
Exercise 1 (distinct terms of same type) The type σ = τ → τ → τ is per
convention read as τ → (τ → τ). Setting M1 = λxy.x, M2 = λxy.y, and
M3 = (λz.z)λxy.x we easily verify that, for i ∈ {1,2,3}, we have ⊢Mi ∶ τ → τ → τ
for an arbitrary type τ :

x ∶ τ, y ∶ τ ⊢ x ∶ τ

x ∶ τ ⊢ λy.x ∶ τ → τ

⊢ λxy.x ∶ τ → τ → τ

x ∶ τ, y ∶ τ ⊢ y ∶ τ

x ∶ τ ⊢ λy.y ∶ τ → τ

⊢ λxy.y ∶ τ → τ → τ

z ∶ σ ⊢ z ∶ σ

⊢ λz.z ∶ σ → σ

x ∶ τ, y ∶ τ ⊢ x ∶ τ

x ∶ τ ⊢ λy.x ∶ τ → τ

⊢ λxy.x ∶ τ → τ → τ

⊢ (λz.z)λxy.x ∶ τ → τ → τ

What way to count is reasonable depends on one’s perspective. As answer to
the question whether a type is inhabited, each of them is as good as the other
(yielding the answer ‘yes’), so they can be simply identified. (Or via the Curry–
Howard isomorphism ‘a proof is a proof’.)1 However, viewing λ-terms as rep-
resenting mathematical functions, i.e. sets of input–output pairs, M1 and M3

(having the first of its two inputs as output) can be distinguished from M2 (re-
turning the second of its two inputs). More precisely, λ-terms can be thought of
as functional programs (in some very basic functional programming language)
and programs being not =β-related corresponds to them implementing distinct
algorithms. From that perspective it is reasonable to count such as distinct. Fi-
nally, whether or not to count λ-terms that are =β-related (note that M3 →β M1

in the above) as distinct, is up for debate: on the one hand they correspond
to the same algorithm (indeed, many compilers would automatically ‘inline’
M3 to M1), on the other hand abstracting repeated code into separate meth-
ods/procedure may be considered good programming/proof practice.2

Remark 1 Most people gave λ-terms to which the type σ supposedly could be
assigned. Usually these assertions were correct, but in principle they should be
proven by giving some inference, as in the solution above. That would have
prevented some incorrect answers, like λx.f : although this can be assigned type
τ → τ → τ that can only be done under the assumption that f ∶ τ → τ . That
is, we would need f ∶ τ → τ in the context, violating that the context be empty
as specified. More generally, note that ⊢ M ∶ σ, i.e. that M may be assigned
type σ in the empty context, entails that M is a term having no free variables
(corresponding, via the Curry–Howard isomorphism, to that we can prove σ
without assumptions).

One may use Haskell for verifying types. For the Mi in the above exercise it
gives the types:

Prelude> :t (\x y -> x)

1It is also up for debate what proofs are, what it means for two proofs to be ‘the same’,
or whether one proof can be ‘better than’ another proof, and therefore how to count proofs.
Via the Curry–Howard isomorphism the considerations for λ-terms also pertain to ND proofs.
(Cf. e.g. the notion of proof irrelevance in the proof assistant Coq.)

2The question when to view programs as the same could also be a legal one e.g. for deciding
plagiarism: do we consider two programs the same if only variables have been renamed (M =α
N) ? if only some code has been abstracted into methods/procedures (M =β N)? if they have
the same complexity (O(M) = O(N); merge sort vs. heap sort)?

1

https://coq.inria.fr/stdlib/Coq.Logic.ClassicalFacts.html

(\x y -> x) :: p1 -> p2 -> p1

Prelude> :t (\x y -> y)

(\x y -> y) :: p1 -> p2 -> p2

Prelude> :t (\z -> z)(\x y -> x)

(\z -> z)(\x y -> x) :: p1 -> p2 -> p1

Note that Haskell returns the most general type an expression can have, its
so-called principal type, and that that is in each case here more general than
the type we have. But the only thing relevant here is that we may arbitrarily
instantiate p1 and p2 in the above, in particular we may instantiate both with
τ . That is, there may be many types that can be assigned to a λ-term, but if a
type can be assigned at all, there is a most general such, its principal type.

