

Computational Logic

Vincent van Oostrom Course/slides by Aart Middeldorp

Department of Computer Science University of Innsbruck

SS 2020

Organisation

- LVA 703824
- Tuesday 9:15 12:00 and Thursday 13:15 15:00 in 3W03
- http://cl-informatik.uibk.ac.at/teaching/ss20/cl/
- consultation hours: Monday 15:00-16:30 in 3M12

Literature

Melvin Fitting
First-Order Logic and Automated Theorem
Proving, 2nd edition, Springer-Verlag, 1996

Online Material

slides are available from uibk.ac.at domain

Schedule

week I	March 3	week 4	March 24	week /	April 28
week 2	March 10	week 5	March 31	week 8	May 5
week 3	March 17	week 6	April 21	week 9	May 12 (exam)

- Organisation
- Content
- Propositional Logic
- Semantic Tableaux
- Further Reading

Part I: Propositional Logic

compactness, completeness, Hilbert systems, Hintikka's lemma, interpolation, logical consequence, model existence theorem, propositional semantic tableaux, soundness

Part II: First-Order Logic

compactness, completeness, Craig's interpolation theorem, cut elimination, first-order semantic tableaux, Herbrand models, Hilbert systems, Hintikka's lemma, Löwenheim–Skolem, logical consequence, model existence theorem, prenex form, skolemization, soundness

Part III: Limitations and Extensions of First-Order Logic

Curry–Howard isomorphism, intuitionistic logic, Kripke models, second-order logic, simply-typed λ -calculus

- Organisation
- Content
- Propositional Logic
 - Syntax
 - Semantics
 - Replacement Theorem
 - Uniform Notation
 - Normal Forms
- Semantic Tableaux
- Further Reading

Definition

(propositional) atomic formula is propositional letter, \top or \bot

Definition

set of propositional formulas is smallest set P such that

- if A is atomic formula then $A \in \mathbf{P}$
- if $X \in \mathbf{P}$ then $\neg X \in \mathbf{P}$
- if \circ is binary symbol and $X, Y \in \mathbf{P}$ then $(X \circ Y) \in \mathbf{P}$

I Logic Syntax

Theorem (Principle of Structural Induction)

every formula of propositional formula has property Q provided

- basis step every atomic formula has property Q
- induction steps
 if X has property Q then ¬X has property Q
 if X and Y have property Q then X ∘ Y has property Q

Theorem (Principle of Structural Recursion)

there exists unique function f defined on P such that

- basis step value of f is specified explicitly on atomic formulas
- induction steps
 value of f on ¬X is specified in terms of value of f on X
 value of f on X ∘ Y is specified in terms of values of f on X and on Y

ropositional Logic Syntax

Definition

immediate subformulas are defined as follows:

- atomic formula has no immediate subformulas
- only immediate subformula of $\neg X$ is X
- immediate subformulas of $(X \circ Y)$ are X and Y

Definitions

- set of subformulas of formula X is smallest set S that contains X and, for every member Y of S, all immediate subformulas of Y
- X is improper subformula of X

- Organisation
- Content
- Propositional Logic
 - Syntax
 - Semantics
 - Replacement Theorem
 - Uniform Notation
 - Normal Forms
- Semantic Tableaux
- Further Reading

Propositional Logic Semantics

Definitions

- 2 truth values: t and f
- 16 different two-place functions from { t, f } to { t, f }
- 8 primary connectives and 2 secondary connectives

		^	V	\supset	<u> </u>	↑	↓	$ ot \supset$	¢			=	≢
t	t	t	t	t	t	f	f	f	f	t	t	t	f
t	f	f	t	f	t	t	f	t	f	t	f	f	t
f	t	f	t	t	f	t	f	f	t	f	t	f	t
f	f	f	f	t	t t f	t	t	f	f	f	f	t f f	f

Definition

propositional formula X is tautology if v(X) = t for every valuation v

Definition

set S of propositional formulas is satisfiable if some valuation maps every member of S to t

Definition

for binary operations \circ and \bullet on $\{t, f\}$: \circ is dual of \bullet if $\neg(x \circ y) = (\neg x \bullet \neg y)$

Examples

 \land is dual of \lor \downarrow is dual of \uparrow $\not\subset$ is dual of \supset

Definition

for propositional formula X we write X^d for result of replacing

- ullet every occurrence of $oxedsymbol{ op}$ with occurrence of $oxedsymbol{oxedsymbol{oxed}}$
- ullet every occurrence of ot with occurrence of ot
- every occurrence of binary symbol with occurrence of its dual

