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First-Order Logic Melvin Fitting
and Automated First-Order Logic and Automated Theorem

Theorem Proving ] e )
. Proving, 2nd edition, Springer-Verlag, 1996
Yo 4
by Online Material
b slides are available from uibk.ac.at domain

week 1 March 3 week 4  March 24 week 7 April 28
week 2 March 10 week 5 March 31 week 8 May 5
week 3 March 17 week 6  April 21 week 9 May 12 (exam)
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Outline
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Part I: Propositional Logic

compactness, completeness, Hilbert systems, Hintikka's lemma, interpolation,
logical consequence, model existence theorem, propositional semantic tableaux,
soundness

Part Il: First-Order Logic

compactness, completeness, Craig's interpolation theorem, cut elimination,
first-order semantic tableaux, Herbrand models, Hilbert systems, Hintikka's lemma,
Lowenheim—Skolem, logical consequence, model existence theorem, prenex form,
skolemization, soundness

Part IlI: Limitations and Extensions of First-Order Logic

Curry—Howard isomorphism, intuitionistic logic, Kripke models, second-order logic,
simply-typed A-calculus
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Propositional Logic Syntax

Outline

@ Propositional Logic
@ Syntax
@ Semantics
o Replacement Theorem
e Uniform Notation
@ Normal Forms
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Propositional Logic Syntax

Definition

(propositional) atomic formula is propositional letter, T or L

set of propositional formulas is smallest set P such that

® if Ais atomic formula then A € P
e if X € Pthen -X € P
® if o is binary symbol and X, Y € P then (XoY) e P
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Theorem (Principle of Structural Induction)

every formula of propositional formula has property Q provided
® basis step
every atomic formula has property Q@
® nduction steps
if X has property Q then —X has property Q
if X and Y have property Q then X o Y has property Q

Theorem (Principle of Structural Recursion)

there exists unique function f defined on P such that

® basis step
value of f is specified explicitly on atomic formulas

® nduction steps
value of f on =X is specified in terms of value of f on X

value of f on X o Y is specified in terms of values of f on X and on Y
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Propositional Logic Syntax

immediate subformulas are defined as follows:

® atomic formula has no immediate subformulas
® only immediate subformula of =X is X

® immediate subformulas of (X o Y) are X and Y

Definitions

® set of subformulas of formula X is smallest set S that contains X and,
for every member Y of S, all immediate subformulas of Y

® X is improper subformula of X
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Propositional Logic Semantics

Outline

@ Propositional Logic

@ Semantics
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Propositional Logic Semantics

® 2 truth values: t and f

® 16 different two-place functions from {t,f} to {t,f}

® 38 primary connectives and 2 secondary connectives

AMVIiD|lCc ||| 2]¢ =| #
t ottt |t |t | f|f]|] f | f t ot t]| f
t f|lf|t | f |t |t]|f|t]|f t f| f| t
foeflt | t | f]t]f] f|t fotl f| t
ffllf] f |t ]t |t]t]| f]|f ffllt]| f

Definition

propositional formula X is tautology if v(X) = t for every valuation v
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Propositional Logic Semantics

set S of propositional formulas is satisfiable if some valuation maps every member
of Stot

for binary operations o and e on {t,f}: o is dual of e if 7(x o0 y) = (—x e —y)

v
Examples

A is dual of V 1 is dual of 1 ¢ is dual of D

Definition

for propositional formula X we write X9 for result of replacing
® every occurrence of T with occurrence of L

® every occurrence of L with occurrence of T

® every occurrence of binary symbol with occurrence of its dual
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Propositional Logic Replacement Theorem

Outline

@ Propositional Logic

o Replacement Theorem
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Propositional Logic Replacement Theorem

given propositional formulas F(P), X and Y, valuation v
if v(X) = v(Y) then v(F(X)) = v(F(Y))

v

if X =Y is tautology then so is F(X) = F(Y)

v

propositional formula X is in negation normal form if negation symbols — occur
only in front of propositional letters

\

Lemma

every propositional formula can be put into negation normal form

\
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Propositional Logic Replacement Theorem

