
Computational Logic

Vincent van Oostrom
Course/slides by Aart Middeldorp

Department of Computer Science
University of Innsbruck

SS 2020

http://cl-informatik.uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss20/cl/
http://cl-informatik.uibk.ac.at/
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Outline

Summary of Previous Lecture

Model Existence Theorem

Compactness

Interpolation

Semantic Tableaux

Hilbert Systems

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 3 2/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Summary of Previous Lecture

Tableau Expansion Rules

¬¬Z
Z

¬⊥
>

¬>
⊥

α

α1

α2

β

β1 | β2

Definition

finite set {A1, . . . ,An} of propositional formulas

1 following one-branch tree is tableau for {A1, . . . ,An}:

A1

A2

...
An

2 if T is tableau for {A1, . . . ,An} and T ∗ results from T by application of
tableau expansion rule then T ∗ is tableau for {A1, . . . ,An}

AM/VvO (CS @ UIBK) lecture 3 3/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Summary of Previous Lecture

Definitions

• branch θ of tableau is closed if both X and ¬X occur on θ for some
propositional formula X , or if ⊥ occurs on θ

• branch θ of tableau is atomically closed if both A and ¬A occur on θ for
some propositional letter A, or if ⊥ occurs on θ

• tableau is (atomically) closed if every branch is (atomically) closed

• tableau proof of X is closed tableau for {¬X}
• X is theorem if X has tableau proof, denoted by `pt X
• tableau is strict if no formula has had Tableau Expansion Rule applied to it

twice on same branch

• tableau branch θ is satisfiable if set of propositional formulas on it is
satisfiable

• tableau T is satisfiable if at least one branch of T is satisfiable

AM/VvO (CS @ UIBK) lecture 3 4/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Summary of Previous Lecture

Lemma

any application of Tableau Expansion Rule to satisfiable tableau yields another
satisfiable tableau

Lemma

if S admits closed tableau then S is not satisfiable

Theorem (Propositional Tableau Soundness)

if X has tableau proof then X is tautology

AM/VvO (CS @ UIBK) lecture 3 5/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Summary of Previous Lecture

Definition

set H of propositional formulas is propositional Hintikka set provided

1 for any propositional letter A, not both A ∈ H and ¬A ∈ H

2 ⊥ /∈ H, ¬> /∈ H

3 if ¬¬Z ∈ H then Z ∈ H

4 if α ∈ H then α1 ∈ H and α2 ∈ H

5 if β ∈ H then β1 ∈ H or β2 ∈ H

Lemma (Hintikka’s Lemma)

every propositional Hintikka set is satisfiable

AM/VvO (CS @ UIBK) lecture 3 6/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Summary of Previous Lecture

Definition

collection C of sets of propositional formulas is propositional consistency property
if, for each S ∈ C:

1 for any propositional letter A, not both A ∈ S and ¬A ∈ S

2 ⊥ /∈ S , ¬> /∈ S

3 if ¬¬Z ∈ S then S ∪ {Z} ∈ C

4 if α ∈ S then S ∪ {α1, α2} ∈ C

5 if β ∈ S then S ∪ {β1} ∈ C or S ∪ {β2} ∈ C

if C is propositional consistency property then S ∈ C is called C-consistent

Theorem (Propositional Model Existence)

if C is propositional consistency property and S ∈ C then S is satisfiable

AM/VvO (CS @ UIBK) lecture 3 7/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Contents

Part I: Propositional Logic

compactness, completeness, Hilbert systems, Hintikka’s lemma, interpolation,
logical consequence, model existence theorem, propositional semantic tableaux,
soundness

Part II: First-Order Logic

compactness, completeness, Craig’s interpolation theorem, cut elimination,
first-order semantic tableaux, Herbrand models, Herbrand’s theorem, Hilbert
systems, Hintikka’s lemma, Löwenheim-Skolem, logical consequence, model
existence theorem, prenex form, skolemization, soundness

Part III: Limitations and Extensions of First-Order Logic

Curry-Howard isomorphism, intuitionistic logic, Kripke models, second-order logic,
simply-typed λ-calculus

AM/VvO (CS @ UIBK) lecture 3 8/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Contents

Part I: Propositional Logic

compactness, completeness, Hilbert systems, Hintikka’s lemma, interpolation,
logical consequence, model existence theorem, propositional semantic tableaux,
soundness

Part II: First-Order Logic

compactness, completeness, Craig’s interpolation theorem, cut elimination,
first-order semantic tableaux, Herbrand models, Herbrand’s theorem, Hilbert
systems, Hintikka’s lemma, Löwenheim-Skolem, logical consequence, model
existence theorem, prenex form, skolemization, soundness

Part III: Limitations and Extensions of First-Order Logic

Curry-Howard isomorphism, intuitionistic logic, Kripke models, second-order logic,
simply-typed λ-calculus

AM/VvO (CS @ UIBK) lecture 3 8/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Model Existence Theorem

Outline

Summary of Previous Lecture

Model Existence Theorem

Compactness

Interpolation

Semantic Tableaux

Hilbert Systems

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 3 9/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Model Existence Theorem

Definition

collection C of sets of propositional formulas is propositional consistency property
if, for each S ∈ C:

1 for any propositional letter A, not both A ∈ S and ¬A ∈ S

2 ⊥ /∈ S , ¬> /∈ S

3 if ¬¬Z ∈ S then S ∪ {Z} ∈ C

4 if α ∈ S then S ∪ {α1, α2} ∈ C

5 if β ∈ S then S ∪ {β1} ∈ C or S ∪ {β2} ∈ C

if C is propositional consistency property then S ∈ C is called C-consistent

Theorem (Propositional Model Existence)

if C is propositional consistency property and S ∈ C then S is satisfiable

AM/VvO (CS @ UIBK) lecture 3 10/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Model Existence Theorem

Definition

collection C of sets of propositional formulas is propositional consistency property
if, for each S ∈ C:

1 for any propositional letter A, not both A ∈ S and ¬A ∈ S

2 ⊥ /∈ S , ¬> /∈ S

3 if ¬¬Z ∈ S then S ∪ {Z} ∈ C

4 if α ∈ S then S ∪ {α1, α2} ∈ C

5 if β ∈ S then S ∪ {β1} ∈ C or S ∪ {β2} ∈ C

if C is propositional consistency property then S ∈ C is called C-consistent

Theorem (Propositional Model Existence)

if C is propositional consistency property and S ∈ C then S is satisfiable

AM/VvO (CS @ UIBK) lecture 3 10/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Model Existence Theorem

Definition

collection C of sets of propositional formulas is propositional consistency property
if, for each S ∈ C:

1 for any propositional letter A, not both A ∈ S and ¬A ∈ S

2 ⊥ /∈ S , ¬> /∈ S

3 if ¬¬Z ∈ S then S ∪ {Z} ∈ C

4 if α ∈ S then S ∪ {α1, α2} ∈ C

5 if β ∈ S then S ∪ {β1} ∈ C or S ∪ {β2} ∈ C

if C is propositional consistency property then S ∈ C is called C-consistent

Theorem (Propositional Model Existence)

if C is propositional consistency property and S ∈ C then S is satisfiable

AM/VvO (CS @ UIBK) lecture 3 10/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Model Existence Theorem

Definition

collection C of sets of propositional formulas is propositional consistency property
if, for each S ∈ C:

1 for any propositional letter A, not both A ∈ S and ¬A ∈ S

2 ⊥ /∈ S , ¬> /∈ S

3 if ¬¬Z ∈ S then S ∪ {Z} ∈ C

4 if α ∈ S then S ∪ {α1, α2} ∈ C

5 if β ∈ S then S ∪ {β1} ∈ C or S ∪ {β2} ∈ C

if C is propositional consistency property then S ∈ C is called C-consistent

Theorem (Propositional Model Existence)

if C is propositional consistency property and S ∈ C then S is satisfiable

AM/VvO (CS @ UIBK) lecture 3 10/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Model Existence Theorem

Definition

collection C of sets of propositional formulas is propositional consistency property
if, for each S ∈ C:

1 for any propositional letter A, not both A ∈ S and ¬A ∈ S

2 ⊥ /∈ S , ¬> /∈ S

3 if ¬¬Z ∈ S then S ∪ {Z} ∈ C

4 if α ∈ S then S ∪ {α1, α2} ∈ C

5 if β ∈ S then S ∪ {β1} ∈ C or S ∪ {β2} ∈ C

if C is propositional consistency property then S ∈ C is called C-consistent

Theorem (Propositional Model Existence)

if C is propositional consistency property and S ∈ C then S is satisfiable

AM/VvO (CS @ UIBK) lecture 3 10/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Model Existence Theorem

Definition

collection C of sets of propositional formulas is propositional consistency property
if, for each S ∈ C:

1 for any propositional letter A, not both A ∈ S and ¬A ∈ S

2 ⊥ /∈ S , ¬> /∈ S

3 if ¬¬Z ∈ S then S ∪ {Z} ∈ C

4 if α ∈ S then S ∪ {α1, α2} ∈ C

5 if β ∈ S then S ∪ {β1} ∈ C or S ∪ {β2} ∈ C

if C is propositional consistency property then S ∈ C is called C-consistent

Theorem (Propositional Model Existence)

if C is propositional consistency property and S ∈ C then S is satisfiable

AM/VvO (CS @ UIBK) lecture 3 10/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Model Existence Theorem

Definition

collection C of sets of propositional formulas is propositional consistency property
if, for each S ∈ C:

1 for any propositional letter A, not both A ∈ S and ¬A ∈ S

2 ⊥ /∈ S , ¬> /∈ S

3 if ¬¬Z ∈ S then S ∪ {Z} ∈ C

4 if α ∈ S then S ∪ {α1, α2} ∈ C

5 if β ∈ S then S ∪ {β1} ∈ C or S ∪ {β2} ∈ C

if C is propositional consistency property then S ∈ C is called C-consistent

Theorem (Propositional Model Existence)

if C is propositional consistency property and S ∈ C then S is satisfiable

AM/VvO (CS @ UIBK) lecture 3 10/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Compactness

Outline

Summary of Previous Lecture

Model Existence Theorem

Compactness

Interpolation

Semantic Tableaux

Hilbert Systems

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 3 11/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Compactness

Theorem (Propositional Compactness)

if every finite subset of set S of propositional formulas is satisfiable then S is
satisfiable

Proof

• let C = {W | every finite subset of W is satisfiable}

• S ∈ C

and C is propositional consistency property:

1 if A ∈W and ¬A ∈W then W /∈ C

2 if ⊥ ∈W or ¬> ∈W then W /∈ C

3 suppose ¬¬Z ∈W ∈ C

and let V be finite subset of W ∪ {Z}

(V ∩W ) ∪ {¬¬Z} is finite subset of W and thus satisfiable

(V ∩W ) ∪ {¬¬Z ,Z} is satisfiable

V ⊆ (V ∩W ) ∪ {¬¬Z ,Z} is satisfiable

AM/VvO (CS @ UIBK) lecture 3 12/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Compactness

Theorem (Propositional Compactness)

if every finite subset of set S of propositional formulas is satisfiable then S is
satisfiable

Proof

• let C = {W | every finite subset of W is satisfiable}

• S ∈ C

and C is propositional consistency property:

1 if A ∈W and ¬A ∈W then W /∈ C

2 if ⊥ ∈W or ¬> ∈W then W /∈ C

3 suppose ¬¬Z ∈W ∈ C

and let V be finite subset of W ∪ {Z}

(V ∩W ) ∪ {¬¬Z} is finite subset of W and thus satisfiable

(V ∩W ) ∪ {¬¬Z ,Z} is satisfiable

V ⊆ (V ∩W ) ∪ {¬¬Z ,Z} is satisfiable

AM/VvO (CS @ UIBK) lecture 3 12/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Compactness

Theorem (Propositional Compactness)

if every finite subset of set S of propositional formulas is satisfiable then S is
satisfiable

Proof

• let C = {W | every finite subset of W is satisfiable}
• S ∈ C

and C is propositional consistency property:

1 if A ∈W and ¬A ∈W then W /∈ C

2 if ⊥ ∈W or ¬> ∈W then W /∈ C

3 suppose ¬¬Z ∈W ∈ C

and let V be finite subset of W ∪ {Z}

(V ∩W ) ∪ {¬¬Z} is finite subset of W and thus satisfiable

(V ∩W ) ∪ {¬¬Z ,Z} is satisfiable

V ⊆ (V ∩W ) ∪ {¬¬Z ,Z} is satisfiable

AM/VvO (CS @ UIBK) lecture 3 12/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Compactness

Theorem (Propositional Compactness)

if every finite subset of set S of propositional formulas is satisfiable then S is
satisfiable

Proof

• let C = {W | every finite subset of W is satisfiable}
• S ∈ C and C is propositional consistency property

:

1 if A ∈W and ¬A ∈W then W /∈ C

2 if ⊥ ∈W or ¬> ∈W then W /∈ C

3 suppose ¬¬Z ∈W ∈ C

and let V be finite subset of W ∪ {Z}

(V ∩W ) ∪ {¬¬Z} is finite subset of W and thus satisfiable

(V ∩W ) ∪ {¬¬Z ,Z} is satisfiable

V ⊆ (V ∩W ) ∪ {¬¬Z ,Z} is satisfiable

AM/VvO (CS @ UIBK) lecture 3 12/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Compactness

Theorem (Propositional Compactness)

if every finite subset of set S of propositional formulas is satisfiable then S is
satisfiable

Proof

• let C = {W | every finite subset of W is satisfiable}
• S ∈ C and C is propositional consistency property:

1 if A ∈W and ¬A ∈W then W /∈ C

2 if ⊥ ∈W or ¬> ∈W then W /∈ C

3 suppose ¬¬Z ∈W ∈ C

and let V be finite subset of W ∪ {Z}

(V ∩W ) ∪ {¬¬Z} is finite subset of W and thus satisfiable

(V ∩W ) ∪ {¬¬Z ,Z} is satisfiable

V ⊆ (V ∩W ) ∪ {¬¬Z ,Z} is satisfiable

AM/VvO (CS @ UIBK) lecture 3 12/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Compactness