- Organisation
- Content
- Propositional Logic
 - Syntax
 - Semantics
 - Replacement Theorem
 - Uniform Notation
 - Normal Forms
- Semantic Tableaux
- Further Reading

Theorem

given propositional formulas F(P), X and Y, valuation v if v(X) = v(Y) then v(F(X)) = v(F(Y))

Theorem

if $X \equiv Y$ is tautology then so is $F(X) \equiv F(Y)$

Definition

propositional formula X is in negation normal form if negation symbols \neg occur only in front of propositional letters

Lemma

every propositional formula can be put into negation normal form

Example

$$\neg[(P \supset Q) \land (R \uparrow (\neg P \land Q))] \equiv \neg(P \supset Q) \lor \neg(R \uparrow (\neg P \land Q))$$

$$\equiv (\neg P \not\subset \neg Q) \lor \neg(R \uparrow (\neg P \land Q))$$

$$\equiv (\neg P \not\subset \neg Q) \lor (\neg R \downarrow \neg(\neg P \land Q))$$

$$\equiv (\neg P \not\subset \neg Q) \lor (\neg R \downarrow (\neg \neg P \lor \neg Q))$$

$$\equiv (\neg P \not\subset \neg Q) \lor (\neg R \downarrow (P \lor \neg Q))$$

- Organisation
- Content
- Propositional Logic
 - Syntax
 - Semantics
 - Replacement Theorem
 - Uniform Notation
 - Normal Forms
- Semantic Tableaux
- Further Reading

al Logic Uniform Notation

Definition

conjui	nctive		disjunctive					
α	α_1	α_2	β	β_1	β_2			
$X \wedge Y$	X	Y	$\neg(X \land Y)$	$\neg X$	$\neg Y$			
$\neg(X \lor Y)$	$\neg X$	$\neg Y$	$X \vee Y$	X	Y			
$\neg(X\supset Y)$	X	$\neg Y$	$X\supset Y$	$\neg X$	Y			
$\neg(X\subset Y)$	$\neg X$	Y	$X \subset Y$	X	$\neg Y$			
$\neg(X \uparrow Y)$	X	Y	$X \uparrow Y$	$\neg X$	$\neg Y$			
$X \downarrow Y$	$\neg X$	$\neg Y$	$\neg(X\downarrow Y)$	X	Y			
$X \not\supset Y$	X	$\neg Y$	$\neg(X \not\supset Y)$	$\neg X$	Y			
$X \not\subset Y$	$\neg X$	Y	$\neg(X \not\subset Y)$	X	$\neg Y$			

Lemma

for every valuation v and all α - and β -formulas

$$v(\alpha) = v(\alpha_1) \wedge v(\alpha_2)$$
 $v(\beta) = v(\beta_1) \vee v(\beta_2)$

opositional Logic Uniform Notation

Corollary

for every α and β : $\alpha \equiv (\alpha_1 \wedge \alpha_2)$ and $\beta \equiv (\beta_1 \vee \beta_2)$ are tautologies

Theorem (Principle of Structural Induction)

every formula of propositional logic has property Q provided

- basis step every atomic formula and its negation has property Q
- induction steps
 if X has property Q then ¬¬X has property Q
 if α₁ and α₂ have property Q then α has property Q
 if β₁ and β₂ have property Q then β has property Q

Definition

rank r(X) of propositional formula is defined as follows:

- $r(A) = r(\neg A) = r(\top) = r(\bot) = 0$
- $r(\neg \top) = r(\neg \bot) = 1$
- $r(\neg \neg Z) = r(Z) + 1$
- $r(\alpha) = r(\alpha_1) + r(\alpha_2) + 1$
- $r(\beta) = r(\beta_1) + r(\beta_2) + 1$

Example

$$r(\neg[(P \supset Q) \land (R \uparrow (\neg P \land Q))])$$

$$= r(\neg(P \supset Q)) + r(\neg(R \uparrow (\neg P \land Q)) + 1$$

$$= r(P) + r(\neg Q) + 1 + r(R) + r(\neg P \land Q) + 1 + 1$$

$$= r(P) + r(\neg Q) + 1 + r(R) + r(\neg P) + r(Q) + 1 + 1 + 1$$

$$= 4$$

- Organisation
- Content
- Propositional Logic
 - Syntax
 - Semantics
 - Replacement Theorem
 - Uniform Notation
 - Normal Forms
- Semantic Tableaux
- Further Reading