S[(POQA(RT(FPAQ)] = (PO Q)V—(RT(-PAQ))
(=P Z -Q)V~(RT(-PAQ))
(=P Z=Q)V (=R -(=PAQ))
(=P ¢ -Q)V (=Rl (——PV-Q))
(=P Z -Q)V (=Rl (PV-Q))
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Propositional Logic Uniform Notation

Outline

@ Propositional Logic

o Uniform Notation
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conjunctive disjunctive

o o B B B
XAY X Y| (XAY) | -X =Y
-(XVY)|-X =Y XVY X Y
-(X2Y)| X =Y XDOY |=-X Y
-(XCY)| X Y XCcyY X Y
—(X1Y) X Y X1TY =X =Y
XlY =X =Y || =(X1Y) X Y
XDY X Y||~(XDY)| X Y
XgY | -X YI|-(XZY)| X Y

v

Lemma

for every valuation v and all a- and B-formulas

v(a) = v(ar) A v(az) v(B) = v(B1) V v(B2)

AM/VvO (CS @ UIBK) lecture 1 18/34


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Propositional Logic Uniform Notation

for every a and B: a = (a1 A ap) and 8 = (B1 V (o) are tautologies

Theorem (Principle of Structural Induction)

every formula of propositional logic has property Q provided

® pasis step
every atomic formula and its negation has property

® nduction steps
if X has property @ then ——X has property Q
if ay and oy have property Q then o has property Q

if B1 and (3> have property Q then [3 has property Q@
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rank r(X) of propositional formula is defined as follows:
° r(A)=r(-A)=r(T)=r(L)=0
e r(-T)=r(-1)=1
o r(—Z)=r(Z)+1
® r(a) =r(a1) +r(az) +1
® r(B)=r(B1)+r(B2) +1

Example

r(=[(P2 QA (RT (=P AQ)))

r(~(P> Q)+ r(=(RT(-PAQ))+1
r(P)+r(mQ)+1+r(R)+r(-PAQ)+1+1
=r(P)+r(-Q)+1+r(R)+r(-P)+r(Q)+1+1+1
=4
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Propositional Logic Normal Forms

Outline

@ Propositional Logic

o Normal Forms
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Propositional Logic Normal Forms

given list X1, ..., X, of propositional formulas
® [Xi,...,X,] is generalized disjunction of Xi,..., X,
® (Xi,...,X,) is generalized conjunction of X, ..., X,
t if v(X;) =t forsomeic{l,...,n
o v([Xy,..., X)) = ( ) { }
f otherwise
t ifv(Xj))=tforallie{l,....n
o v((X,..., X)) = ( '? { }
f otherwise

Definitions

® |iteral is propositional letter or negation of propositional letter or T or L
® clause is disjunction [Xi, ..., X,] consisting of literals Xi,..., X,

® dual clause is conjunction (Xi, ..., X,) consisting of literals Xi,..., X,
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Propositional Logic Normal Forms

Definitions

® propositional formula is in conjunctive normal form or in clause form
if it is conjunction (Cy, ..., C,) of clauses

® propositional formula is in disjunctive normal form or in dual clause form
if it is disjunction [Dy, ..., D,] of dual clauses

Theorem (Normal Form)

there are algorithms for converting propositional formula into clause form and into
dual clause form
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Proof (clause form)

® step 1
start with ([X])

if (D1,...,Dk) is not yet conjunctive normal form continue with
® stepn+1
select D; which contains non-literal N
® if N =T replace N with L
® if N= -1 replace N with T
® if N=—-—-Z2 replace N with Z
® if N is S-formula replace N with $8; and (3

® if N is a-formula replace disjunction D; with two disjunctions:
® one with a replaced by oy

® one with « replaced by as

v
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Propositional Logic Normal Forms

Clause Set Reduction Rules

1 T V4 b1 o1 | ap

if S is conjunction of disjunctions and S’ is obtained from S by applying
one clause set reduction rule then S = S’ is tautology
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Propositional Logic Normal Forms

Clause Form Algorithm

let S be ([X])

while some member of S contains non-literal do

select member D of S containing non-literal
select non-literal N of D

apply appropriate clause set reduction rule to N in D, producing new S

Clause Form Algorithm terminates and produces clause form S such that
S = X is tautology
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Propositional Logic Normal Forms

