LVA 703607

1

	formula	$\alpha / \beta / \gamma / \delta$	rank
satisfiable			
$A \supset \neg B$	β	1	\checkmark
$(\forall x)[P(x) \vee Q(x)] \supset[(\exists x) Q(x) \vee(\forall y) P(y)]$	β	6	\checkmark
$\neg(A \supset \neg(B \vee \neg A))$	α	3	\checkmark
$(\exists x)[(\forall y) R(f(x), y) \supset R(x, c)]$	δ	3	\checkmark

2 (a) An alternate first-order consistency property is collection \mathcal{C} of sets of sentences of $L^{\text {par }}$ such that for each $S \in \mathcal{C}$ the following properties hold:
(1) for any propositional letter A, not both $A \in S$ and $\neg A \in S$,
(2) $\perp \notin S, \neg \top \notin S$,
(3) if $\neg \neg Z \in S$ then $S \cup\{Z\} \in \mathcal{C}$,
(4) if $\alpha \in S$ then $S \cup\left\{\alpha_{1}, \alpha_{2}\right\} \in \mathcal{C}$,
(5) if $\beta \in S$ then $S \cup\left\{\beta_{1}\right\} \in \mathcal{C}$ or $S \cup\left\{\beta_{2}\right\} \in \mathcal{C}$.
(6) if $\gamma \in S$ then $S \cup\{\gamma(t)\} \in \mathcal{C}$ for every closed term t of $L^{\text {par }}$
(7) if $\delta \in S$ then $S \cup\{\delta(p)\} \in \mathcal{C}$ for every parameter p that is new to S
(b) The closed tableau

$$
\begin{gathered}
\neg((P(c) \wedge(\forall x)[P(x) \supset \neg Q(x)]) \supset \neg Q(c)) \\
P(c) \wedge(\forall x)[P(x) \supset \neg Q(x)] \\
\neg \neg Q(c) \\
Q(c) \\
P(c) \\
(\forall x)[P(x) \supset \neg Q(x)] \\
P(c) \supset \neg Q(c) \\
\neg P(c)-\neg \neg Q(c)
\end{gathered}
$$

is transformed into the following closed biased tableau:

$$
\begin{gathered}
L(P(c) \wedge(\forall x)[P(x) \supset \neg Q(x)]) \\
R(\neg \neg Q(c)) \\
R(Q(c)) \\
L(P(c)) \\
L((\forall x)[P(x) \supset \neg Q(x)]) \\
L(P(c) \supset \neg Q(c)) \\
L(\neg P(c))-\quad L(\neg Q(c))
\end{gathered}
$$

Next we use the calculation rules for interpolants:

$$
\begin{aligned}
& L(P(c) \wedge(\forall x)[P(x) \supset \neg Q(x)]) \\
& R(\neg \neg Q(c)) \\
& R(Q(c)) \\
& L(P(c)) \\
& L((\forall x)[P(x) \supset \neg Q(x)]) \\
& L(P(c) \supset \neg Q(c)) \\
& L(\neg P(c))^{-} L(\neg Q(c)) \\
& {[\perp] \quad[\neg Q(c)]} \\
& L(P(c) \wedge(\forall x)[P(x) \supset \neg Q(x)]) \\
& R(\neg \neg Q(c)) \\
& R(Q(c)) \\
& L(P(c) \wedge(\forall x)[P(x) \supset \neg Q(x)]) \\
& R(\neg \neg Q(c)) \\
& R(Q(c)) \\
& L(P(c)) \\
& {[\perp \vee \neg Q(c)]} \\
& L((\forall x)[P(x) \supset \neg Q(x)]) \\
& {[\perp \vee \neg Q(c)]} \\
& L(P(c) \wedge(\forall x)[P(x) \supset \neg Q(x)]) \\
& R(\neg \neg Q(c)) \\
& {[\perp \vee \neg Q(c)]}
\end{aligned}
$$