Definitions

given list X_1, \ldots, X_n of propositional formulas

- $[X_1, \ldots, X_n]$ is generalized disjunction of X_1, \ldots, X_n
- $\langle X_1, \dots, X_n \rangle$ is generalized conjunction of X_1, \dots, X_n
- $v([X_1, ..., X_n]) = \begin{cases} t & \text{if } v(X_i) = t \text{ for some } i \in \{1, ..., n\} \\ f & \text{otherwise} \end{cases}$
- $v(\langle X_1, \dots, X_n \rangle) = \begin{cases} \mathsf{t} & \text{if } v(X_i) = \mathsf{t} \text{ for all } i \in \{1, \dots, n\} \\ \mathsf{f} & \text{otherwise} \end{cases}$

Definitions

- literal is propositional letter or negation of propositional letter or \top or \bot
- clause is disjunction $[X_1, ..., X_n]$ consisting of literals $X_1, ..., X_n$
- dual clause is conjunction (X_1, \dots, X_n) consisting of literals X_1, \dots, X_n

ropositional Logic Normal Forms

Definitions

- propositional formula is in conjunctive normal form or in clause form if it is conjunction $\langle C_1, \ldots, C_n \rangle$ of clauses
- propositional formula is in disjunctive normal form or in dual clause form if it is disjunction $[D_1, \ldots, D_n]$ of dual clauses

Theorem (Normal Form)

there are algorithms for converting propositional formula into clause form and into dual clause form

Proof (clause form)

- step 1
 start with ⟨[X]⟩
 ...
 - if $\langle D_1, \ldots, D_k \rangle$ is not yet conjunctive normal form continue with
- step n + 1
 select D_i which contains non-literal N
 - if $N = \neg \top$ replace N with \bot
 - if $N = \neg \bot$ replace N with \top
 - if $N = \neg \neg Z$ replace N with Z
 - if N is β -formula replace N with β_1 and β_2
 - if *N* is α -formula replace disjunction D_i with two disjunctions:
 - one with α replaced by α_1
 - one with α replaced by α_2

Clause Set Reduction Rules

$$\frac{\neg \top}{\bot} \qquad \frac{\neg \bot}{\top} \qquad \frac{\neg \neg Z}{Z} \qquad \frac{\beta}{\beta_1} \qquad \frac{\alpha}{\alpha_1 \mid \alpha_2}$$

Lemma

if S is conjunction of disjunctions and S' is obtained from S by applying one clause set reduction rule then $S \equiv S'$ is tautology

positional Logic Normal Forms

Clause Form Algorithm

```
let S be \langle [X] \rangle
```

while some member of S contains non-literal do

select member D of S containing non-literal

select non-literal N of D

apply appropriate clause set reduction rule to ${\it N}$ in ${\it D}$, producing new ${\it S}$

Theorem

Clause Form Algorithm terminates and produces clause form S such that $S \equiv X$ is tautology

Propositional Logic Normal Forms

Example

$$\langle [(P \supset (Q \supset R)) \supset ((P \supset Q) \supset (P \supset R))] \rangle$$

$$\equiv \langle [\neg (P \supset (Q \supset R)), (P \supset Q) \supset (P \supset R)] \rangle$$

$$\equiv \langle [\neg (P \supset (Q \supset R)), \neg (P \supset Q), P \supset R] \rangle$$

$$\equiv \langle [\neg (P \supset (Q \supset R)), \neg (P \supset Q), \neg P, R] \rangle$$

$$\equiv \langle [P, \neg (P \supset Q), \neg P, R], [\neg (Q \supset R), \neg (P \supset Q), \neg P, R] \rangle$$

$$\equiv \langle [P, P, \neg P, R], [P, \neg Q, \neg P, R], [\neg (Q \supset R), \neg (P \supset Q), \neg P, R] \rangle$$

$$\equiv \langle [P, P, \neg P, R], [P, \neg Q, \neg P, R], [Q, \neg (P \supset Q), \neg P, R], [\neg R, \neg (P \supset Q), \neg P, R] \rangle$$

$$\equiv \langle [P, P, \neg P, R], [P, \neg Q, \neg P, R], [Q, P, \neg P, R], [Q, \neg Q, \neg P, R], [\neg R, \neg (P \supset Q), \neg P, R] \rangle$$

$$\equiv \langle [P, P, \neg P, R], [P, \neg Q, \neg P, R], [Q, P, \neg P, R], [Q, \neg Q, \neg P, R], [\neg R, \neg (P, \neg P, R), [\neg R, \neg Q, \neg P, R], [\neg R, \neg Q, \neg P, R] \rangle$$

positional Logic Normal Forms

Theorem

Clause Form Algorithm terminates and produces clause form S such that $S \equiv X$ is tautology