Theorem (Propositional Compactness)

if every finite subset of set S of propositional formulas is satisfiable then S is
satisfiable

Proof

• let C = {W | every finite subset of W is satisfiable}
• S ∈ C and C is propositional consistency property:

1 if A ∈W and ¬A ∈W then W /∈ C

2 if ⊥ ∈W or ¬> ∈W then W /∈ C

3 suppose ¬¬Z ∈W ∈ C

and let V be finite subset of W ∪ {Z}

(V ∩W ) ∪ {¬¬Z} is finite subset of W and thus satisfiable

(V ∩W ) ∪ {¬¬Z ,Z} is satisfiable

V ⊆ (V ∩W ) ∪ {¬¬Z ,Z} is satisfiable

AM/VvO (CS @ UIBK) lecture 3 12/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Compactness

Theorem (Propositional Compactness)

if every finite subset of set S of propositional formulas is satisfiable then S is
satisfiable

Proof

• let C = {W | every finite subset of W is satisfiable}
• S ∈ C and C is propositional consistency property:

1 if A ∈W and ¬A ∈W then W /∈ C

2 if ⊥ ∈W or ¬> ∈W then W /∈ C

3 suppose ¬¬Z ∈W ∈ C

and let V be finite subset of W ∪ {Z}

(V ∩W ) ∪ {¬¬Z} is finite subset of W and thus satisfiable

(V ∩W ) ∪ {¬¬Z ,Z} is satisfiable

V ⊆ (V ∩W ) ∪ {¬¬Z ,Z} is satisfiable

AM/VvO (CS @ UIBK) lecture 3 12/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Compactness

Theorem (Propositional Compactness)

if every finite subset of set S of propositional formulas is satisfiable then S is
satisfiable

Proof

• let C = {W | every finite subset of W is satisfiable}
• S ∈ C and C is propositional consistency property:

1 if A ∈W and ¬A ∈W then W /∈ C

2 if ⊥ ∈W or ¬> ∈W then W /∈ C

3 suppose ¬¬Z ∈W ∈ C and let V be finite subset of W ∪ {Z}

(V ∩W ) ∪ {¬¬Z} is finite subset of W and thus satisfiable

(V ∩W ) ∪ {¬¬Z ,Z} is satisfiable

V ⊆ (V ∩W ) ∪ {¬¬Z ,Z} is satisfiable

AM/VvO (CS @ UIBK) lecture 3 12/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Compactness

Theorem (Propositional Compactness)

if every finite subset of set S of propositional formulas is satisfiable then S is
satisfiable

Proof

• let C = {W | every finite subset of W is satisfiable}
• S ∈ C and C is propositional consistency property:

1 if A ∈W and ¬A ∈W then W /∈ C

2 if ⊥ ∈W or ¬> ∈W then W /∈ C

3 suppose ¬¬Z ∈W ∈ C and let V be finite subset of W ∪ {Z}

(V ∩W ) ∪ {¬¬Z} is finite subset of W and thus satisfiable

(V ∩W ) ∪ {¬¬Z ,Z} is satisfiable

V ⊆ (V ∩W ) ∪ {¬¬Z ,Z} is satisfiable

AM/VvO (CS @ UIBK) lecture 3 12/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Compactness

Theorem (Propositional Compactness)

if every finite subset of set S of propositional formulas is satisfiable then S is
satisfiable

Proof

• let C = {W | every finite subset of W is satisfiable}
• S ∈ C and C is propositional consistency property:

1 if A ∈W and ¬A ∈W then W /∈ C

2 if ⊥ ∈W or ¬> ∈W then W /∈ C

3 suppose ¬¬Z ∈W ∈ C and let V be finite subset of W ∪ {Z}

(V ∩W ) ∪ {¬¬Z} is finite subset of W and thus satisfiable

(V ∩W ) ∪ {¬¬Z ,Z} is satisfiable

V ⊆ (V ∩W ) ∪ {¬¬Z ,Z} is satisfiable

AM/VvO (CS @ UIBK) lecture 3 12/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Compactness

Theorem (Propositional Compactness)

if every finite subset of set S of propositional formulas is satisfiable then S is
satisfiable

Proof

• let C = {W | every finite subset of W is satisfiable}
• S ∈ C and C is propositional consistency property:

1 if A ∈W and ¬A ∈W then W /∈ C

2 if ⊥ ∈W or ¬> ∈W then W /∈ C

3 suppose ¬¬Z ∈W ∈ C and let V be finite subset of W ∪ {Z}

(V ∩W ) ∪ {¬¬Z} is finite subset of W and thus satisfiable

(V ∩W ) ∪ {¬¬Z ,Z} is satisfiable

V ⊆ (V ∩W ) ∪ {¬¬Z ,Z} is satisfiable

AM/VvO (CS @ UIBK) lecture 3 12/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Compactness

Proof (cont’d)

• let C = {W | every finite subset of W is satisfiable}
• S ∈ C and C is propositional consistency property:

4 suppose α ∈W ∈ C

and let V be finite subset of W ∪ {α1, α2}

(V ∩W ) ∪ {α} is finite subset of W and thus satisfiable

(V ∩W ) ∪ {α, α1, α2} is satisfiable

V ⊆ (V ∩W ) ∪ {α, α1, α2} is satisfiable

5 suppose β ∈W ∈ C

suppose neither W ∪ {β1} nor W ∪ {β2} belongs to C

∃ finite unsatisfiable subsets F1 ⊆W ∪ {β1} and F2 ⊆W ∪ {β2}

(F1 ∪ F2) ∩W ∪ {β} is finite subset of W and thus satisfiable

(F1 ∪ F2) ∩W ∪ {β, β1} or (F1 ∪ F2) ∩W ∪ {β, β2} is satisfiable

F1 ⊆ (F1 ∪ F2)∩W ∪ {β, β1} and F2 ⊆ (F1 ∪ F2)∩W ∪ {β, β2} �

AM/VvO (CS @ UIBK) lecture 3 13/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Compactness

Proof (cont’d)

• let C = {W | every finite subset of W is satisfiable}
• S ∈ C and C is propositional consistency property:

4 suppose α ∈W ∈ C and let V be finite subset of W ∪ {α1, α2}

(V ∩W ) ∪ {α} is finite subset of W and thus satisfiable

(V ∩W ) ∪ {α, α1, α2} is satisfiable

V ⊆ (V ∩W ) ∪ {α, α1, α2} is satisfiable

5 suppose β ∈W ∈ C

suppose neither W ∪ {β1} nor W ∪ {β2} belongs to C

∃ finite unsatisfiable subsets F1 ⊆W ∪ {β1} and F2 ⊆W ∪ {β2}

(F1 ∪ F2) ∩W ∪ {β} is finite subset of W and thus satisfiable

(F1 ∪ F2) ∩W ∪ {β, β1} or (F1 ∪ F2) ∩W ∪ {β, β2} is satisfiable

F1 ⊆ (F1 ∪ F2)∩W ∪ {β, β1} and F2 ⊆ (F1 ∪ F2)∩W ∪ {β, β2} �

AM/VvO (CS @ UIBK) lecture 3 13/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Compactness

Proof (cont’d)

• let C = {W | every finite subset of W is satisfiable}
• S ∈ C and C is propositional consistency property:

4 suppose α ∈W ∈ C and let V be finite subset of W ∪ {α1, α2}

(V ∩W ) ∪ {α} is finite subset of W and thus satisfiable

(V ∩W ) ∪ {α, α1, α2} is satisfiable

V ⊆ (V ∩W ) ∪ {α, α1, α2} is satisfiable

5 suppose β ∈W ∈ C

suppose neither W ∪ {β1} nor W ∪ {β2} belongs to C

∃ finite unsatisfiable subsets F1 ⊆W ∪ {β1} and F2 ⊆W ∪ {β2}

(F1 ∪ F2) ∩W ∪ {β} is finite subset of W and thus satisfiable

(F1 ∪ F2) ∩W ∪ {β, β1} or (F1 ∪ F2) ∩W ∪ {β, β2} is satisfiable

F1 ⊆ (F1 ∪ F2)∩W ∪ {β, β1} and F2 ⊆ (F1 ∪ F2)∩W ∪ {β, β2} �

AM/VvO (CS @ UIBK) lecture 3 13/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Compactness

Proof (cont’d)

• let C = {W | every finite subset of W is satisfiable}
• S ∈ C and C is propositional consistency property:

4 suppose α ∈W ∈ C and let V be finite subset of W ∪ {α1, α2}

(V ∩W ) ∪ {α} is finite subset of W and thus satisfiable

(V ∩W ) ∪ {α, α1, α2} is satisfiable

V ⊆ (V ∩W ) ∪ {α, α1, α2} is satisfiable

5 suppose β ∈W ∈ C

suppose neither W ∪ {β1} nor W ∪ {β2} belongs to C

∃ finite unsatisfiable subsets F1 ⊆W ∪ {β1} and F2 ⊆W ∪ {β2}

(F1 ∪ F2) ∩W ∪ {β} is finite subset of W and thus satisfiable

(F1 ∪ F2) ∩W ∪ {β, β1} or (F1 ∪ F2) ∩W ∪ {β, β2} is satisfiable

F1 ⊆ (F1 ∪ F2)∩W ∪ {β, β1} and F2 ⊆ (F1 ∪ F2)∩W ∪ {β, β2} �

AM/VvO (CS @ UIBK) lecture 3 13/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Compactness

Proof (cont’d)

• let C = {W | every finite subset of W is satisfiable}
• S ∈ C and C is propositional consistency property:

4 suppose α ∈W ∈ C and let V be finite subset of W ∪ {α1, α2}

(V ∩W ) ∪ {α} is finite subset of W and thus satisfiable

(V ∩W ) ∪ {α, α1, α2} is satisfiable

V ⊆ (V ∩W ) ∪ {α, α1, α2} is satisfiable

5 suppose β ∈W ∈ C

suppose neither W ∪ {β1} nor W ∪ {β2} belongs to C

∃ finite unsatisfiable subsets F1 ⊆W ∪ {β1} and F2 ⊆W ∪ {β2}

(F1 ∪ F2) ∩W ∪ {β} is finite subset of W and thus satisfiable

(F1 ∪ F2) ∩W ∪ {β, β1} or (F1 ∪ F2) ∩W ∪ {β, β2} is satisfiable

F1 ⊆ (F1 ∪ F2)∩W ∪ {β, β1} and F2 ⊆ (F1 ∪ F2)∩W ∪ {β, β2} �

AM/VvO (CS @ UIBK) lecture 3 13/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Compactness

Proof (cont’d)

• let C = {W | every finite subset of W is satisfiable}
• S ∈ C and C is propositional consistency property:

4 suppose α ∈W ∈ C and let V be finite subset of W ∪ {α1, α2}

(V ∩W ) ∪ {α} is finite subset of W and thus satisfiable

(V ∩W ) ∪ {α, α1, α2} is satisfiable

V ⊆ (V ∩W ) ∪ {α, α1, α2} is satisfiable

5 suppose β ∈W ∈ C

suppose neither W ∪ {β1} nor W ∪ {β2} belongs to C

∃ finite unsatisfiable subsets F1 ⊆W ∪ {β1} and F2 ⊆W ∪ {β2}

(F1 ∪ F2) ∩W ∪ {β} is finite subset of W and thus satisfiable

(F1 ∪ F2) ∩W ∪ {β, β1} or (F1 ∪ F2) ∩W ∪ {β, β2} is satisfiable

F1 ⊆ (F1 ∪ F2)∩W ∪ {β, β1} and F2 ⊆ (F1 ∪ F2)∩W ∪ {β, β2} �

AM/VvO (CS @ UIBK) lecture 3 13/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Compactness

Proof (cont’d)

• let C = {W | every finite subset of W is satisfiable}
• S ∈ C and C is propositional consistency property:

4 suppose α ∈W ∈ C and let V be finite subset of W ∪ {α1, α2}

(V ∩W ) ∪ {α} is finite subset of W and thus satisfiable

(V ∩W ) ∪ {α, α1, α2} is satisfiable

V ⊆ (V ∩W ) ∪ {α, α1, α2} is satisfiable

5 suppose β ∈W ∈ C

suppose neither W ∪ {β1} nor W ∪ {β2} belongs to C

∃ finite unsatisfiable subsets F1 ⊆W ∪ {β1} and F2 ⊆W ∪ {β2}

(F1 ∪ F2) ∩W ∪ {β} is finite subset of W and thus satisfiable

(F1 ∪ F2) ∩W ∪ {β, β1} or (F1 ∪ F2) ∩W ∪ {β, β2} is satisfiable

F1 ⊆ (F1 ∪ F2)∩W ∪ {β, β1} and F2 ⊆ (F1 ∪ F2)∩W ∪ {β, β2} �

AM/VvO (CS @ UIBK) lecture 3 13/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Compactness

Proof (cont’d)

• let C = {W | every finite subset of W is satisfiable}
• S ∈ C and C is propositional consistency property:

4 suppose α ∈W ∈ C and let V be finite subset of W ∪ {α1, α2}

(V ∩W ) ∪ {α} is finite subset of W and thus satisfiable

(V ∩W ) ∪ {α, α1, α2} is satisfiable

V ⊆ (V ∩W ) ∪ {α, α1, α2} is satisfiable

5 suppose β ∈W ∈ C

suppose neither W ∪ {β1} nor W ∪ {β2} belongs to C

∃ finite unsatisfiable subsets F1 ⊆W ∪ {β1} and F2 ⊆W ∪ {β2}

(F1 ∪ F2) ∩W ∪ {β} is finite subset of W and thus satisfiable

(F1 ∪ F2) ∩W ∪ {β, β1} or (F1 ∪ F2) ∩W ∪ {β, β2} is satisfiable

F1 ⊆ (F1 ∪ F2)∩W ∪ {β, β1} and F2 ⊆ (F1 ∪ F2)∩W ∪ {β, β2} �

AM/VvO (CS @ UIBK) lecture 3 13/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Compactness

Proof (cont’d)

• let C = {W | every finite subset of W is satisfiable}
• S ∈ C and C is propositional consistency property:

