
Computational Logic SS 2020 703824 VU

TAKE HOME EXAM May 12, 9:00 – May 13, 9:00, 20201

There are 42 points available, plus 4 bonus points. The points scored
are added to the crosses of the assignments and divided by 0.82 to
determine your percentage for the course. You need at least 50 percent
to pass.

1 This exercise is about first-order logic. Consider the first-order formula ϕ = (∀x)(∃y)[P (x) ⊃
Q(y)] ⊃ (∀x)[P (a) ⊃ (∃y)Q(y)] with a a constant. It is a tautology.

(a) First stepwise compute a prenex form ϕ′ of ϕ, in each step giving the quantifier rewrite
rule employed, and next Skolemize ϕ′, per quantifier, to obtain a formula ϕ′′.[4]

Answer: (∀x)(∃y)[P (x) ⊃ Q(y)] ⊃ (∀x)[P (a) ⊃ (∃y)Q(y)] transforms (since the right ∀x
does not bind) to (∀x)(∃y)[P (x) ⊃ Q(y)] ⊃ [P (a) ⊃ (∃y)Q(y)], next (pulling the right
positively occurring ∃y out) to (∃y)((∀x)(∃y)[P (x) ⊃ Q(y)] ⊃ [P (a) ⊃ Q(y)]), then
(pulling negatively occurring ∀x out) to (∃y)(∃x)((∃y)[P (x) ⊃ Q(y)] ⊃ [P (a) ⊃ Q(y)]),
and finally (pulling negatively occurring ∃y out, renaming to z to avoid capture) to
(∃y)(∃x)(∀z)([P (x) ⊃ Q(z)] ⊃ [P (a) ⊃ Q(y)]).

Skolemising ∃y yields (∃x)(∀z)([P (x) ⊃ Q(z)] ⊃ [P (a) ⊃ Q(b)]), and then Skolemising
∃x yields the final result (∀z)([P (c) ⊃ Q(z)] ⊃ [P (a) ⊃ Q(b)]).

Note that different prenex forms are possible. The one constructed above gives the
minimal number of dependencies (of ∃s on ∀s), namely no such dependencies, hence the
smallest Skolemised result (only constants, b, c, are introduced).

(b) Consider the singleton set S = {ϕ}. Give a Herbrand model of S (Herbrand with respect
to the original first-order language of ϕ extended with parameters).[3]

Answer: a Herbrand model is a model 〈D, I〉 having as domain D the closed terms over
the constants and function symbols. Since here we only have constants, namely a and an
infinite set of parameters, D comprises exactly those constants (as terms). Moreover, in
a Herbrand model, terms/constants are interpreted as themselves. Hence it only remains
to interpret the predicate symbols, P and Q, which we both may interpret arbitrarily
(the formula is a tautology) for instance as the empty set, i.e. P I = QI = ∅ (vacuously
satisfying both sides of the main implication of ϕ, hence the formula itself).

(c) Give a tableau proof of ϕ.[4]

Answer:
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2 This exercise is about proofs. Answer three of the following five items (4 points per item).[12]

(a) Prove that if X and Y are propositional formulas that are equivalent, i.e. v(X ≡ Y ) = t
for all valuations v, then their duals Xd and Y d are equivalent too. Illustrate this for
X = P ∨ (¬Q ∧R) and Y = (P ∨ ¬Q) ∧ (P ∨R).

Answer: We use from Exc. 2.4.11 that v(Xd) = v(¬X) for all valuations v, where X is
obtained from X by negating all occurrences of propositional letters in it. Then X ≡ Y
is a tautology iff (by Exc. 2.4.10) X ≡ Y is a tautology iff (by def. of overlining) X ≡ Y
is a tautology iff (since (¬X ′) ≡ Y ′ is equivalent to ¬(X ′ ≡ Y ′), X ′ ≡ Y ′ to Y ′ ≡ X ′

and ¬¬X ′ to X ′) ¬X ≡ ¬Y is a tautology iff (by Exc. 2.4.11) Xd ≡ Y d is a tautology.

