
Exercise 1 The only question is how to translate propositional letters to 1st
order logic. The first idea that comes to mind is to have for every propositional
letter P a 0-place (nullary) predicate symbol with the same name, P , in our 1st
order logic. Unfortunately, this is not possible for 1st-order logic as presented
in the book by Fitting, since predicate symbols are required to have a positive
number of places (Definition 5.1.1).1 An alternative idea then is to have a
single unary predicate symbol P and (countably many) constants ci in our 1st
order logic,2 and then translate the ith propositional letter Pi by the formula
P (ci), and translate all connectives ‘as themselves’. We denote this translation
by ⟨⟨.⟩⟩.3

Observe that for any propositional logic formula X its translations ⟨⟨X⟩⟩ is a
1st order formula that is a sentence ( closed; no free variables) and quantifier-
free (no ∀, ∃). From the former it follows that its truth value does not depend

on assignments: ⟨⟨X⟩⟩I,A = ⟨⟨X⟩⟩I,A
′

for all interpretations I and assignments
A,A′. Hence we will simply write ⟨⟨X⟩⟩I . From the latter it follows that the same
holds for the subformulas, i.e. assignments will play no role at all in determining
the truth value in a model, of a translated formula.

We want to show this translation is ‘good’, in the sense that for every propo-
sitional formula X, X is valid/satisfiable/a contradiction (Definitions 2.4.4/5)
iff so is the 1st-order formula ⟨⟨X⟩⟩ (Definition 5.3.6). To that end, we first
unfold the respective definitions.

• A propositional logic formula X is valid if v(X) = t for every valuation
v, mapping the propositional letters to truth values. The 1st-order logic
formula ⟨⟨X⟩⟩ is valid if ⟨⟨X⟩⟩ is true in all models, which means (using
the above observation) that for every model M = ⟨D,I⟩, ⟨⟨X⟩⟩I = t.

Given any such 1st-order model M = ⟨D,I⟩, we may define the valuation
vM by vM(Pi) = t if cIi ∈ P

I and f otherwise. Then vM(Pi) = t iff cIi ∈ P
I

iff iff P (ci)
I = t iff ⟨⟨Pi⟩⟩

I = t. By induction this correspondence extends
from propositional letters to all formulas: vM(X) = t iff ⟨⟨X⟩⟩I = t. Thus,
if X is a tautology, then ⟨⟨X⟩⟩ must be so as well.

Vice versa, given a valuation v, we define the Herbrand model Mv = ⟨D,Iv⟩
by setting P Iv = {ci ∣ v(Pi) = t}, i.e. we let the predicate P be true on all
constants ci such that the corresponding propositional letter Pi is mapped
to true by v. From this we obtain analogously to the above that v(X) = t iff
⟨⟨X⟩⟩I = t. If ⟨⟨X⟩⟩ is a tautology then certainly it is true in all Herbrand

1This is non-standard (cf. for example the wikipedia page on first-order logic), but that
was the reason for having this exercise at all (otherwise it simply is already part of the Ba
logic course material): is it problematic not to have 0-place predicate symbols? Something
similar applies to function and constant symbols: allowing function symbols to have arbitrary
non-negative arity would obviate the need to treat function symbols (arity > 0) and constant
symbols (arity 0) separately, as is now the case in the book (Definition 5.1.1).

2Instead of constants ci, we could employ variables xi, but then we would not translate
sentence to sentences.

3The translation needs countably many constants. This could be reduced by switching to
unary natural numbers, needing only a single function symbol S and a single unary constant
0 to represent the ith propositional letter Pi as P (Si(0)).
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models, hence by the correspondence X is true for all valuations, i.e. X is
a tautology.

• The correspondences for satisfiability and being a contradiction follow from
that for validity in the previous item.

X is a contradiction iff ¬X is valid iff ⟨⟨¬X⟩⟩ is valid iff ¬⟨⟨X⟩⟩ is valid
iff ⟨⟨X⟩⟩ is a contradiction, where we use the above correspondence for
validity, and that the translation commutes with negation.