4 suppose α ∈W ∈ C and let V be finite subset of W ∪ {α1, α2}

(V ∩W ) ∪ {α} is finite subset of W and thus satisfiable

(V ∩W ) ∪ {α, α1, α2} is satisfiable

V ⊆ (V ∩W ) ∪ {α, α1, α2} is satisfiable

5 suppose β ∈W ∈ C

suppose neither W ∪ {β1} nor W ∪ {β2} belongs to C

∃ finite unsatisfiable subsets F1 ⊆W ∪ {β1} and F2 ⊆W ∪ {β2}

(F1 ∪ F2) ∩W ∪ {β} is finite subset of W

and thus satisfiable

(F1 ∪ F2) ∩W ∪ {β, β1} or (F1 ∪ F2) ∩W ∪ {β, β2} is satisfiable

F1 ⊆ (F1 ∪ F2)∩W ∪ {β, β1} and F2 ⊆ (F1 ∪ F2)∩W ∪ {β, β2} �

AM/VvO (CS @ UIBK) lecture 3 13/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Compactness

Proof (cont’d)

• let C = {W | every finite subset of W is satisfiable}
• S ∈ C and C is propositional consistency property:

4 suppose α ∈W ∈ C and let V be finite subset of W ∪ {α1, α2}

(V ∩W ) ∪ {α} is finite subset of W and thus satisfiable

(V ∩W ) ∪ {α, α1, α2} is satisfiable

V ⊆ (V ∩W ) ∪ {α, α1, α2} is satisfiable

5 suppose β ∈W ∈ C

suppose neither W ∪ {β1} nor W ∪ {β2} belongs to C

∃ finite unsatisfiable subsets F1 ⊆W ∪ {β1} and F2 ⊆W ∪ {β2}

(F1 ∪ F2) ∩W ∪ {β} is finite subset of W and thus satisfiable

(F1 ∪ F2) ∩W ∪ {β, β1} or (F1 ∪ F2) ∩W ∪ {β, β2} is satisfiable

F1 ⊆ (F1 ∪ F2)∩W ∪ {β, β1} and F2 ⊆ (F1 ∪ F2)∩W ∪ {β, β2} �

AM/VvO (CS @ UIBK) lecture 3 13/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Compactness

Proof (cont’d)

• let C = {W | every finite subset of W is satisfiable}
• S ∈ C and C is propositional consistency property:

4 suppose α ∈W ∈ C and let V be finite subset of W ∪ {α1, α2}

(V ∩W ) ∪ {α} is finite subset of W and thus satisfiable

(V ∩W ) ∪ {α, α1, α2} is satisfiable

V ⊆ (V ∩W ) ∪ {α, α1, α2} is satisfiable

5 suppose β ∈W ∈ C

suppose neither W ∪ {β1} nor W ∪ {β2} belongs to C

∃ finite unsatisfiable subsets F1 ⊆W ∪ {β1} and F2 ⊆W ∪ {β2}

(F1 ∪ F2) ∩W ∪ {β} is finite subset of W and thus satisfiable

(F1 ∪ F2) ∩W ∪ {β, β1} or (F1 ∪ F2) ∩W ∪ {β, β2} is satisfiable

F1 ⊆ (F1 ∪ F2)∩W ∪ {β, β1} and F2 ⊆ (F1 ∪ F2)∩W ∪ {β, β2} �

AM/VvO (CS @ UIBK) lecture 3 13/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Compactness

Proof (cont’d)

• let C = {W | every finite subset of W is satisfiable}
• S ∈ C and C is propositional consistency property:

4 suppose α ∈W ∈ C and let V be finite subset of W ∪ {α1, α2}

(V ∩W ) ∪ {α} is finite subset of W and thus satisfiable

(V ∩W ) ∪ {α, α1, α2} is satisfiable

V ⊆ (V ∩W ) ∪ {α, α1, α2} is satisfiable

5 suppose β ∈W ∈ C

suppose neither W ∪ {β1} nor W ∪ {β2} belongs to C

∃ finite unsatisfiable subsets F1 ⊆W ∪ {β1} and F2 ⊆W ∪ {β2}

(F1 ∪ F2) ∩W ∪ {β} is finite subset of W and thus satisfiable

(F1 ∪ F2) ∩W ∪ {β, β1} or (F1 ∪ F2) ∩W ∪ {β, β2} is satisfiable

F1 ⊆ (F1 ∪ F2)∩W ∪ {β, β1} and F2 ⊆ (F1 ∪ F2)∩W ∪ {β, β2}

�

AM/VvO (CS @ UIBK) lecture 3 13/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Compactness

Proof (cont’d)

• let C = {W | every finite subset of W is satisfiable}
• S ∈ C and C is propositional consistency property:

4 suppose α ∈W ∈ C and let V be finite subset of W ∪ {α1, α2}

(V ∩W ) ∪ {α} is finite subset of W and thus satisfiable

(V ∩W ) ∪ {α, α1, α2} is satisfiable

V ⊆ (V ∩W ) ∪ {α, α1, α2} is satisfiable

5 suppose β ∈W ∈ C

suppose neither W ∪ {β1} nor W ∪ {β2} belongs to C

∃ finite unsatisfiable subsets F1 ⊆W ∪ {β1} and F2 ⊆W ∪ {β2}

(F1 ∪ F2) ∩W ∪ {β} is finite subset of W and thus satisfiable

(F1 ∪ F2) ∩W ∪ {β, β1} or (F1 ∪ F2) ∩W ∪ {β, β2} is satisfiable

F1 ⊆ (F1 ∪ F2)∩W ∪ {β, β1} and F2 ⊆ (F1 ∪ F2)∩W ∪ {β, β2} �

AM/VvO (CS @ UIBK) lecture 3 13/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Outline

Summary of Previous Lecture

Model Existence Theorem

Compactness

Interpolation

Semantic Tableaux

Hilbert Systems

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 3 14/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Definition

formula Z is interpolant for implication X ⊃ Y if every propositional letter of Z
occurs in both X and Y , and X ⊃ Z and Z ⊃ Y are both tautologies

Examples

• P ∨ Q is interpolant for (P ∨ (Q ∧ R)) ⊃ (P ∨ ¬¬Q)

• ⊥ is interpolant for (P ∧ ¬P) ⊃ Q

Theorem (Craig Interpolation)

every tautology X ⊃ Y has interpolant

AM/VvO (CS @ UIBK) lecture 3 15/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Definition

formula Z is interpolant for implication X ⊃ Y if every propositional letter of Z
occurs in both X and Y , and X ⊃ Z and Z ⊃ Y are both tautologies

Examples

• P ∨ Q is interpolant for (P ∨ (Q ∧ R)) ⊃ (P ∨ ¬¬Q)

• ⊥ is interpolant for (P ∧ ¬P) ⊃ Q

Theorem (Craig Interpolation)

every tautology X ⊃ Y has interpolant

AM/VvO (CS @ UIBK) lecture 3 15/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Definition

formula Z is interpolant for implication X ⊃ Y if every propositional letter of Z
occurs in both X and Y , and X ⊃ Z and Z ⊃ Y are both tautologies

Examples

• P ∨ Q is interpolant for (P ∨ (Q ∧ R)) ⊃ (P ∨ ¬¬Q)

• ⊥ is interpolant for (P ∧ ¬P) ⊃ Q

Theorem (Craig Interpolation)

every tautology X ⊃ Y has interpolant

AM/VvO (CS @ UIBK) lecture 3 15/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Definition

formula Z is interpolant for implication X ⊃ Y if every propositional letter of Z
occurs in both X and Y , and X ⊃ Z and Z ⊃ Y are both tautologies

Examples

• P ∨ Q is interpolant for (P ∨ (Q ∧ R)) ⊃ (P ∨ ¬¬Q)

• ⊥ is interpolant for (P ∧ ¬P) ⊃ Q

Theorem (Craig Interpolation)

every tautology X ⊃ Y has interpolant

AM/VvO (CS @ UIBK) lecture 3 15/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Notation

〈S〉 denotes conjunction of all members of finite set S of formulas

Definition

finite set S of formulas is Craig consistent if 〈S1〉 ⊃ ¬〈S2〉 has no interpolant for
some partition S1 ] S2 of S

Lemma

collection of all Craig consistent sets is propositional consistency property

Proof

• let C be collection of all Craig consistent sets

• let S ∈ C so 〈S1〉 ⊃ ¬〈S2〉 has no interpolant for some partition S1 ] S2 of S

(terminology: S1 ] S2 has no interpolant)

AM/VvO (CS @ UIBK) lecture 3 16/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Notation

〈S〉 denotes conjunction of all members of finite set S of formulas

Definition

finite set S of formulas is Craig consistent if 〈S1〉 ⊃ ¬〈S2〉 has no interpolant for
some partition S1 ] S2 of S

Lemma

collection of all Craig consistent sets is propositional consistency property

Proof

• let C be collection of all Craig consistent sets

• let S ∈ C so 〈S1〉 ⊃ ¬〈S2〉 has no interpolant for some partition S1 ] S2 of S

(terminology: S1 ] S2 has no interpolant)

AM/VvO (CS @ UIBK) lecture 3 16/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Notation

〈S〉 denotes conjunction of all members of finite set S of formulas

Definition

finite set S of formulas is Craig consistent if 〈S1〉 ⊃ ¬〈S2〉 has no interpolant for
some partition S1 ] S2 of S

Lemma

collection of all Craig consistent sets is propositional consistency property

Proof

• let C be collection of all Craig consistent sets

• let S ∈ C so 〈S1〉 ⊃ ¬〈S2〉 has no interpolant for some partition S1 ] S2 of S

(terminology: S1 ] S2 has no interpolant)

AM/VvO (CS @ UIBK) lecture 3 16/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Notation

〈S〉 denotes conjunction of all members of finite set S of formulas

Definition

finite set S of formulas is Craig consistent if 〈S1〉 ⊃ ¬〈S2〉 has no interpolant for
some partition S1 ] S2 of S

Lemma

collection of all Craig consistent sets is propositional consistency property

Proof

• let C be collection of all Craig consistent sets

• let S ∈ C so 〈S1〉 ⊃ ¬〈S2〉 has no interpolant for some partition S1 ] S2 of S

(terminology: S1 ] S2 has no interpolant)

AM/VvO (CS @ UIBK) lecture 3 16/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Notation

〈S〉 denotes conjunction of all members of finite set S of formulas

Definition

finite set S of formulas is Craig consistent if 〈S1〉 ⊃ ¬〈S2〉 has no interpolant for
some partition S1 ] S2 of S

Lemma

collection of all Craig consistent sets is propositional consistency property

Proof

• let C be collection of all Craig consistent sets

• let S ∈ C so 〈S1〉 ⊃ ¬〈S2〉 has no interpolant for some partition S1 ] S2 of S

(terminology: S1 ] S2 has no interpolant)

AM/VvO (CS @ UIBK) lecture 3 16/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Notation

〈S〉 denotes conjunction of all members of finite set S of formulas

Definition

finite set S of formulas is Craig consistent if 〈S1〉 ⊃ ¬〈S2〉 has no interpolant for
some partition S1 ] S2 of S

Lemma

collection of all Craig consistent sets is propositional consistency property

Proof

• let C be collection of all Craig consistent sets

• let S ∈ C so 〈S1〉 ⊃ ¬〈S2〉 has no interpolant for some partition S1 ] S2 of S
(terminology: S1 ] S2 has no interpolant)

AM/VvO (CS @ UIBK) lecture 3 16/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

1 suppose A,¬A ∈ S

• if A,¬A ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if A,¬A ∈ S2 then > is interpolant of S1 ] S2 �
• if A ∈ S1 and ¬A ∈ S2 then A is interpolant of S1 ] S2 �
• if ¬A ∈ S1 and A ∈ S2 then ¬A is interpolant of S1 ] S2 �

2 suppose ⊥ ∈ S

• if ⊥ ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if ⊥ ∈ S2 then > is interpolant of S1 ] S2 �

suppose ¬> ∈ S

• if ¬> ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if ¬> ∈ S2 then > is interpolant of S1 ] S2 �

AM/VvO (CS @ UIBK) lecture 3 17/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

1 suppose A,¬A ∈ S

• if A,¬A ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if A,¬A ∈ S2 then > is interpolant of S1 ] S2 �
• if A ∈ S1 and ¬A ∈ S2 then A is interpolant of S1 ] S2 �
• if ¬A ∈ S1 and A ∈ S2 then ¬A is interpolant of S1 ] S2 �

2 suppose ⊥ ∈ S

• if ⊥ ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if ⊥ ∈ S2 then > is interpolant of S1 ] S2 �

suppose ¬> ∈ S

• if ¬> ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if ¬> ∈ S2 then > is interpolant of S1 ] S2 �

AM/VvO (CS @ UIBK) lecture 3 17/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

1 suppose A,¬A ∈ S

• if A,¬A ∈ S1 then ⊥ is interpolant of S1 ] S2 �

• if A,¬A ∈ S2 then > is interpolant of S1 ] S2 �
• if A ∈ S1 and ¬A ∈ S2 then A is interpolant of S1 ] S2 �
• if ¬A ∈ S1 and A ∈ S2 then ¬A is interpolant of S1 ] S2 �

2 suppose ⊥ ∈ S

• if ⊥ ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if ⊥ ∈ S2 then > is interpolant of S1 ] S2 �

suppose ¬> ∈ S

• if ¬> ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if ¬> ∈ S2 then > is interpolant of S1 ] S2 �

AM/VvO (CS @ UIBK) lecture 3 17/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

1 suppose A,¬A ∈ S

• if A,¬A ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if A,¬A ∈ S2 then > is interpolant of S1 ] S2 �

• if A ∈ S1 and ¬A ∈ S2 then A is interpolant of S1 ] S2 �
• if ¬A ∈ S1 and A ∈ S2 then ¬A is interpolant of S1 ] S2 �

2 suppose ⊥ ∈ S

• if ⊥ ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if ⊥ ∈ S2 then > is interpolant of S1 ] S2 �

suppose ¬> ∈ S

• if ¬> ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if ¬> ∈ S2 then > is interpolant of S1 ] S2 �

AM/VvO (CS @ UIBK) lecture 3 17/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