The above was also explained intuitively in the lecture, namely by that the truth table
of Xd is obtained by flipping the truth table of X upside-down (corresponding to ( · ))
and inverting the values (corresponding to ¬( · )). From this it is obvious that if X and
Y are equivalent, they have the same truth table, hence flipping and inverting both, the
resulting truth tables of Xd and Y d are the same again (and vice versa).

For the example X and Y , which are equivalent since the latter is obtained by distribu-
tivity from the former, the duals are X = P ∧ (¬Q ∨ R) and Y = (P ∧ ¬Q) ∨ (P ∧ R),
as computed simply by swapping occurrences of ∧s and ∨s (¬ is self-dual)., which are
equivalent by distributivity again (but now of ∧ over ∨ instead of of ∨ over ∧).

(b) Suppose we change the 4th clause of the definition of propositional Hintikka set (Defi-
nition 3.5.1) in the following way:

4. α ∈ H ⇒ α1 ∈ H

giving rise (combined with the other, unchanged, clauses) to what we will call Hintikka’
sets. The notion of Hintikka’ set is not a good one. Give a relevant property (for showing
completeness results) that Hintikka sets have, and show (how) it fails for Hintikka’ sets.

Answer: For example, Hintikka’s Lemma (Proposition 3.5.2) fails for Hintikka’ sets.
That is, propositional Hintikka’ sets need not be satisfiable. For instance {a ∧ ¬a, a} is
a Hintikka’ set, but is not satisfiable, since a∧¬a on its own is already a contradiction.
Note that this is not a Hintikka set since a∧¬a being a member would then enforce by



clause 4 that also ¬a be in the set. (Note that adjoining ¬a would not result in a Hintikka
set either as we then clause 1 would be violated; indeed this set being unsatisfiable, it
cannot be extended to any Hintikka set.)

(c) Transform the following tableau into a cut-free tableau using the cut-elimination proce-
dure from the lecture/book:

¬(((A ⊃ B) ∧ (¬A ⊃ B)) ⊃ B)

¬A

(A ⊃ B) ∧ (¬A ⊃ B)

¬B

A ⊃ B

¬A ⊃ B

B¬¬A

A

(A ⊃ B) ∧ (¬A ⊃ B)

¬B

A ⊃ B

¬A ⊃ B

B¬A

Answer:





(d) Consider the propositional formulas ϕ = ¬P ⊃ (P ⊃ ⊥) and ϕ′ = (P ⊃ ⊥) ⊃ ¬P . Give
proofs of ϕ and ϕ′ using the 9 Axiom Schemes and MP of the Hilbert System of Fitting.
(Recall that in Fitting, ¬P is not an abbreviation of P ⊃ ⊥.)

Answer: A HS proof of ϕ:

i. P ⊃ (¬P ⊃ ⊥) (AS 6)

ii. (P ⊃ (¬P ⊃ ⊥)) ⊃ (¬P ⊃ (P ⊃ ⊥)) (Exc. 4.1.1)

iii. ¬P ⊃ (P ⊃ ⊥) (MP ii,i)

A HS proof of ϕ′:



i. (¬P ⊃ ¬P ) ⊃ ((⊥ ⊃ ¬P ) ⊃ ((P ⊃ ⊥) ⊃ ¬P )) (AS 9)

ii. ¬P ⊃ ¬P (Example on page 80)

iii. (⊥ ⊃ ¬P ) ⊃ ((P ⊃ ⊥) ⊃ ¬P ) (MP i,ii)

iv. ⊥ ⊃ ¬P (AS 3)

v. (P ⊃ ⊥) ⊃ ¬P (MP iii,iv)

(e) Prove that for maximal states in a Kripke model (intuitionistic) forcing coincides with
(classical) truth. Formally, let some Kripke mode be given and let c be maximal in it, i.e.
for all c′, if c 6 c′ then c = c′. Prove that if we define for all propositional letters v(p) = t
if c  p, then for all propositional formulas φ constructed from propositional letters and
⊃,⊥,∨,∧, we have v(φ) = t iff c  φ. Illustrate this for the formula ((p ⊃ ⊥) ⊃ ⊥) ⊃ p.