The resulting interpolant is $\perp \vee \neg Q(c)$.
(c) Suppose neither $\Vdash \varphi$ nor $\Vdash \psi$ holds. Then there exist Kripke models $\mathcal{C}=\left\langle C, \leqslant_{C}, \Vdash_{C}\right\rangle$ and $\mathcal{D}=\left\langle D, \leqslant_{D}, \Vdash_{D}\right\rangle$ such that $c \Vdash_{C} \varphi$ and $d \Vdash_{D} \psi$ for states $c \in C$ and $d \in D$. We assume without loss of generality that $C \cap D=\varnothing$. Define the Kripke model $\mathcal{E}=\langle E, \leqslant, \Vdash\rangle$ with $E=C \cup D \cup\{e\}$ where e is a new state, $\leqslant=\leqslant_{C} \cup \leqslant_{D} \cup\{(e, c),(e, d)\}$, and $\Vdash=\Vdash_{C} \cup \Vdash_{D}$. We claim that $e \Vdash \varphi \vee \psi$. Suppose to the contrary $e \Vdash \varphi \vee \psi$. Hence $e \Vdash \varphi$ or $e \Vdash \psi$. Using monotonicity we obtain $c \Vdash \varphi$ or $d \Vdash \psi$ and thus $c \Vdash_{C} \varphi$ or $d \Vdash_{D} \psi$ by the
definition of \leqslant. This is a contradiction. Therefore $\varphi \vee \psi$ does not hold in state e of the Kripke model \mathcal{E} and thus $\Vdash \varphi \vee \psi$ does not hold.
(d) The Herbrand expansion $\mathcal{E}(X, D)$ with $\left.D=\left\{t_{1}, t_{2}, t_{3}\right\}\right)$ is defined recursively:

- if L is literal then $\mathcal{E}(L, D)=L$,
- $\mathcal{E}(\neg \neg Z, D)=\mathcal{E}(Z, D)$,
- $\mathcal{E}(\alpha, D)=\mathcal{E}\left(\alpha_{1}, D\right) \wedge \mathcal{E}\left(\alpha_{2}, D\right)$,
- $\mathcal{E}(\beta, D)=\mathcal{E}\left(\beta_{1}, D\right) \vee \mathcal{E}\left(\beta_{2}, D\right)$,
- $\mathcal{E}(\gamma, D)=\mathcal{E}\left(\gamma\left(t_{1}\right), D\right) \wedge \mathcal{E}\left(\gamma\left(t_{2}\right), D\right) \wedge \mathcal{E}\left(\gamma\left(t_{3}\right), D\right)$,
- $\mathcal{E}(\delta, D)=\mathcal{E}\left(\delta\left(t_{1}\right), D\right) \vee \mathcal{E}\left(\delta\left(t_{2}\right), D\right) \vee \mathcal{E}\left(\delta\left(t_{3}\right), D\right)$.
(e) The minimal cut

$$
\begin{array}{cc}
\neg(A \supset B) \\
B & \neg B \\
A & A \\
\neg B & \neg B
\end{array}
$$

is transformed into

$$
\begin{gathered}
\neg(A \supset B) \\
A \\
\neg B
\end{gathered}
$$

and hence we obtain the following tableau:

In the next cut-elimination step we obtain the following tableau:

Now there is a cut at a branch end, and eliminating it results in the following final cut-free tableau:

$$
\begin{aligned}
& \neg(((A \supset B) \supset A) \supset A) \\
& \quad(A \supset B) \supset A \\
& \neg(A \supset B) \quad A \\
& A \\
& \neg B
\end{aligned}
$$