Using that, we obtain X is satisfiable iff X is not a contradiction iff ⟨⟨X⟩⟩

is not a contradiction iff ⟨⟨X⟩⟩ is satisfiable.

Remark 1 Note how the Herbrand model allows ci to be interpreted differently
from cj for all i ≠ j, and hence also allows that P (ci) has a truth value different
from that of P (cj). The latter is essential to be able to conclude that if ⟨⟨X⟩⟩

is valid then so is X. To see what could go wrong otherwise, suppose we would
restrict attention to models M = ⟨D,I⟩ where the domain D only has, say, one
element. Then the formula P (c1) = P (c2) would be valid since in such models
cI1 = cI2, but the corresponding propositional logic formula P1 = P2 is obviously
not valid.

Several people took a fixed a domain D = {t, f} of truth values, i.e. having
‘variables of type boolean’, in their translation. This is incorrect in two ways:

1. Formulas are part of the syntax, not of the semantics. That is, when
translating a formula we cannot fix D. Validity of a formula is truth with
respect to arbitrary models, not a fixed one. That is, in translating a
propositional formula X into a first-order formula X ′ such that X is valid
iff X ′ is, we cannot assume anything about the domains D for the latter,
other than as captured by the formula. In this way, formulas (syntax) can
be seen as characterising (classes of) models (semantics).4

2. It’s a ‘type-mismatch’. Propositional letters should not be translated as
constants in/variables ranging over the domain. Propositional letters are
‘of type boolean’, whereas constants are ‘of type object’. Predicates, pred-
icate properties of objects not of booleans, for example, Blue(chair), or
Loves(Abooksigun,Minnie). ‘Typing’ the syntax of 1st order logic, we have
for function symbols f ∶ Dn → D, for constants c ∶ D, for predicates
P ∶Dn → B, and for connectives ○ ∶ Bn → B, where B = {f , t}.

Exercise 2 (5.2.2) The intuition is that substitutions only change the variables,
so if two substitutions change these ‘in the same way’, the result will be the same.

Formally, we show that if σ and τ are substitutions that agree on the vari-
ables of the term t, that tσ = tτ by induction on terms, as suggested, using

4There are natural properties of models that cannot be characterised by 1st-order logic
formulas, such as finiteness (by compactness) or uncountability (by Löwenheim–Skolem). The
other way around, if one would want to be able to express such properties, one may consider
extending the logical language with appropriate primitives. Indeed, many such extensions
exist and are used. (But cf. Lindström’s theorem showing that 1st-order logic is strongest in
some sense.)
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Definition 5.2.2, where for σ and τ to agree on the variables in t means that if
a variable x occurs in t, then σ(x) = τ(x).

• In the base case, a term is either a variable or a constant.

For a variable x we conclude by the assumption that σ and τ agree on all
variables in the term, so in this case on x, that: xσ = σ(x) = τ(x) = xτ .

For a constant c we conclude since substitutions ‘have no effect’ on then
by Definition 5.2.2 we have cσ = c = cτ .

• In the step case, for an arbitrary n-ary function symbol f with n > 0 and
arbitrary terms t1, . . . , tn, we conclude ‘by substitutions acting homomor-
phically’: f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ) = f(t1τ, . . . , tnτ) = f(t1τ, . . . , tn)τ ,
where the first and third equalities follow by Definition 5.2.2, and the sec-
ond equality by n applications of the IH showing tiσ = tiτ for 1 ≤ i ≤ n,
where the IH applies since if σ, τ agree on the variables in t, they certainly
agree on the variables in each ti, as the latter are a subset of the former.

Remark 2 Several people forgot the last part of the reasoning above, namely
that the IH applies to ti, i.e. that σ and τ agree on the variables of ti. Although
that follows trivially from the same property for t, it is essential.

Exercise 3 (5.2.4. Bonus) The support for a substitution comprises those vari-
ables on which the substitution ‘makes a difference’. Intuitively, the composition
of two substitution cannot ‘make a difference’ on variables other than those on
which each of them individually makes a difference.