Proof Sketch

rank of generalized disjunction $[X_1, \ldots, X_n]$ is $r(X_1) + \cdots + r(X_n)$ incrementally build tree whose leaves correspond to ranks of generalized disjunctions in current S:

- root node with label r([X])
- employed clause set reduction rule determines tree expansion
- conclude by König's Lemma

Dual Clause Set Reduction Rules

$$\frac{\neg\bot}{\top}$$

$$\frac{\neg \top}{\bot}$$

$$\frac{\neg\neg Z}{Z}$$

$$\frac{\alpha}{\alpha_1}$$
 α_2

$$\frac{\beta}{\beta_1 \mid \beta_2}$$

Example

$$[\langle (P \downarrow Q) \supset (Q \lor \neg (P \lor \neg Q)) \rangle] \equiv [\langle \neg (P \downarrow Q) \rangle, \langle Q \lor \neg (P \lor \neg Q) \rangle]$$

$$\equiv [\langle P \rangle, \langle Q \rangle, \langle Q \lor \neg (P \lor \neg Q) \rangle]$$

$$\equiv [\langle P \rangle, \langle Q \rangle, \langle Q \rangle, \langle \neg (P \lor \neg Q) \rangle]$$

$$\equiv [\langle P \rangle, \langle Q \rangle, \langle Q \rangle, \langle \neg P, \neg \neg Q \rangle]$$

$$\equiv [\langle P \rangle, \langle Q \rangle, \langle Q \rangle, \langle \neg P, Q \rangle]$$

Dual Clause Form Algorithm

let S be $[\langle X \rangle]$

while some member of S contains non-literal do

select member C of S containing non-literal

select non-literal N of C

apply appropriate dual clause set reduction rule to ${\it N}$ in ${\it C}$, producing new ${\it S}$

Lemma

if S is disjunction of conjunctions and S' is obtained from S by applying one dual clause set reduction rule then $S \equiv S'$ is tautology

Theorem

Dual Clause Form Algorithm terminates and produces dual clause form S such that $S \equiv X$ is tautology

- Organisation
- Content
- Propositional Logic
- Semantic Tableaux
 - Definitions
- Further Reading

Semantic Tableaux Definitions

Tableau Expansion Rules

$$\frac{\neg \neg Z}{Z} \quad \frac{\neg \bot}{\top} \quad \frac{\neg \top}{\bot} \quad \frac{\alpha}{\alpha_1} \quad \frac{\beta}{\beta_1 \mid \beta_2}$$

$$\alpha_2$$

Definition

finite set $\{A_1, \ldots, A_n\}$ of propositional formulas

- 1 following one-branch tree is tableau for $\{A_1, \ldots, A_n\}$:
 - A_2
 - A_n
- 2 if T is tableau for $\{A_1, \ldots, A_n\}$ and T^* results from T by application of tableau expansion rule then T^* is tableau for $\{A_1, \ldots, A_n\}$

- Organisation
- Content
- Propositional Logic
- Semantic Tableaux
- Further Reading

Fitting

- Chapter 1
- Chapter 2 (except for Section 2.9)
- Section 3.1!

Computational Logic

Vincent van Oostrom Course/slides by Aart Middeldorp

Department of Computer Science University of Innsbruck

SS 2020

- Summary of Previous Lecture
- Semantic Tableaux
- Hintikka's Lemma
- Model Existence Theorem
- Exercises
- Further Reading

Definition

8 primary connectives and 2 secondary connectives

		^	V	\supset		↑	↓	⊅	⊄			=	
t	t	t	t	t	t	f	f	f	f	t	t	t f	f
t	f	f	t	f	t	t	f	t	f	t	f	f	t
f	t	f	t	t	f	t	f	f	t	f	t	f	t
f	f	f	f	t	t t f t	t	t	f	f	f	f	t	f

Definition

propositional formula X is tautology if v(X) = t for every valuation v

Definition

set S of propositional formulas is satisfiable if some valuation maps every member of S to t

Definition

for binary operations \circ and \bullet on $\{t,f\}$: \circ is dual of \bullet if $\neg(x \circ y) = (\neg x \bullet \neg y)$