3
(a) $\neg(P \supset \neg(P \supset \perp))$

P

$$
\neg \neg(P \supset \perp)
$$

(b) First of all, using Modus Ponens, we have $P, P \supset \perp \vdash_{p h} \perp$ and thus $P \vdash_{p h}(P \supset \perp) \supset \perp$ using the Deduction Theorem. Second, the formula

$$
(\neg(P \supset \perp) \supset \neg(P \supset \perp)) \supset((\perp \supset \neg(P \supset \perp)) \supset(((P \supset \perp) \supset \perp) \supset \neg(P \supset \perp)))
$$

is an instance of Axiom Scheme 9 (with $\beta=(P \supset \perp) \supset \perp$ and $X=\neg(P \supset \perp)$). From the lecture we know $\vdash_{p h} \neg(P \supset \perp) \supset \neg(P \supset \perp)$. Moreover $\perp \supset \neg(P \supset \perp)$ is an instance of Axiom Scheme 3. Hence we obtain $\vdash_{p h}((P \supset \perp) \supset \perp) \supset \neg(P \supset \perp)$ by two applications of the Deduction Theorem. Combining this with $P \vdash_{p h}(P \supset \perp) \supset \perp$ and using Modus Ponens yields $P \vdash_{p h} \neg(P \supset \perp)$. A final application of the Deduction Theorem yields $\vdash_{p h} P \supset \neg(P \supset \perp)$.
(c) $\neg(\exists x)(\forall y)[P(x) \supset P(y)]$
$\neg(\forall y)[P(c) \supset P(y)]$

$$
\neg[P(c) \supset P(d)]
$$

$P(c)$
$\neg P(d)$
$\neg(\forall y)[P(d) \supset P(y)]$
$\neg[P(d) \supset P(e)]$

$$
P(d)
$$

$$
\neg P(e)
$$

4 (a) A propositional consistency property is a collection \mathcal{C} of sets of propositional formulas such that for each $S \in \mathcal{C}$ the following properties hold:
(1) for any propositional letter A, not both $A \in S$ and $\neg A \in S$,
(2) $\perp \notin S$, $\neg \top \notin S$,
(3) if $\neg \neg Z \in S$ then $S \cup\{Z\} \in \mathcal{C}$,
(4) if $\alpha \in S$ then $S \cup\left\{\alpha_{1}, \alpha_{2}\right\} \in \mathcal{C}$,
(5) if $\beta \in S$ then $S \cup\left\{\beta_{1}\right\} \in \mathcal{C}$ or $S \cup\left\{\beta_{2}\right\} \in \mathcal{C}$.
(b) For instance,

- the collection of all sets S such that every finite subset of S is satisfiable,
- the collection of all Craig consistent sets, where a finite set S is Craig consistent if $\left\langle S_{1}\right\rangle \supset \neg\left\langle S_{2}\right\rangle$ has no interpolant for some partition $S_{1} \uplus S_{2}$ of S
- the collection of all tableau consistent sets,
- the collection of all X-tableau consistent sets, which are sets S such that $S \vdash_{p t} X$ does not hold,
- the collection of all X-Hilbert consistent sets, which are sets S such that $S \vdash_{p h} X$ does not hold.
(c) The propositional model existence theorem states that every member of a propositional consistency property is satisfiable.
(d) $\mathbf{1}$ all finite subsets of S belong to \mathcal{C}

2 an extension of \mathcal{C}

3 a propositional consistency property

4 of finite character

5 an arbitrary finite subset of S

6 \mathcal{C} is a propositional consistency property
$7 \neg \top \notin S$
$8 S \cup\{Z\} \in \mathcal{C}^{+}$
$9 \mathcal{C}$ is a propositional consistency property

10
$S \cup\left\{\beta_{1}\right\} \in \mathcal{C}^{+}$or $S \cup\left\{\beta_{2}\right\} \in \mathcal{C}^{+}$

11 $F_{1} \cup F_{2}$
$12 \mathcal{C}$ is subset closed

13 every finite subset of S belongs to \mathcal{C}^{+}

14 a finite subset of F

15 property (a)

5 statement true false
(a) $\quad \square$
(b) $\quad \mathrm{X} \square$
(c)

(d)
(e)

X \square