To prove the intuition correct, we show that for all substitutions σ, τ , sup(στ) ⊆
sup(σ) ∪ sup(τ), where sup(.) denotes the support. But this holds, since if
x /∈ sup(σ) and x /∈ sup(τ), then xσ = x and xτ = τ , so x(στ) = (xσ)τ = xτ = x,
where the first equality holds by Definition 5.2.3 and the last two equalities hold
by the respective assumptions, so x /∈ sup(στ).

From this the statement follows, since if both sup(σ) and sup(τ) are finite,
so is there union, hence also any subset of that union.

Remark 3 The inclusion shown above may be proper. For instance, if σ(x) = y
and σ(y) = x and σ maps all other variables to themselves, we have sup(σσ) =
∅ ⊂ {x, y} = sup(σ) = sup(σ) ∪ sup(σ) (the composition σσ is just the identity
function on variables).

Exercise 4 (5.3.2) We show that for every model M = ⟨D,I⟩, every 1st order
formula Φ is true in M , iff (∀x)Φ is true in M , by showing both implications.

For the only–if-direction, assume Φ is true in M , which means by Defini-
tion 5.3.6 that ΦI,A = t for all assignments A. We must show (∀x)Φ is true
in M , i.e. that ((∀x)Φ)I,A = t for all assignments A. By Definition 5.3.5,
((∀x)Φ)I,A = t iff ΦI,B = t for every assignment B that is an x-variant in M ,
i.e. for every assignment B that assigns the same values to every variable as A,
except possibly x (Definition 5.3.4). But by assumption the latter holds for all
assignments, so certainly for B, from which we conclude.
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For the if-direction, the reasoning is ‘in reverse’. Suppose A is an assign-
ment. By assumption, ((∀x)Φ)I,A = t, from which we conclude by Defini-
tion 5.3.4 since then in particular ΦI,A = t, as A is an x-variant of itself.

Remark 4 Many people argued intuitively here, which is in some way fine,
because the semantics was designed to correspond to the intuition, but beware
that formally we can only work with the formal semantics as given in Defini-
tions 5.3.6 and 5.3.5. In particular, the semantics of (∀x)Φ is defined using
x-variants of assignments.

Exercise 5 (5.3.9) The idea for our solution is to take the simplest (mathemat-
ical) infinite structure we know of, the natural numbers, and try to incorporate
enough of its properties so that any finite subset/initial segment of them will
not meet them.

The property capturing infinity of natural numbers is that every number has a
successor, which using the binary symbol R for this, may be modelled by the for-
mula Φ1 defined as ((∃x)(∃y)R(x, y)) ∧ (∀x)(((∃y)R(y, x)) ⊃ ((∃z)R(x, z)));
with the first conjunct capturing that there is an element with a successor (take
‘0’ for x), and the second conjunct capturing that if an element has a predecessor
it also has a successor.

However, Φ1 on its own allows finite models such as ⟨{0}, I⟩ with RI =

{⟨0,0⟩}. Of course, that is unintended; successors should be new, i.e. distinct
from their predecessors. To that end, we additionally require R to be irreflexive,
by Φ2 defined as (∀x)¬R(x,x), excluding loops as in the example, and moreover
to be transitive, by Φ3 defined as (∀x)(∀y)(∀z)(R(x, y) ⊃ R(y, z) ⊃ R(x, z)),
excluding cycles of arbitrary length (when combined with irreflexivity). Then
intuitively, Φ defined by Φ1 ∧Φ2 ∧Φ3 fits the bill, but let’s formally prove it:

• For a proof by contradiction suppose Φ were true in a finite model ⟨D,I⟩.
By the left conjunct of Φ1 being true, then there is a pair ⟨d0, d1⟩ ∈ R

I with
d0 ≠ d1 since Φ2 is true. We inductively define for n ≥ 2, dn+2 to be an
(arbitrary) element of D such that ⟨dn+1, dn+2⟩ ∈ R

I . Such elements must
exist by the right conjunct of Φ1. Moreover, by induction on n it follows
that for all i < j ≤ n+2, ⟨di, dj⟩ ∈ R

I : for j < n+2 this holds by the IH. For
j = n+ 2 and i = n+ 1 it holds per construction, and for j = n+ 2 and i ≤ n
it follows from ⟨dn+1, dn+2⟩ ∈ R

I per construction, ⟨di, dn+1⟩ ∈ R
I by the

IH, and transitivity Φ3. Thus d1, d2, . . . is an infinite sequence of pairwise
distinct elements of D, so D is not finite.

