
Exercise 1. (2.3.2) Show that all binary connectives can be defined using either
↑ or ↓ alone.

Solution: we know (p.15; cf. also the Ba LICS course), that negation and
conjunction are functionally complete. Formally: for any function f ∶ Trn → Tr
with Tr = {t, f}, there is an expression e only using negation and conjunction
such that f(b⃗) = vb⃗(e) for any b⃗ = b1, . . . , bn ∈ Bn and vb⃗ the valuation mapping
Pi to bi for all 1 ≤ i ≤ n.

Hence it suffices to show that we can define negation and conjunction using
just ↑ (NAND). Defining ¬(P1) =↑ (P1, P1) works for negation since v(¬(P1)) =
v(↑ (P1, P1)) is seen to hold for all valuations v. Using the definition of negation,
defining ∧(P1, P2) = ¬(↑ (P1, P2)) is seen to work.

For ↓ the result follows from that for ↑ using that these are dual operations.

Remark 1. ↑ and ↓ are not strictly functionally complete, where strict func-
tional completeness means that the expression e in the above is only allowed to
contain the propositional letters P1, . . . , Pn when defining an n-ary function f .
In particular, to define � and ⊺ (both 0-ary), no propositional letters would be
allowed, but there are no such expressions built just from the (binary) connec-
tives ↑ and ↓; any expression must contain some propositional letters to start
with!

Exercise 2. (2.4.3) Which of the following are, and which are not tautologies.

1. yes. known as Peirce’s law;

2. no. take v(P ) = v(R) = t and v(Q) = f ;

3. no. both sides of ≢ are equivalent to ¬Q;

4. yes. both sides of ≡ are equivalent to ¬(P ⊃ Q);

5. yes. to make the premiss true, Q must be false, hence P as well;

6. no. take v(P ) = f , v(Q) = t;

7. yes. ≢ is commutative since ≡ is;

8. yes. ≢ is associative since ≡ is, using equivalence of X ≡ ¬Y and ¬(X ≡ Y ).

Note that for the non-tautologies it suffices to give one valuation such that the
formula evaluates to false; i.e. it is not necessary to give the whole truth-table.

Exercise 3. (2.4.12) Prove that if the propositional formula X ⊃ Y is a tautol-
ogy, so is Y d ⊃Xd.

Y d ⊃ Xd is equivalent to ¬Y ⊃ ¬X (Exercise 2.4.11) which is equivalent to
X ⊃ Y (for example by reasoning that ¬P ⊃ ¬Q is equivalent first to ¬¬P∨ ≠ Q
then to P∨ ≠ Q, then ¬Q ∨ P and finally Q ⊃ P ). From that we conclude
since tautologies are invariant under negating their propositional letters (Exer-
cise 2.4.10).

1



The idea captured in symbols by exercise 2.4.11 is that to dualize an expres-
sion, we need to dualize the connectives in it, and negate both its input(s) and
its output. This patterns generalizes the idea for single connectives, e.g. that the
dual of P ∧Q is ¬(¬P ∨ ¬Q).

Note that, in general, X ⊃ Y is not equivalent to Y d ⊃Xd. For instance, the
truth tables of P ⊃ Q and Qd ⊃ P d, i.e. Q ⊃ P are distinct.

Exercise 4. (2.6.1) Intuitively, the degree d counts the number of occurrences
of connectives of arity > 0 (i.e. all except for ⊺ and �). Intuitively, the rank r
counts the number of conjunctions, disjunctions, double negations, and negations
on top of tops and bottoms, after first eliminating other (possibly negated) binary
connectives where double negations arising during elimination are elided on the
fly. (For example, ¬(X ⊃ Y ) is essentially conjunctive, an α, but instead of
simply using De Morgan and continuing the transformation with ¬¬X ∧¬Y , the
double negation on the X is elided, and we continue transforming from X ∧¬Y .

• d = 4 (two implications, a NOR, and a negation), r = 4

• d = 2 (two implications), r = 2

• d = 2 (two implications), r = 3

Exercise 5. (Bonus) The relevant Haskell code snippet is

t :: Form a -> Form a

t x = case (map t (usub x)) of

[] -> x

[y] -> Neg (Neg y)

[y,z] -> if (fisa x) then (Bin And y z) else (Bin Or y z)

where usub computes the subformula in uniform notation (Table 2.2), and fisa

checks whether a formula is conjunctive, an α, or not. The properties then
are that r(X) = r(t(X)) and that X is equivalent to t(X), but only comprises
conjunctions, disjunctions and negations. A structural property is that ‘above’
binary connectives there always only are even numbers of negations. This can be
proven by structural induction (Theorem 2.6.3). The basis step trivially holds as
there t is the identity. Of the induction steps, the double negation case follows
directly by the IH. In case of an α, the properties hold for the αi by the IH.
From that they are seen to hold, by construction, for α as well: α is equivalent
to α1 ∧ α2 (Proposition 2.6.1) so to t(α) = t(α1) ∧ t(α2) as well by the IH;
From the latter equality and the IH it also follows that t(α) only comprises
conjunctions, disjunctions and negations, and finally t(α) has an even (namely
0) number of negations above it.

