

Computational Logic

SS 2017

EXAM 1

May 8, 2017

This exam consists of five exercises. The available points for each item are written in the margin. You need at least 50 points to pass.

formula	$lpha / eta / \gamma / \delta$	rank	satisfiable
$A \supset \neg B$		1	
$(\forall x)[P(x) \lor Q(x)] \supset [(\exists x)Q(x) \lor (\forall y)P(y)]$			
$\neg (A \supset \neg (B \lor \neg A))$			\checkmark
$(\exists x)[(\forall y)R(f(x),y) \supset R(x,c)]$			

[15] 2 Answer **three** of the following five questions.

- (a) What is an alternate first-order consistency property?
- (b) Compute an *interpolant* of the valid sentence $(P(c) \land (\forall x)[P(x) \supset \neg Q(x)]) \supset \neg Q(c)$ using the procedure based on biased tableaux.
- (c) Prove the following statement about *Kripke models*: If $\Vdash \varphi \lor \psi$ then $\Vdash \varphi$ or $\Vdash \psi$.
- (d) Define the *Herbrand expansion* of an arbitrary sentence X over the Herbrand domain $D = \{t_1, t_2, t_3\}.$
- (e) Transform the following tableau into a *cut-free* tableau using the cut-elimination procedure from the lecture:

$$\neg(((A \supset B) \supset A) \supset A)$$

$$A \qquad \neg A$$

$$(A \supset B) \supset A \qquad (A \supset B) \supset A$$

$$\neg A \qquad \neg A \qquad (A \supset B) \supset A$$

$$\neg A \qquad \neg A \qquad \neg A$$

$$\neg (A \supset B) \qquad A$$

$$B \qquad \neg B$$

$$A \qquad A$$

$$\neg B \qquad \neg B$$

- 3 Consider the propositional formula $\varphi = P \supset \neg (P \supset \bot)$.
- [5] (a) Give a tableau proof of φ .

[10]

[2]

[6]

[2]

[15]

(b) Give a proof of φ in the Hilbert system with the axioms

1	$X \supset (Y \supset X)$	2	$(X \supset (Y \supset Z)) \supset ((X \supset Y) \supset (X \supset Z))$
3	$\perp \supset X$	4	$X \supset \top$
5	$\neg \neg X \supset X$	6	$X \supset (\neg X \supset Y)$
7	$\alpha \supset \alpha_1$	8	$\alpha \supset \alpha_2$
9	$(\beta_1 \supset X) \supset ((\beta_2 \supset X) \supset$	$(\beta \supset A)$	X))

and Modus Ponens as only rule of inference. (You may use the Deduction Theorem.)

[10] (c) Give a tableau proof of the sentence $(\exists x)(\forall y)[P(x) \supset P(y)]$.

4 This exercise is about the propositional model existence theorem.

- (a) What is a propositional consistency property?
 - (b) Give three examples of propositional consistency properties.
 - (c) State the propositional model existence theorem.
 - (d) Complete the following proof of the statement that every subset closed propositional consistency property C can be extended to a propositional consistency property of finite character, by filling in the missing parts.

Let $C^+ = \{S \mid \boxed{}^{\mathbf{1}}\}$. We prove the following three properties: (a) C^+ is $\boxed{}^{\mathbf{2}}$, (b) C^+ is $\boxed{}^{\mathbf{3}}$, (c) C^+ is $\boxed{}^{\mathbf{4}}$.

We start with property (a). Let $S \in \mathcal{C}$ and let F be \square b. Because \mathcal{C} is subset closed, $F \in \mathcal{C}$. Hence $S \in \mathcal{C}^+$ by definition. Next we consider property (b). So let $S \in \mathcal{C}^+$.