Exercise 2 (two the same among three) How many (closed) λ-terms in normal
form are there having type τ → τ → τ for τ arbitrary? We claim there are
exactly two such, when we interpret τ being arbitrary as knowing nothing about
the structure of τ . This we simulate by assuming τ is a base type. By the
subformula property we know that the only types occurring in a type inference
of such terms are subtypes of the given type, i.e. either τ or τ → τ . By the
inhabitation-procedure given, this means that

1. such a term must have shape λx.M (since zQ⃗ is impossible as the variable
z would be free, contradicting closedness). Then x will be assigned type τ
and M assigned type τ → τ ;

2. the term M must have shape λy.N (since zQ⃗ is impossible as the variable
z would either be free, contradicting closedness, or otherwise be equal to x
but then M = xQ⃗ would have a type smaller than τ → τ contradicting that
it has type τ → τ). Then y will be assigned type τ and N assigned type τ .

3. the term N being of, per assumption, base type τ it is not of shape λz.P
so must be of shape zQ⃗. By closedness z must be either x or y, and them
both being of type τ , Q⃗ must be the empty vector.

From the above, we conclude that there are only two λ-terms in normal form
of the given type, namely λxy.x and λxy.y. (This corresponds via the Curry–
Howard isomorphism to that the proposition p ⊃ p ⊃ p only has two proofs: the
first using the first assumption, named x, to conclude and the other using the
second assumption, named y to do so.)

Since the typed λ-calculus is terminating (SN) every λ-term of that type must
be convertible to one of these two terms, from which we conclude as desired.

Remark 2 Most people argued that among the λ-terms provided by them in
Exercise 1, two are =β-related. However, the exercise was to show that they
must be so related, i.e. to show this holds irrespective of a particular choice.

If we do know something about the structure of τ , we may be able to construct
more terms. For instance, if τ = σ → σ, then also λxyz.z can be assigned the
given type.

2

There is an algorithm to count the number of inhabitants of a type (returning
either some non-negative number or infinity) due to Ben Yelles.

Although irrelevant for this exercise, note that λxy.x and λxy.y are not β-
convertible, that is, not related by =β. This follows from the Church–Rosser
property/confluence, saying that if M =β N , then M and N both reduce by →β
into some term Z, a so-called common reduct. But since both terms are normal
forms, they do not reduce at all, so definitely they do not have a common reduct,
so they cannot be =β-related.

Exercise 3 (reducing ω1) We indeed have three steps, (λx.xx)λyz.yz →β
(λyz.yz)λyz.yz →β λz.(λyz.yz)z →β λzw.zw where in the last step the substitu-

tion incurs usage of the 5th (renaming) clause on slide 12, renaming the inner
z into w to avoid a variable-capture (of ‘the other z’). For clarity, we have
underlined in each step ‘where’ the →β-step takes place.

Remark 3 In λ-calculus a natural number n can be represented as the term
λyz.ynz. Then 1 is represented by λyz.yz as in the exercises. Applying two
such so-called Church-numerals to each other corresponds to exponentiation.
From that perspective, the exercise can be seen to ask for computing 1 to the
power 1, which indeed results in 1.

Exercise 4 We provide two answers, one based on normal forms (syntactic),
the other (semantic) on Kripke models. where as in the exercise we interpret τ
being arbitrary as knowing nothing about the structure of τ , and model that by
assuming τ is some base type.

