cryptarithmetic problem is a puzzle in which each letter represents a unique
digit <9
® the object is to find the value of each letter

e first digit cannot be 0

95ND
1085

IONS5Y

solve([[S,E,N,D],[M,O,R,E],[M,O,N,E,Y]1]) :—
Digits = [D, E, M, N, O, R, S, Y],
Carries = [C1,C2,C3,C4],
selects(Digits, [0,1,2,3,4,5,6,7,8,91]),
members(Carries, [0,1]),

M =:= c4,
O+ 10 x C4 ===S + M + C3,
N+ 10 x C3 === E + O + C2,
E+ 10 *x C2 === N+ R + C1,
Y+ 10 «x C1 == D + E,
M> 0, S> 0.

:— solve(X),

xX=1[[9, 5, 6, 71, [1, O, 8, 5], [1, O, 6, 5, 2]].

very inefficient
7— time(solve(X)).

% 133,247,057 inferences,
% 7.635 CPU in 7.667 seconds (100% CPU, 17452690 Lips)

X =19, 5, 6, 71, [1, O, 8, 5], [1, O, 6, 5, 2]]

very inefficient
7— time(solve(X)).

% 133,247,057 inferences,
% 7.635 CPU in 7.667 seconds (100% CPU, 17452690 Lips)

X =19, 5, 6, 71, [1, O, 8, 5], [1, O, 6, 5, 2]]

explanation

® generate-and-test in it's purest form
® all guesses are performed before the constraints are checked

e arithmetic checks cannot deal with variables

very inefficient
7— time(solve(X)).

% 133,247,057 inferences,
% 7.635 CPU in 7.667 seconds (100% CPU, 17452690 Lips)

K=, 8, 6, 71 L, U, 8, 5] 1, @, 6 5, 2l

explanation

® generate-and-test in it's purest form
® all guesses are performed before the constraints are checked

e arithmetic checks cannot deal with variables

improvement

® move testing into generating
® destroys clean structure of program

Constraint Logic Programming

Definitions (CLP on finite domains)

® use_module(library(clpfd)) loads the clpfd library

® Xs ins N .. Mspecifies that all values in Xs must be in the given range
® all_different (Xs) specifies that all values in Xs are different

® label(Xs) all variables in Xs are evaluated to become values

® #=, #\=, #>, ... like the arithmetic comparison operators, but may contain
(constraint) variables

Constraint Logic Programming

Definitions (CLP on finite domains)

® use_module(library(clpfd)) loads the clpfd library
® Xs ins N .. Mspecifies that all values in Xs must be in the given range

all_different (Xs) specifies that all values in Xs are different

label (Xs) all variables in Xs are evaluated to become values

#=, #\=, #>, ... like the arithmetic comparison operators, but may contain
(constraint) variables

standard approach

® |oad the library

® specify all constraints
e call 1abel to start efficient computation of solutions

Second Attempt

constraint logic program

solve([[S,E,N,D],[M,O,R,E],[M,O,N,E,Y]]) :—
Digits = [D, E, M, N, O, R, S, Y],
Carries = [C1,C2,C3,C4],
Digits ins O .. 9, all _different(Digits),

Carries ins 0 .. 1,
M #= Cc4,
O+ 10 «* C4#=S + M + C3,

*
N+ 10 « C3 #=E + O + C2,
E+ 10 «x C2#=N+ R + C1,
Y+ 10 « C1 #=D + E,
M# 0, S # 0,

label (Digits).

Definition (Sudoku)

Sudoku is a well-known logic puzzle; usually played on a 9 x 9 grid
V cells: cells € {1,...,9}
V rows: all entries are different

® Y colums: all entries are different

YV blocks: all entries are different

Definition (Sudoku)

® Sudoku is a well-known logic puzzle; usually played on a 9 x 9 grid
V cells: cells € {1,...,9}
V rows: all entries are different

V colums: all entries are different

YV blocks: all entries are different

Main Loop (using clp)

sudoku(Puzzle) :—
show(Puzzle),
flatten (Puzzle, Cells),
Cells ins 1 .. 9,
rows(Puzzle),
cols(Puzzle),
blocks (Puzzle),
label(Cells), ’

auxiliary predicates

® flatten/2 flattens a list
® show/1 prints the current puzzle

auxiliary predicates

® flatten/2 flattens a list
® show/1 prints the current puzzle

rows([]).
rows ([R|Rs]) :—
all_different(R), rows(Rs).

auxiliary predicates

® flatten/2 flattens a list
® show/1 prints the current puzzle

row/1

rows([]).
rows ([R|Rs]) :—
all_different(R), rows(Rs).

row/1 (alternative)

rows(Rs) :— maplist(all_distinct ,Rs).

cols([[1[_1).
cols ([
[X1|R1],
[X2|R2],
[X3|R3],
[X4|R41,
[X5|R5],
[X6|R61,
[X7|R71,
[X8|R81,
[X9|RI]]) :—
all_different ([X1,X2,X3,X4,X5,X6,X7,X8,X9]),
cols([R1,R2,R3,R4,R5,R6,R7,R8,R9]).

cols([[1]_1).
cols ([
[X1|R1],
[X2|R2],
[X3|R3],
[X4|R41,
[X5|R5],
[X6|R61,
[X7|R71,
[X8|R81,
[X9|R911) :—
all_different ([X1,X2,X3,X4,X5,X6,X7,X8,X9]),
cols([R1,R2,R3,R4,R5,R6,R7,R8,R9]).

|

cols/1 (alternative)

use maplist/2

blocks/1
blocks ([1]).
blocks ([[1,[1,[1|Rs]) :— blocks(Rs).
blocks ([[X1,X2,X3|R1],
[X4,X5,X6|R2],
[X7,X8,X9|R3] |Rs]) :—
all_different ([X1,X2,X3,X4,X5,X6,X7,X8,X9]),
blocks ([R1,R2,R3|Rs]).

blocks/1

blocks ([]).
blocks ([[1,[1,[1|Rs]) :— blocks(Rs).
blocks ([[X1,X2,X3|R1],
[X4,X5,X6|R2],
[X7,X8,X9|R3] |Rs]) :—
all_different ([X1,X2,X3,X4,X5,X6,X7,X8,X9]),
blocks ([R1,R2,R3|Rs]).

— sudoku([[Y, , , ., , ., ., ,_]
[, ,2,7.,4, , , , 1
[P PR <)
030000 nmo— 1
[7,5,_,_ 1.
[P ©,6,_,_1,
[_.4, 6, 1

	Logik und Data Science

