Computational Logic
WS 2015/2016
LVA 703607

EXAM 2
September 30, 2016
name:
immatriculation number:

This exam consists of six exercises. The available points for each item are written in the margin. You need at least 50 points to pass.

1 Complete the following table:

formula	$\alpha / \beta / \gamma / \delta$	universal	satisfiable
$\perp \supset(\forall x) P(x)$			\checkmark
$\neg(((A \supset B) \supset A) \supset A)$		\checkmark	
$(\forall x) P(x) \supset(\neg(\exists y) Q(y) \supset(\forall x) P(x))$			
$(\forall x)[(P(x) \supset Q(x)) \uparrow(\neg Q(x) \supset P(x))]$	γ		

2 Give tableau proofs of the following sentences.
(a) $(\neg P \supset Q) \supset((P \supset Q) \supset Q)$
(b) $(\forall x)[P(x) \vee Q(x)] \supset[(\forall x) P(x) \vee(\exists x) Q(x)]$
(c) $(\forall x)(\exists y)[P(x) \supset Q(y)] \supset(\forall x)[P(x) \supset(\exists y) Q(y)]$
$9 \sqrt{3}$ Answer three of the following five questions.

- State and prove Hintikka's lemma for propositional logic.
- State Lyndon's homomorphism theorem.
- State at least seven axiom schemes of Hilbert systems.
- What is an interpolant for a first-order sentence $X \supset Y$?
- Give a sequent calculus proof of the sentence

$$
(\forall x)[P(x) \supset Q(x)] \supset[(\forall x) P(x) \supset(\forall x) Q(x)]
$$

4 This exercise is about the propositional compactness theorem.
(a) State the propositional compactness theorem.
(b) Complete the following proof of the propositional compactness theorem by filling in the missing parts.
\square \}. We have $S \in \mathcal{C}$ by assumption. We prove that \mathcal{C} is a \square
(1) If both $A \in W$ and $\neg A \in W$ then $W \notin \mathcal{C}$ because the subset
 is unsatisfiable.
(2) if $\perp \in W$ or $\neg \top \in W$ then $W \notin \mathcal{C}$ because \perp and $\neg \top$ are unsatisfiable.
(3) Suppose $\neg \neg Z \in W \in \mathcal{C}$ and let V be a finite subset of \square The set $(V \cap W) \cup\{\neg \neg Z\}$ is a finite subset of W and thus satisfiable. Hence also the set $(V \cap W) \cup\{\neg \neg Z, Z\}$ is satisfiable. Since V is a subset of $(V \cap W) \cup\{\neg \neg Z, Z\}$, V must be satisfiable.
(4) Suppose $\alpha \in W \in \mathcal{C}$. We need to show that

So let V be a finite subset of $W \cup\left\{\alpha_{1}, \alpha_{2}\right\}$. The set $(V \cap W) \cup\{\alpha\}$ is a finite subset of W and thus satisfiable because $W \in \mathcal{C}$. Hence also the set $(V \cap W) \cup\left\{\alpha, \alpha_{1}, \alpha_{2}\right\}$ is satisfiable because \square. Since V is a subset of $(V \cap W) \cup\left\{\alpha, \alpha_{1}, \alpha_{2}\right\}, V$ is satisfiable.
(5) In the final case we have \square We need to show that $W \cup\left\{\beta_{1}\right\} \in \mathcal{C}$ or $W \cup\left\{\beta_{2}\right\} \in \mathcal{C}$. For a proof by contradiction, suppose that neither $W \cup\left\{\beta_{1}\right\} \in \mathcal{C}$ nor $W \cup\left\{\beta_{2}\right\} \in \mathcal{C}$. So there exist finite subsets $V_{1} \subseteq W \cup\left\{\beta_{1}\right\}$ and $V_{2} \subseteq W \cup\left\{\beta_{2}\right\}$ such that \square. The set $\left(\left(V_{1} \cup V_{2}\right) \cap W\right) \cup\{\beta\}$ is a finite subset of W and hence satisfiable. Since β is equivalent to \square $\left(\left(V_{1} \cup V_{2}\right) \cap W\right) \cup\left\{\beta_{1}\right\}$ or $\left(\left(V_{1} \cup V_{2}\right) \cap W\right) \cup\left\{\beta_{2}\right\}$ is satisfiable. However, this is impossible since V_{1} is a subset of the former and V_{2} a subset of the latter set.

The proof is concluded by an appeal to \square

5 This exercise is about Herbrand's theorem.
(a) Compute the Herbrand universe of the sentence $(\exists x)[R(f(x), a) \supset \neg(\exists y) R(b, f(y))]$.
(b) Define the Herbrand expansion $\mathcal{E}(X, D)$ of an arbitrary sentence X over the domain $D=\left\{t_{1}, t_{2}\right\}$.
(c) Compute a tautologous Herbrand expansion for the valid sentence

$$
(\forall z)(\exists w)(\forall x)[(\forall y) R(x, y) \supset R(w, z)]
$$

106 Determine whether the following statements are true or false. Every correct answer is worth 2 points. For every wrong answer 1 point is subtracted, provided the total number of points is non-negative.
true false statement
$\square \square \neg X \supset \perp\} \vdash_{p h} X$

The set of all satisfiable propositional formulas is a Hintikka set.

The rank of the formula $(\exists x)(\forall y)[R(x, y) \supset \neg(\exists z) R(z, f(y))]$ is 5 .

The sequent $X \supset Y, X \wedge Y \rightarrow \neg \neg X$ is an associated sequent of the set $\{X \wedge Y, \neg X, X \supset Y\}$.

The propositional formula $A \wedge(B \vee C)$ is an interpolant of the tautology $[A \wedge((B \wedge D) \vee \neg C)] \supset \neg[(A \vee E) \supset \neg(C \supset B)]$.