Definition (Uniform Notation)

conjui	nctive		disjunctive					
α	α_1	α_2	β	β_1	β_2			
$X \wedge Y$	X	Y	$\neg(X \land Y)$	$\neg X$	$\neg Y$			
$\neg(X \lor Y)$	$\neg X$	$\neg Y$	$X \vee Y$	X	Y			
$\neg(X\supset Y)$	X	$\neg Y$	$X\supset Y$	$\neg X$	Y			
$\neg(X\subset Y)$	$\neg X$	Y	$X \subset Y$	X	$\neg Y$			
$\neg(X \uparrow Y)$	X	Y	$X \uparrow Y$	$\neg X$	$\neg Y$			
$X \downarrow Y$	$\neg X$	$\neg Y$	$\neg(X\downarrow Y)$	X	Y			
$X \not\supset Y$	X	$\neg Y$	$\neg(X \not\supset Y)$	$\neg X$	Y			
$X \not\subset Y$	$\neg X$	Y	$\neg(X \not\subset Y)$	X	$\neg Y$			

for every valuation v and all α - and β -formulas

$$v(\alpha) = v(\alpha_1) \wedge v(\alpha_2)$$
 $v(\beta) = v(\beta_1) \vee v(\beta_2)$

Corollary

for every α and β : $\alpha \equiv (\alpha_1 \wedge \alpha_2)$ and $\beta \equiv (\beta_1 \vee \beta_2)$ are tautologies

Definition

rank r(X) of propositional formula is defined as follows:

- $r(A) = r(\neg A) = r(\top) = r(\bot) = 0$
- $r(\neg \top) = r(\neg \bot) = 1$
- $r(\neg \neg Z) = r(Z) + 1$
- $r(\alpha) = r(\alpha_1) + r(\alpha_2) + 1$
- $r(\beta) = r(\beta_1) + r(\beta_2) + 1$

Definitions

given list X_1, \ldots, X_n of propositional formulas

- $[X_1, \ldots, X_n]$ is generalized disjunction of X_1, \ldots, X_n
- $\langle X_1, \dots, X_n \rangle$ is generalized conjunction of X_1, \dots, X_n

Definitions

- literal is propositional letter or negation of propositional letter or \top or \bot
- clause is disjunction $[X_1, \ldots, X_n]$ consisting of literals X_1, \ldots, X_n
- dual clause is conjunction $\langle X_1, \dots, X_n \rangle$ consisting of literals X_1, \dots, X_n
- propositional formula is in conjunctive normal form or in clause form if it is conjunction $\langle C_1, \ldots, C_n \rangle$ of clauses
- propositional formula is in disjunctive normal form or in dual clause form if it is disjunction $[D_1, \ldots, D_n]$ of dual clauses

Clause Set Reduction Rules

$$\frac{\neg \top}{\bot} \qquad \frac{\neg \bot}{\top} \qquad \frac{\neg \neg Z}{Z} \qquad \frac{\beta}{\beta_1} \qquad \frac{\alpha}{\alpha_1 \mid \alpha_2}$$

Clause Form Algorithm

let S be $\langle [X] \rangle$

while some member of S contains non-literal do

select member D of S containing non-literal

select non-literal N of D

apply appropriate clause set reduction rule to ${\it N}$ in ${\it D}$, producing new ${\it S}$

Theorem

Clause Form Algorithm terminates and produces clause form S such that $S \equiv X$ is tautology

Dual Clause Set Reduction Rules

$$\frac{\neg \bot}{\top}$$
 $\frac{\neg \top}{\bot}$ $\frac{\neg \neg Z}{Z}$ $\frac{\alpha}{\alpha_1}$ $\frac{\beta}{\beta_1 \mid \beta_2}$

Dual Clause Form Algorithm

```
let S be [\langle X \rangle]
```

while some member of S contains non-literal do

select member C of S containing non-literal

select non-literal N of C

apply appropriate dual clause set reduction rule to N in C, producing new S

Theorem

Dual Clause Form Algorithm terminates and produces dual clause form S such that $S \equiv X$ is tautology

Tableau Expansion Rules

$$\frac{\neg \neg Z}{Z} \quad \frac{\neg \bot}{\top} \quad \frac{\neg \top}{\bot} \quad \frac{\alpha}{\alpha_1} \quad \frac{\beta}{\beta_1 \mid \beta_2}$$

$$\alpha_2$$

Definition

finite set $\{A_1, \ldots, A_n\}$ of propositional formulas

1 following one-branch tree is tableau for $\{A_1, \ldots, A_n\}$:

$$A_1$$
 A_2
 \vdots
 A_n

2 if T is tableau for $\{A_1, \ldots, A_n\}$ and T^* results from T by application of tableau expansion rule then T^* is tableau for $\{A_1, \ldots, A_n\}$