1 suppose A,¬A ∈ S

• if A,¬A ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if A,¬A ∈ S2 then > is interpolant of S1 ] S2 �
• if A ∈ S1 and ¬A ∈ S2 then A is interpolant of S1 ] S2 �

• if ¬A ∈ S1 and A ∈ S2 then ¬A is interpolant of S1 ] S2 �

2 suppose ⊥ ∈ S

• if ⊥ ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if ⊥ ∈ S2 then > is interpolant of S1 ] S2 �

suppose ¬> ∈ S

• if ¬> ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if ¬> ∈ S2 then > is interpolant of S1 ] S2 �

AM/VvO (CS @ UIBK) lecture 3 17/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

1 suppose A,¬A ∈ S

• if A,¬A ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if A,¬A ∈ S2 then > is interpolant of S1 ] S2 �
• if A ∈ S1 and ¬A ∈ S2 then A is interpolant of S1 ] S2 �
• if ¬A ∈ S1 and A ∈ S2 then ¬A is interpolant of S1 ] S2 �

2 suppose ⊥ ∈ S

• if ⊥ ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if ⊥ ∈ S2 then > is interpolant of S1 ] S2 �

suppose ¬> ∈ S

• if ¬> ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if ¬> ∈ S2 then > is interpolant of S1 ] S2 �

AM/VvO (CS @ UIBK) lecture 3 17/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

1 suppose A,¬A ∈ S

• if A,¬A ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if A,¬A ∈ S2 then > is interpolant of S1 ] S2 �
• if A ∈ S1 and ¬A ∈ S2 then A is interpolant of S1 ] S2 �
• if ¬A ∈ S1 and A ∈ S2 then ¬A is interpolant of S1 ] S2 �

2 suppose ⊥ ∈ S

• if ⊥ ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if ⊥ ∈ S2 then > is interpolant of S1 ] S2 �

suppose ¬> ∈ S

• if ¬> ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if ¬> ∈ S2 then > is interpolant of S1 ] S2 �

AM/VvO (CS @ UIBK) lecture 3 17/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

1 suppose A,¬A ∈ S

• if A,¬A ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if A,¬A ∈ S2 then > is interpolant of S1 ] S2 �
• if A ∈ S1 and ¬A ∈ S2 then A is interpolant of S1 ] S2 �
• if ¬A ∈ S1 and A ∈ S2 then ¬A is interpolant of S1 ] S2 �

2 suppose ⊥ ∈ S

• if ⊥ ∈ S1 then ⊥ is interpolant of S1 ] S2 �

• if ⊥ ∈ S2 then > is interpolant of S1 ] S2 �
suppose ¬> ∈ S

• if ¬> ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if ¬> ∈ S2 then > is interpolant of S1 ] S2 �

AM/VvO (CS @ UIBK) lecture 3 17/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

1 suppose A,¬A ∈ S

• if A,¬A ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if A,¬A ∈ S2 then > is interpolant of S1 ] S2 �
• if A ∈ S1 and ¬A ∈ S2 then A is interpolant of S1 ] S2 �
• if ¬A ∈ S1 and A ∈ S2 then ¬A is interpolant of S1 ] S2 �

2 suppose ⊥ ∈ S

• if ⊥ ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if ⊥ ∈ S2 then > is interpolant of S1 ] S2 �

suppose ¬> ∈ S

• if ¬> ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if ¬> ∈ S2 then > is interpolant of S1 ] S2 �

AM/VvO (CS @ UIBK) lecture 3 17/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

1 suppose A,¬A ∈ S

• if A,¬A ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if A,¬A ∈ S2 then > is interpolant of S1 ] S2 �
• if A ∈ S1 and ¬A ∈ S2 then A is interpolant of S1 ] S2 �
• if ¬A ∈ S1 and A ∈ S2 then ¬A is interpolant of S1 ] S2 �

2 suppose ⊥ ∈ S

• if ⊥ ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if ⊥ ∈ S2 then > is interpolant of S1 ] S2 �

suppose ¬> ∈ S

• if ¬> ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if ¬> ∈ S2 then > is interpolant of S1 ] S2 �

AM/VvO (CS @ UIBK) lecture 3 17/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

1 suppose A,¬A ∈ S

• if A,¬A ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if A,¬A ∈ S2 then > is interpolant of S1 ] S2 �
• if A ∈ S1 and ¬A ∈ S2 then A is interpolant of S1 ] S2 �
• if ¬A ∈ S1 and A ∈ S2 then ¬A is interpolant of S1 ] S2 �

2 suppose ⊥ ∈ S

• if ⊥ ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if ⊥ ∈ S2 then > is interpolant of S1 ] S2 �

suppose ¬> ∈ S

• if ¬> ∈ S1 then ⊥ is interpolant of S1 ] S2 �

• if ¬> ∈ S2 then > is interpolant of S1 ] S2 �

AM/VvO (CS @ UIBK) lecture 3 17/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

1 suppose A,¬A ∈ S

• if A,¬A ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if A,¬A ∈ S2 then > is interpolant of S1 ] S2 �
• if A ∈ S1 and ¬A ∈ S2 then A is interpolant of S1 ] S2 �
• if ¬A ∈ S1 and A ∈ S2 then ¬A is interpolant of S1 ] S2 �

2 suppose ⊥ ∈ S

• if ⊥ ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if ⊥ ∈ S2 then > is interpolant of S1 ] S2 �

suppose ¬> ∈ S

• if ¬> ∈ S1 then ⊥ is interpolant of S1 ] S2 �
• if ¬> ∈ S2 then > is interpolant of S1 ] S2 �

AM/VvO (CS @ UIBK) lecture 3 17/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

3 suppose ¬¬Z ∈ S

• if ¬¬Z ∈ S1 then (S1 ∪ {Z}) ] S2 has no interpolant

• if ¬¬Z ∈ S2 then S1 ] (S2 ∪ {Z}) has no interpolant

hence S ∪ {Z} ∈ C

4 suppose α ∈ S

• if α ∈ S1 then (S1 ∪ {α1, α2}) ] S2 has no interpolant

• if α ∈ S2 then S1 ] (S2 ∪ {α1, α2}) has no interpolant

hence S ∪ {α1, α2} ∈ C

AM/VvO (CS @ UIBK) lecture 3 18/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

3 suppose ¬¬Z ∈ S

• if ¬¬Z ∈ S1 then (S1 ∪ {Z}) ] S2 has no interpolant

• if ¬¬Z ∈ S2 then S1 ] (S2 ∪ {Z}) has no interpolant

hence S ∪ {Z} ∈ C

4 suppose α ∈ S

• if α ∈ S1 then (S1 ∪ {α1, α2}) ] S2 has no interpolant

• if α ∈ S2 then S1 ] (S2 ∪ {α1, α2}) has no interpolant

hence S ∪ {α1, α2} ∈ C

AM/VvO (CS @ UIBK) lecture 3 18/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

3 suppose ¬¬Z ∈ S

• if ¬¬Z ∈ S1 then (S1 ∪ {Z}) ] S2 has no interpolant

• if ¬¬Z ∈ S2 then S1 ] (S2 ∪ {Z}) has no interpolant

hence S ∪ {Z} ∈ C

4 suppose α ∈ S

• if α ∈ S1 then (S1 ∪ {α1, α2}) ] S2 has no interpolant

• if α ∈ S2 then S1 ] (S2 ∪ {α1, α2}) has no interpolant

hence S ∪ {α1, α2} ∈ C

AM/VvO (CS @ UIBK) lecture 3 18/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

3 suppose ¬¬Z ∈ S

• if ¬¬Z ∈ S1 then (S1 ∪ {Z}) ] S2 has no interpolant

• if ¬¬Z ∈ S2 then S1 ] (S2 ∪ {Z}) has no interpolant

hence S ∪ {Z} ∈ C

4 suppose α ∈ S

• if α ∈ S1 then (S1 ∪ {α1, α2}) ] S2 has no interpolant

• if α ∈ S2 then S1 ] (S2 ∪ {α1, α2}) has no interpolant

hence S ∪ {α1, α2} ∈ C

AM/VvO (CS @ UIBK) lecture 3 18/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

3 suppose ¬¬Z ∈ S

• if ¬¬Z ∈ S1 then (S1 ∪ {Z}) ] S2 has no interpolant

• if ¬¬Z ∈ S2 then S1 ] (S2 ∪ {Z}) has no interpolant

hence S ∪ {Z} ∈ C

4 suppose α ∈ S

• if α ∈ S1 then (S1 ∪ {α1, α2}) ] S2 has no interpolant

• if α ∈ S2 then S1 ] (S2 ∪ {α1, α2}) has no interpolant

hence S ∪ {α1, α2} ∈ C

AM/VvO (CS @ UIBK) lecture 3 18/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

3 suppose ¬¬Z ∈ S

• if ¬¬Z ∈ S1 then (S1 ∪ {Z}) ] S2 has no interpolant

• if ¬¬Z ∈ S2 then S1 ] (S2 ∪ {Z}) has no interpolant

hence S ∪ {Z} ∈ C

4 suppose α ∈ S

• if α ∈ S1 then (S1 ∪ {α1, α2}) ] S2 has no interpolant

• if α ∈ S2 then S1 ] (S2 ∪ {α1, α2}) has no interpolant

hence S ∪ {α1, α2} ∈ C

AM/VvO (CS @ UIBK) lecture 3 18/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

3 suppose ¬¬Z ∈ S

• if ¬¬Z ∈ S1 then (S1 ∪ {Z}) ] S2 has no interpolant

• if ¬¬Z ∈ S2 then S1 ] (S2 ∪ {Z}) has no interpolant

hence S ∪ {Z} ∈ C

4 suppose α ∈ S

• if α ∈ S1 then (S1 ∪ {α1, α2}) ] S2 has no interpolant

• if α ∈ S2 then S1 ] (S2 ∪ {α1, α2}) has no interpolant

hence S ∪ {α1, α2} ∈ C

AM/VvO (CS @ UIBK) lecture 3 18/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

3 suppose ¬¬Z ∈ S

• if ¬¬Z ∈ S1 then (S1 ∪ {Z}) ] S2 has no interpolant

• if ¬¬Z ∈ S2 then S1 ] (S2 ∪ {Z}) has no interpolant

hence S ∪ {Z} ∈ C

4 suppose α ∈ S

• if α ∈ S1 then (S1 ∪ {α1, α2}) ] S2 has no interpolant

• if α ∈ S2 then S1 ] (S2 ∪ {α1, α2}) has no interpolant

hence S ∪ {α1, α2} ∈ C

AM/VvO (CS @ UIBK) lecture 3 18/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

5 suppose β ∈ S

and neither S ∪ {β1} nor S ∪ {β2} belongs to C
• if β ∈ S1 then 〈S1〉 ≡ 〈S1 ∪ {β1}〉 ∨ 〈S1 ∪ {β2}〉

(S1 ∪ {β1}) ] S2 is partition of S ∪ {β1} and thus has interpolant γ1

(S1 ∪ {β2}) ] S2 is partition of S ∪ {β2} and thus has interpolant γ2

〈S1 ∪ {β1}〉 ⊃ γ1 γ1 ⊃ ¬〈S2〉
〈S1 ∪ {β2}〉 ⊃ γ2 γ2 ⊃ ¬〈S2〉

hence γ1 ∨ γ2 is interpolant of S1 ] S2 �

〈S1〉 ≡ 〈S1 ∪ {β1}〉 ∨ 〈S1 ∪ {β2}〉 ⊃ γ1 ∨ γ2 ⊃ ¬〈S2〉

AM/VvO (CS @ UIBK) lecture 3 19/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

5 suppose β ∈ S and neither S ∪ {β1} nor S ∪ {β2} belongs to C

• if β ∈ S1 then 〈S1〉 ≡ 〈S1 ∪ {β1}〉 ∨ 〈S1 ∪ {β2}〉

(S1 ∪ {β1}) ] S2 is partition of S ∪ {β1} and thus has interpolant γ1

(S1 ∪ {β2}) ] S2 is partition of S ∪ {β2} and thus has interpolant γ2

〈S1 ∪ {β1}〉 ⊃ γ1 γ1 ⊃ ¬〈S2〉
〈S1 ∪ {β2}〉 ⊃ γ2 γ2 ⊃ ¬〈S2〉

hence γ1 ∨ γ2 is interpolant of S1 ] S2 �

〈S1〉 ≡ 〈S1 ∪ {β1}〉 ∨ 〈S1 ∪ {β2}〉 ⊃ γ1 ∨ γ2 ⊃ ¬〈S2〉

AM/VvO (CS @ UIBK) lecture 3 19/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

5 suppose β ∈ S and neither S ∪ {β1} nor S ∪ {β2} belongs to C
• if β ∈ S1 then 〈S1〉 ≡ 〈S1 ∪ {β1}〉 ∨ 〈S1 ∪ {β2}〉

(S1 ∪ {β1}) ] S2 is partition of S ∪ {β1} and thus has interpolant γ1

(S1 ∪ {β2}) ] S2 is partition of S ∪ {β2} and thus has interpolant γ2

〈S1 ∪ {β1}〉 ⊃ γ1 γ1 ⊃ ¬〈S2〉
〈S1 ∪ {β2}〉 ⊃ γ2 γ2 ⊃ ¬〈S2〉

hence γ1 ∨ γ2 is interpolant of S1 ] S2 �

〈S1〉 ≡ 〈S1 ∪ {β1}〉 ∨ 〈S1 ∪ {β2}〉 ⊃ γ1 ∨ γ2 ⊃ ¬〈S2〉

AM/VvO (CS @ UIBK) lecture 3 19/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

5 suppose β ∈ S and neither S ∪ {β1} nor S ∪ {β2} belongs to C
• if β ∈ S1 then 〈S1〉 ≡ 〈S1 ∪ {β1}〉 ∨ 〈S1 ∪ {β2}〉

