

- (a) An alternate first-order consistency property is collection C of sets of sentences of L^{par} such that for each $S \in C$ the following properties hold:
 - (1) for any propositional letter A, not both $A \in S$ and $\neg A \in S$,
 - (2) $\perp \notin S, \neg \top \notin S$,
 - (3) if $\neg \neg Z \in S$ then $S \cup \{Z\} \in \mathcal{C}$,
 - (4) if $\alpha \in S$ then $S \cup \{\alpha_1, \alpha_2\} \in \mathcal{C}$,
 - (5) if $\beta \in S$ then $S \cup \{\beta_1\} \in \mathcal{C}$ or $S \cup \{\beta_2\} \in \mathcal{C}$.
 - (6) if $\gamma \in S$ then $S \cup \{\gamma(t)\} \in \mathcal{C}$ for every closed term t of L^{par}
 - (7) if $\delta \in S$ then $S \cup \{\delta(p)\} \in \mathcal{C}$ for every parameter p that is new to S
 - (b) The closed tableau

$$\begin{array}{c} \neg((P(c) \land (\forall x)[P(x) \supset \neg Q(x)]) \supset \neg Q(c)) \\ P(c) \land (\forall x)[P(x) \supset \neg Q(x)] \\ \neg \neg Q(c) \\ Q(c) \\ P(c) \\ (\forall x)[P(x) \supset \neg Q(x)] \\ P(c) \supset \neg Q(c) \\ \neg P(c) & \neg Q(c) \end{array}$$

is transformed into the following closed biased tableau:

EXAM 1 – SOLUTIONS

Computational Logic

1

formula	$lpha / eta / \gamma / \delta$	rank	satisfiable
$A \supset \neg B$	β	1	\checkmark
$(\forall x)[P(x) \lor Q(x)] \supset [(\exists x)Q(x) \lor (\forall y)P(y)]$	β	6	\checkmark
$\neg(A \supset \neg(B \lor \neg A))$	α	3	\checkmark
$(\exists x)[(\forall y)R(f(x),y)\supset R(x,c)]$	δ	3	\checkmark

LVA 703607

SS 2017

$$L(P(c) \land (\forall x)[P(x) \supset \neg Q(x)])$$

$$R(\neg \neg Q(c))$$

$$R(Q(c))$$

$$L(P(c))$$

$$L((\forall x)[P(x) \supset \neg Q(x)])$$

$$L(P(c) \supset \neg Q(c))$$

$$L(\neg P(c)) \qquad L(\neg Q(c))$$

Next we use the calculation rules for interpolants:

The resulting interpolant is $\perp \lor \neg Q(c)$.

(c) Suppose neither $\Vdash \varphi$ nor $\Vdash \psi$ holds. Then there exist Kripke models $\mathcal{C} = \langle C, \leq_C, \Vdash_C \rangle$ and $\mathcal{D} = \langle D, \leq_D, \Vdash_D \rangle$ such that $c \not\models_C \varphi$ and $d \not\models_D \psi$ for states $c \in C$ and $d \in D$. We assume without loss of generality that $C \cap D = \emptyset$. Define the Kripke model $\mathcal{E} = \langle E, \leq, \Vdash \rangle$ with $E = C \cup D \cup \{e\}$ where e is a new state, $\leq = \leq_C \cup \leq_D \cup \{(e, c), (e, d)\}$, and $\Vdash = \Vdash_C \cup \Vdash_D$. We claim that $e \not\models \varphi \lor \psi$. Suppose to the contrary $e \Vdash \varphi \lor \psi$. Hence $e \Vdash \varphi$ or $e \Vdash \psi$. Using monotonicity we obtain $c \Vdash \varphi$ or $d \Vdash \psi$ and thus $c \Vdash_C \varphi$ or $d \Vdash_D \psi$ by the

definition of \leq . This is a contradiction. Therefore $\varphi \lor \psi$ does not hold in state *e* of the Kripke model \mathcal{E} and thus $\Vdash \varphi \lor \psi$ does not hold.

- (d) The Herbrand expansion $\mathcal{E}(X, D)$ with $D = \{t_1, t_2, t_3\}$ is defined recursively:
 - if L is literal then $\mathcal{E}(L, D) = L$,
 - $\mathcal{E}(\neg \neg Z, D) = \mathcal{E}(Z, D),$
 - $\mathcal{E}(\alpha, D) = \mathcal{E}(\alpha_1, D) \wedge \mathcal{E}(\alpha_2, D),$
 - $\mathcal{E}(\beta, D) = \mathcal{E}(\beta_1, D) \lor \mathcal{E}(\beta_2, D),$
 - $\mathcal{E}(\gamma, D) = \mathcal{E}(\gamma(t_1), D) \wedge \mathcal{E}(\gamma(t_2), D) \wedge \mathcal{E}(\gamma(t_3), D),$
 - $\mathcal{E}(\delta, D) = \mathcal{E}(\delta(t_1), D) \lor \mathcal{E}(\delta(t_2), D) \lor \mathcal{E}(\delta(t_3), D).$
- (e) The minimal cut