• If D is infinite, then it has a countably infinite subset, say {d0, d1, d2, . . .}.
Defining RI = {⟨di, dj⟩ ∣ i < j}, we see Φ is true in ⟨D,I⟩: to make the left
conjunct of Φ1 true we may assign, say, d0 and d1 to x and y, and to see
the right conjunct is true note that for R(x, y)I,A to be true in this model,
A must have assigned some di to x, and then we can simply assign di+1
to z. Then we conclude since RI is irreflexive and transitive because < is.

Remark 5 It is an interesting challenge5 to find the smallest formula, for some

5In fact, this challenge is offered as a Ba project.
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reasonable measure of size (e.g. the number of connectives, predicate symbols,
and variables in a formula), having the properties as requested in the exercise.

Other than using the property of being infinitely large as above, one can also
try to make use of being infinitely small; think of there being between any two real
numbers another real number. This could be captured by requiring the relation
to be dense, i.e. defining Φ1 by (∀x)(∀y)(∃z)(R(x, y) ⊃ (R(x, z) ∧ R(z, y)));
and some additional properties.

As noted in the book (page 133), the dual of the above is impossible: by
compactness, there is no sentence true in finite domains but not in infinite
ones.

Several people have given some formula Φ = Φ1 ∧ . . . ∧ Pn which supposedly
had the desired properties, of not having finite models and having some infinite
model, but do not show these properties. Even if sometimes explanations of the
components Pi are given, it then is not clear at all why these are needed (or could
some be dropped?) to obtain both properties. For instance, (∀x)(∃y)R(x, y), as
answered several times, contains the right idea (there’s always something next),
but is on its own not quite sufficient (as discussed above in the solution). You
should always prove, or at least argue, that your solution is correct.

Exercise 6 (5.4.1) The intuition for this is: in Herbrand models values in
the domain are (closed) terms, so assigning values can be brought about by
substitution; and once we have substituted values, their interpretation is fixed
(not changed by further substitutions since values are closed terms).

Formally, let M = ⟨D,I⟩ be a Herbrand model for the language L, i.e. D
comprises the closed terms over the function and constant symbols. We prove
that for every 1st order formula Φ, ΦI,A = (ΦA)I , by structural induction on
the formula, using Definitions 5.3.5 and 5.2.11 for simplifying the lhs and rhs
respectively.

• For the atomic cases,

[P (t1, . . . , tn)]
I,A = t iff ⟨tI,A1 , . . . , tI,An ⟩ ∈ P I iff ⟨(t1A)I , . . . , (tnA)I⟩ ∈ P I

iff P ((t1A)I , . . . , (tnA)I) = t iff (P (t1, . . . , tn)A)I = t , where the second
iff holds by (n times) Proposition 5.4.2;

⊺I,A = t = ⊺I = (⊺A)I ; and

�I,A = f = �I = (�A)I ;

• [¬X]I,A = ¬[XI,A] = ¬[(XA)I] = [¬(XA)]I = [(¬X)A]I , where the sec-
ond equality holds by the IH for X;

• [X ○Y ]I,A =XI,A○Y I,A = (XA)I ○(Y A)I = [(XA)○(Y A)]I = [(X ○Y )A]I

where again the second equality holds by the IH for X and Y ;

• [(∀x)Φ]I,A = t iff ΦI,B = t for every assignment B that is an x-variant
of A, iff [ΦB]I = t for every assignment B that is an x-variant of A, iff
[ΦAxB]I = t for every assignment B that is an x-variant of some arbitrary
assignment, iff [ΦAx]

I,B = t for every assignment B that is an x-variant

5



of some arbitrary assignment, [(∀x)(ΦAx)]
I = t iff [((∀x)Φ)A]I = t,

where the second iff holds by the IH for Φ, and the third iff by composing
substitutions; and

• This follows as the previous item, replacing ‘∀’ by ‘∃’, and ‘every’ by
‘some’.