(S1 ∪ {β1}) ] S2 is partition of S ∪ {β1} and thus has interpolant γ1

(S1 ∪ {β2}) ] S2 is partition of S ∪ {β2} and thus has interpolant γ2

〈S1 ∪ {β1}〉 ⊃ γ1 γ1 ⊃ ¬〈S2〉
〈S1 ∪ {β2}〉 ⊃ γ2 γ2 ⊃ ¬〈S2〉

hence γ1 ∨ γ2 is interpolant of S1 ] S2 �

〈S1〉 ≡ 〈S1 ∪ {β1}〉 ∨ 〈S1 ∪ {β2}〉 ⊃ γ1 ∨ γ2 ⊃ ¬〈S2〉

AM/VvO (CS @ UIBK) lecture 3 19/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

5 suppose β ∈ S and neither S ∪ {β1} nor S ∪ {β2} belongs to C
• if β ∈ S1 then 〈S1〉 ≡ 〈S1 ∪ {β1}〉 ∨ 〈S1 ∪ {β2}〉

(S1 ∪ {β1}) ] S2 is partition of S ∪ {β1} and thus has interpolant γ1

(S1 ∪ {β2}) ] S2 is partition of S ∪ {β2} and thus has interpolant γ2

〈S1 ∪ {β1}〉 ⊃ γ1 γ1 ⊃ ¬〈S2〉
〈S1 ∪ {β2}〉 ⊃ γ2 γ2 ⊃ ¬〈S2〉

hence γ1 ∨ γ2 is interpolant of S1 ] S2 �

〈S1〉 ≡ 〈S1 ∪ {β1}〉 ∨ 〈S1 ∪ {β2}〉 ⊃ γ1 ∨ γ2 ⊃ ¬〈S2〉

AM/VvO (CS @ UIBK) lecture 3 19/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

5 suppose β ∈ S and neither S ∪ {β1} nor S ∪ {β2} belongs to C
• if β ∈ S1 then 〈S1〉 ≡ 〈S1 ∪ {β1}〉 ∨ 〈S1 ∪ {β2}〉

(S1 ∪ {β1}) ] S2 is partition of S ∪ {β1} and thus has interpolant γ1

(S1 ∪ {β2}) ] S2 is partition of S ∪ {β2} and thus has interpolant γ2

〈S1 ∪ {β1}〉 ⊃ γ1 γ1 ⊃ ¬〈S2〉
〈S1 ∪ {β2}〉 ⊃ γ2 γ2 ⊃ ¬〈S2〉

hence γ1 ∨ γ2 is interpolant of S1 ] S2 �

〈S1〉 ≡ 〈S1 ∪ {β1}〉 ∨ 〈S1 ∪ {β2}〉 ⊃ γ1 ∨ γ2 ⊃ ¬〈S2〉

AM/VvO (CS @ UIBK) lecture 3 19/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

5 suppose β ∈ S and neither S ∪ {β1} nor S ∪ {β2} belongs to C
• if β ∈ S1 then 〈S1〉 ≡ 〈S1 ∪ {β1}〉 ∨ 〈S1 ∪ {β2}〉

(S1 ∪ {β1}) ] S2 is partition of S ∪ {β1} and thus has interpolant γ1

(S1 ∪ {β2}) ] S2 is partition of S ∪ {β2} and thus has interpolant γ2

〈S1 ∪ {β1}〉 ⊃ γ1 γ1 ⊃ ¬〈S2〉
〈S1 ∪ {β2}〉 ⊃ γ2 γ2 ⊃ ¬〈S2〉

hence γ1 ∨ γ2 is interpolant of S1 ] S2

�

〈S1〉 ≡ 〈S1 ∪ {β1}〉 ∨ 〈S1 ∪ {β2}〉 ⊃ γ1 ∨ γ2 ⊃ ¬〈S2〉

AM/VvO (CS @ UIBK) lecture 3 19/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

5 suppose β ∈ S and neither S ∪ {β1} nor S ∪ {β2} belongs to C
• if β ∈ S1 then 〈S1〉 ≡ 〈S1 ∪ {β1}〉 ∨ 〈S1 ∪ {β2}〉

(S1 ∪ {β1}) ] S2 is partition of S ∪ {β1} and thus has interpolant γ1

(S1 ∪ {β2}) ] S2 is partition of S ∪ {β2} and thus has interpolant γ2

〈S1 ∪ {β1}〉 ⊃ γ1 γ1 ⊃ ¬〈S2〉
〈S1 ∪ {β2}〉 ⊃ γ2 γ2 ⊃ ¬〈S2〉

hence γ1 ∨ γ2 is interpolant of S1 ] S2

�

〈S1〉 ≡ 〈S1 ∪ {β1}〉 ∨ 〈S1 ∪ {β2}〉 ⊃ γ1 ∨ γ2 ⊃ ¬〈S2〉

AM/VvO (CS @ UIBK) lecture 3 19/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

5 suppose β ∈ S and neither S ∪ {β1} nor S ∪ {β2} belongs to C
• if β ∈ S1 then 〈S1〉 ≡ 〈S1 ∪ {β1}〉 ∨ 〈S1 ∪ {β2}〉

(S1 ∪ {β1}) ] S2 is partition of S ∪ {β1} and thus has interpolant γ1

(S1 ∪ {β2}) ] S2 is partition of S ∪ {β2} and thus has interpolant γ2

〈S1 ∪ {β1}〉 ⊃ γ1 γ1 ⊃ ¬〈S2〉
〈S1 ∪ {β2}〉 ⊃ γ2 γ2 ⊃ ¬〈S2〉

hence γ1 ∨ γ2 is interpolant of S1 ] S2 �

〈S1〉 ≡ 〈S1 ∪ {β1}〉 ∨ 〈S1 ∪ {β2}〉 ⊃ γ1 ∨ γ2 ⊃ ¬〈S2〉

AM/VvO (CS @ UIBK) lecture 3 19/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

5 suppose β ∈ S and neither S ∪ {β1} nor S ∪ {β2} belongs to C
• if β ∈ S2 then ¬〈S2〉 ≡ ¬〈S2 ∪ {β1}〉 ∧ ¬〈S2 ∪ {β2}〉

S1 ] (S2 ∪ {β1}) is partition of S ∪ {β1} and thus has interpolant δ1

S1 ] (S2 ∪ {β2}) is partition of S ∪ {β2} and thus has interpolant δ2

〈S1〉 ⊃ δ1 δ1 ⊃ ¬〈S2 ∪ {β1}〉
〈S1〉 ⊃ δ2 δ2 ⊃ ¬〈S2 ∪ {β2}〉

hence δ1 ∧ δ2 is interpolant of S1 ] S2 �

〈S1〉 ⊃ δ1 ∧ δ2 ⊃ ¬〈S2 ∪ {β1}〉 ∧ ¬〈S2 ∪ {β2}〉 ≡ ¬〈S2〉

C is propositional consistency property

AM/VvO (CS @ UIBK) lecture 3 20/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

5 suppose β ∈ S and neither S ∪ {β1} nor S ∪ {β2} belongs to C
• if β ∈ S2 then ¬〈S2〉 ≡ ¬〈S2 ∪ {β1}〉 ∧ ¬〈S2 ∪ {β2}〉

S1 ] (S2 ∪ {β1}) is partition of S ∪ {β1} and thus has interpolant δ1

S1 ] (S2 ∪ {β2}) is partition of S ∪ {β2} and thus has interpolant δ2

〈S1〉 ⊃ δ1 δ1 ⊃ ¬〈S2 ∪ {β1}〉
〈S1〉 ⊃ δ2 δ2 ⊃ ¬〈S2 ∪ {β2}〉

hence δ1 ∧ δ2 is interpolant of S1 ] S2 �

〈S1〉 ⊃ δ1 ∧ δ2 ⊃ ¬〈S2 ∪ {β1}〉 ∧ ¬〈S2 ∪ {β2}〉 ≡ ¬〈S2〉

C is propositional consistency property

AM/VvO (CS @ UIBK) lecture 3 20/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

5 suppose β ∈ S and neither S ∪ {β1} nor S ∪ {β2} belongs to C
• if β ∈ S2 then ¬〈S2〉 ≡ ¬〈S2 ∪ {β1}〉 ∧ ¬〈S2 ∪ {β2}〉

S1 ] (S2 ∪ {β1}) is partition of S ∪ {β1} and thus has interpolant δ1

S1 ] (S2 ∪ {β2}) is partition of S ∪ {β2} and thus has interpolant δ2

〈S1〉 ⊃ δ1 δ1 ⊃ ¬〈S2 ∪ {β1}〉
〈S1〉 ⊃ δ2 δ2 ⊃ ¬〈S2 ∪ {β2}〉

hence δ1 ∧ δ2 is interpolant of S1 ] S2 �

〈S1〉 ⊃ δ1 ∧ δ2 ⊃ ¬〈S2 ∪ {β1}〉 ∧ ¬〈S2 ∪ {β2}〉 ≡ ¬〈S2〉

C is propositional consistency property

AM/VvO (CS @ UIBK) lecture 3 20/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

5 suppose β ∈ S and neither S ∪ {β1} nor S ∪ {β2} belongs to C
• if β ∈ S2 then ¬〈S2〉 ≡ ¬〈S2 ∪ {β1}〉 ∧ ¬〈S2 ∪ {β2}〉

S1 ] (S2 ∪ {β1}) is partition of S ∪ {β1} and thus has interpolant δ1

S1 ] (S2 ∪ {β2}) is partition of S ∪ {β2} and thus has interpolant δ2

〈S1〉 ⊃ δ1 δ1 ⊃ ¬〈S2 ∪ {β1}〉
〈S1〉 ⊃ δ2 δ2 ⊃ ¬〈S2 ∪ {β2}〉

hence δ1 ∧ δ2 is interpolant of S1 ] S2 �

〈S1〉 ⊃ δ1 ∧ δ2 ⊃ ¬〈S2 ∪ {β1}〉 ∧ ¬〈S2 ∪ {β2}〉 ≡ ¬〈S2〉

C is propositional consistency property

AM/VvO (CS @ UIBK) lecture 3 20/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

5 suppose β ∈ S and neither S ∪ {β1} nor S ∪ {β2} belongs to C
• if β ∈ S2 then ¬〈S2〉 ≡ ¬〈S2 ∪ {β1}〉 ∧ ¬〈S2 ∪ {β2}〉

S1 ] (S2 ∪ {β1}) is partition of S ∪ {β1} and thus has interpolant δ1

S1 ] (S2 ∪ {β2}) is partition of S ∪ {β2} and thus has interpolant δ2

〈S1〉 ⊃ δ1 δ1 ⊃ ¬〈S2 ∪ {β1}〉
〈S1〉 ⊃ δ2 δ2 ⊃ ¬〈S2 ∪ {β2}〉

hence δ1 ∧ δ2 is interpolant of S1 ] S2

�

〈S1〉 ⊃ δ1 ∧ δ2 ⊃ ¬〈S2 ∪ {β1}〉 ∧ ¬〈S2 ∪ {β2}〉 ≡ ¬〈S2〉

C is propositional consistency property

AM/VvO (CS @ UIBK) lecture 3 20/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

5 suppose β ∈ S and neither S ∪ {β1} nor S ∪ {β2} belongs to C
• if β ∈ S2 then ¬〈S2〉 ≡ ¬〈S2 ∪ {β1}〉 ∧ ¬〈S2 ∪ {β2}〉

S1 ] (S2 ∪ {β1}) is partition of S ∪ {β1} and thus has interpolant δ1

S1 ] (S2 ∪ {β2}) is partition of S ∪ {β2} and thus has interpolant δ2

〈S1〉 ⊃ δ1 δ1 ⊃ ¬〈S2 ∪ {β1}〉
〈S1〉 ⊃ δ2 δ2 ⊃ ¬〈S2 ∪ {β2}〉

hence δ1 ∧ δ2 is interpolant of S1 ] S2

�

〈S1〉 ⊃ δ1 ∧ δ2 ⊃ ¬〈S2 ∪ {β1}〉 ∧ ¬〈S2 ∪ {β2}〉 ≡ ¬〈S2〉

C is propositional consistency property

AM/VvO (CS @ UIBK) lecture 3 20/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

5 suppose β ∈ S and neither S ∪ {β1} nor S ∪ {β2} belongs to C
• if β ∈ S2 then ¬〈S2〉 ≡ ¬〈S2 ∪ {β1}〉 ∧ ¬〈S2 ∪ {β2}〉

S1 ] (S2 ∪ {β1}) is partition of S ∪ {β1} and thus has interpolant δ1

S1 ] (S2 ∪ {β2}) is partition of S ∪ {β2} and thus has interpolant δ2

〈S1〉 ⊃ δ1 δ1 ⊃ ¬〈S2 ∪ {β1}〉
〈S1〉 ⊃ δ2 δ2 ⊃ ¬〈S2 ∪ {β2}〉

hence δ1 ∧ δ2 is interpolant of S1 ] S2 �

〈S1〉 ⊃ δ1 ∧ δ2 ⊃ ¬〈S2 ∪ {β1}〉 ∧ ¬〈S2 ∪ {β2}〉 ≡ ¬〈S2〉

C is propositional consistency property

AM/VvO (CS @ UIBK) lecture 3 20/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (cont’d)

given S ∈ C and partition S1 ] S2 of S without interpolant

5 suppose β ∈ S and neither S ∪ {β1} nor S ∪ {β2} belongs to C
• if β ∈ S2 then ¬〈S2〉 ≡ ¬〈S2 ∪ {β1}〉 ∧ ¬〈S2 ∪ {β2}〉

S1 ] (S2 ∪ {β1}) is partition of S ∪ {β1} and thus has interpolant δ1

S1 ] (S2 ∪ {β2}) is partition of S ∪ {β2} and thus has interpolant δ2

〈S1〉 ⊃ δ1 δ1 ⊃ ¬〈S2 ∪ {β1}〉
〈S1〉 ⊃ δ2 δ2 ⊃ ¬〈S2 ∪ {β2}〉

hence δ1 ∧ δ2 is interpolant of S1 ] S2 �

〈S1〉 ⊃ δ1 ∧ δ2 ⊃ ¬〈S2 ∪ {β1}〉 ∧ ¬〈S2 ∪ {β2}〉 ≡ ¬〈S2〉

C is propositional consistency property

AM/VvO (CS @ UIBK) lecture 3 20/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (of Craig Interpolation Theorem)