([(P2(Q@2R)>((P2Q)D(PDR)]
P>(QRDR)),(PDQ)D(PDR)])
P> (QDR)),~(PDQ),PDR])
5 (Q D R)),~(P> Q),-P,R])

;7(P2Q),~P,R], [~(Q@ D R),~(P>Q),~P,R])
P,P,=P,R], [P,=Q,—-P,R], [~(Q D R),=(P D> Q),~P,R])
[P,P,-P,R], [P,—Q,-P,R], [Q,~(P D Q),—~P, R],
[-R,—(P D> Q),~P,R])

([P,P,—P,R],[P,—Q,~P,R], [Q,P,-P,R], [Q,~Q,—-P,R],

[-R,~(P > Q),~P,R])

(IP,P,=P,R],[P,-Q,-P,R], [Q,P,-P,R], [@,-Q, =P, R],

[-R, P, =P, R], [-R, =Q, =P, R])

)
=
=
-(P

(
(
(
= ([P
(
(
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Propositional Logic Normal Forms

Clause Form Algorithm terminates and produces clause form S such that
S = X is tautology

Proof Sketch

rank of generalized disjunction [Xi,..., X;,] is r(X1) + -+ + r(X,)

incrementally build tree whose leaves correspond to ranks of generalized
disjunctions in current S:

® root node with label r([X])
® employed clause set reduction rule determines tree expansion

® conclude by Konig's Lemma
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Propositional Logic Normal Forms

Dual Clause Set Reduction Rules

[((PL@R)D(QV-(PV=-Q))] =
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Dual Clause Form Algorithm
let S be [(X)]

while some member of S contains non-literal do

select member C of S containing non-literal
select non-literal N of C

apply appropriate dual clause set reduction rule to N in C, producing new S

if S is disjunction of conjunctions and S’ is obtained from S by applying one dual
clause set reduction rule then S = S’ is tautology

Dual Clause Form Algorithm terminates and produces dual clause form S such that
S = X is tautology
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Semantic Tableaux Definitions

Outline

@ Semantic Tableaux
o Definitions
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Semantic Tableaux Definitions

Tableau Expansion Rules

V4 T 1 Bl B
a2
finite set {Ay,...,A,} of propositional formulas
following one-branch tree is tableau for {Ay, ..., A,}:
A
A
An
if T is tableau for {A1,...,A,} and T* results from T by application of
tableau expansion rule then T* is tableau for {As,...,A,}
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Further Reading

Outline

@ Further Reading
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Further Reading

® Chapter 1

® Chapter 2 (except for Section 2.9)

® Section 3.1 !
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Outline

@ Summary of Previous Lecture

Semantic Tableaux

Hintikka's Lemma

Model Existence Theorem

Exercises
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Summary of Previous Lecture

8 primary connectives and 2 secondary connectives
ANVID|ICITL]|P|Z = | #
t tf|t |t |t |t ]|f|f]f]|f t t t f
t ff |t | f|t|t|f|t]f t ffl f |t
ftfflt|t|flt]f|f]|t fotf f|t
f ) f|f|t|t|t|t]|f]f f fjjt|f

Definition

propositional formula X is tautology if v(X) = t for every valuation v

Definition

set S of propositional formulas is satisfiable if some valuation maps every member
of Stot

AM/VvO (CS @ UIBK) lecture 2 3/36


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Summary of Previous Lecture

for binary operations o and e on {t,f}: o is dual of e if =(x 0 y) = (—x e y)

Definition (Uniform Notation)

conjunctive disjunctive

ol o g B B
XANY X Y| 2(XAY) | =X =Y
“(XVY) | -X =Y XVY X Y
—(XDY) X Y XDY X Y
-(XCY)| X Y Xcy X Y
—(X1Y) X Y X1TY =X Y
X1lY =X Y || 2(X1Y) X
X2Y X Y| ~(X2Y)| X Y
XZY =X Y| ~(XZY) X Y

