Computational Logic
WS 2015/2016
LVA 703607

EXAM 1
March 4, 2016
name:
immatriculation number:

This exam consists of six exercises. The available points for each item are written in the margin. You need at least 50 points to pass.

1 Complete the following table:

formula	$\alpha / \beta / \gamma / \delta$	existential	AE	valid
$A \supset B$		\checkmark		\times
$(\forall x)[(\exists y) R(x, y) \supset \neg(\exists z) R(z, f(y))]$				
$\neg(A \supset \neg(B \vee A))$		\checkmark		
$(\forall x) P(x) \supset(\neg(\exists y) Q(y) \supset(\forall x) P(x))$	β			
$(\exists x)(\forall y) R(x, y) \supset(\forall z)(\exists w) R(w, z)$			\checkmark	

2 Peirce's law states that the propositional formula $(((P \supset Q) \supset P) \supset P)$ is valid.
(a) Give a tableau proof of Peirce's law.
(b) Give a proof of Peirce's law in the Hilbert system with the axioms

$$
\begin{array}{llll}
1 & X \supset(Y \supset X) & 2 & (X \supset(Y \supset Z)) \supset((X \supset Y) \supset(X \supset Z)) \\
3 & \perp \supset X & 4 & X \supset \supset \\
5 & \neg \neg X \supset X & 6 & X \supset(\neg X \supset Y) \\
7 & \alpha \supset \alpha_{1} & 8 & \alpha \supset \alpha_{2} \\
9 & \left(\beta_{1} \supset X\right) \supset\left(\left(\beta_{2} \supset X\right) \supset(\beta \supset X)\right)
\end{array}
$$

and Modus Ponens as only rule of inference.
(c) Give a tableau proof of the sentence

$$
(\forall x)[P(x) \supset(\exists y) Q(y)] \supset(\forall x)(\exists y)[P(x) \supset Q(y)]
$$

93 Answer three of the following five questions.

- What is a propositional consistency property?
- State the deduction theorem for Hilbert systems.
- What is a first-order Hintikka set?
- State the compactness theorem for first-order logic.
- What is an explicit definition of an n-place relation symbol R with respect to a set S of sentences?

4 This exercise is about Craig's interpolation theorem.
(a) Consider the following tableau proof of $\Phi=[A \wedge(B \vee C)] \supset \neg[(A \vee D) \supset \neg(\neg B \supset C)]$: $\neg \Phi$

$$
A \wedge(B \vee C)
$$

$$
\neg \neg[(A \vee D) \supset \neg(\neg B \supset C)]
$$

$$
(A \vee D) \supset \neg(\neg B \supset C)
$$

A

Turn the tableau into a closed biased tableau and use the calculation rules for interpolants to compute an interpolant of Φ.
(b) There are four interpolation calculation rules for γ-formulas. Two of them are stated below:

$$
\begin{array}{cl}
\frac{S \cup\{L(\gamma(c))\} \xrightarrow{\text { int }} A}{S \cup\{L(\gamma)\} \xrightarrow{\text { int }} A} & \text { if constant } c \text { does occur } \\
\frac{\text { in }\left\{X_{1}, \ldots, X_{n}\right\}}{S \cup\{L(\gamma(c))\} \xrightarrow{\text { int }} A} & \text { if constant } c \text { does not occur } \\
S \cup\{L(\gamma)\} \xrightarrow{\text { int }}(\forall x) A\{c / x\} & \text { in }\left\{X_{1}, \ldots, X_{n}\right\}
\end{array}
$$

Here $S=\left\{L\left(X_{1}\right), \ldots, L\left(X_{n}\right), R\left(Y_{1}\right), \ldots, R\left(Y_{k}\right)\right\}$. Give the other two.

5 This exercise is about Herbrand's theorem.
(c) Compute a tautologous Herbrand expansion for the sentence $(\exists x)[P(x) \supset(\forall y) P(y)]$.
$10 \sqrt{6}$ Determine whether the following statements are true or false. Every correct answer is worth 2 points. For every wrong answer 1 point is subtracted, provided the total number of points is non-negative.
true false statement
\square The propositional connective \wedge is the dual of \vee.

In an $\mathbf{A E}$ tableau no δ-rule is applied after a γ-rule application.

The rule $\frac{\Gamma \rightarrow \Delta, X, Y}{\Gamma \rightarrow \Delta, X \vee Y}$ is an inference rule of sequent calculus.

A finite set S of formulas is Craig consistent if $\left\langle S_{1}\right\rangle \supset \neg\left\langle S_{2}\right\rangle$ has an interpolant for some partition $S_{1} \uplus S_{2}$ of S.

A propositional consistency property \mathcal{C} is of finite character provided $S \in \mathcal{C}$ if and only if every finite subset of S belongs to \mathcal{C}.