• suppose X ⊃ Y has no interpolant

• let S = {X ,¬Y } with partition S1 = {X} and S2 = {¬Y }
• interpolant for 〈S1〉 ⊃ ¬〈S2〉 is interpolant for X ⊃ Y

and hence does not exist

• S is Craig consistent

• S is satisfiable by Model Existence Theorem and previous lemma

• hence X ⊃ Y is no tautology

AM/VvO (CS @ UIBK) lecture 3 21/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (of Craig Interpolation Theorem)

• suppose X ⊃ Y has no interpolant

• let S = {X ,¬Y } with partition S1 = {X} and S2 = {¬Y }

• interpolant for 〈S1〉 ⊃ ¬〈S2〉 is interpolant for X ⊃ Y

and hence does not exist

• S is Craig consistent

• S is satisfiable by Model Existence Theorem and previous lemma

• hence X ⊃ Y is no tautology

AM/VvO (CS @ UIBK) lecture 3 21/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (of Craig Interpolation Theorem)

• suppose X ⊃ Y has no interpolant

• let S = {X ,¬Y } with partition S1 = {X} and S2 = {¬Y }
• interpolant for 〈S1〉 ⊃ ¬〈S2〉 is interpolant for X ⊃ Y

and hence does not exist

• S is Craig consistent

• S is satisfiable by Model Existence Theorem and previous lemma

• hence X ⊃ Y is no tautology

AM/VvO (CS @ UIBK) lecture 3 21/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (of Craig Interpolation Theorem)

• suppose X ⊃ Y has no interpolant

• let S = {X ,¬Y } with partition S1 = {X} and S2 = {¬Y }
• interpolant for 〈S1〉 ⊃ ¬〈S2〉 is interpolant for X ⊃ Y

and hence does not exist

• S is Craig consistent

• S is satisfiable by Model Existence Theorem and previous lemma

• hence X ⊃ Y is no tautology

AM/VvO (CS @ UIBK) lecture 3 21/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (of Craig Interpolation Theorem)

• suppose X ⊃ Y has no interpolant

• let S = {X ,¬Y } with partition S1 = {X} and S2 = {¬Y }
• interpolant for 〈S1〉 ⊃ ¬〈S2〉 is interpolant for X ⊃ Y

and hence does not exist

• S is Craig consistent

• S is satisfiable by Model Existence Theorem and previous lemma

• hence X ⊃ Y is no tautology

AM/VvO (CS @ UIBK) lecture 3 21/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (of Craig Interpolation Theorem)

• suppose X ⊃ Y has no interpolant

• let S = {X ,¬Y } with partition S1 = {X} and S2 = {¬Y }
• interpolant for 〈S1〉 ⊃ ¬〈S2〉 is interpolant for X ⊃ Y

and hence does not exist

• S is Craig consistent

• S is satisfiable by Model Existence Theorem and previous lemma

• hence X ⊃ Y is no tautology

AM/VvO (CS @ UIBK) lecture 3 21/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Proof (of Craig Interpolation Theorem)

• suppose X ⊃ Y has no interpolant

• let S = {X ,¬Y } with partition S1 = {X} and S2 = {¬Y }
• interpolant for 〈S1〉 ⊃ ¬〈S2〉 is interpolant for X ⊃ Y

and hence does not exist

• S is Craig consistent

• S is satisfiable by Model Existence Theorem and previous lemma

• hence X ⊃ Y is no tautology

AM/VvO (CS @ UIBK) lecture 3 21/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Haskell Curry
(1900 – 1982)

William Craig
(1918 – 2016)

Jacques Herbrand
(1908 – 1931)

David Hilbert
(1862 – 1943)

Jaakko Hintikka
(1929 – 2015)

William Howard
(1926 – )

Saul Kripke
(1940 – )

Leopold Löwenheim
(1878 – 1957)

Thoralf Skolem
(1887 – 1963)

AM/VvO (CS @ UIBK) lecture 3 22/54

https://en.wikipedia.org/wiki/Haskell_Curry
https://en.wikipedia.org/wiki/William_Craig_(philosopher)
https://en.wikipedia.org/wiki/Jacques_Herbrand
https://en.wikipedia.org/wiki/David_Hilbert
https://en.wikipedia.org/wiki/Jaakko_Hintikka
https://en.wikipedia.org/wiki/William_Alvin_Howard
https://en.wikipedia.org/wiki/Saul_Kripke
https://en.wikipedia.org/wiki/Leopold_Loewenheim
https://en.wikipedia.org/wiki/Thoralf_Skolem
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Interpolation

Haskell Curry
(1900 – 1982)

William Craig
(1918 – 2016)

Jacques Herbrand
(1908 – 1931)

David Hilbert
(1862 – 1943)

Jaakko Hintikka
(1929 – 2015)

William Howard
(1926 – )

Saul Kripke
(1940 – )

Leopold Löwenheim
(1878 – 1957)

Thoralf Skolem
(1887 – 1963)

AM/VvO (CS @ UIBK) lecture 3 22/54

https://en.wikipedia.org/wiki/Haskell_Curry
https://en.wikipedia.org/wiki/William_Craig_(philosopher)
https://en.wikipedia.org/wiki/Jacques_Herbrand
https://en.wikipedia.org/wiki/David_Hilbert
https://en.wikipedia.org/wiki/Jaakko_Hintikka
https://en.wikipedia.org/wiki/William_Alvin_Howard
https://en.wikipedia.org/wiki/Saul_Kripke
https://en.wikipedia.org/wiki/Leopold_Loewenheim
https://en.wikipedia.org/wiki/Thoralf_Skolem
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness

Outline

Summary of Previous Lecture

Model Existence Theorem

Compactness

Interpolation

Semantic Tableaux
Completeness
Completeness with Restrictions
Propositional Consequence

Hilbert Systems

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 3 23/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness

Definition

finite set S of propositional formulas is tableau consistent if there is no closed
tableau for S

Lemma

collection of all tableau consistent sets is propositional consistency property

Proof

• properties 1, 2, 3: . . . blackboard . . .

• properties 4, 5: next two slides

AM/VvO (CS @ UIBK) lecture 3 24/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness

Definition

finite set S of propositional formulas is tableau consistent if there is no closed
tableau for S

Lemma

collection of all tableau consistent sets is propositional consistency property

Proof

• properties 1, 2, 3: . . . blackboard . . .

• properties 4, 5: next two slides

AM/VvO (CS @ UIBK) lecture 3 24/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness

Definition

finite set S of propositional formulas is tableau consistent if there is no closed
tableau for S

Lemma

collection of all tableau consistent sets is propositional consistency property

Proof

• properties 1, 2, 3: . . . blackboard . . .

• properties 4, 5: next two slides

AM/VvO (CS @ UIBK) lecture 3 24/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness

Definition

finite set S of propositional formulas is tableau consistent if there is no closed
tableau for S

Lemma

collection of all tableau consistent sets is propositional consistency property

Proof

• properties 1, 2, 3: . . . blackboard . . .

• properties 4, 5: next two slides

AM/VvO (CS @ UIBK) lecture 3 24/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness

Proof (cont’d)

• property 4: let α ∈ S and consider S ∪ {α1, α2}

suppose S ∪ {α1, α2} is not tableau consistent

let S = {α,X1, . . . ,Xn}

closed tableau for S ∪ {α1, α2}:

α

X1

...

Xn

α1

apply α-rule

α2

apply α-rule

rest of tableau

AM/VvO (CS @ UIBK) lecture 3 25/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness

Proof (cont’d)

• property 4: let α ∈ S and consider S ∪ {α1, α2}

suppose S ∪ {α1, α2} is not tableau consistent

let S = {α,X1, . . . ,Xn}

closed tableau for S ∪ {α1, α2}:

α

X1

...

Xn

α1

apply α-rule

α2

apply α-rule

rest of tableau

AM/VvO (CS @ UIBK) lecture 3 25/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness

Proof (cont’d)

• property 4: let α ∈ S and consider S ∪ {α1, α2}

suppose S ∪ {α1, α2} is not tableau consistent

let S = {α,X1, . . . ,Xn}

closed tableau for S ∪ {α1, α2}:

α

X1

...

Xn

α1

apply α-rule

α2

apply α-rule

rest of tableau

AM/VvO (CS @ UIBK) lecture 3 25/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness

Proof (cont’d)

• property 4: let α ∈ S and consider S ∪ {α1, α2}

suppose S ∪ {α1, α2} is not tableau consistent

let S = {α,X1, . . . ,Xn}

closed tableau for S ∪ {α1, α2}:

α

X1

...

Xn

α1

apply α-rule

α2

apply α-rule

rest of tableau

AM/VvO (CS @ UIBK) lecture 3 25/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness

Proof (cont’d)

• property 4: let α ∈ S and consider S ∪ {α1, α2}

suppose S ∪ {α1, α2} is not tableau consistent

let S = {α,X1, . . . ,Xn}

closed tableau for S :

α

X1

...

Xn

α1 apply α-rule

α2 apply α-rule

rest of tableau

AM/VvO (CS @ UIBK) lecture 3 25/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness

Proof (cont’d)

• property 5: let β ∈ S and consider S ∪ {β1} and S ∪ {β2}

suppose neither S ∪ {β1} nor S ∪ {β2} is tableau consistent

let S = {β,X1, . . . ,Xn}

closed tableaux for S ∪ {β1} and S ∪ {β2}:

β β

X1 X1

...
...

Xn Xn

β1 β2
T1 T2

can be merged into closed tableau for S

AM/VvO (CS @ UIBK) lecture 3 26/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness

Proof (cont’d)

• property 5: let β ∈ S and consider S ∪ {β1} and S ∪ {β2}

suppose neither S ∪ {β1} nor S ∪ {β2} is tableau consistent

let S = {β,X1, . . . ,Xn}

closed tableaux for S ∪ {β1} and S ∪ {β2}:

β β

X1 X1

...
...

Xn Xn

β1 β2
T1 T2

can be merged into closed tableau for S

AM/VvO (CS @ UIBK) lecture 3 26/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness

Proof (cont’d)

• property 5: let β ∈ S and consider S ∪ {β1} and S ∪ {β2}

suppose neither S ∪ {β1} nor S ∪ {β2} is tableau consistent

let S = {β,X1, . . . ,Xn}

closed tableaux for S ∪ {β1} and S ∪ {β2}:

β β

X1 X1

...
...

Xn Xn

β1 β2
T1 T2

can be merged into closed tableau for S

AM/VvO (CS @ UIBK) lecture 3 26/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness

Proof (cont’d)

• property 5: let β ∈ S and consider S ∪ {β1} and S ∪ {β2}

suppose neither S ∪ {β1} nor S ∪ {β2} is tableau consistent

let S = {β,X1, . . . ,Xn}

closed tableaux for S ∪ {β1} and S ∪ {β2}:

β β

X1 X1

...
...

Xn Xn

β1 β2
T1 T2

can be merged into closed tableau for S

AM/VvO (CS @ UIBK) lecture 3 26/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness

Proof (cont’d)

• property 5: let β ∈ S and consider S ∪ {β1} and S ∪ {β2}

suppose neither S ∪ {β1} nor S ∪ {β2} is tableau consistent

let S = {β,X1, . . . ,Xn}

closed tableaux for S ∪ {β1} and S ∪ {β2}:

β β

X1 X1

...
...

Xn Xn

β1 β2
T1 T2

can be merged into closed tableau for S

AM/VvO (CS @ UIBK) lecture 3 26/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness

Theorem (Completeness for Propositional Tableaux)

every tautology has tableau proof

Proof

• suppose formula X does not have tableau proof

• there is no closed tableau for {¬X}
• {¬X} is tableau consistent

• {¬X} is satisfiable by Propositional Model Existence Theorem

• X cannot be tautology

AM/VvO (CS @ UIBK) lecture 3 27/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness

Theorem (Completeness for Propositional Tableaux)

every tautology has tableau proof

Proof

• suppose formula X does not have tableau proof

• there is no closed tableau for {¬X}
• {¬X} is tableau consistent

• {¬X} is satisfiable by Propositional Model Existence Theorem

• X cannot be tautology

AM/VvO (CS @ UIBK) lecture 3 27/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness

Theorem (Completeness for Propositional Tableaux)

every tautology has tableau proof

Proof

• suppose formula X does not have tableau proof

• there is no closed tableau for {¬X}

• {¬X} is tableau consistent

• {¬X} is satisfiable by Propositional Model Existence Theorem

• X cannot be tautology

AM/VvO (CS @ UIBK) lecture 3 27/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness

Theorem (Completeness for Propositional Tableaux)

every tautology has tableau proof

Proof

• suppose formula X does not have tableau proof

• there is no closed tableau for {¬X}
• {¬X} is tableau consistent

• {¬X} is satisfiable by Propositional Model Existence Theorem

• X cannot be tautology

AM/VvO (CS @ UIBK) lecture 3 27/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness

Theorem (Completeness for Propositional Tableaux)

every tautology has tableau proof

Proof

• suppose formula X does not have tableau proof

• there is no closed tableau for {¬X}
• {¬X} is tableau consistent

• {¬X} is satisfiable by Propositional Model Existence Theorem

• X cannot be tautology

AM/VvO (CS @ UIBK) lecture 3 27/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness

Theorem (Completeness for Propositional Tableaux)

every tautology has tableau proof

Proof

• suppose formula X does not have tableau proof

• there is no closed tableau for {¬X}
• {¬X} is tableau consistent

• {¬X} is satisfiable by Propositional Model Existence Theorem

• X cannot be tautology

AM/VvO (CS @ UIBK) lecture 3 27/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness with Restrictions

Outline

Summary of Previous Lecture

Model Existence Theorem

Compactness

Interpolation

Semantic Tableaux
Completeness
Completeness with Restrictions
Propositional Consequence

Hilbert Systems

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 3 28/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness with Restrictions

Theorem

for every tautology X

strict tableau construction process for {¬X} that is continued until every
non-literal formula occurrence on every branch has been used must terminate
and do so in atomically closed tableau