-<
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Summary of Previous Lecture

for every valuation v and all a- and (B-formulas

v(a) =v(a) Av(az)  v(B) = v(B1) V v(B2)

Corollary

for every a and B: a = (a1 A aw) and B = (81 V B2) are tautologies

Definition
rank r(X) of propositional formula is defined as follows:
¢ r(A)=r(=A) =r(T)=r(L)=0
o r(GT)=r(-1) =1
e r(—Z)=r(Z)+1
* r(@) = r(a1) +r(az) +1
* r(B)=r(B1) +r(B)+1 )
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Summary of Previous Lecture

given list Xy, ..., X, of propositional formulas
® [Xi,...,Xy,] is generalized disjunction of Xi,..., X,

® (Xi,...,X,) is generalized conjunction of Xi,..., X,

Definitions

e literal is propositional letter or negation of propositional letter or T or L
® clause is disjunction [Xi, ..., X,] consisting of literals Xi,..., X,
® dual clause is conjunction (Xi, ..., X,) consisting of literals Xi,..., X,

® propositional formula is in conjunctive normal form or in clause form
if it is conjunction (Cy, ..., C,) of clauses

® propositional formula is in disjunctive normal form or in dual clause form
if it is disjunction [Dy, ..., D,] of dual clauses
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Clause Set Reduction Rules

L T V4 B Qg | a3
67
Clause Form Algorithm
let S be ([X])

while some member of S contains non-literal do
select member D of S containing non-literal

select non-literal N of D
apply appropriate clause set reduction rule to N in D, producing new S
v

Theorem
Clause Form Algorithm terminates and produces clause form S such that
S = X is tautology
7/36
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Summary of Previous Lecture

Dual Clause Set Reduction Rules

-1 -1 -7 ﬂ

T i V4 a1 B1 | B2

(0%]

Dual Clause Form Algorithm

let S be [(X)]

while some member of S contains non-literal do

select member C of S containing non-literal
select non-literal N of C

apply appropriate dual clause set reduction rule to N in C, producing new S

v

Theorem

Dual Clause Form Algorithm terminates and produces dual clause form S such that
S = X is tautology
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Summary of Previous Lecture

Tableau Expansion Rules

V4 T 1 Bl B
a2
finite set {Ay,...,A,} of propositional formulas
following one-branch tree is tableau for {Ay, ..., A,}:
A
A
An
if T is tableau for {A1,...,A,} and T* results from T by application of
tableau expansion rule then T* is tableau for {As,...,A,}
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Part I: Propositional Logic

compactness, completeness, Hilbert systems, Hintikka's lemma, interpolation,
logical consequence, model existence theorem,
soundness

Part Il: First-Order Logic

compactness, completeness, Craig's interpolation theorem, cut elimination,
first-order semantic tableaux, Herbrand models, Herbrand’s theorem, Hilbert
systems, Hintikka's lemma, Léwenheim-Skolem, logical consequence, model
existence theorem, prenex form, skolemization, soundness

Part Ill: Limitations and Extensions of First-Order Logic

Curry-Howard isomorphism, intuitionistic logic, Kripke models, second-order logic,
simply-typed A-calculus
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Semantic Tableaux Definitions

Outline

@ Semantic Tableaux
o Definitions
@ Soundness

AM/VvO (CS @ UIBK) lecture 2 11/36


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Semantic Tableaux Definitions

Tableau Expansion Rules

V4 T 1 Bl B
a2
finite set {Ay,...,A,} of propositional formulas
following one-branch tree is tableau for {Ay, ..., A,}:
A
A
An
if T is tableau for {A1,...,A,} and T* results from T by application of
tableau expansion rule then T* is tableau for {As,...,A,}
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Semantic Tableaux Definitions

tableau for {P | (QV R),=(Q A =R)}:

Pl(QVR)
~(QA-R)
-Q — = -=R
-P R
-(QVR)
-Q
=R
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Semantic Tableaux Definitions

Definitions

® branch 6 of tableau is closed if both X and —X occur on 8 for some
propositional formula X, or if 1 occurs on 6