Part I: Propositional Logic

compactness, completeness, Hilbert systems, Hintikka's lemma, interpolation, logical consequence, model existence theorem, propositional semantic tableaux, soundness

Part II: First-Order Logic

compactness, completeness, Craig's interpolation theorem, cut elimination, first-order semantic tableaux, Herbrand models, Herbrand's theorem, Hilbert systems, Hintikka's lemma, Löwenheim-Skolem, logical consequence, model existence theorem, prenex form, skolemization, soundness

Part III: Limitations and Extensions of First-Order Logic

Curry-Howard isomorphism, intuitionistic logic, Kripke models, second-order logic, simply-typed λ -calculus

Outline

- Summary of Previous Lecture
- Semantic Tableaux
 - Definitions
 - Soundness
- Hintikka's Lemma
- Model Existence Theorem
- Exercises
- Further Reading

Tableau Expansion Rules

$$\frac{\neg \neg Z}{Z} \quad \frac{\neg \bot}{\top} \quad \frac{\neg \top}{\bot} \quad \frac{\alpha}{\alpha_1} \quad \frac{\beta}{\beta_1 \mid \beta_2}$$

$$\alpha_2$$

Definition

finite set $\{A_1, \ldots, A_n\}$ of propositional formulas

- 1 following one-branch tree is tableau for $\{A_1, \ldots, A_n\}$:
 - A_2 A_3

12/36

2 if T is tableau for $\{A_1, \ldots, A_n\}$ and T^* results from T by application of tableau expansion rule then T^* is tableau for $\{A_1, \ldots, A_n\}$

Example

tableau for $\{P \downarrow (Q \lor R), \neg (Q \land \neg R)\}$:

$$P \downarrow (Q \lor R)$$

$$\neg (Q \land \neg R)$$

$$\neg Q$$

$$\neg P$$

$$R$$

$$\neg (Q \lor R)$$

$$\neg Q$$

$$\neg R$$

Definitions

- branch θ of tableau is closed if both X and $\neg X$ occur on θ for some propositional formula X, or if \bot occurs on θ
- tableau is closed if every branch is closed

Definitions

- tableau proof of X is closed tableau for $\{\neg X\}$
- X is theorem if X has tableau proof, denoted by $\vdash_{pt} X$

Definitions

- branch θ of tableau is atomically closed if both A and $\neg A$ occur on θ for some propositional letter A, or if \bot occurs on θ
- · tableau is atomically closed if every branch is atomically closed

Example

tableau proof of $(P \supset (Q \supset R)) \supset ((P \lor S) \supset ((Q \supset R) \lor S))$:

$$\neg[(P \supset (Q \supset R)) \supset ((P \lor S) \supset ((Q \supset R) \lor S))]$$

$$P \supset (Q \supset R)$$

$$\neg((P \lor S) \supset ((Q \supset R) \lor S))$$

$$P \lor S$$

$$\neg((Q \supset R) \lor S)$$

$$\neg(Q \supset R)$$

$$\neg S$$

$$Q \supset R$$

$$P$$

(non-atomically) closed

Definition

tableau is strict if no formula has had Tableau Expansion Rule applied to it twice on same branch

Example

two tableau proofs of
$$X=(P \land (Q \supset (R \lor S))) \supset (P \lor Q)$$
: $\neg X$ $P \land (Q \supset (R \lor S))$ P

Semantic Tableaux Soundness

Outline

- Summary of Previous Lecture
- Semantic Tableaux
 - Definitions
 - Soundness
- Hintikka's Lemma
- Model Existence Theorem
- Exercises
- Further Reading

Semantic Tableaux Soundness

Definitions

- set S of propositional formulas is satisfiable if some valuation maps every member of S to t
- tableau branch θ is satisfiable if set of propositional formulas on it is satisfiable
- tableau T is satisfiable if at least one branch of T is satisfiable

Lemma

any application of Tableau Expansion Rule to satisfiable tableau yields another satisfiable tableau