- i. If A and ¬A belong to S for some propositional letter A, then {A, ¬A} is a finite subset of S and thus {A, ¬A} is an element of C. This contradicts the assumption that
 6. Hence S does not contain both A and ¬A.
- ii. If $\perp \in S$ then $\{\perp\}$ is a finite subset of S and thus $\{\perp\} \in C$, contradicting the assumption that C is a propositional consistency property. Hence $\perp \notin S$. The same reasoning shows that $\boxed{}$.
- iii. Suppose $\neg \neg Z \in S$ and consider an arbitrary finite subset F of $S \cup \{Z\}$. We have to show $F \in \mathcal{C}$ to obtain [⁸. Clearly, $F \cap S$ is a finite subset of S. Hence

also $(F \cap S) \cup \{\neg \neg Z\}$ is a finite subset of S. Since $S \in \mathcal{C}^+$, $(F \cap S) \cup \{\neg \neg Z\} \in \mathcal{C}$ by the definition of \mathcal{C}^+ . Since \square 9, we have $(F \cap S) \cup \{\neg \neg Z, Z\} \in \mathcal{C}$. Since Fis a subset of $(F \cap S) \cup \{\neg \neg Z, Z\}$ and \mathcal{C} is subset closed, it follows that $F \in \mathcal{C}$.

- iv. Suppose $\alpha \in S$ and consider an arbitrary finite subset F of $S \cup \{\alpha_1, \alpha_2\}$. We have to show $F \in C$ to obtain $S \cup \{\alpha_1, \alpha_2\} \in C^+$. Clearly, $F \cap S$ is finite subset of S. Hence also $(F \cap S) \cup \{\alpha\}$ is a finite subset of S. Since $S \in C^+$, $(F \cap S) \cup \{\alpha\} \in C$ by the definition of C^+ . Since C is a propositional consistency property, we have $(F \cap S) \cup \{\alpha, \alpha_1, \alpha_2\} \in C$. Since F is a subset of $(F \cap S) \cup \{\alpha, \alpha_1, \alpha_2\}$ and C is subset closed, it follows that $F \in C$.
- v. Suppose $\beta \in S$. We have to show that [10]. For a proof by contradiction, suppose that neither $S \cup \{\beta_1\}$ nor $S \cup \{\beta_2\}$ belongs to \mathcal{C}^+ . By definition of \mathcal{C}^+ , there exist finite subsets F_1 of $S \cup \{\beta_1\}$ and F_2 of $S \cup \{\beta_2\}$ such that $F_1, F_2 \notin \mathcal{C}$. Let F = [11]. Clearly $F \cap S$ is a finite subset of S. Since $\beta \in S$, $(F \cap S) \cup \{\beta\}$ is a finite subset of S. Since $S \in \mathcal{C}^+$, $(F \cap S) \cup \{\beta\} \in \mathcal{C}$. Because \mathcal{C} is a propositional consistency property, we have $(F \cap S) \cup \{\beta, \beta_1\} \in \mathcal{C}$ or $(F \cap S) \cup \{\beta, \beta_2\} \in \mathcal{C}$. Note that $F_1 \subseteq (F \cap S) \cup \{\beta, \beta_1\}$ and $F_2 \subseteq (F \cap S) \cup \{\beta, \beta_2\}$. Since [12], we have $F_1 \in \mathcal{C}$ or $F_2 \in C$, providing the desired contradiction.

It remains to show property (c). So we need to show that $S \in C^+$ if and only if **13** . For the "if" direction, suppose every finite subset F of S belongs to C^+ . By definition of C^+ , every finite subset of F belongs to C. Since F is **14** , Fbelongs to C. Hence $S \in C^+$. For the "only if" direction, suppose $S \in C^+$. So every finite subset of S belongs to C. Since $C \subseteq C^+$ according to **15** , every finite subset of S belongs to C^+ .

- [15] 5 Determine whether the following statements are true or false. Every correct answer is worth 3 points. For every wrong answer 1 point is subtracted, provided the total number of points is non-negative.
 - (a) The rank of the first-order sentence $(\forall x)(\neg P(x) \supset \neg(\exists y) \neg P(f(y)))$ is 5.
 - (b) A set S of first-order sentences is satisfiable if and only if every finite subset of S is satisfiable.
 - (c) The simple type $((\sigma \to \tau) \to \sigma) \to \sigma$ is inhabited by a combinatory term.
 - (d) If \mathcal{C} is a first-order consistency property and $\delta \in S \in \mathcal{C}$ then $S \cup {\delta(t)} \in \mathcal{C}$ for every closed term t of L^{par} .
 - (e) The formula $(\exists x) R(x, f(b))$ is an interpolant of

 $(R(a,b) \land (\forall x)(\exists y)(R(a,x) \supset R(y,f(x)))) \supset (R(a,c) \lor (\exists x)R(x,f(b)))$