® tableau is closed if every branch is closed

Definitions

® tableau proof of X is closed tableau for {=X}

® X is theorem if X has tableau proof, denoted by F,; X

Definitions

® branch 6 of tableau is atomically closed if both A and —A occur on 6 for
some propositional letter A, or if L occurs on 6

® tableau is atomically closed if every branch is atomically closed
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Semantic Tableaux

tableau proof of (P > (Q O R)) > (PV S) > ((Q D R)V S)):
S[(PD2(Q@RDR)D((PVS)D((RDR)VSI))
P> (Q@DOR)
(PVS)D((RDR)VYS))
PvS
Q2 R)VS) (en-aizrtesly) desse
-(Q D R)
-S
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http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Semantic Tableaux Definitions

Definition

tableau is strict if no formula has had Tableau Expansion Rule applied to it twice
on same branch

two tableau proofs of X = (PA(Q D (RV S))) D (PV Q): -X
X PA(Q@D(RVS))
PA(QD(RVYS)) ~(PV Q)

~(PV Q) p
2 Q> (RVS)

Q> (RVYS) 0~ T Rvs
= -P R s
-Q -Q -P -P

-Q -Q
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Semantic Tableaux Soundness

Outline

@ Semantic Tableaux

@ Soundness
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Semantic Tableaux Soundness

® set S of propositional formulas is satisfiable if some valuation maps every
member of S to t

® tableau branch 6 is satisfiable if set of propositional formulas on it is
satisfiable

® tableau T is satisfiable if at least one branch of T is satisfiable

any application of Tableau Expansion Rule to satisfiable tableau yields another
satisfiable tableau
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suppose T is satisfiable tableau and let T* be obtained by applying Tableau
Expansion Rule to formula occurrence X on branch 6

let 7 be satisfiable branch of T
e if 7 £ 0 then 7 is (satisfiable) branch of T*

® if 7 = 0 then case distinction on Tableau Expansion Rule applied to X
X==-=Zor X=-LorX=-T: easy
X =a: 0 is extended with a; and as to produce T*
vie)=t = v(m)=v(m)=t
hence extended branch in T* is satisfiable

X = B: left and right children were added to last node of 6,
one labeled 8; and one labeled 3,, to produce T*

V(,@) =t = V(ﬁl) =tor V(,@Q) =t

hence one of new branches in T* is satisfiable

v
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Lemma

if S admits closed tableau then S is not satisfiable

Proof (by contradiction)

if S is satisfiable then initial tableau is satisfiable
every subsequent tableau is satisfiable (by previous lemma)

final closed tableau is satisfiable 4

Theorem (Propositional Tableau Soundness)

if X has tableau proof then X is tautology

| A

Proof

closed tableau for {=X}
{=X} is not satisfiable (by previous lemma)

X is tautology
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Hintikka’s Lemma
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Hintikka’s Lemma

set H of propositional formulas is propositional Hintikka set provided

for any propositional letter A, not both A € H and A€ H

1 ¢H -T¢H

if =—Z € H then Z € H

if « € H then a7 € H and ar € H
if € Hthen 5y e Hor 8, € H

® & is Hintikka set

® set of all propositional variables is Hintikka set

e {PA(-QDR),P,(—mQ D R),——Q, Q} is Hintikka set
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Hintikka’s Lemma

Lemma (Hintikka's Lemma)

every propositional Hintikka set is satisfiable

define valuation f for propositional Hintikka set H as follows:

t fAcH
f(A)=<¢f if-AcH
f otherwise

easy induction proof shows that valuation f maps every member of H to t
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Hintikka’s Lemma

Jaakko Hintikka
(1929 -2015)

