
Exercise 1. (3.6.6. Bonus) The formulation (no common variables) makes one
think immediately of Craig’s Interpolation Theorem.

By Craig’s Interpolation theorem, X ⊃ Y entails there is an interpolant of X
and Y , that is, a formula Z such that X ⊃ Z and Z ⊃ Y with the propositional
letters of Z contained in both X and Y . Thus, if X and Y have no propositional
letters in common, then Z is a formula without propositional letters, hence it is
either true or false. In the former case Z ⊃ Y entails Y is a tautology,, whereas
in the latter case X ⊃ Z entails ¬X is a tautology.

Exercise 2. (3.6.7. Bonus) The formulation (compatibility) makes one think
of closure operators (with which the set is compatible).

W.l.o.g. we may assume C to be of finite character:

• If the Propositional Consistency Property C is compatible with B, then its
subset closure C′ (see Exercise 3.6.1) is also compatible with B: If S′ ∈ C′

and X ∈ B, then S′ ⊆ S ∈ C for some S, hence by assumption S ∪ {X} ∈ C.
Hence S′ ∪ {X} ∈ C′ by it being a subset of S ∪ {X}.

• If the subset-closed Propositional Consistency Property C′ is compatible
with B, then its finite-character closure C′′ (see Exercise 3.6.3) is also
compatible with B: If S′′ ∈ C′′ and X ∈ B, then every finite subset S′ of
S′′ is in C′, and by assumption also S′ ∪ {X} ∈ C′. From those being all
finite subsets of S′′ ∪ {X}, we conclude that the latter is in C′′.

Moreover by C ⊆ C′ ⊆ C′′, if S ∈ C then S ∈ C′ and S ∈ C′′, and it suffices to show
that S ∪B ∈ C′′, i.e. that every finite subset of S ∪B is in C′. Such a subset can
be written as T ∪A with T ⊆ S and A ⊆ B. Since S ∈ C′ and C′ is subset closed,
T ∈ C′. Since C′ is compatible with B and A ⊆ B, an easy induction proof, by
induction on the (finite!) cardinality of A ⊆ B, shows that then T ∪A ∈ C′, from
which we conclude.

Exercise 3. (3.7.1) This follows from general fixed-point theory. That is, we
proceed by a saturation process that is the same as for obtaining the transitive
closure of a relation, i.e. the least relation extending a given one that is tran-
sitive, or the language generated by a grammar, i.e. the least language closed
under the production rules of a grammar, namely closing under the generating
rules/clauses.

We spell out the details, first inductively defining the sets Sn of ‘formulas
obtained by a construction of depth n’, then defining Su of the (infinite) union
of all the (finite Sn), and next showing that it meets the specification, i.e. that
it extends S, is closed under the production rules of the grammar, and that Su

is the least set having both properties.
Define S0 = S and Sn+1 is Sn to which each formula in the conclusion of

one of the clauses is adjoined, if the formulas in its assumption(s) are in Sn.
Let Su = ⋃n S

n. The claim is that Su fits the bill, i.e. is the least upward closed
extension of S.

• Since S = S0 ⊆ Su, so Su is an extension of S;
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• We next show Su is upward closed. If formulas X1, . . . ,Xk ∈ S
u, then per

construction, there is an n such that X1, . . . ,Xk ∈ S
n. Hence if these are

in the assumption of one the clauses, then the conclusion of that clause is
in Sn+1, hence in Su again;

• Finally, we show Su is least among the upward closed extensions of S.
This follows from that for every n, Sn ⊆ U if U is an arbitrary upward
closed extension of S, by induction on n: That S0 ⊆ U follows from the
latter being an extension of S. That Sn+1 ⊆ U if Sn ⊆ U follows by U being
closed under the clauses.

Remark 1. For people interested in more on this: fixed-point theory, lattice
theory (Knaster–Tarski), and closure operators provide an abstract setting for
the above. The above works since the clauses are positive, only expressing that
if some elements are in the set also some other element must be in it; for
negative clauses expressing that then some element cannot be in it, closures
need not exist.

That such an implicitly defined set (the least set such that . . . ) exists
uniquely, is non-obvious in general; let X be the least set of non-zero real num-
bers such that x ∈ X iff x /∈ X. Intuitively, X is not well-defined due to the
negativity condition; it expresses that if some element is in the set, some other
is not; contrast this to the positive conditions in our case.

Several people only argued for existence of some upward closed set Su ex-
tending S. This is not enough, since for example the set of all formulas is also
an upward closed set extending S, but typically distinct from Su, so not the least
upward closed set extending S.

Exercise 4. (3.7.2.(1,2)) (1) and (2) are defining properties of closure operators
(see the above remark), known as idempotence and monotonicity1 Again, both
follow by general considerations, but we spell out the details.

