LVA 703607

EXAM 1
May 8, 2017

This exam consists of five exercises. The available points for each item are written in the margin. You need at least 50 points to pass.
[20] 1 Complete the following table:

formula	$\alpha / \beta / \gamma / \delta$	rank	satisfiable
$A \supset \neg B$		1	
$(\forall x)[P(x) \vee Q(x)] \supset[(\exists x) Q(x) \vee(\forall y) P(y)]$			
$\neg(A \supset \neg(B \vee \neg A))$			\checkmark
$(\exists x)[(\forall y) R(f(x), y) \supset R(x, c)]$			

[15] 2 Answer three of the following five questions.
(a) What is an alternate first-order consistency property?
(b) Compute an interpolant of the valid sentence $(P(c) \wedge(\forall x)[P(x) \supset \neg Q(x)]) \supset \neg Q(c)$ using the procedure based on biased tableaux.
(c) Prove the following statement about Kripke models: If $\Vdash \varphi \vee \psi$ then $\Vdash \varphi$ or $\Vdash \psi$.
(d) Define the Herbrand expansion of an arbitrary sentence X over the Herbrand domain $D=\left\{t_{1}, t_{2}, t_{3}\right\}$.
(e) Transform the following tableau into a cut-free tableau using the cut-elimination procedure from the lecture:

$\neg(((A \supset B) \supset A) \supset A)$	
$\begin{array}{r} A-\frac{\neg(((A}{A} \\ (A \supset B) \supset A \end{array}$	$\sim \neg A$
	$(A \supset B) \supset A$
$\neg A$	$\neg A$
	$\neg(A \supset B) \quad A$
	$B \checkmark \neg B$
	$A \quad A$
	$\neg B \quad \neg B$

3 Consider the propositional formula $\varphi=P \supset \neg(P \supset \perp)$.
[5]
(a) Give a tableau proof of φ.
(b) Give a proof of φ in the Hilbert system with the axioms

1	$X \supset(Y \supset X)$	2	$(X \supset(Y \supset Z)) \supset((X \supset Y) \supset(X \supset Z))$
3	$\perp \supset X$	4	$X \supset \supset$
5	$\neg \neg X \supset X$	6	$X \supset(\neg X \supset Y)$
7	$\alpha \supset \alpha_{1}$	8	$\alpha \supset \alpha_{2}$
9	$\left(\beta_{1} \supset X\right) \supset\left(\left(\beta_{2} \supset X\right) \supset(\beta \supset X)\right)$		

and Modus Ponens as only rule of inference. (You may use the Deduction Theorem.)
[10] (c) Give a tableau proof of the sentence $(\exists x)(\forall y)[P(x) \supset P(y)]$.

4 This exercise is about the propositional model existence theorem.
(a) What is a propositional consistency property?
(b) Give three examples of propositional consistency properties.
(c) State the propositional model existence theorem.
[15]
(d) Complete the following proof of the statement that every subset closed propositional
consistency property \mathcal{C} can be extended to a propositional consistency property of finite character, by filling in the missing parts.

Let $\mathcal{C}^{+}=\left\{S \mid \square^{\mathbf{1}}\right\}$. We prove the following three properties:
(a) \mathcal{C}^{+}is

