Univ	versi	ät
inns	bruc	k
1		

WS 2015/2016

LVA 703607

March 4, 2016

EXAM 1

Computational Logic

name:

immatriculation number:

This exam consists of six exercises. The available points for each item are written in the margin. You need at least 50 points to pass.

15 1 Complete the following table:

formula	$lpha / eta / \gamma / \delta$	existential	AE	valid
$A \supset B$		\checkmark		×
$(\forall x)[(\exists y)R(x,y) \supset \neg(\exists z)R(z,f(y))]$				
$\neg(A \supset \neg(B \lor A))$		\checkmark		
$(\forall x)P(x) \supset (\neg(\exists y)Q(y) \supset (\forall x)P(x))$	β			
$(\exists x)(\forall y)R(x,y) \supset (\forall z)(\exists w)R(w,z)$			\checkmark	

2 Peirce's law states that the propositional formula $(((P \supset Q) \supset P) \supset P)$ is valid.

(a) Give a tableau proof of Peirce's law.

(b) Give a proof of Peirce's law in the Hilbert system with the axioms

 $(X \supset (Y \supset Z)) \supset ((X \supset Y) \supset (X \supset Z))$ 1 $X \supset (Y \supset X)$ 2 $X \supset \top$ 3 $\perp \supset X$ 4 5 $\neg \neg X \supset X$ $X \supset (\neg X \supset Y)$ 6 7 $\alpha \supset \alpha_1$ 8 $\alpha \supset \alpha_2$ $(\beta_1 \supset X) \supset ((\beta_2 \supset X) \supset (\beta \supset X))$ 9

and Modus Ponens as only rule of inference.

10 (c) Give a tableau proof of the sentence

$$(\forall x)[P(x)\supset (\exists y)Q(y)]\supset (\forall x)(\exists y)[P(x)\supset Q(y)]$$

5 10

9 3 Answer **three** of the following five questions.

- What is a *propositional consistency property*?
- State the *deduction theorem* for Hilbert systems.
- What is a *first-order Hintikka set*?
- State the *compactness theorem* for first-order logic.
- What is an *explicit definition* of an n-place relation symbol R with respect to a set S of sentences?

This exercise is about Craig's interpolation theorem.

(a) Consider the following tableau proof of $\Phi = [A \land (B \lor C)] \supset \neg[(A \lor D) \supset \neg(\neg B \supset C)]$:

$$\neg \Phi$$

$$A \land (B \lor C)$$

$$\neg \neg [(A \lor D) \supset \neg (\neg B \supset C)]$$

$$(A \lor D) \supset \neg (\neg B \supset C)$$

$$A$$

$$B \lor C$$

$$\neg (A \lor D) \qquad \neg (\neg B \supset C)$$

$$\neg A \qquad \neg B$$

$$\neg D \qquad \neg C$$

$$B \qquad C$$

Turn the tableau into a closed biased tableau and use the calculation rules for interpolants to compute an interpolant of Φ .

(b) There are four interpolation calculation rules for γ -formulas. Two of them are stated below:

$$\frac{S \cup \{L(\gamma(c))\} \xrightarrow{\text{int}} A}{S \cup \{L(\gamma)\} \xrightarrow{\text{int}} A} \qquad \text{if constant } c \text{ does occur} \\ \frac{S \cup \{L(\gamma)\} \xrightarrow{\text{int}} A}{S \cup \{L(\gamma)\} \xrightarrow{\text{int}} A} \qquad \text{if constant } c \text{ does not occur} \\ \frac{S \cup \{L(\gamma)\} \xrightarrow{\text{int}} (\forall x)A\{c/x\}}{S \cup \{L(\gamma)\} \xrightarrow{\text{int}} (\forall x)A\{c/x\}} \qquad \text{if constant } c \text{ does not occur} \\ \text{in } \{X_1, \dots, X_n\} \\ \text{Here } S = \{L(X_1), \dots, L(X_n), R(Y_1), \dots, R(Y_k)\}. \text{ Give the other two.} \end{cases}$$

10

6

4

- 5 This exercise is about Herbrand's theorem.
- 5 (a) Give the definition of validity functional form.
- 10 (b) Compute the Herbrand expansion of the sentence $(\exists x)(\forall y)[R(x,y) \supset \neg R(c,f(y))]$ over the Herbrand domain $D = \{c, f(c)\}.$
- 10 (c) Compute a tautologous Herbrand expansion for the sentence $(\exists x)[P(x) \supset (\forall y)P(y)]$.

10 6 Determine whether the following statements are true or false. Every correct answer is worth 2 points. For every wrong answer 1 point is subtracted, provided the total number of points is non-negative.