AM/VvO (CS @ UIBK) lecture 2


https://en.wikipedia.org/wiki/Haskell_Curry
https://en.wikipedia.org/wiki/William_Craig_(philosopher)
https://en.wikipedia.org/wiki/Jacques_Herbrand
https://en.wikipedia.org/wiki/David_Hilbert
https://en.wikipedia.org/wiki/Jaakko_Hintikka
https://en.wikipedia.org/wiki/William_Alvin_Howard
https://en.wikipedia.org/wiki/Saul_Kripke
https://en.wikipedia.org/wiki/Leopold_Loewenheim
https://en.wikipedia.org/wiki/Thoralf_Skolem
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
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Model Existence Theorem

collection C of sets of propositional formulas is propositional consistency property
if, for each S € C:

if C is propositional consistency property then S € C is called C-consistent

for any propositional letter A, not both A€ S and “A€ S
1¢S5 -T¢S

if -==Z € Sthen SU{Z} €C

if « € S then SU{ay,a0} €C

if 8€Sthen SU{Bi} eCor SU{B}eC

Theorem (Propositional Model Existence)

if C is propositional consistency property and S € C then S is satisfiable
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Model Existence Theorem

Proof (easy case: S is finite)

® enlarge S to member of C that is Hintikka set:

® if ==Z € S then add Z to S
® if « € S then add both a; and ap to S

® if 3 €S then add
® BitoSifSU{B}eC
°* KLtoSifSU{BR}eC

® saturation process terminates because S is finite

® resulting set is Hintikka set and thus satisfiable

® hence subset S is also satisfiable
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Model Existence Theorem

Definition

propositional consistency property C is subset closed if, for every S € C, all subsets
of S belong to C

Definition

propositional consistency property C is of finite character provided S € C if and
only if every finite subset of S belongs to C

Lemmata

® every propositional consistency property can be extended to subset closed one
® every propositional consistency property of finite character is subset closed

® every subset closed propositional consistency property can be extended to one
of finite character
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Lemma

every propositional consistency property C can be extended to subset closed one

e Ct={T | T CSeC}is subset closed

e let TeECtso TCS forsome S eC
ifAc Tand ~Ac TthenAcSand A€ S
if Le Tor=-Te&TthenleSo-TeS

if =——=Z € T then -—=Z € S and thus SU{Z} € C
hence TU{Z} e C*

if « € T then a € S and thus SU{ay, a0} € C
hence T U {a1,an} € CT

if € T then €S and thus SU{B1} €Cor SU{B} €C
hence TU{B1} €CT or TU{B} €CT
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Lemma

every propositional consistency property C of finite character is subset closed

v

Proof
eletTCSeC

all finite subsets of S belong to C

all finite subsets of T belong to C

® T ¢ C because C is of finite character

v

Lemma

every subset closed propositional consistency property can be extended to one of
finite character

exercise
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Model Existence Theorem

if C Is propositional consistency property of finite character and S1,S,,53,--- € C
such that S € S, € S3C - then |J;Si € C

Proof
it suffices to show that every finite subset {Ay,...,Ax} of |J; Si belongs to C:
® V1< i< k3 n;such that A; € S,

® let N=max{ny,...,nx}
° {Al,...,Ak} C Sy and Sy €C
® {Aq,..., A} €C because C is of finite character
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Proof (of Propositional Model Existence Theorem)

given propositional consistency property C and S € C

® we may assume that C is of finite character

® |let Xi, X2, X3,... be enumeration of all propositional formulas
® define sequence S1, Sy, S3,... of members of C:
S, U{X, if S,U{X,}ecC
SH=S5 Snt1 =19 ¢ X} iF 5 { )
Sn otherwise

51 €5 CS3C--- and hence H = J; Si belongs to C by previous lemma

® H is maximal in C:
® suppose HC K eClet X, € K\H
® X, ¢ H and hence S, U{X,} ¢C
°* S,U{X,}CK 4
® H is Hintikka set and hence S C H is satisfiable

v
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Exercises
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@ Exercises
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Exercise 2.3.2
Exercise 2.4.3
Exercise 2.4.12
Exercise 2.6.1 (imp)

Bonus: give a translation t of formulas into ones only using conjunction,
disjunction and negation, and adapt d to a notion d’, such that
r(X) = d’'(t(X) for all formulas X.

Exercise 2.6.2

Bonus: Exercise 2.8.4 (imp)
Bonus: Exercise 2.8.6 (imp)
Exercise 2.8.7

Exercise 3.1.1 !

Exercise 3.6.3 |

v
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Further Reading

Outline

@ Further Reading
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Further Reading

® Section 3.4

® Section 3.5

® Section 3.6 !
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