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EXAM 1 – SOLUTIONS May 8, 2017

1

formula α/β/γ/δ rank satisfiable

A ⊃ ¬B β 1 X

(∀x)[P (x) ∨Q(x)] ⊃ [(∃x)Q(x) ∨ (∀y)P (y)] β 6 X

¬(A ⊃ ¬(B ∨ ¬A)) α 3 X

(∃x)[(∀y)R(f(x), y) ⊃ R(x, c)] δ 3 X

2 (a) An alternate first-order consistency property is collection C of sets of sentences of Lpar

such that for each S ∈ C the following properties hold:

(1) for any propositional letter A, not both A ∈ S and ¬A ∈ S,

(2) ⊥ /∈ S, ¬> /∈ S,

(3) if ¬¬Z ∈ S then S ∪ {Z} ∈ C,
(4) if α ∈ S then S ∪ {α1, α2} ∈ C,
(5) if β ∈ S then S ∪ {β1} ∈ C or S ∪ {β2} ∈ C.
(6) if γ ∈ S then S ∪ {γ(t)} ∈ C for every closed term t of Lpar

(7) if δ ∈ S then S ∪ {δ(p)} ∈ C for every parameter p that is new to S

(b) The closed tableau

¬((P (c) ∧ (∀x)[P (x) ⊃ ¬Q(x)]) ⊃ ¬Q(c))

P (c) ∧ (∀x)[P (x) ⊃ ¬Q(x)]

¬¬Q(c)

Q(c)

P (c)

(∀x)[P (x) ⊃ ¬Q(x)]

P (c) ⊃ ¬Q(c)

¬Q(c)¬P (c)

is transformed into the following closed biased tableau:



L(P (c) ∧ (∀x)[P (x) ⊃ ¬Q(x)])

R(¬¬Q(c))

R(Q(c))

L(P (c))

L((∀x)[P (x) ⊃ ¬Q(x)])

L(P (c) ⊃ ¬Q(c))

L(¬Q(c))L(¬P (c))

Next we use the calculation rules for interpolants:

L(P (c) ∧ (∀x)[P (x) ⊃ ¬Q(x)])

R(¬¬Q(c))

R(Q(c))

L(P (c))

L((∀x)[P (x) ⊃ ¬Q(x)])

L(P (c) ⊃ ¬Q(c))

L(¬Q(c))

[¬Q(c)]

L(¬P (c))

[⊥]

L(P (c) ∧ (∀x)[P (x) ⊃ ¬Q(x)])

R(¬¬Q(c))

R(Q(c))

L(P (c))

L((∀x)[P (x) ⊃ ¬Q(x)])

L(P (c) ⊃ ¬Q(c))

[⊥ ∨ ¬Q(c)]

L(P (c) ∧ (∀x)[P (x) ⊃ ¬Q(x)])

R(¬¬Q(c))

R(Q(c))

L(P (c))

L((∀x)[P (x) ⊃ ¬Q(x)])

[⊥ ∨ ¬Q(c)]

L(P (c) ∧ (∀x)[P (x) ⊃ ¬Q(x)])

R(¬¬Q(c))

R(Q(c))

[⊥ ∨ ¬Q(c)]

L(P (c) ∧ (∀x)[P (x) ⊃ ¬Q(x)])

R(¬¬Q(c))

[⊥ ∨ ¬Q(c)]

The resulting interpolant is ⊥ ∨ ¬Q(c).

(c) Suppose neither  ϕ nor  ψ holds. Then there exist Kripke models C = 〈C,6C ,C〉 and
D = 〈D,6D,D〉 such that c 6C ϕ and d 6D ψ for states c ∈ C and d ∈ D. We assume
without loss of generality that C ∩D = ∅. Define the Kripke model E = 〈E,6,〉 with
E = C∪D∪{e} where e is a new state, 6 = 6C∪6D∪{(e, c), (e, d)}, and  = C∪D.
We claim that e 6 ϕ ∨ ψ. Suppose to the contrary e  ϕ ∨ ψ. Hence e  ϕ or e  ψ.
Using monotonicity we obtain c  ϕ or d  ψ and thus c C ϕ or d D ψ by the



definition of 6. This is a contradiction. Therefore ϕ ∨ ψ does not hold in state e of the
Kripke model E and thus  ϕ ∨ ψ does not hold.

(d) The Herbrand expansion E(X,D) with D = {t1, t2, t3}) is defined recursively:

• if L is literal then E(L,D) = L,

• E(¬¬Z,D) = E(Z,D),

• E(α,D) = E(α1, D) ∧ E(α2, D),

• E(β,D) = E(β1, D) ∨ E(β2, D),

• E(γ,D) = E(γ(t1), D) ∧ E(γ(t2), D) ∧ E(γ(t3), D),

• E(δ,D) = E(δ(t1), D) ∨ E(δ(t2), D) ∨ E(δ(t3), D).