Exercise 7 (5.4.2) Suppose φ is a formula of L and M = ⟨D,I⟩ is a Herbrand
model for L. Then:

• To show (∀x)Φ is true in M iff Φ{x/d} is true in M for every d ∈D.

Unfolding Definitions 5.3.6 and 5.3.5 and using Proposition 5.4.3, the lhs
is equivalent to [ΦB]I = t for every assignment A and every assignment
B that is an x-variant of A, and the rhs to [Φ{x/d}A]I for every d ∈ D
and every assignment A. From this we conclude, since an assignment that
is an x-variant of A is a composition of singleton assignment {x/d} and
A;

• To show (∀x)Φ is true in M iff Φ{x/d} is true in M for some d ∈D.

This follows as in the previous item, replacing ‘∀’ by ‘∃’, and ‘every’ by
‘some’.

Exercise 8 (5.5.2, Bonus) Suppose L is a first-order language and M = ⟨D,I⟩
is a Herbrand model for L.

Below in each case, we proceed by unfolding Definitions 5.3.5 and 5.3.6,
using Proposition 5.4.3 and distinguishing case according to Table 5.1.

• To show: if γ is a formula of L, γ is true in M iff γ(d) is true in M for
every d ∈D.

By Definition 5.3.6 we must show γI,A is true for all substitutions A iff
γ(d)I,A is true for all substitutions A. We distinguish cases on the (two)
possible shapes of γ in Table 5.1.

If γ = (∀x)Φ, then γ(d) = Φ{x/d}, and proceeding as stated above both
sides are seen to be equivalent to [Φ{x/d}A]I being true for all substitu-
tions A and every d.

If γ = ¬(∃x)Φ, then γ(d) = ¬Φ{x/d}, then both sides are equivalent to
[¬Φ{x/d}A]I being true for all substitutions A and every d.

• To show: if δ is a formula of L, δ is true in M iff δ(d) is true in M for
some d ∈D.

This follows as in the previous item, replacing ‘γ’ by ‘δ’, ‘∀’ by ‘∃’ (and
correspondingly using the right instead of the left column of Table 5.1),
and ‘every’ by ‘some’.

Exercise 9 (5.6.3) Checking the cases of First-Order Structural Induction, we
see the remaining cases are the propositional cases and the δ-case of the quan-
tifiers.
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Of the propositional cases it is stated on p. 128 that they are essentially as
they were earlier, that is, as established in Exercise 3.5.2. Indeed they are:

• Suppose ¬¬X is a sentence of L, the result is known for simpler sen-
tences of L, and ¬¬X ∈ H. Then by the definition of Hintikka set (Defi-
nitions 5.6.1 and 3.5.1), X ∈H, hence by the IH X is true, so by Defini-
tions 5.3.5 and 5.36 ¬¬X is true, since XI,A = [¬¬X]I,A for all A.

• Suppose α is a sentence of L, the result is known for simpler sentences
of L, and α ∈ H. Then by definition of Hintikka set (Definitions 5.6.1
and 3.5.1), α1, α2 ∈ H, hence by the IH α1 and α2 are true, hence by
Definitions 5.3.5 and 5.3.6 α is true, since αI,A = [α1 ∧α2]

I,A; cf. Propo-
sition 2.6.1.

• Suppose β is a sentence of L, the result is known for simpler setences
of L, and β ∈ H. Then be definition of Hintikka set (Definitions 5.6.1
and 3.5.1), βi ∈ H for some i ∈ 1,2, hence by the IH βi is true for that i,
so by Definitions 5.3.5 and 5.3.6 β is true, since βI,A = [β1 ∧ β2]

I,A; cf.
Proposition 2.6.1.