Exercise 6. (2.6.2)

• The intuition is the same as for a binary tree of depth n having fewer than
2n nodes. Formally, the proof is by the principal of structural induction
(Theorem 2.6.3):

2



– Basis step. For A a propositional letter r(A) = r(¬A) = r(⊺) = r(�) =
0, h(A) = h(¬A) = h(⊺) = h(�) = 0, and indeed 0 ≤ 0 = 20 − 1.
r(¬⊺) = r(¬�) = 1, h(¬⊺) = h(¬�) = 1, and indeed 1 ≤ 1 = 21 − 1.

– Induction steps. Suppose r(X) ≤ 2h(X). Then r(¬¬X) = r(X) + 1 ≤
2h(X) − 1 + 2h(X) = 2h(¬¬X) − 1 where the inequality uses the IH and
the fact that 1 ≤ 2n for any natural number n.

Suppose r(αi) ≤ 2h(αi) for i ∈ {1,2}. Then r(α) = 1 + ∑i r(αi) ≤
1+2 ⋅maxi r(αi) ≤ 1+2 ⋅maxi(2h(αi) −1) = 21+maxi h(αi) −1 = 2h(α) −1
where the second inequality uses the IH.

The case for β is analogous to that for α.

• Inductively define X0 = P and Xn = Xn−1 ∧ Xn−1 for n > 0. We show
by induction on n that r(Xn) = 2d(Xn) − 1. For the basis step r(X0) =
0 = 20 − 1 = 2d(X0) − 1. In the induction step r(Xn) = r(Xn−1 ∧Xn−1) =
1+2 ⋅r(Xn−1) = 21+d(Xn)−1 = 2d(Xn)−1, using the IH for the 3rd equality.

Exercise 7. (2.8.4. Bonus)

1. ⟨[P,¬P ]⟩;

2. ⟨[P ], [¬P ]⟩;

3. ⟨[P,Q,¬P ], [P,Q,¬Q]⟩;

4. ⟨[¬P,¬Q,R], [¬P,Q], [P ], [¬R]⟩;

5. ⟨[¬P ], [¬Q,¬R], [P ]⟩.

obtained by the Haskell code

cnf :: Form a -> Form a

cnf = dcist . nnf . t

where t is as above, nnf removes double negations and negations on top of top
and bottom, and finally dcist distributes disjunctions over conjunctions.

Exercise 8. (2.8.6. Bonus)

1. [⟨P ⟩, ⟨¬P ⟩];

2. [⟨P,¬P ⟩];

3. [⟨P ⟩, ⟨Q⟩, ⟨¬P,¬Q⟩];

4. [⟨¬P,¬P,P,¬R⟩, ⟨¬P,Q,P,¬R⟩, ⟨¬Q,¬P,P,¬R⟩, ⟨¬Q,Q,P,¬R⟩, ⟨R,¬P,P,¬R⟩, ⟨R,Q,P,¬R⟩];

5. [⟨¬P,¬Q,P ⟩, ⟨¬P,¬R,P ⟩].

obtained by the Haskell code

dnf :: Form a -> Form a

dnf = cdist . nnf . t

3



where dcist is dual to cdist above.

Remark 2. The algorithms only use distributivity and De Morgan. This may
lead to repetitions of literals and (dual) clauses, which could be easily removed
by adjoining a rule to simplify X ∨X into X and its dual.

Exercise 9. (2.8.7) By duality from the same properties of the Clause Form
Algorithm. Formally, it follows by first replacing all connectives by their dual,
then executing the Clause Form Algorithm, and then replacing all connectives
by their dual again, noting that all transformation rules dualize.

Note that the problem with showing termination of these algorithms is that
simple measures, such as counting the number of connectives in an expression,
do not suffice. In particular, distributing conjunction over disjunction (or vice
versa) may lead to an increase in the number of connectives: distribution applied
to P ∧ (Q∨R) yields the formula (P ∧Q)∨ (P ∧R), which is larger. (That this
terminates nonetheless can be intuitively understood by noting that distribution
sorts connectives top–down with, in this example, disjunctions being moved to
the top/root and conjunctions moved to the bottom/leaves.)

Exercise 10. (3.1.1) Below some solutions (hope I didn’t make any mistakes).
It is obvious that several trees contain repeated subtrees, so one could think about
how to avoid these, For instance, by some sharing mechanism (working with dags
instead of trees). A simple case of this arises for a β-formula such that β1 = β2;
is it ok to share these and to have ‘only one branch’ with that subformula on it?
Moreover, one can think about what is the shortest possible tree in each item,
and how that could be found (is brute-forcing it, say by breadth-first search, the
only way)?