Answer: We prove v(φ) = t iff c  φ, by induction on φ. Since the classical and
intuitionistic semantics of the connectives other than implication are the same (evaluated
in the same world), they can be dealt with by (un)folding of the definitions and induction:

• If φ is a propositional letter p, the statement holds by definition of v;

• If φ is bottom ⊥, then neither side holds by the semantics of valuations resp. forcing;

• If φ = φ1 ∧ φ2, then v(φ1 ∧ φ2) = t iff (by the truth-table semantics of ∧) v(φ1) = t
and v(φ2) = t iff (by the IH for φ1, φ2) c  φ1 and c  φ2 iff (by the Kripke semantics
of ∧) c  φ1 ∧ φ2;

• If φ = φ1 ∨ φ2, we proceed as in the previous item, but replacing ‘∧’ by ‘∨’, and
‘and’ by ‘or’.

The interesting case is implication: If φ = φ1 ⊃ φ2, then v(φ1 ⊃ φ2) = t iff if v(φ1) = t
then v(φ2) = t iff if c  φ1 then c  φ2 iff (by maximality of c) for all c′ such that
c 6 c′, if c′  φ1 then c′  φ2 iff c  φ1 ⊃ φ2. The basic intuition is that if ‘the
future = the present’ then reasoning about the future is the same as reasoning about
the present. From this we can conclude that the formula ((p ⊃ ⊥) ⊃ ⊥) ⊃ p is forced
(intuitionistically) in any maximal world since it is a (classical) tautology, although there
may be (non-maximal) worlds where it is not forced.

3 This exercise is about the Curry–Howard isomorphism. Let B be the λ-term λf g x.f (g x)

(a) Give the ND proof (in tree form) of (ψ ⊃ χ) ⊃ (φ ⊃ ψ) ⊃ (φ ⊃ χ) for all propositional[3]
formulas φ, ψ, χ, corresponding to the λ-term B.

Answer: Using the Curry–Howard isomorphism (slide 24 of lecture 8), the ND tree is
obtained from the tree on slide 15 of lecture 8, by simply omitting the terms (and the
following colon),

(b) Show that, for all propositional formulas φ, φ ⊃ φ can be proven indirectly by using B.
More precisely, first show that ` B (λx.x) (λx.x) : τ → τ for all simple types τ and that
that gives an ND proof that φ ⊃ φ for all propositional formulas φ. Next, show that[4]
B (λx.x) (λx.x) normalizes to λx.x (possibly up to renaming) by repeated uses of →β.

Answer: The ND proof corresponding to B of the previous item proving that (ψ ⊃
χ) ⊃ (φ ⊃ ψ) ⊃ (φ ⊃ χ) for all propositional formulas φ, ψ, χ, in particular proves
(φ ⊃ φ) ⊃ (φ ⊃ φ) ⊃ (φ ⊃ φ) for all φ. That is, via Curry–Howard B can be assigned
typez (τ → τ) → (τ → τ) → (τ → τ) for any simple type τ . Since we know (from the
lecture) that ` λx.x : τ → τ for all τ , two applications of former on the latter (twice)
shows that ` B (λx.x) (λx.x) : τ → τ , which, via Curry–Howard, yields a proof of φ ⊃ φ
for all propositional formulas φ.

Abbreviating λx.x to I, we compute B I I →β (λg x.I (g x)) I →β (λg x.g x) I →β

λx.I x→β I, as desired.



(c) The λ-term λx.x both behaves as the identity and has the type of the identity. Formally,
both (λx.x)M →∗β M for every λ-term M and ` λx.x : τ → τ for every simple type
τ . Does every (closed) λ-term that has the type of the identity, behave as the identity?[4]
That is, prove or give a counterexample to that for every simply typed λ-term E, if
` E : τ → τ for every simple type τ , then EM →∗β M for all λ-terms M .

Answer: This indeed holds, since, we claim, if ` N : τ → τ and N is in →β-normal
form, then N is of shape λx.x Since an arbitrary term ` E : τ → τ can be normalised
(by SN) with normal form having type τ → τ by subject reduction, that normal form
must be of shape λx.x, hence EM →∗β (λx.x)M →β M , as desired.