For the syntactic normal-form-based proof, we show that (τ → τ) → τ does
not have closed inhabitants by reasoning as in Exercise 2:

• a closed term M of that type must have shape λx.N with x assigned type
τ → τ and N type τ (it cannot have shape zQ⃗ as then z would be free; and
(λz.Q)Q⃗ would not be in normal form);

• By the assumption that τ is a base type, N must be of shape zP⃗ (it cannot
be an abstraction by τ being a base type, and as in the previous item
(λz.Q)Q⃗ would not be in normal form), with z not a free variable. This
leaves z = x as only possibility. Since x was assigned type τ → τ and N
type τ , we conclude P⃗ is a vector of λ-terms of length 1, say P , to which
the type τ is assigned.

• The reasoning for P is exactly the same as for N in the previous item.
That is, we end up in a loop/an infinite regress and never obtain an actual
term.

We conclude that there is no λ-term M in normal form of the specified type,
thus by normalization of the simply typed λ-calculus, there is überhaupt no such
λ-term M .

For the semantic Kripke-model-based proof, we give a countermodel for the
propositional formula (τ ⊃ τ) ⊃ τ for τ a propositional letter (corresponding to

3

that τ is of base type). From this we conclude, by soundness of ND with respect
to Kripke semantics, that that formula is not provable in ND (for intuitionistic
logic), and hence by the Curry–Howard correspondence that the corresponding
type is not inhabited. As countermodel, we take a 1-point model with world c
where nothing is forced. To see that c does not force (τ ⊃ τ) ⊃ τ , note that the
assumption τ ⊃ τ is always trivially forced (since any world that forces τ , forces
τ), so in particular is forced in c, but c does not force τ per construction of this
Kripke model.

Exercise 5

(τ > τ) > τ

a ⊩ τ > τ IFF a τ → a τ⊩ ⊩ is true
IFF b τ → b τ⊩ ⊩ is true

==> a ⊩ τ > τ ==> ⊩ τ > τ

a (τ > τ) > τ⊩ IFF a (τ > τ) → ⊩ a ⊩ τ is false
IFF b ⊩ τ → b ⊩ τ is true

==> a ⊮ (τ > τ) > τ ==> ⊮ (τ > τ) > τ

I := λx.x

K := λx.λy.x
S := λx.λy.λz.x z (y z)

[(λx.λy.λz.(x z) (y z))(λx.λy.λz.(x z) (y z))][(λx.λy.x)(λx.x)]
→2 [(λy.λz.((λx0.λy0.λz0.(x0 z0) (y0 z0)) z) (y z))][λyx.x]

→ [(λy.λz.(λy0.λz0.(z z0) (y0 z0)) (y z))][λyx.x]
→ [λy.λz.(λz0.(z z0) ((y z) z0))][λyx.x]

→ [λy.λz.(λz0.(z z0) ((y z) z0))][λy1x1.x1]
→ [λz.(λz0.(z z0) (((λy1x1.x1) z) z0))]
→ [λz.(λz0.(z z0) (((λx1.x1)) z0))]

→ [λz.(λz0.(z z0) z0)]

Remark 4 Using slide 21 we already know that the normal form must be λxy.x y y,
i.e. the normal form given there, xy y, preceded by λ-abstractions for x and y.

Beware to put parentheses appropriately in translations. E.g., in the trans-
lation (K I)λ it is safest to first put parentheses around all translated elements,
((K) (I))λ to yield (λxy.x) (λx.x). Note that translating it as λxy.xλx.x would
be wrong, as that would, per convention, be parse as the entirely different λ-term
(λx.(λy.(x (λx.x)))).

This is not different from what we are used to in mathematics and computer
science. For instance, if in mathematics we write x⋅y where x = 1+2 and y = 3+4,
we mean the expression obtained by first putting parentheses, like (x) + (y) and
then substituting to yield (1 + 2) ⋅ (3 + 4), not the entirely different expression
1 + 2 ⋅ 3 + 4 which would then, per convention, be parsed as ((1 + (2 ⋅ 3)) + 4).
Also, when expanding code by replacing function calls we proceed like this. E.g.
expanding double(x) into its function body x+x in the expression double(x)^2

we make sure to make x+x into an expression/code block first.