4



5



6



7



8



Exercise 11. (3.6.3) To show that a Propositional Consistency Property that
is subset closed can be extended to one of finite character. That is, given a
Propositional Consistency Property C such that if T ⊆ S ∈ C then T ∈ C, we must
show there exists a Propositional Consistency Property C+ such that C ⊆ C+ and
S ∈ C+ iff for every finite T ⊆ S, T ∈ C+.

Following the hint, we define C+ to consist of those sets S all of whose finite
subsets are in C, and show that it meets the above three conditions.

• We first show that C+ extends C, i.e. that C ⊆ C+. If S ∈ C then by C being
subset closed we have for every T ⊆ S, that T ∈ C, so certainly for finite
such T . Thus, S ∈ C+.

• Next, we show that C+ is of finite character, i.e. that S ∈ C+ iff for every
finite T ⊆ S, T ∈ C+.

For the only–if-direction, note that if S ∈ C+, then by definition of C+ for
every finite T ⊆ S we have T ∈ C, hence T ∈ C+ by the previous item.

For the if-direction, suppose for every finite T ⊆ S, T ∈ C+. Note that for
such T , we have T ∈ C by definition of C+ using that T is a finite subset
of itself, hence S ∈ C+.

• Finally, we show that C+ is a Propositional Consistency Property by veri-
fying that the five defining conditions of the latter (Definition 3.6.1) hold.
To that end, suppose S ∈ C+, so all its finite subsets are in the Propositional
Consistency Property C.

1. If both A ∈ S and ¬A ∈ S for some propositional letter A, then by
definition of C+ the finite subset {A,¬A} of S is in C, which would
contradict (item 1 of) C being a Propositional Consistency Property;

2. If � ∈ S or ¬⊺ ∈ S, then by definition of C+ the finite subset {�}
or {¬⊺} of S is in C, which would contradict (item 2 of) C being a
Propositional Consistency Property;

3. Suppose ¬¬Z ∈ S such that every finite subset of S is in C. We
must show that every finite T ⊆ S ∪ {Z} is in C. Note that U =
(T −{Z})∪{¬¬Z} is a finite subset of S hence is in C. By (item 3 of)
C being a Propositional Consistency Property then T ∪ {¬¬Z,Z} ∈ C,
from which we conclude to T ∈ C by C being subset closed;

4. Suppose α ∈ S such that every finite subset of S is in C. We must
show that every finite T ⊆ S ∪ {α1, α2} is in C. Note that U = (T −
{α1, α2})∪{α} is a finite subset of S hence is in C. By (item 4 of) C
being a Propositional Consistency Property then T ∪ {α,α1, α2} ∈ C,
from which we conclude to T ∈ C by C being subset closed;

5. Suppose β ∈ S such that every finite subset of S is in C. We have to
show that S∪{β1} ∈ C+ or S∪{β2} ∈ C+. For a proof by contradiction
suppose that neither S ∪ {β1} nor S ∪ {β2} is in C+. By definition of
C+, then there exist finite T1 ⊆ S ∪ {β1} and T2 ⊆ S ∪ {β2} such that

9



T1, T2 /∈ C. Let T = T1 ∪ T2. Note that U = (T ∩ S) ∪ {β} is a finite
subset of S, hence is in C. By (item 5 of) C being a Propositional
Consistency Property then (T∩S)∪{β,β1} ∈ C or (T∩S)∪{β,β2} ∈ C.
Since T1 ⊆ (T ∩S)∪{β,β1} and T2 ⊆ (T ∩S)∪{β,β2} and C is subset
closed, we have T1 ∈ C or T2 ∈ C, providing the desired contradiction.

Remark 3. Although the solution to this last exercise follows the general pattern
when ‘closing under an operation’, namely showing that the ‘existing’ properties
are preserved (in this case: being a Propositional Consistency Property) and
that the ‘desired’ properties are created (in this case: being of finite character
and extending the original collection), the solution is longish as I decided to spell
out the details, because:

• it’s good to see all the proof steps; in particular many solutions missed
either showing that C+ extends C, or showing that C+ is of finite character.
Neither is difficult, but both essentially depend on the construction of C+
from C, and the above solution pinpoints where and how.

• the reasoning in the last item (for β) is more subtle than one might expect;
we need to show an ‘exists for all’ where one seems to only have a ‘for all
exists’.

(For people wanting to see what could go wrong in such ‘closing under’ argu-
ments, a simple example is provided by relations, where the symmetric closure
of a transitive relation need not be transitive; but note that the transitive closure
of a symmetric relation is symmetric again!)

10


