
Exercise 1 (8.4.2)

1.

{¬(∃x)−(∀y)−P (x, y) ∨ (∀x)Q(x)} ∧ {(∀x)−A(x) ⊃ (∀x)+B(x)} ≡

{¬(∃x)(∀y)P (x, y) ∨ (∀x′)Q(x′)} ∧ {(∀x′′)A(x′′) ⊃ (∀x′′′)B(x′′′)} ≡

(∀x)(∃y)(∀x′){¬P (x, y) ∨Q(x′)} ∧ (∃x′′)(∀x′′′){A(x′′) ⊃ B(x′′′)} ≡

(∀x)(∃y)(∀x′)(∃x′′)(∀x′′′)[{¬P (x, y) ∨Q(x′)} ∧ {A(x′′) ⊃ B(x′′′)}]

where I’ve marked the initial formula with the polarities of the quantifiers.
This is just one possible order in which the quantifiers can be ‘merged’.
Some other results obtained by merging are (∃x′′)(∀x′′′)(∀x)(∃y)(∀x′)
and (∀x′)(∃x′′)(∀x)(∀x′′′)(∃y). Irrespective of the order, there are 3 ∀s
and 2 ∃s.

2.

¬(∃x)−(∃y)−[P (x, y) ⊃ (∀x)−(∀y)−P (x, y)] ≡

¬(∃x)(∃y)[P (x, y) ⊃ (∀x′)(∀y′)P (x′, y′)] ≡

(∀x)(∀y)¬[P (x, y) ⊃ (∀x′)(∀y′)P (x′, y′)] ≡

(∀x)(∀y)(∃x′)(∃y′)¬[P (x, y) ⊃ P (x′, y′)]

3.

(∀x)+{(∀y)−[((∀z)−P (x, y, z) ⊃ (∃w)
+Q(x, y,w)) ⊃ R(x)] ⊃ S(x)} ≡

(∀x)(∃y)(∃z)(∃w){[(P (x, y, z) ⊃ Q(x, y,w)) ⊃ R(x)] ⊃ S(x)}

Remark 1 About half did these basic transformations completely correctly.
As in previous exercises, it is convenient to first draw the abstract syntax tree

to determine whether subformulas occur negatively or positively, to determine
whether quantifiers are essentially universal or existential, giving rise to a ∀

resp. ∃ in the prefix of the prenex normal form.
Prefixes are obtained by merging the linear orders of the quantifiers along

the branches in the abstract syntax tree, from the root to the leaves.

Exercise 2 (8.9.1) The exercise was to apply the procedure given in this sec-
tion. In particular the goal was to eliminate the primary-connective-cut as de-
scribed on p. 237 (that we can reason semantically to close faster using double
negation is ok, but was not the question, as that is not part of the procedure in
this section). The answer should be something like the following, provided by
one of you:
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Exercise 3 (8.11.1) We do the subcase that γ ∈ S2 in the proof of Lemma 8.11.3
in detail. That is, assuming S ∪ {γ(t)} is not Craig consistent, we show S is
not Craig consistent either. That is, we must show that every partition S1, S2,
i.e. pair of sets such that S = S1 ∪S2 and ∅ = S1 ∩S2, has an interpolant, i.e. a
formula Z such that S1 ∪ {Z} and S2 ∪ {¬Z} are not satisfiable. We adapt the
text from the book for the case γ ∈ S1, as follows:1

S1, S2 ∪ {γ(t)} is a partition of S ∪ {γ(t)}, so it has an interpolant, say Z,
since S ∪ {γ(t)} is not Craig-consistent. Now S1 ∪ {Z} is not satisfiable. Also,
S2 ∪ {γ(t)} ∪ {¬Z} is not satisfiable, and it follows easily that S2 ∪ {¬Z} is not
satisfiable either, since γ ∈ S2.

We know that all constant, function, and relation symbols of Z are common
to S1 and S2 ∪ {γ(t)}. If the all occur in S2, we are done; Z is an interpolant
for S1, S2. So now suppose Z contains some symbol occurring in S2 ∪ {γ(t)}
but not in S2. Since γ ∈ S2, any such symbol must occur in t and so must be
a constant or a function symbol. There may be several; for simplicity let is say
Z contains just one subterm, f(u1, . . . , un), where f occurs in t but not in S2.
The more general situation is treated similarly.

Let s be a new free variable, and let Z∗ be like Z but with the occurrence of
f(u1, . . . , un) replaced by x, so Z = Z∗

{x/f(u1, . . . , un)}. We claim (∀x)Z∗ is
an interpolant for S1, S2.

First, all constant, function, and relation symbols of (∀x)Z∗ are common
to both S1 and S2, because we have removed the only one that was a problem.
Next, S1 ∪ {Z} is not satisfiable, hence, neither is S1 ∪ {(∀x)Z∗

}. This follows
from the validity of

(∀x)Z∗
⊃ Z∗

{x/f(u1, . . . , un)

Finally, S2 ∪ {¬Z} is not satisfiable, and it follows that S2 ∪ {¬(∀x)Z∗
} is also

not satisfiable. This argument needs a little more discussion than the others.
(Its similarity to the proof of Lemma 8.3.1 is no coincidence.)

Suppose S2 ∪ {¬(∀x)Z∗
} is satisfiable, we show S2 ∪ {¬Z} also is. Suppose

the members of S2∪{¬(∀x)Z
∗
} are true in the model ⟨D,I⟩. Then in particular,

¬Z∗I,A is true for some assignment A. Now define a new interpretation J to be
like I on all symbols except f , and set fJ to the same as f I on all members of D
except uI,A1 , . . . , uI,An . Finally, set fJ(uI,A1 , . . . , uI,An ) = xI . Since I and J differ
only on f , and that does not occur in S2, the members of this set will have the
same truth values using either interpretation. Consequently, the members of S2

are true in ⟨D,J⟩. Using Proposition 5.3.7 [Z∗
{x/f(u1, . . . , un)]

J,A
= Z∗J,A

=

Z∗I,A
= t.