• Idempotence follows by definition of Su being the least upward closed ex-
tension of S, hence the least upward closed extension (Su)u of Su is just
itself;

• Monotonicity follows since if S1 ⊆ S2 then Su
2 extends S1 and is upward

closed, hence Su
1 ⊆ Su

2 by definition of Su
1 as the least set having both

properties.

Note that this proof is abstract in the sense that it does not refer to the concrete
conditions in Exercise 3.7.1, and only makes use of ‘being a least extension that
is closed under u’.

Exercise 5. (3.7.4. Bonus) Sketch: Replay Theorem 3.7.3 and its proof with
‘strict’ inserted at appropriate places, defining a finite set S of propositional

1The third defining property of closure operators is being extensive, i.e. S ⊆ Su, which
trivially holds.
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formulas is strict tableau consistent if there is no strict closed tableau for S, re-
placing the appeal to the Model Existence Theorem 3.6.2 by an appeal to its strict
variant as in Exercise 3.7.3, and replacing the (implicit) appeal to Lemma 3.7.2,
by an appeal to its strict variant. The reasoning in its proof refines that as given
on page 64, now checking for strictness (non-reuse).

Exercise 6. (3.9.1)

1. Instead of proving this semantically (which is also easy), we use Theo-
rem 3.9.4 to prove it syntactically, using a tableau.
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2. This one we choose to prove semantically, by induction on n. If n = 1, then
it trivial. Otherwise, n > 1, and we know by the IH that S ⊧p A1 ⊃ An−1.
Since An−1 ⊃ An ∈ S, we conclude to S ⊧p A1 ⊃ An by transitivity of
implication, which is easily checked by a truth table or by other means.

Exercise 7. (3.9.2) Left to you.

Exercise 8. (3.9.3) By definition of ⟨. . .⟩, the former is equivalent to (A1 ∧

. . . ∧An) ⊃ X and by Theorem 3.9.4 and the deduction theorem (n times), the
latter holds iff A1 ⊃ . . . ⊃ An ⊃X is a tautology. We conclude since (X ∧Y ) ⊃ Z
is equivalent to X ⊃ Y ⊃ Z (n times again). Formally, to prove this needs
induction on n, with the case n = 2 being the only interesting case.

Exercise 9. (4.1.1)
A proof of {P ⊃ (Q ⊃ R),Q,P} ⊢ph R is:

1. P ⊃ (Q ⊃ R) (ass)

2. Q (ass)

3. P (ass)

4. Q ⊃ R (MP 1,2)

5. R (MP 4,2)

One application of the deduction theorem turns this (with some optimizations)
into a proof of {P ⊃ (Q ⊃ R),Q} ⊢ph (P ⊃ R):

1. P ⊃ (Q ⊃ R) (ass)

2. Q (ass)

3. Q ⊃ (P ⊃ Q) (K)

4. P ⊃ Q (MP 3,2)

5. (P ⊃ (Q ⊃ R)) ⊃ ((P ⊃ Q) ⊃ (P ⊃ R)) (S)

6. P ⊃ R (MP 4,2)

where K and S are names for Axiom Schemes 1 and 2, respectively; the idea is
to make all proof steps ‘parametrised over P ’ and in order to achieve that Ks
and Ss are inserted appropriately.

Repeating this for the other two assumptions yields the desired proof. Since
it is longish and writing all the formulas is tedious, and since the point of the
exercise was to show the proof is long (it has 19 steps compared to the 2, not
counting assumptions, we started with; see the remark below), I only give the
justifications.

1. (S)
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2. (S)

3. (K)

4. (S)

5. (MP 3,4)

6. (MP 2,5)

7. (S)

8. (K)

9. (K)

10. (MP 8,9)

11. (MP 7,10)

12. (S)

13. (MP 11,12)

14. (MP 6,13)

15. (MP 1,14)

16. (K)

17. (K)

18. (MP 16,17)

19. (MP 15,18)

Remark 2. The order of the assumptions in formulas is extremely important
for the size of the proof. Swapping the final occurrences of P and Q in the
formula, yields intuitively ‘the same’ conclusion namely that we can conclude R
from P and Q, but it has a much simpler proof, namely that of the Example on
page 80.

In general, as already stated on the slides, repeating the construction in the
deduction theorem n times may lead of a proof of size exponential in n. Hence
this is not suitable to do by hand. But the important point is that it is a construc-
tion, i.e. it can be implemented, which i.m.o. is a not-so-difficult and rewarding
exercise.

One think of K as erasing, and of S as distributing; we will come back to
this in the lecture(s) on the Curry–Howard isomorphism, in particular S and
K can be viewed as combinators in combinatory logic.