$\neg(A$	$\supset B)$
B	$\neg B$
A	A
$\neg B$	$\neg B$

is transformed into

$$\neg (A \supset B)$$

$$A$$

$$\neg B$$

and hence we obtain the following tableau:

$$\neg(((A \supset B) \supset A) \supset A)$$

$$A \qquad \neg A$$

$$(A \supset B) \supset A \qquad (A \supset B) \supset A$$

$$\neg A \qquad \neg A$$

$$\neg(A \supset B) \qquad A$$

$$A \qquad \neg B$$

In the next cut-elimination step we obtain the following tableau:

_

$$\neg (((A \supset B) \supset A) \supset A)$$

$$(A \supset B) \supset A$$

$$\neg A$$

$$\neg A$$

$$\neg (A \supset B)$$

$$A$$

$$\neg B$$

Now there is a cut at a branch end, and eliminating it results in the following final cut-free tableau:

$$\neg(((A \supset B) \supset A) \supset A)$$

$$(A \supset B) \supset A$$

$$\neg A$$

$$\neg (A \supset B) \qquad A$$

$$A$$

$$\neg B$$

3 (a)
$$\neg (P \supset \neg (P \supset \bot))$$

 P
 $\neg \neg (P \supset \bot)$
 $P \supset \bot$
 $\neg P \qquad \bot$

(b) First of all, using Modus Ponens, we have $P, P \supset \bot \vdash_{ph} \bot$ and thus $P \vdash_{ph} (P \supset \bot) \supset \bot$ using the Deduction Theorem. Second, the formula

$$(\neg(P\supset\bot)\supset\neg(P\supset\bot))\supset((\bot\supset\neg(P\supset\bot))\supset(((P\supset\bot)\supset\bot)\supset\neg(P\supset\bot)))$$

is an instance of Axiom Scheme 9 (with $\beta = (P \supset \bot) \supset \bot$ and $X = \neg (P \supset \bot)$). From the lecture we know $\vdash_{ph} \neg (P \supset \bot) \supset \neg (P \supset \bot)$. Moreover $\bot \supset \neg (P \supset \bot)$ is an instance of Axiom Scheme 3. Hence we obtain $\vdash_{ph} ((P \supset \bot) \supset \bot) \supset \neg (P \supset \bot)$ by two applications of the Deduction Theorem. Combining this with $P \vdash_{ph} (P \supset \bot) \supset \bot$ and using Modus Ponens yields $P \vdash_{ph} \neg (P \supset \bot)$. A final application of the Deduction Theorem yields $\vdash_{ph} P \supset \neg (P \supset \bot)$.

(c) $\neg(\exists x)(\forall y)[P(x) \supset P(y)]$

$$\neg(\forall y)[P(c) \supset P(y)]$$
$$\neg[P(c) \supset P(d)]$$
$$P(c)$$
$$\neg P(d)$$
$$\neg(\forall y)[P(d) \supset P(y)]$$
$$\neg[P(d) \supset P(e)]$$
$$P(d)$$
$$\neg P(e)$$

- (a) A propositional consistency property is a collection C of sets of propositional formulas such that for each $S \in C$ the following properties hold:
 - (1) for any propositional letter A, not both $A \in S$ and $\neg A \in S$,
 - (2) $\perp \notin S, \neg \top \notin S,$
 - (3) if $\neg \neg Z \in S$ then $S \cup \{Z\} \in \mathcal{C}$,
 - (4) if $\alpha \in S$ then $S \cup \{\alpha_1, \alpha_2\} \in \mathcal{C}$,
 - (5) if $\beta \in S$ then $S \cup \{\beta_1\} \in \mathcal{C}$ or $S \cup \{\beta_2\} \in \mathcal{C}$.
 - (b) For instance,

4

- the collection of all sets S such that every finite subset of S is satisfiable,
- the collection of all Craig consistent sets, where a finite set S is Craig consistent if $\langle S_1 \rangle \supset \neg \langle S_2 \rangle$ has no interpolant for some partition $S_1 \uplus S_2$ of S
- the collection of all tableau consistent sets,
- the collection of all X-tableau consistent sets, which are sets S such that $S \vdash_{pt} X$ does not hold,
- the collection of all X–Hilbert consistent sets, which are sets S such that $S \vdash_{ph} X$ does not hold.
- (c) The propositional model existence theorem states that every member of a propositional consistency property is satisfiable.

(d)	1	all finite subsets of S belong to \mathcal{C}	
	2	an extension of \mathcal{C}	,
	3	a propositional consistency property	
	4	of finite character	
	5	an arbitrary finite subset of S	
	6	$\mathcal C$ is a propositional consistency property	
	7	$\neg\top\notin S$	
	8	$S \cup \{Z\} \in \mathcal{C}^+$	
	9	${\mathcal C}$ is a propositional consistency property	
	10	$S \cup \{\beta_1\} \in \mathcal{C}^+ \text{ or } S \cup \{\beta_2\} \in \mathcal{C}^+$	
	11	$F_1 \cup F_2$	

5 statement true false