For the δ-case we take the proof in the book for the γ-case, replacing ‘γ’ by
‘δ’ and ‘every’ by ‘some’: Suppose δ is a sentence of l, the result is known for
simpler sentences of L, and δ ∈H; we show δ is true in M . Since δ ∈H, we have
δ(t) ∈ H for some closed term t, since H is a Hintikka set. By the induction
hypothesis, and the fact that D is exactly the set of closed terms, δ(t) is true
in M for some t ∈ D. Then δ is true in M by (item 2 instead of item 1 of)
Proposition 5.5.2

Exercise 10 (5.9.2) The statement derives a property for arbitrary, possibly
infinite, structures from the same property for finite structures, so makes one
think of compactness, Theorem 5.9.1.

To enable using compacntess, we let each vertex v of a graph G be represented
by a constant of the same name in our language, and adjoin for every undirected
edge {v,w} of G a formula {E(v,w)} to our set S of sentences, with the intuition
that finite subsets of S correspond to finite subgraphs (see below). Finally, we
adjoin the sentence Φ = Φ1 ∧ Φ2 expressing four colorability to S, where Φ1

is (∀x)(R(x) ∨G(x) ∨ B(x) ∨ Y (x)) and Φ2 is (∀x)(∀y){E(x, y) ⊃ [(R(x) ⊃
¬R(y)) ∧ (G(x) ⊃ ¬G(y)) ∧ (B(x) ⊃ ¬B(y)) ∧ (Y (x) ⊃ ¬Y (y))]}.

Since by assumption every finite subgraph of G is four colorable, every finite
subset S′ of S is satisfiable, namely in the subgraph G′ comprising the ver-
tices mentioned in formulas of S′ and the edges between them. By compactness
therefore S itself is satisfiable, i.e. there is a model ⟨D,I⟩ in which all sentences
of S are true. From that, a four-coloring of G is obtained by assigning color
R/G/B/Y to a vertex v if vI ∈ RI/GI/BI , Y I in the model.

Remark 6 Note that not every pair (V ′,E′) with V ⊆ V ′ and E ⊆ E′ is a
subgraph of (V,E) as defined in the exercise: not only can we only have an
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edge in E′ if both its end-points are in V ′, also the converse holds: if the end-
points of an edge in E are in V ′, then the edge is in E′. This is the reason for
working with the subgraph G′ in the above solution.

Exercise 11 (5.9.3 Bonus) To see that a set S of sentences of L is satisfiable
if and only if it is satisfiable in a model that is Herbrand with respect to Lpar,
note that the if-direction is trivial, and the only–if-direction was was shown in
the first part of the proof of the Löwenheim–Skolem theorem 5.9.3 on pages 133,
134, based on the First-Order Model Existence theorem 5.8.2.

To see that a sentence X of L is valid iff X is true in all models that are
Herbrand with respect to Lpar, we reason using the above as follows X is valid iff
¬X is not satisfiable iff ¬X is not satisfiable in a model that is Herbrand with
respect to Lpar iff X is true in all models that are Herbrand with respect to Lpar.

Exercise 12 (5.10.1) Using the notation from Definition 5.10.1 to state the
second item, we have to show X is true in every model in which the members of
S are true iff ∀X is true in every model in which the members of ∀S are true.
This follows by repeatedly applying Exercise 5.3.2, stating that a formula Φ is
true in a model iff (∀x)Φ is, to the formulas in S and X.

Remark 7 Note that this exercise employs the first reading of what it could
mean for a formula X to be a logical consequence of a set S of formulas (where
the formulas need not be closed, i.e. need not be sentences), as discussed on
page 135, allowing to assign distinct values to the free variables of distinct
formulas. See that page and Exercise 5.10.2 for the other reasonable reading,
namely assigning the same values to free variables occurring in distinct formulas
(which can be reduced to the notion of logical consequences for sentences as
well, by means of substituting parameters for variables instead of by universal
quantification as above).

Exercise 13 (5.10.3)

• Unfolding the definitions of validity in the lhs according to Definition 5.3.6
and of logical consequence in the rhs according to Definition 5.10.1, we
must show that X is true in every model iff X is true in every model in
which all the members of S are true, for every set S. The only–if-direction
being trivial, the if-direction follows by instantiating S with the empty set.

• That S ⊧f X for every X, if A ∈ S and ¬A ∈ S holds vacuously, since
there are no models in which both A and ¬A are true.
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