Semantic Tableaux Soundness

Proof

suppose T is satisfiable tableau and let T^* be obtained by applying Tableau Expansion Rule to formula occurrence X on branch θ

let τ be satisfiable branch of T

- if $\tau \neq \theta$ then τ is (satisfiable) branch of T^*
- if $\tau = \theta$ then case distinction on Tableau Expansion Rule applied to X
 - 1 $X = \neg \neg Z$ or $X = \neg \bot$ or $X = \neg \top$: easy
 - 2 $X = \alpha$: θ is extended with α_1 and α_2 to produce T^* $v(\alpha) = t \implies v(\alpha_1) = v(\alpha_2) = t$ hence extended branch in T^* is satisfiable
 - 3 $X = \beta$: left and right children were added to last node of θ , one labeled β_1 and one labeled β_2 , to produce T^* $v(\beta) = t \implies v(\beta_1) = t \text{ or } v(\beta_2) = t$ hence one of new branches in T^* is satisfiable

if S admits closed tableau then S is not satisfiable

Proof (by contradiction)

final closed tableau is satisfiable

Theorem (Propositional Tableau Soundness)

every subsequent tableau is satisfiable (by previous lemma)

if S is satisfiable then initial tableau is satisfiable

if X has tableau proof then X is tautology

Proof

closed tableau for $\{\neg X\}$ $\{\neg X\}$ is not satisfiable (by previous lemma)

X is tautology

Outline

- Summary of Previous Lecture
- Semantic Tableaux
- Hintikka's Lemma
- Model Existence Theorem
- Exercises
- Further Reading

Definition

set **H** of propositional formulas is propositional Hintikka set provided

- 1 for any propositional letter A, not both $A \in \mathbf{H}$ and $\neg A \in \mathbf{H}$
- $\perp \notin \mathbf{H}, \neg \top \notin \mathbf{H}$
- 3 if $\neg \neg Z \in \mathbf{H}$ then $Z \in \mathbf{H}$
- 4 if $\alpha \in \mathbf{H}$ then $\alpha_1 \in \mathbf{H}$ and $\alpha_2 \in \mathbf{H}$
- if $\beta \in \mathbf{H}$ then $\beta_1 \in \mathbf{H}$ or $\beta_2 \in \mathbf{H}$

Examples

- Ø is Hintikka set
- set of all propositional variables is Hintikka set
- $\{P \land (\neg Q \supset R), P, (\neg Q \supset R), \neg \neg Q, Q\}$ is Hintikka set

Lemma (Hintikka's Lemma)

every propositional Hintikka set is satisfiable

Proof

define valuation f for propositional Hintikka set \mathbf{H} as follows:

$$f(A) = \begin{cases} \mathsf{t} & \text{if } A \in \mathbf{H} \\ \mathsf{f} & \text{if } \neg A \in \mathbf{H} \\ \mathsf{f} & \text{otherwise} \end{cases}$$

easy induction proof shows that valuation f maps every member of \mathbf{H} to t

(1929 - 2015)

Outline

- Summary of Previous Lecture
- Semantic Tableaux
- Hintikka's Lemma
- Model Existence Theorem
- Exercises
- Further Reading

Definition

collection C of sets of propositional formulas is propositional consistency property if, for each $S \in C$:

- **1** for any propositional letter A, not both $A \in S$ and $\neg A \in S$
- $\perp \notin S, \neg \top \notin S$
- 4 if $\alpha \in S$ then $S \cup \{\alpha_1, \alpha_2\} \in C$
- $\text{ if } \beta \in S \text{ then } S \cup \{\beta_1\} \in \mathcal{C} \text{ or } S \cup \{\beta_2\} \in \mathcal{C}$

if C is propositional consistency property then $S \in C$ is called C-consistent

Theorem (Propositional Model Existence)

if $\mathcal C$ is propositional consistency property and $S \in \mathcal C$ then S is satisfiable

Proof (easy case: *S* is finite)

- enlarge S to member of C that is Hintikka set:
 - if $\neg \neg Z \in S$ then add Z to S
 - if $\alpha \in S$ then add both α_1 and α_2 to S
 - if $\beta \in S$ then add
 - β_1 to S if $S \cup \{\beta_1\} \in C$
 - β_2 to S if $S \cup \{\beta_2\} \in C$
- saturation process terminates because S is finite
- resulting set is Hintikka set and thus satisfiable
- hence subset *S* is also satisfiable

Definition

propositional consistency property $\mathcal C$ is subset closed if, for every $S\in\mathcal C$, all subsets of S belong to $\mathcal C$

Definition

propositional consistency property $\mathcal C$ is of finite character provided $S \in \mathcal C$ if and only if every finite subset of S belongs to $\mathcal C$

Lemmata

- every propositional consistency property can be extended to subset closed one
- every propositional consistency property of finite character is subset closed
- every subset closed propositional consistency property can be extended to one of finite character

every propositional consistency property ${\mathcal C}$ can be extended to subset closed one