Proof

• termination follows by considering
∑ ∑

{r(Y ) | Y is unused formula}

• suppose final tableau T is not atomically closed

• let θ be branch of T that is not atomically closed

• if ¬¬Z occurs on θ then Z occurs on θ

if α occurs on θ then α1 and α2 occur on θ

if β occurs on θ then β1 or β2 occurs on θ

• set of formulas S occurring on θ is Hintikka set

and thus satisfiable

• ¬X ∈ S

and thus v(¬X ) = t for some valuation v �

AM/VvO (CS @ UIBK) lecture 3 29/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness with Restrictions

Theorem

for every tautology X

strict tableau construction process for {¬X} that is continued until every
non-literal formula occurrence on every branch has been used must terminate
and do so in atomically closed tableau

Proof

• termination follows by considering
∑ ∑

{r(Y ) | Y is unused formula}

• suppose final tableau T is not atomically closed

• let θ be branch of T that is not atomically closed

• if ¬¬Z occurs on θ then Z occurs on θ

if α occurs on θ then α1 and α2 occur on θ

if β occurs on θ then β1 or β2 occurs on θ

• set of formulas S occurring on θ is Hintikka set

and thus satisfiable

• ¬X ∈ S

and thus v(¬X ) = t for some valuation v �

AM/VvO (CS @ UIBK) lecture 3 29/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness with Restrictions

Theorem

for every tautology X

strict tableau construction process for {¬X} that is continued until every
non-literal formula occurrence on every branch has been used must terminate
and do so in atomically closed tableau

Proof

• termination follows by considering
∑ ∑

{r(Y ) | Y is unused formula}
• suppose final tableau T is not atomically closed

• let θ be branch of T that is not atomically closed

• if ¬¬Z occurs on θ then Z occurs on θ

if α occurs on θ then α1 and α2 occur on θ

if β occurs on θ then β1 or β2 occurs on θ

• set of formulas S occurring on θ is Hintikka set

and thus satisfiable

• ¬X ∈ S

and thus v(¬X ) = t for some valuation v �

AM/VvO (CS @ UIBK) lecture 3 29/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness with Restrictions

Theorem

for every tautology X

strict tableau construction process for {¬X} that is continued until every
non-literal formula occurrence on every branch has been used must terminate
and do so in atomically closed tableau

Proof

• termination follows by considering
∑ ∑

{r(Y ) | Y is unused formula}
• suppose final tableau T is not atomically closed

• let θ be branch of T that is not atomically closed

• if ¬¬Z occurs on θ then Z occurs on θ

if α occurs on θ then α1 and α2 occur on θ

if β occurs on θ then β1 or β2 occurs on θ

• set of formulas S occurring on θ is Hintikka set

and thus satisfiable

• ¬X ∈ S

and thus v(¬X ) = t for some valuation v �

AM/VvO (CS @ UIBK) lecture 3 29/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness with Restrictions

Theorem

for every tautology X

strict tableau construction process for {¬X} that is continued until every
non-literal formula occurrence on every branch has been used must terminate
and do so in atomically closed tableau

Proof

• termination follows by considering
∑ ∑

{r(Y ) | Y is unused formula}
• suppose final tableau T is not atomically closed

• let θ be branch of T that is not atomically closed

• if ¬¬Z occurs on θ then Z occurs on θ

if α occurs on θ then α1 and α2 occur on θ

if β occurs on θ then β1 or β2 occurs on θ

• set of formulas S occurring on θ is Hintikka set

and thus satisfiable

• ¬X ∈ S

and thus v(¬X ) = t for some valuation v �

AM/VvO (CS @ UIBK) lecture 3 29/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness with Restrictions

Theorem

for every tautology X

strict tableau construction process for {¬X} that is continued until every
non-literal formula occurrence on every branch has been used must terminate
and do so in atomically closed tableau

Proof

• termination follows by considering
∑ ∑

{r(Y ) | Y is unused formula}
• suppose final tableau T is not atomically closed

• let θ be branch of T that is not atomically closed

• if ¬¬Z occurs on θ then Z occurs on θ

if α occurs on θ then α1 and α2 occur on θ

if β occurs on θ then β1 or β2 occurs on θ

• set of formulas S occurring on θ is Hintikka set

and thus satisfiable

• ¬X ∈ S

and thus v(¬X ) = t for some valuation v �

AM/VvO (CS @ UIBK) lecture 3 29/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness with Restrictions

Theorem

for every tautology X

strict tableau construction process for {¬X} that is continued until every
non-literal formula occurrence on every branch has been used must terminate
and do so in atomically closed tableau

Proof

• termination follows by considering
∑ ∑

{r(Y ) | Y is unused formula}
• suppose final tableau T is not atomically closed

• let θ be branch of T that is not atomically closed

• if ¬¬Z occurs on θ then Z occurs on θ

if α occurs on θ then α1 and α2 occur on θ

if β occurs on θ then β1 or β2 occurs on θ

• set of formulas S occurring on θ is Hintikka set

and thus satisfiable

• ¬X ∈ S

and thus v(¬X ) = t for some valuation v �

AM/VvO (CS @ UIBK) lecture 3 29/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness with Restrictions

Theorem

for every tautology X

strict tableau construction process for {¬X} that is continued until every
non-literal formula occurrence on every branch has been used must terminate
and do so in atomically closed tableau

Proof

• termination follows by considering
∑ ∑

{r(Y ) | Y is unused formula}
• suppose final tableau T is not atomically closed

• let θ be branch of T that is not atomically closed

• if ¬¬Z occurs on θ then Z occurs on θ

if α occurs on θ then α1 and α2 occur on θ

if β occurs on θ then β1 or β2 occurs on θ

• set of formulas S occurring on θ is Hintikka set

and thus satisfiable

• ¬X ∈ S

and thus v(¬X ) = t for some valuation v �

AM/VvO (CS @ UIBK) lecture 3 29/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness with Restrictions

Theorem

for every tautology X

strict tableau construction process for {¬X} that is continued until every
non-literal formula occurrence on every branch has been used must terminate
and do so in atomically closed tableau

Proof

• termination follows by considering
∑ ∑

{r(Y ) | Y is unused formula}
• suppose final tableau T is not atomically closed

• let θ be branch of T that is not atomically closed

• if ¬¬Z occurs on θ then Z occurs on θ

if α occurs on θ then α1 and α2 occur on θ

if β occurs on θ then β1 or β2 occurs on θ

• set of formulas S occurring on θ is Hintikka set and thus satisfiable

• ¬X ∈ S

and thus v(¬X ) = t for some valuation v �

AM/VvO (CS @ UIBK) lecture 3 29/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness with Restrictions

Theorem

for every tautology X

strict tableau construction process for {¬X} that is continued until every
non-literal formula occurrence on every branch has been used must terminate
and do so in atomically closed tableau

Proof

• termination follows by considering
∑ ∑

{r(Y ) | Y is unused formula}
• suppose final tableau T is not atomically closed

• let θ be branch of T that is not atomically closed

• if ¬¬Z occurs on θ then Z occurs on θ

if α occurs on θ then α1 and α2 occur on θ

if β occurs on θ then β1 or β2 occurs on θ

• set of formulas S occurring on θ is Hintikka set and thus satisfiable

• ¬X ∈ S

and thus v(¬X ) = t for some valuation v �

AM/VvO (CS @ UIBK) lecture 3 29/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness with Restrictions

Theorem

for every tautology X

strict tableau construction process for {¬X} that is continued until every
non-literal formula occurrence on every branch has been used must terminate
and do so in atomically closed tableau

Proof

• termination follows by considering
∑ ∑

{r(Y ) | Y is unused formula}
• suppose final tableau T is not atomically closed

• let θ be branch of T that is not atomically closed

• if ¬¬Z occurs on θ then Z occurs on θ

if α occurs on θ then α1 and α2 occur on θ

if β occurs on θ then β1 or β2 occurs on θ

• set of formulas S occurring on θ is Hintikka set and thus satisfiable

• ¬X ∈ S and thus v(¬X ) = t for some valuation v

�

AM/VvO (CS @ UIBK) lecture 3 29/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness with Restrictions

Theorem

for every tautology X

strict tableau construction process for {¬X} that is continued until every
non-literal formula occurrence on every branch has been used must terminate
and do so in atomically closed tableau

Proof

• termination follows by considering
∑ ∑

{r(Y ) | Y is unused formula}
• suppose final tableau T is not atomically closed

• let θ be branch of T that is not atomically closed

• if ¬¬Z occurs on θ then Z occurs on θ

if α occurs on θ then α1 and α2 occur on θ

if β occurs on θ then β1 or β2 occurs on θ

• set of formulas S occurring on θ is Hintikka set and thus satisfiable

• ¬X ∈ S and thus v(¬X ) = t for some valuation v �

AM/VvO (CS @ UIBK) lecture 3 29/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Completeness with Restrictions

Corollary

tableau systems provide decision procedure for being tautology

AM/VvO (CS @ UIBK) lecture 3 30/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Propositional Consequence

Outline

Summary of Previous Lecture

Model Existence Theorem

Compactness

Interpolation

Semantic Tableaux
Completeness
Completeness with Restrictions
Propositional Consequence

Hilbert Systems

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 3 31/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Propositional Consequence

Definition

propositional formula X is propositional consequence of set S of propositional
formulas, denoted by S �p X , if X evaluates to t for every valuation v that maps
every member of S to t

Remark

X is tautology if and only if ∅ �p X (simplified notation: �p X )

Theorem

S �p X if and only if S0 �p X for some finite subset S0 of S

AM/VvO (CS @ UIBK) lecture 3 32/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Propositional Consequence

Definition

propositional formula X is propositional consequence of set S of propositional
formulas, denoted by S �p X , if X evaluates to t for every valuation v that maps
every member of S to t

Remark

X is tautology if and only if ∅ �p X (simplified notation: �p X )

Theorem

S �p X if and only if S0 �p X for some finite subset S0 of S

AM/VvO (CS @ UIBK) lecture 3 32/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Propositional Consequence

Definition

propositional formula X is propositional consequence of set S of propositional
formulas, denoted by S �p X , if X evaluates to t for every valuation v that maps
every member of S to t

Remark

X is tautology if and only if ∅ �p X (simplified notation: �p X )

Theorem

S �p X if and only if S0 �p X for some finite subset S0 of S

AM/VvO (CS @ UIBK) lecture 3 32/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Propositional Consequence

Theorem

S �p X if and only if S0 �p X for some finite subset S0 of S

Proof

⇒ if S �p X then S ∪ {¬X} is not satisfiable

some finite subset S ′ of S ∪ {¬X} is not satisfiable by compactness

let S0 = S ′ ∩ S

S0 is finite subset of S and S0 ∪ {¬X} is not satisfiable

S0 �p X

⇐ obvious

AM/VvO (CS @ UIBK) lecture 3 33/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Propositional Consequence

Theorem

S �p X if and only if S0 �p X for some finite subset S0 of S

Proof

⇒ if S �p X then S ∪ {¬X} is not satisfiable

some finite subset S ′ of S ∪ {¬X} is not satisfiable by compactness

let S0 = S ′ ∩ S

S0 is finite subset of S and S0 ∪ {¬X} is not satisfiable

S0 �p X

⇐ obvious

AM/VvO (CS @ UIBK) lecture 3 33/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Propositional Consequence

Theorem

S �p X if and only if S0 �p X for some finite subset S0 of S

Proof

⇒ if S �p X then S ∪ {¬X} is not satisfiable

some finite subset S ′ of S ∪ {¬X} is not satisfiable by compactness

let S0 = S ′ ∩ S

S0 is finite subset of S and S0 ∪ {¬X} is not satisfiable

S0 �p X

⇐ obvious

AM/VvO (CS @ UIBK) lecture 3 33/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Propositional Consequence

Theorem

S �p X if and only if S0 �p X for some finite subset S0 of S

Proof

⇒ if S �p X then S ∪ {¬X} is not satisfiable

some finite subset S ′ of S ∪ {¬X} is not satisfiable by compactness

let S0 = S ′ ∩ S

S0 is finite subset of S and S0 ∪ {¬X} is not satisfiable

S0 �p X

⇐ obvious

AM/VvO (CS @ UIBK) lecture 3 33/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Propositional Consequence

Theorem

S �p X if and only if S0 �p X for some finite subset S0 of S

Proof

⇒ if S �p X then S ∪ {¬X} is not satisfiable

some finite subset S ′ of S ∪ {¬X} is not satisfiable by compactness

let S0 = S ′ ∩ S

S0 is finite subset of S and S0 ∪ {¬X} is not satisfiable

S0 �p X

⇐ obvious

AM/VvO (CS @ UIBK) lecture 3 33/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Propositional Consequence

Theorem

S �p X if and only if S0 �p X for some finite subset S0 of S

Proof

⇒ if S �p X then S ∪ {¬X} is not satisfiable

some finite subset S ′ of S ∪ {¬X} is not satisfiable by compactness

let S0 = S ′ ∩ S

S0 is finite subset of S and S0 ∪ {¬X} is not satisfiable

S0 �p X

⇐ obvious

AM/VvO (CS @ UIBK) lecture 3 33/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Propositional Consequence

set of formulas S

Definitions

• S-introduction rule for tableaux: any member of S can be added to end of
any tableau branch

• S `pt X if there exists closed propositional tableau for {¬X}, allowing
S-introduction rule

Definitions

• tableau branch θ is S-satisfiable if union of S and set of propositional
formulas on θ is satisfiable

• tableau T is S-satisfiable if at least one branch of T is S-satisfiable

AM/VvO (CS @ UIBK) lecture 3 34/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Propositional Consequence

set of formulas S

Definitions

• S-introduction rule for tableaux: any member of S can be added to end of
any tableau branch

• S `pt X if there exists closed propositional tableau for {¬X}, allowing
S-introduction rule

Definitions

• tableau branch θ is S-satisfiable if union of S and set of propositional
formulas on θ is satisfiable

• tableau T is S-satisfiable if at least one branch of T is S-satisfiable

AM/VvO (CS @ UIBK) lecture 3 34/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Propositional Consequence

set of formulas S

Definitions

• S-introduction rule for tableaux: any member of S can be added to end of
any tableau branch

• S `pt X if there exists closed propositional tableau for {¬X}, allowing
S-introduction rule