4

Exercise 6

1t2`+Bb2 8

(SS(KI))λ = (λxyz.xz(yz))(λxyz.xz(yz))((λxy.x)(λx.(λxy.x)x((λxy.x)x)))
→β (λxyz.xz(yz))(λxyz.xz(yz))((λxy.x)(λx.(λxy.x)x(λxy.x)))
→β (λxyz.xz(yz))(λxyz.xz(yz))((λxy.x)(λx.(λy.x)(λxy.x)))
→β (λxyz.xz(yz))(λxyz.xz(yz))((λxy.x)(λx.x))
→β (λxyz.xz(yz))(λxyz.xz(yz))(λy.(λx.x))
→β (λyz.(λxyz.xz(yz))z(yz))(λy.(λx.x))
→β λz.(λxyz.xz(yz))z((λy.(λx.x))z)
→α λz.(λxya.xa(ya))z((λy.(λx.x))z)
→β λz.(λya.za(ya))((λy.(λx.x))z)
→β λz.(λa.za(((λy.(λx.x))z)a))
→β λz.(λa.za((λx.x)a))
→β λz.(λa.zaa)

1t2`+Bb2 e

S�`i R,
h?2 T`Q#H2K Q7 i?2 �bbB;MK2Mi `mH2b Bb i?�i i?2`2 Bb MQ r�v iQ `2M�K2 p�`B�#H2bX .m2
iQ i?Bb �M/ i?2 r�v λ@�#bi`�+iBQM Bb /2}M2/- i?2 b�K2 p�`B�#H2 x Bb mb2/ 7Q` #Qi? λbX �
r�v iQ +B`+mKp2Mi i?Bb rQmH/ #2 iQ �HHQr 7Q` p�`B�#H2 `2M�KBM; bBKBH�` iQ i?2 α@bi2TX

S�`i k,
h?2 ivT2 Q7 U$t @= $t @= tV Bb >�bF2HH Bb TR @= Tk @= Tk- r?BH2 U$t t @= tV i?`Qrb
�M 2``Q`- bQ Bi BbMǶi i?2 b�K2X h?Bb Bb #2+�mb2 Bi Bb MQi �HHQr2/ iQ mb2 i?2 b�K2 p�`B�#H2
KmHiBTH2 iBK2b BM i?2 b�K2 λ@�#bi`�+iBQMX h?2 `2�bQM 7Q` i?Bb Bb Q#pBQmb- �b 2p2M B7 vQm
rQmH/ `2M�K2 i?2 p�`B�#H2b- Bi rQmH/ #2 mM+H2�` r?B+? x BM i?2 λ@�#bi`�+iBQM #2HQM;b iQ
i?2 }`bi �M/ r?B+? iQ i?2 b2+QM/ p�`B�#H2X

k

Remark 5 1. Simply allowing variables to have different types assigned to
them in contexts would not directly be a solution as that would have ad-
verse effects. E.g. it would allow inferences such as:

x ∶ τ, x ∶ τ → σ ⊢ x ∶ τ → σ x ∶ τ, x ∶ τ → σ ⊢ x ∶ τ

x ∶ τ, x ∶ τ → σ ⊢ xx ∶ σ

x ∶ τ ⊢ λx.xx ∶ (τ → σ)→ τ

⊢ λxx.xx ∶ τ → (τ → σ)→ τ

where it is unclear how the xs in the body xx are linked to/bound by the
xs in the respective λ-abstractions.

2. Section 3 of Chapter 3 of the Haskell report specifies that for multiple
λ-abstractions “the set of patterns (here: abstracted variables) must be
linear— no variable may appear more than once in the set”.3 Unfortu-
nately, it is not specified why this is enforced. It is only per convention that
in \x -> (\x -> x) the x in the body is linked to (bound by) the second
\x (and already allowing such λ-expressions causes the above problems). I
see no reason why we could not have a similar convention for \x x -> x,
corresponding to viewing contexts as lists/stacks instead of as sets, and to
using stacks for parameter-passing when implementing function/procedure-
calls in compilers.