Remark 2 All of you doing the exercise had the correct idea to try to adapt
the text in the book. But only one of you gave a correct adaptation. The others
failed to check that their adaptation worked, i.e. that the sentences stay true
(otherwise they would have found their adaptation to be faulty). Checking truth

1The adaptation consists in working with γ in the second component instead of the first
component of the partition, and correspondingly abstracting from offending symbols in Z
using a ∀ instead of an ∃, since Z formula is negated in the second component.
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is essential; otherwise it’s not a proof. For instance, again trying to take (∃x)Z∗

as interpolant, that S1 ∪ {Z} is not satisfiable would not imply S1 ∪ {(∃x)Z∗
}

is not satisfiable (we could have a satisfying assignment for x).

Exercise 4 (complete example p. 260) Caused no problems. The answer should
be something like the following, provided by one of you:
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Exercise 5 (8.12.1) The answer should be something like the following, pro-
vided by one of you:

L(A 0 ((B 0D) 1 C))
R(¬¬[(A 0 E) M ¬(¬B M C)])

R((A 1 E) M ¬(¬B M C))
L(A)

L((B 0D) 1 C)
R(¬(A 1 E))

R(¬A)
R(¬E)[A]

R(¬(¬B M C))[B 1 C]

L(A 0 ((B 0D) 1 C))
R(¬¬[(A 0 E) M ¬(¬B M C)])

R((A 1 E) M ¬(¬B M C))
L(A)

L((B 0D) 1 C)
R(¬(A 1 E))[A] R(¬(¬B M C))[B 1 C]

L(A 0 ((B 0D) 1 C))
R(¬¬[(A 0 E) M ¬(¬B M C)])

R((A 1 E) M ¬(¬B M C))
L(A)

L((B 0D) 1 C)[A 0 (B 1 C)]

L(A 0 ((B 0D) 1 C))
R(¬¬[(A 0 E) M ¬(¬B M C)])

R((A 1 E) M ¬(¬B M C))[A 0 (B 1 C)]

L(A 0 ((B 0D) 1 C))
R(¬¬[(A 0 E) M ¬(¬B M C)])[A 0 (B 1 C)]

Exercise 8.12.1

L((ºx)(P (x) M ¬Q(x)) 0 P (c))
R(¬¬Q(c))
R(Q(c))

L((ºx)(P (x) M ¬Q(x)))
L(P (c))

L(P (c) M ¬Q(c))
L(¬P (c))[·] L(¬Q(c))[¬Q(c)]

L((ºx)(P (x) M ¬Q(x)) 0 P (c))
R(¬¬Q(c))
R(Q(c))

L((ºx)(P (x) M ¬Q(x)))
L(P (c))

L(P (c) M ¬Q(c))[· 1 ¬Q(c)]
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L((ºx)(P (x) M ¬Q(x)) 0 P (c))
R(¬¬Q(c))
R(Q(c))

L((ºx)(P (x) M ¬Q(x)))
L(P (c))[· 1 ¬Q(c)]

L((ºx)(P (x) M ¬Q(x)) 0 P (c))
R(¬¬Q(c))
R(Q(c))[· 1 ¬Q(c)]

L((ºx)(P (x) M ¬Q(x)) 0 P (c))
R(¬¬Q(c))[· 1 ¬Q(c)]

Exercise 8.12.2

For an occurrence of a relation symbol c in an interpolation designed using the procedure

to be positive, the step S < {L(c), R(¬c)} int
��� [c] has to be invoked. A tableau proof of

X M Y has to be performed on the negation of ¬(¬X 0 Y ) which turns into L(¬X) and

R(Y ) in the beginning and by that inverts the negations present in the step. There are

no ways to introduce any negations into the interpolation outside of that step, which

verifies Lyndon’s strengthening. The procedure also verifies it for negative occurrences

by S < {L(¬c), R(c)} int
��� [¬c] existing.
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Exercise 6 (8.12.2) We have to show that if X ⊃ Y is a valid sentence, then it
has an interpolant Z such that every relation symbol occurring positively in Z
has a positive occurrence in both X and Y , and every relation symbol occurring
negatively in Z has a negative occurrence in both X and Y . To that end, we
have to show that this in fact follows from the construction of the interpolant
for the biased tableau proof of ¬(X ⊃ Y ), i.e. starting from L(X) and R(¬Y ).

We claim that for any calculation of Z from S by means of the calculation
rules, every relation symbol occurring posi/negatively in Z has a posi/negative
occurrence in X for some L(X) ∈ S and a nega/positive occurrence in X for
some R(X) ∈ S, by induction on the length of the calculation. From the claim we
conclude since in the end the calculation rules compute Z from L(X),R(¬Y ).

The claim is easily verified for the base cases, the 6 rules for the closed
branches on page 258. Next we show it is preserved by the inference rules.

• For the computation rule inferences of � and ⊺ there is nothing to verify,
since the formulas in S involved do not contain relation symbols.
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• For the computation rule inference for double negations (¬¬), αs, βs, γs,
and δs we conclude from the IH(s) and that the transformations on for-
mulas in S and on Z, neither change relation symbols occurring in them
nor their polarity.

Remark 3 Only one of the handed in solutions did do the required induction.
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