
Exercises

1 Give three �-terms M such that ` M : ⌧ ! ⌧ ! ⌧ , for ⌧ an arbitrary type.

We count only terms up to renaming of variables; so �xy .xy and �yx .yx are
considered the same (as they can be obtained by renaming x into y and vice
versa), but di↵erent from �xy .yx . Is this a reasonable way to count terms
inhabiting types, i.e. to count proofs of propositions, vis-à-vis the
Curry–Howard isomorphism?

2 Bonus: Show that, among the three �-terms in the previous exercise, at least
two must be =�-related.

3 Reduce the �-term M = (�x .xx)(�yz .yz) to normal form N (it requires 3
!�-steps; give each of them).

4 Show that there is no �-term M such that ` M : (⌧ ! ⌧) ! ⌧ , for ⌧ an
arbitrary type.
Hint: normalization or Kripke models (1 cross each)

5 Compute the translation (SS(KI))�, i.e. the translation of W on slide 21 of
the previous week, and reduce the resulting �-term to normal form.

AM/VvO (CS @ UIBK) lecture 8 29/34

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Exercises

6 Bonus (1 cross per item): The Haskell expression (\x -> \x -> x)
corresponds to the �-term �x .�x .x . Asking Haskell the type of the former
yields p1 -> p2 -> p2.

• Explain why using the type assignment rules for �-calculus (slide 13), we
can infer ` �y .�x .x : � ! (⌧ ! ⌧), but not ` �x .�x .x : � ! (⌧ ! ⌧),
assuming � 6= ⌧ (cf. the remark there).
Could one overcome this limitation? That is, could our type assignment
system be adapted such that we do have ` �x .�x .x : � ! (⌧ ! ⌧)?

• Just as per our conventions �yx .x is shorthand for �y .�x .x , in Haskell
(\y x -> x) is shorthand for (\y -> \x -> x) Do (\x x -> x) and
(\x -> \x -> x) have the same type in Haskell? Can you explain why
(not)?

7 SC is defined (slide 17) in terms of itself: SC of M is defined in terms of SC
of ~N. Argue that SC is still well-defined, i.e. that it is a proper inductive
definition for simply typed terms (either CL-terms or �-terms).

8 Work out the details of the first item, the variable case, (slide 17) of the
proof that all simply typed CL terms are SC. In particular, show that SC
entails SN and that every typed variable is SC.

AM/VvO (CS @ UIBK) lecture 8 30/34

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Exercises

9 Complete the details of the proof (slide 20) that inhabitation is decidable.
More precisely, give both the details of the proof of the subformula property,
and of that the subformula property entails decidability of inhabitation.

10 Bonus (worth 4 crosses): implement an inhabitation checker for implicational
intuitionistic logic, based on the previous exercise.

11 Bonus: Suppose combinatory logic would have another constant J having
some type and reduction rule, for all terms Mi , JM1 . . .Mn !w E where E is
an expression only constructed from applications and the Mi and both sides
have the same base type, e.g. � ` J : (� ! � ! ⌧) ! � ! ⌧ with rule
JM1M2 !w M1M2M2 (note the conditions hold for K and S). Is !w still
strongly normalizing? If it is not, give a specific J and rule for it allowing an
infinite reduction. If it is, give a proof.

12 Bonus (worth 3 crosses): directly show weak normalization of !� on typable
�-terms, without showing (a property that entails) strong normalization .
Hint: an idea analogous to that for the cut elimination procedure in the book
works, judiciously choosing a !� step among the possible ones and showing
that that decreases some measure.

AM/VvO (CS @ UIBK) lecture 8 31/34

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Exercises

13 Bonus (worth 4 crosses): Prove or disprove that the tableau cut-elimination
procedure in Fitting is strongly normalizing. Proceed as follows: the proof of
Lemma 8.9.3 establishes weak normalization by transforming minimal cuts.
(Try to) verify whether

• correctness of the transformations depends on minimality,
• the induction (see p. 232) used in the proof works for non-minimal cuts,
• strong normalization, when eliminating arbitrary cuts, holds.

AM/VvO (CS @ UIBK) lecture 8 32/34

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