Exercise 7 The problem and its resolution are described in the following solu-
tion:

3From a mathematical point of view this specification makes no sense, since elements do
not have a multiplicity in sets. An element either occurs or it doesn’t; it doesn’t occur twice
or thrice or . . . in a set.

5

https://www.haskell.org/onlinereport/haskell2010/haskellch3.html

to be a proper inductive defintion we need a base case

note that \vec{N} can be empty and in this case we have:

M is SC if M is SN (just remove all the \vec{N} stuff from the

given definition as it is empty)

this no longer recursively references SC. note however that the property

must hold for all \vec{N}, not just one cherry picked one

thus we need to ensure that being empty is the only possible case for \vec{N}

for the base case. for this we turn to types

if the type of M is a literal (no applicaion possible), then \vec{N} must be

empty and the above holds for all \vec{N}. this completes the induction

base which is already a special case of the induction step given in

the slides (type of M is a literal)

Remark 6 Note that (higher-order) variables are not the base case (but terms
of base type are). For instanc, if o is a base type, and x ∶ o→ o, then SC of x is
defined as that x is SN and xN is SN for all SC terms N ∶ o.

Defining SC per type it is ok, since we only rely on SC of smaller types.
In the base case, there are no smaller types, so the vector is empty, and the
definition of SC relies on nothing. This allows the definition to get off the
ground.

Exercise 8 That SC entails SN is trivial, since M being SC is defined to mean
MN⃗ for all vectors N⃗ of SC terms. In particular, this applies to the empty
vector, but M applied to the empty vector is just M itself.

To see that every typed variable x is SC we must show that for every vector
N⃗ of SC terms, xN⃗ is SN again. By the above, the assumption entails that N⃗ is
a vector of SN terms. Now, since →β only changes subterms of shape (λx.P)Q,

and such subterms can only occur in individual Nis, we obtain that if xN⃗ →w M
then M = xN⃗ ′ for some vector N⃗ ′ of terms, of the same length as N⃗ and such
that for each i, either Ni = N

′

i or Ni →w N
′

i . Therefore, if there were an infinite
reduction from xN⃗ there would be, by the Pigeon Hole Principle, an i such that
the second of the two case holds. But that would give rise to an infinite →w
reduction from Ni, contradicting that Ni is SN.

Exercise 9 Two things need to be supplemented: the (terminating) algorithm
for actually finding inhabitants, and the cases of the subformula property.

We start with the latter. The remaining, non-interesting, cases are:

• The variable case, Γ ⊢ x ∶ φ. The statement is trivially tautological (the
formulas occurring are the formulas occurring).

• The abstraction case, Γ ⊢ (λx.M) ∶ φ → ψ, is inferred from Γ, x ∶ φ ⊢
M ∶ ψ. By the IH all formulas χ occurring in the inference of the latter
are subformulas of Γ, φ,ψ. Then all those χ are subformulas of Γ, φ → ψ
(since φ,ψ are subformulas of φ → ψ and subformulas of subformulas are
subformulas). Moreover, φ→ ψ is a subformula of itself.

6

To give a terminating algorithm, we note that the subformula property guar-
antees that viewing the set4 of formulas in the context paired with the derived
formula as a state, a brute-force bottom-up proof search algorithm works: We
simply try all possible inference rules, not exploring further if a formula would
be obtained that is not a subformula of the original state, or if a state is obtained
that has been obtained before (on the same path; loop-checking). The algorithm
terminates since there are only finitely many states.

Exercise 11 is still strongly normalizing as J has to be SC

J M_1 M_2 ... M_n -> M_j M_k ... M_l

as CL is SC M_i are all SC thus the right side is SN by

definition of SC (and reachable in 1 step)

4We take sets since, e.g., lists would hinder loop-checking, as one might infinitely often
introduce ‘the same’ formula.

7