Proof

- $C^+ = \{ T \mid T \subseteq S \in C \}$ is subset closed
- let $T \in \mathcal{C}^+$ so $T \subseteq S$ for some $S \in \mathcal{C}$
 - 1 if $A \in T$ and $\neg A \in T$ then $A \in S$ and $\neg A \in S$
 - 2 if $\bot \in T$ or $\neg \top \in T$ then $\bot \in S$ or $\neg \top \in S$
 - if $\neg \neg Z \in T$ then $\neg \neg Z \in S$ and thus $S \cup \{Z\} \in C$ hence $T \cup \{Z\} \in C^+$
 - 4 if $\alpha \in \mathcal{T}$ then $\alpha \in \mathcal{S}$ and thus $\mathcal{S} \cup \{\alpha_1, \alpha_2\} \in \mathcal{C}$ hence $\mathcal{T} \cup \{\alpha_1, \alpha_2\} \in \mathcal{C}^+$

every propositional consistency property $\ensuremath{\mathcal{C}}$ of finite character is subset closed

Proof

- let $T \subseteq S \in \mathcal{C}$
- ullet all finite subsets of S belong to ${\mathcal C}$
- ullet all finite subsets of ${\mathcal T}$ belong to ${\mathcal C}$
- $T \in \mathcal{C}$ because \mathcal{C} is of finite character

Lemma

every subset closed propositional consistency property can be extended to one of finite character

Proof

... exercise ..

if \mathcal{C} is propositional consistency property of finite character and $S_1, S_2, S_3, \dots \in \mathcal{C}$ such that $S_1 \subseteq S_2 \subseteq S_3 \subseteq \dots$ then $\bigcup_i S_i \in \mathcal{C}$

Proof

it suffices to show that every finite subset $\{A_1, \ldots, A_k\}$ of $\bigcup_i S_i$ belongs to C:

- $\forall \ 1 \leqslant i \leqslant k \ \exists \ n_i \ \text{such that} \ A_i \in S_{n_i}$
- let $N = \max\{n_1, ..., n_k\}$
- $\{A_1,\ldots,A_k\}\subseteq S_N$ and $S_N\in\mathcal{C}$
- $\{A_1, \ldots, A_k\} \in \mathcal{C}$ because \mathcal{C} is of finite character

Proof (of Propositional Model Existence Theorem)

given propositional consistency property $\mathcal C$ and $S \in \mathcal C$

- ullet we may assume that ${\mathcal C}$ is of finite character
- let X_1, X_2, X_3, \ldots be enumeration of all propositional formulas
- define sequence S_1, S_2, S_3, \ldots of members of C:

$$S_1 = S$$
 $S_{n+1} = \begin{cases} S_n \cup \{X_n\} & \text{if } S_n \cup \{X_n\} \in \mathcal{C} \\ S_n & \text{otherwise} \end{cases}$

- $S_1 \subseteq S_2 \subseteq S_3 \subseteq \cdots$ and hence $\mathbf{H} = \bigcup_i S_i$ belongs to $\mathcal C$ by previous lemma
- **H** is maximal in C:
 - suppose $\mathbf{H} \subsetneq K \in \mathcal{C}$ let $X_n \in K \setminus \mathbf{H}$
 - $X_n \notin \mathbf{H}$ and hence $S_n \cup \{X_n\} \notin \mathcal{C}$
 - $S_n \cup \{X_n\} \subseteq K$
- **H** is Hintikka set and hence $S \subseteq \mathbf{H}$ is satisfiable

Outline

- Summary of Previous Lecture
- Semantic Tableaux
- Hintikka's Lemma
- Model Existence Theorem
- Exercises
- Further Reading

Fitting

- Exercise 2.3.2
- Exercise 2.4.3
- Exercise 2.4.12
- Exercise 2.6.1 (imp)
- Bonus: give a translation t of formulas into ones only using conjunction, disjunction and negation, and adapt d to a notion d', such that r(X) = d'(t(X)) for all formulas X.
- Exercise 2.6.2
- Bonus: Exercise 2.8.4 (imp)
- Bonus: Exercise 2.8.6 (imp)
- Exercise 2.8.7
- Exercise 3.1.1 !
- Exercise 3.6.3 !

Outline

- Summary of Previous Lecture
- Semantic Tableaux
- Hintikka's Lemma
- Model Existence Theorem
- Exercises
- Further Reading

Fitting

- Section 3.4
- Section 3.5
- Section 3.6!