(b) \mathcal{C}^{+}is

(c) \mathcal{C}^{+}is
 4

We start with property (a). Let $S \in \mathcal{C}$ and let F be $\square^{\mathbf{5}}$. Because \mathcal{C} is subset closed, $F \in \mathcal{C}$. Hence $S \in \mathcal{C}^{+}$by definition. Next we consider property (b). So let $S \in \mathcal{C}^{+}$.
i. If A and $\neg A$ belong to S for some propositional letter A, then $\{A, \neg A\}$ is a finite subset of S and thus $\{A, \neg A\}$ is an element of \mathcal{C}. This contradicts the assumption that \square^{6}. Hence S does not contain both A and $\neg A$.
ii. If $\perp \in S$ then $\{\perp\}$ is a finite subset of S and thus $\{\perp\} \in \mathcal{C}$, contradicting the assumption that \mathcal{C} is a propositional consistency property. Hence $\perp \notin S$. The same reasoning shows that \square
iii. Suppose $\neg \neg Z \in S$ and consider an arbitrary finite subset F of $S \cup\{Z\}$. We have to show $F \in \mathcal{C}$ to obtain \square
also $(F \cap S) \cup\{\neg \neg Z\}$ is a finite subset of S. Since $S \in \mathcal{C}^{+},(F \cap S) \cup\{\neg \neg Z\} \in \mathcal{C}$ by the definition of \mathcal{C}^{+}. Since \square^{9}, we have $(F \cap S) \cup\{\neg \neg Z, Z\} \in \mathcal{C}$. Since F is a subset of $(F \cap S) \cup\{\neg \neg Z, Z\}$ and \mathcal{C} is subset closed, it follows that $F \in \mathcal{C}$.
iv. Suppose $\alpha \in S$ and consider an arbitrary finite subset F of $S \cup\left\{\alpha_{1}, \alpha_{2}\right\}$. We have to show $F \in \mathcal{C}$ to obtain $S \cup\left\{\alpha_{1}, \alpha_{2}\right\} \in \mathcal{C}^{+}$. Clearly, $F \cap S$ is finite subset of S. Hence also $(F \cap S) \cup\{\alpha\}$ is a finite subset of S. Since $S \in \mathcal{C}^{+},(F \cap S) \cup\{\alpha\} \in \mathcal{C}$ by the definition of \mathcal{C}^{+}. Since \mathcal{C} is a propositional consistency property, we have $(F \cap S) \cup\left\{\alpha, \alpha_{1}, \alpha_{2}\right\} \in \mathcal{C}$. Since F is a subset of $(F \cap S) \cup\left\{\alpha, \alpha_{1}, \alpha_{2}\right\}$ and \mathcal{C} is subset closed, it follows that $F \in \mathcal{C}$.
v. Suppose $\beta \in S$. We have to show that \square 10 . For a proof by contradiction, suppose that neither $S \cup\left\{\beta_{1}\right\}$ nor $S \cup\left\{\beta_{2}\right\}$ belongs to \mathcal{C}^{+}. By definition of \mathcal{C}^{+}, there exist finite subsets F_{1} of $S \cup\left\{\beta_{1}\right\}$ and F_{2} of $S \cup\left\{\beta_{2}\right\}$ such that $F_{1}, F_{2} \notin \mathcal{C}$. Let $F=\square{ }^{11}$. Clearly $F \cap S$ is a finite subset of S. Since $\beta \in S,(F \cap S) \cup\{\beta\}$ is a finite subset of S. Since $S \in \mathcal{C}^{+},(F \cap S) \cup\{\beta\} \in \mathcal{C}$. Because \mathcal{C} is a propositional consistency property, we have $(F \cap S) \cup\left\{\beta, \beta_{1}\right\} \in \mathcal{C}$ or $(F \cap S) \cup\left\{\beta, \beta_{2}\right\} \in \mathcal{C}$. Note that $F_{1} \subseteq(F \cap S) \cup\left\{\beta, \beta_{1}\right\}$ and $F_{2} \subseteq(F \cap S) \cup\left\{\beta, \beta_{2}\right\}$. Since \square, we have $F_{1} \in \mathcal{C}$ or $F_{2} \in C$, providing the desired contradiction.

It remains to show property (c). So we need to show that $S \in \mathcal{C}^{+}$if and only if \square^{13}. For the "if" direction, suppose every finite subset F of S belongs to \mathcal{C}^{+}. By definition of \mathcal{C}^{+}, every finite subset of F belongs to \mathcal{C}. Since F is \square^{14}, F belongs to \mathcal{C}. Hence $S \in \mathcal{C}^{+}$. For the "only if" direction, suppose $S \in \mathcal{C}^{+}$. So every finite subset of S belongs to \mathcal{C}. Since $\mathcal{C} \subseteq \mathcal{C}^{+}$according to $\square^{\mathbf{1 5}}$, every finite subset of S belongs to \mathcal{C}^{+}.

5 Determine whether the following statements are true or false. Every correct answer is worth 3 points. For every wrong answer 1 point is subtracted, provided the total number of points is non-negative.
(a) The rank of the first-order sentence $(\forall x)(\neg P(x) \supset \neg(\exists y) \neg P(f(y)))$ is 5 .
(b) A set S of first-order sentences is satisfiable if and only if every finite subset of S is satisfiable.
(c) The simple type $((\sigma \rightarrow \tau) \rightarrow \sigma) \rightarrow \sigma$ is inhabited by a combinatory term.
(d) If \mathcal{C} is a first-order consistency property and $\delta \in S \in \mathcal{C}$ then $S \cup\{\delta(t)\} \in \mathcal{C}$ for every closed term t of $L^{\text {par }}$.
(e) The formula $(\exists x) R(x, f(b))$ is an interpolant of

$$
(R(a, b) \wedge(\forall x)(\exists y)(R(a, x) \supset R(y, f(x)))) \supset(R(a, c) \vee(\exists x) R(x, f(b)))
$$