The claim that N must be of shape λx.x follows from the subformula property (cf. the
earlier assignment on τ → τ → τ having two inhabitants). Formally, if ` N : τ → τ
and N is in normal form, then in its derivation only subformulas of τ → τ occur. In
particular, if τ is of base type, then only τ → τ and τ may occur. Since N must be
closed, it must be of shape λx.M for some variable x and term M to which type τ can
be assigned, assuming x is assigned type τ . Since τ was assumed a base type, M cannot
be an abstraction, so must (by the assumption that N is in normal form) be of shape

y ~P for some variable y and term vector ~P . x being the only variable available in the
context x = y, hence ~P must be the empty vector by x being of base type τ . Hence
N = λx.M = λx.x.

(bonus) The CL-term SKK both behaves as the identity and has the type of the identity. For-
mally, both SKKM →∗w M for every CL-term M and ` SKK : τ → τ for every simple
type τ . Does every CL-term that behaves as the identity have the type of the identity?[4]
That is, prove or give a counterexample to that for every simply typed CL-term E, if
EM →∗w M for all CL-terms M , then ` E : τ → τ for every simple type τ .

Answer: Counterexample. Setting E = K (S K K) y we have EM →w S K KM →∗w M
as required but not ` E : τ → τ for every simple type τ , simply because E is not closed.

Note that although subject reduction holds, i.e. that if a term M can be assigned some
type τ in some context Γ, and M →∗β M ′ then M ′ can also be assigned type τ in context
Γ, going in the converse direction, expanding M ′ to M , may give rise to extra constraints
on the context (as for E above) and to more restricted types (although S K S x →∗ x,
the type of S K S is not the identity type).

4 Determine whether the following statements are true or false.[8]

Every correct answer is worth 2 points. For every wrong answer 1 point is subtracted, provided
the total number of points is non-negative.

(a) If C1 and C2 are propositional consistency properties, then their intersection C = C1 ∩ C2
is a propositional consistency property again.

Answer: No. Take for example Ci = {{a1 ∨ a2, ai}}. Then C = {{a1 ∨ a2}}, which is
not a propositional consistency property since condition 5 (of Definition 3.6.1 in Fitting)
fails when considering a1 ∨ a2 ∈ {a1 ∨ a2}. One can already suspect failure just from the
shape of the conditions. In particular, from that condition 5 uses an ‘or’ in it conclusion,
requiring a choice to hold. The above example exploits this by letting C1 and C2 make
different choices, leaving no choice in their intersection C.

(b) In propositional logic, if Z,Z ′ are both interpolants of X ⊃ Y , then Z ⊃ Z ′ is a tautology
or Z ′ ⊃ Z is a tautology (or both).

Answer: No. Z = a and Z ′ = b are both interpolants of (a ∧ b) ⊃ (a ∨ b), but neither
a ⊃ b nor b ⊃ a is a tautology. One can already suspect failure just from the fact



that although ⊃ is a quasi-order (reflexive and transitive), it is not a total order.2 The
up-shot is that thinking of an interpolant of X ⊃ Y as being in ‘the middle’ between X
and Y is only an approximately useful intuition.

(c) If φ1 and φ2 are obtained by Skolemising (possibly distinct) prenex forms of the same
first-order formula φ, then φ1 and φ2 have the same number of constants.

Answer: No. Take for example, φ = (∃x)P (x) ∧ (∀y)Q(y) having prenex forms both
φ1 = (∃x)(∀y)(P (x) ∧ Q(y)) and φ2 = (∀y)(∃x)(P (x) ∧ Q(y)). Skolemising the (∃x) in
the former introduces a constant whereas for the latter it introduces a function symbol
(of arity 1, depending on y). The up-shot is that ‘linearising’ the quantifiers in a formula
by pulling them out into a quantifier-prefix may introduce depedencies (which is typically
bad for proof procedures).

(d) The formula (∃x)R(x, f(b)) ∧ (∃y)R(a, y) is an interpolant of

(R(a, b) ∧ (∀x)(∃y)(R(a, x) ⊃ R(y, f(x)))) ⊃ (R(a, c) ∨ (∃x)R(x, f(b)))

Answer: Yes. It is easily seen that both respective implications are tautologies (e.g. by
using tableaux).

2(Z ⊃ Z ′) ∨ (Z ′ ⊃ Z) is a tautology for any Z,Z ′ though in classical logic (but not in intuitionistic logic; cf. the
disjunction property).