(e) The minimal cut

¬(A ⊃ B)

¬B

A

¬B

B

A

¬B

is transformed into

¬(A ⊃ B)

A

¬B

and hence we obtain the following tableau:

¬(((A ⊃ B) ⊃ A) ⊃ A)

¬A

(A ⊃ B) ⊃ A

¬A

A¬(A ⊃ B)

A

¬B

A

(A ⊃ B) ⊃ A

¬A

In the next cut-elimination step we obtain the following tableau:

¬(((A ⊃ B) ⊃ A) ⊃ A)

(A ⊃ B) ⊃ A

¬A

¬A

A¬(A ⊃ B)

A

¬B

A



Now there is a cut at a branch end, and eliminating it results in the following final
cut-free tableau:

¬(((A ⊃ B) ⊃ A) ⊃ A)

(A ⊃ B) ⊃ A

¬A

A¬(A ⊃ B)

A

¬B

3 (a) ¬(P ⊃ ¬(P ⊃ ⊥))

P

¬¬(P ⊃ ⊥)

P ⊃ ⊥

⊥¬P

(b) First of all, using Modus Ponens, we have P, P ⊃ ⊥ `ph ⊥ and thus P `ph (P ⊃ ⊥) ⊃ ⊥
using the Deduction Theorem. Second, the formula

(¬(P ⊃ ⊥) ⊃ ¬(P ⊃ ⊥)) ⊃ ((⊥ ⊃ ¬(P ⊃ ⊥)) ⊃ (((P ⊃ ⊥) ⊃ ⊥) ⊃ ¬(P ⊃ ⊥)))

is an instance of Axiom Scheme 9 (with β = (P ⊃ ⊥) ⊃ ⊥ and X = ¬(P ⊃ ⊥)).
From the lecture we know `ph ¬(P ⊃ ⊥) ⊃ ¬(P ⊃ ⊥). Moreover ⊥ ⊃ ¬(P ⊃ ⊥) is
an instance of Axiom Scheme 3. Hence we obtain `ph ((P ⊃ ⊥) ⊃ ⊥) ⊃ ¬(P ⊃ ⊥) by
two applications of the Deduction Theorem. Combining this with P `ph (P ⊃ ⊥) ⊃ ⊥
and using Modus Ponens yields P `ph ¬(P ⊃ ⊥). A final application of the Deduction
Theorem yields `ph P ⊃ ¬(P ⊃ ⊥).

(c) ¬(∃x)(∀y)[P (x) ⊃ P (y)]

¬(∀y)[P (c) ⊃ P (y)]

¬[P (c) ⊃ P (d)]

P (c)

¬P (d)

¬(∀y)[P (d) ⊃ P (y)]

¬[P (d) ⊃ P (e)]

P (d)

¬P (e)



4 (a) A propositional consistency property is a collection C of sets of propositional formulas
such that for each S ∈ C the following properties hold:

(1) for any propositional letter A, not both A ∈ S and ¬A ∈ S,

(2) ⊥ /∈ S, ¬> /∈ S,

(3) if ¬¬Z ∈ S then S ∪ {Z} ∈ C,
(4) if α ∈ S then S ∪ {α1, α2} ∈ C,
(5) if β ∈ S then S ∪ {β1} ∈ C or S ∪ {β2} ∈ C.

(b) For instance,

• the collection of all sets S such that every finite subset of S is satisfiable,

• the collection of all Craig consistent sets, where a finite set S is Craig consistent if
〈S1〉 ⊃ ¬〈S2〉 has no interpolant for some partition S1 ] S2 of S

• the collection of all tableau consistent sets,

• the collection of all X–tableau consistent sets, which are sets S such that S `pt X
does not hold,

• the collection of all X–Hilbert consistent sets, which are sets S such that S `ph X
does not hold.

(c) The propositional model existence theorem states that every member of a propositional
consistency property is satisfiable.

(d) 1 all finite subsets of S belong to C

2 an extension of C ,

3 a propositional consistency property

4 of finite character

5 an arbitrary finite subset of S

6 C is a propositional consistency property

7 ¬> /∈ S

8 S ∪ {Z} ∈ C+

9 C is a propositional consistency property

10 S ∪ {β1} ∈ C+ or S ∪ {β2} ∈ C+

11 F1 ∪ F2



12 C is subset closed

13 every finite subset of S belongs to C+

14 a finite subset of F

15 property (a)

5 statement true false

(a) X

(b) X

(c) X

(d) X

(e) X