Exercise 10. (4.1.2)
Looking at the formula, we see that it’s an implication with lhs the disjunction

of ¬¬X and X, both of which imply X. This suggests to use Axiom Scheme 9
‘disjunction elimination’, and indeed that works:
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1. (¬¬X ⊃X) ⊃ ((� ⊃X) ⊃ ((¬X ⊃ �) ⊃X)) (Ax 9)

2. (¬¬X ⊃X) ⊃X (Ax 5)

3. (� ⊃X) ⊃ ((¬X ⊃ �) ⊃X) (MP 1,2)

4. � ⊃X (Ax 3)

5. (¬X ⊃ �) ⊃X (MP 3,4)

Exercise 11. (4.1.4) Left to you.

Exercise 12. (4.1.5)
A standard trick to conclude Y from some Axioms Scheme of shape . . . (X ⊃

Y ) is to try to instantiate X with some appropriate known or simple tautology.
In this case the hint suggests to use Axiom Scheme 8 with tautology ¬Z ⊃ ¬Z:

1. (¬¬Z ⊃ (Z ⊃ ¬¬Z)) ⊃ (¬Z ⊃ (Z ⊃ ¬¬Z)) ⊃ ((¬Z ⊃ ¬Z) ⊃ (Z ⊃ ¬¬Z)) (8)

2. ¬¬Z ⊃ (Z ⊃ ¬¬Z) (K)

3. (¬Z ⊃ (Z ⊃ ¬¬Z)) ⊃ ((¬Z ⊃ ¬Z) ⊃ (Z ⊃ ¬¬Z)) (MP 1,2)

4. Z ⊃ (¬Z ⊃ ¬¬Z) (Ax 6)

5. (Z ⊃ (¬Z ⊃ ¬¬Z)) ⊃ (¬Z ⊃ (Z ⊃ ¬¬Z)) (Example p.81)

6. ¬Z ⊃ (Z ⊃ ¬¬Z) (MP 5,4)

7. (¬Z ⊃ ¬Z) ⊃ (Z ⊃ ¬¬Z) (MP 3,6)

8. (¬Z ⊃ ¬Z) (Example p.80)

9. (Z ⊃ ¬¬Z) (MP 7,8)

This is of course not a real proofs, since it makes use of tautologies derived
before, but it could easily be expanded to a real proof.

Exercise 13. (4.1.6)

Exercise 14. (4.1.7) To verify that the collection of all X-Hilbert consistent
sets, i.e. sets S of formulas such that not S ⊢ph X, is a propositional consistency
property, we verify the 5 conditions of the latter as given in Definition 3.6.1 hold
for the collection, in as far as not already given in the book. We proceed as on
page 83, by proving contrapositives.

1. Suppose for some propositional letter A, both A ∈ S and ¬A ∈ S; The by
Axiom Scheme 6 and twice MP we infer X;

2. The case � is analogous to the case ¬⊺ in the book, but even simpler: we
can use Axiom Scheme 3 and MP to infer X;
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3. Suppose S ∪ {Z} is X-Hilbert-inconsistent. We show S ∪ {¬¬Z} is X-
Hilbert inconsistent: We are given that S∪{Z} ⊢ph X, so by the deduction
theorem S ⊢ph Z ⊃ X. By Axiom Sxheme 5 we have ¬¬Z ⊃ Z. From that
we obtain S ⊢ph ¬¬Z ⊃ X by transitivity (¬¬Z ⊃ Z) ⊃ (Z ⊃ X) ⊃ (¬¬Z ⊃

X) and twice MP, from which we conclude, by deduction theorem again,
to S ⊢ {¬¬Z} ⊢ph X as desired. Note that transitivity (X ⊃ Y ) ⊃ (Y ⊃

Z) ⊃ (X ⊃ Z) follows from {X ⊃ Y,Y ⊃ Z,X} ⊢ph Z, whose proof is just
two MPs, by three applications of the deduction theorem.

4. Suppose S ∪ {α1, α2} is X-Hilbert-inconsistent. We show S ∪ {α} is X-
Hilbert inconsistent. The reasoning is analogous to the above, first obtain-
ing S ⊢ph α1 ⊃ (α2 ⊃ X), and then combining that and Axiom Schemes 7
α ⊃ α1 and 8 α ⊃ α2 using ‘binary’ transitivity (α ⊃ α1) ⊃ (α ⊃ α2) →

(α1 ⊃ α2 ⊃ X) ⊃ (α ⊃ X), where the latter is obtained from {α ⊃ α1, α ⊃

α2, α1 ⊃ α2 ⊃X,α} ⊢ph X similar to transitivity in the previous item.

5. The proof for β-clauses is in the book.

Remark 3. Note the crucial role the deduction theorem plays in ‘shifting’ for-
mulas ‘in’ and ‘out’ of the set of assumptions.

Exercise 15. (4.1.8) Too hard, so left to you. (But will come back to it later.)

Exercise 16. (4.5.2) The main point of this exercise is that the tableau is
‘surprisingly’ large, compared to the simplicity of the pigeon hole principle itself.
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