Definitions

• tableau branch θ is S-satisfiable if union of S and set of propositional
formulas on θ is satisfiable

• tableau T is S-satisfiable if at least one branch of T is S-satisfiable

AM/VvO (CS @ UIBK) lecture 3 34/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Propositional Consequence

set of formulas S

Definitions

• S-introduction rule for tableaux: any member of S can be added to end of
any tableau branch

• S `pt X if there exists closed propositional tableau for {¬X}, allowing
S-introduction rule

Definitions

• tableau branch θ is S-satisfiable if union of S and set of propositional
formulas on θ is satisfiable

• tableau T is S-satisfiable if at least one branch of T is S-satisfiable

AM/VvO (CS @ UIBK) lecture 3 34/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Propositional Consequence

Lemmata

• any application of Tableau Expansion Rule as well as S-introduction rule to
S-satisfiable tableau yields another S-satisfiable tableau

• there are no closed S-satisfiable tableaux

Definition

S is X – tableau consistent if S `pt X does not hold

Lemmata

for each formula X

• collection of X – tableau consistent sets is propositional consistency property

• if S is X – tableau consistent then S ∪ {¬X} is X – tableau consistent

AM/VvO (CS @ UIBK) lecture 3 35/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Propositional Consequence

Lemmata

• any application of Tableau Expansion Rule as well as S-introduction rule to
S-satisfiable tableau yields another S-satisfiable tableau

• there are no closed S-satisfiable tableaux

Definition

S is X – tableau consistent if S `pt X does not hold

Lemmata

for each formula X

• collection of X – tableau consistent sets is propositional consistency property

• if S is X – tableau consistent then S ∪ {¬X} is X – tableau consistent

AM/VvO (CS @ UIBK) lecture 3 35/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Propositional Consequence

Lemmata

• any application of Tableau Expansion Rule as well as S-introduction rule to
S-satisfiable tableau yields another S-satisfiable tableau

• there are no closed S-satisfiable tableaux

Definition

S is X – tableau consistent if S `pt X does not hold

Lemmata

for each formula X

• collection of X – tableau consistent sets is propositional consistency property

• if S is X – tableau consistent then S ∪ {¬X} is X – tableau consistent

AM/VvO (CS @ UIBK) lecture 3 35/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Propositional Consequence

Lemmata

• any application of Tableau Expansion Rule as well as S-introduction rule to
S-satisfiable tableau yields another S-satisfiable tableau

• there are no closed S-satisfiable tableaux

Definition

S is X – tableau consistent if S `pt X does not hold

Lemmata

for each formula X

• collection of X – tableau consistent sets is propositional consistency property

• if S is X – tableau consistent then S ∪ {¬X} is X – tableau consistent

AM/VvO (CS @ UIBK) lecture 3 35/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Propositional Consequence

Lemmata

• any application of Tableau Expansion Rule as well as S-introduction rule to
S-satisfiable tableau yields another S-satisfiable tableau

• there are no closed S-satisfiable tableaux

Definition

S is X – tableau consistent if S `pt X does not hold

Lemmata

for each formula X

• collection of X – tableau consistent sets is propositional consistency property

• if S is X – tableau consistent then S ∪ {¬X} is X – tableau consistent

AM/VvO (CS @ UIBK) lecture 3 35/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Propositional Consequence

Theorem (Strong Soundness and Completeness)

for any set S of propositional formulas and any propositional formula X

S �p X ⇐⇒ S `pt X

Proof

⇒ suppose S `pt X does not hold

, so S is X – tableau consistent

S ∪ {¬X} is X – tableau consistent

S ∪ {¬X} is satisfiable by Model Existence Theorem

S �p X does not hold

⇐ there exists closed tableau for {¬X}, allowing S-introduction rule

initial tableau cannot be S-satisfiable

S ∪ {¬X} is not satisfiable

S �p X

AM/VvO (CS @ UIBK) lecture 3 36/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Propositional Consequence

Theorem (Strong Soundness and Completeness)

for any set S of propositional formulas and any propositional formula X

S �p X ⇐⇒ S `pt X

Proof

⇒ suppose S `pt X does not hold

, so S is X – tableau consistent

S ∪ {¬X} is X – tableau consistent

S ∪ {¬X} is satisfiable by Model Existence Theorem

S �p X does not hold

⇐ there exists closed tableau for {¬X}, allowing S-introduction rule

initial tableau cannot be S-satisfiable

S ∪ {¬X} is not satisfiable

S �p X

AM/VvO (CS @ UIBK) lecture 3 36/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Propositional Consequence

Theorem (Strong Soundness and Completeness)

for any set S of propositional formulas and any propositional formula X

S �p X ⇐⇒ S `pt X

Proof

⇒ suppose S `pt X does not hold, so S is X – tableau consistent

S ∪ {¬X} is X – tableau consistent

S ∪ {¬X} is satisfiable by Model Existence Theorem

S �p X does not hold

⇐ there exists closed tableau for {¬X}, allowing S-introduction rule

initial tableau cannot be S-satisfiable

S ∪ {¬X} is not satisfiable

S �p X

AM/VvO (CS @ UIBK) lecture 3 36/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Propositional Consequence

Theorem (Strong Soundness and Completeness)

for any set S of propositional formulas and any propositional formula X

S �p X ⇐⇒ S `pt X

Proof

⇒ suppose S `pt X does not hold, so S is X – tableau consistent

S ∪ {¬X} is X – tableau consistent

S ∪ {¬X} is satisfiable by Model Existence Theorem

S �p X does not hold

⇐ there exists closed tableau for {¬X}, allowing S-introduction rule

initial tableau cannot be S-satisfiable

S ∪ {¬X} is not satisfiable

S �p X

AM/VvO (CS @ UIBK) lecture 3 36/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Propositional Consequence

Theorem (Strong Soundness and Completeness)

for any set S of propositional formulas and any propositional formula X

S �p X ⇐⇒ S `pt X

Proof

⇒ suppose S `pt X does not hold, so S is X – tableau consistent

S ∪ {¬X} is X – tableau consistent

S ∪ {¬X} is satisfiable by Model Existence Theorem

S �p X does not hold

⇐ there exists closed tableau for {¬X}, allowing S-introduction rule

initial tableau cannot be S-satisfiable

S ∪ {¬X} is not satisfiable

S �p X

AM/VvO (CS @ UIBK) lecture 3 36/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Propositional Consequence

Theorem (Strong Soundness and Completeness)

for any set S of propositional formulas and any propositional formula X

S �p X ⇐⇒ S `pt X

Proof

⇒ suppose S `pt X does not hold, so S is X – tableau consistent

S ∪ {¬X} is X – tableau consistent

S ∪ {¬X} is satisfiable by Model Existence Theorem

S �p X does not hold

⇐ there exists closed tableau for {¬X}, allowing S-introduction rule

initial tableau cannot be S-satisfiable

S ∪ {¬X} is not satisfiable

S �p X

AM/VvO (CS @ UIBK) lecture 3 36/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Propositional Consequence

Theorem (Strong Soundness and Completeness)

for any set S of propositional formulas and any propositional formula X

S �p X ⇐⇒ S `pt X

Proof

⇒ suppose S `pt X does not hold, so S is X – tableau consistent

S ∪ {¬X} is X – tableau consistent

S ∪ {¬X} is satisfiable by Model Existence Theorem

S �p X does not hold

⇐ there exists closed tableau for {¬X}, allowing S-introduction rule

initial tableau cannot be S-satisfiable

S ∪ {¬X} is not satisfiable

S �p X

AM/VvO (CS @ UIBK) lecture 3 36/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Propositional Consequence

Theorem (Strong Soundness and Completeness)

for any set S of propositional formulas and any propositional formula X

S �p X ⇐⇒ S `pt X

Proof

⇒ suppose S `pt X does not hold, so S is X – tableau consistent

S ∪ {¬X} is X – tableau consistent

S ∪ {¬X} is satisfiable by Model Existence Theorem

S �p X does not hold

⇐ there exists closed tableau for {¬X}, allowing S-introduction rule

initial tableau cannot be S-satisfiable

S ∪ {¬X} is not satisfiable

S �p X

AM/VvO (CS @ UIBK) lecture 3 36/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Propositional Consequence

Theorem (Strong Soundness and Completeness)

for any set S of propositional formulas and any propositional formula X

S �p X ⇐⇒ S `pt X

Proof

⇒ suppose S `pt X does not hold, so S is X – tableau consistent

S ∪ {¬X} is X – tableau consistent

S ∪ {¬X} is satisfiable by Model Existence Theorem

S �p X does not hold

⇐ there exists closed tableau for {¬X}, allowing S-introduction rule

initial tableau cannot be S-satisfiable

S ∪ {¬X} is not satisfiable

S �p X

AM/VvO (CS @ UIBK) lecture 3 36/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantic Tableaux Propositional Consequence

Theorem (Strong Soundness and Completeness)

for any set S of propositional formulas and any propositional formula X

S �p X ⇐⇒ S `pt X

Proof

⇒ suppose S `pt X does not hold, so S is X – tableau consistent

S ∪ {¬X} is X – tableau consistent

S ∪ {¬X} is satisfiable by Model Existence Theorem

S �p X does not hold

⇐ there exists closed tableau for {¬X}, allowing S-introduction rule

initial tableau cannot be S-satisfiable

S ∪ {¬X} is not satisfiable

S �p X

AM/VvO (CS @ UIBK) lecture 3 36/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Outline

Summary of Previous Lecture

Model Existence Theorem

Compactness

Interpolation

Semantic Tableaux

Hilbert Systems

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 3 37/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Definitions

• derivation in Hilbert system from set S of formulas is finite sequence
X1, X2, . . . , Xn of formulas such that each formula is axiom, or member of S ,
or follows from earlier formulas by rule of inference

• proof in Hilbert system is derivation from ∅

Definitions

given Hilbert system h

• X is consequence of set S in h, denoted by S `ph X , if X is last line of
derivation from S

• formula X is theorem of h, denoted by `ph X , if X is consequence of ∅ in h

AM/VvO (CS @ UIBK) lecture 3 38/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Definitions

• derivation in Hilbert system from set S of formulas is finite sequence
X1, X2, . . . , Xn of formulas such that each formula is axiom, or member of S ,
or follows from earlier formulas by rule of inference

• proof in Hilbert system is derivation from ∅

Definitions

given Hilbert system h

• X is consequence of set S in h, denoted by S `ph X , if X is last line of
derivation from S

• formula X is theorem of h, denoted by `ph X , if X is consequence of ∅ in h

AM/VvO (CS @ UIBK) lecture 3 38/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Definitions

• derivation in Hilbert system from set S of formulas is finite sequence
X1, X2, . . . , Xn of formulas such that each formula is axiom, or member of S ,
or follows from earlier formulas by rule of inference

• proof in Hilbert system is derivation from ∅

Definitions

given Hilbert system h

• X is consequence of set S in h, denoted by S `ph X , if X is last line of
derivation from S

• formula X is theorem of h, denoted by `ph X , if X is consequence of ∅ in h

AM/VvO (CS @ UIBK) lecture 3 38/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Definitions

• derivation in Hilbert system from set S of formulas is finite sequence
X1, X2, . . . , Xn of formulas such that each formula is axiom, or member of S ,
or follows from earlier formulas by rule of inference

• proof in Hilbert system is derivation from ∅

Definitions

given Hilbert system h

• X is consequence of set S in h, denoted by S `ph X , if X is last line of
derivation from S

• formula X is theorem of h, denoted by `ph X , if X is consequence of ∅ in h

AM/VvO (CS @ UIBK) lecture 3 38/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Definition (Modus Ponens)

X X ⊃ Y

Y

Definition (Axiom Scheme 1)

X ⊃ (Y ⊃ X )

Definition (Axiom Scheme 2)

(X ⊃ (Y ⊃ Z )) ⊃ ((X ⊃ Y ) ⊃ (X ⊃ Z ))

AM/VvO (CS @ UIBK) lecture 3 39/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Definition (Modus Ponens)

X X ⊃ Y

Y

Definition (Axiom Scheme 1)

X ⊃ (Y ⊃ X )

Definition (Axiom Scheme 2)

(X ⊃ (Y ⊃ Z )) ⊃ ((X ⊃ Y ) ⊃ (X ⊃ Z ))

AM/VvO (CS @ UIBK) lecture 3 39/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Definition (Modus Ponens)

X X ⊃ Y

Y

Definition (Axiom Scheme 1)

X ⊃ (Y ⊃ X )

Definition (Axiom Scheme 2)

(X ⊃ (Y ⊃ Z )) ⊃ ((X ⊃ Y ) ⊃ (X ⊃ Z ))

AM/VvO (CS @ UIBK) lecture 3 39/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Example

P ⊃ P is theorem:

1. (P ⊃ ((P ⊃ P) ⊃ P)) ⊃ ((P ⊃ (P ⊃ P)) ⊃ (P ⊃ P)) Axiom Scheme 2

2. P ⊃ ((P ⊃ P) ⊃ P) Axiom Scheme 1

3. (P ⊃ (P ⊃ P)) ⊃ (P ⊃ P) Modus Ponens

4. P ⊃ (P ⊃ P) Axiom Scheme 1

5. P ⊃ P Modus Ponens

Theorem (Deduction Theorem)

in any Hilbert System h with Modus Ponens as only rule of inference and at least
Axiom Schemes 1 and 2:

S ∪ {X} `ph Y ⇐⇒ S `ph X ⊃ Y

AM/VvO (CS @ UIBK) lecture 3 40/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Example

P ⊃ P is theorem:

1. (P ⊃ ((P ⊃ P) ⊃ P)) ⊃ ((P ⊃ (P ⊃ P)) ⊃ (P ⊃ P)) Axiom Scheme 2

2. P ⊃ ((P ⊃ P) ⊃ P) Axiom Scheme 1

3. (P ⊃ (P ⊃ P)) ⊃ (P ⊃ P) Modus Ponens

4. P ⊃ (P ⊃ P) Axiom Scheme 1

5. P ⊃ P Modus Ponens

Theorem (Deduction Theorem)

in any Hilbert System h with Modus Ponens as only rule of inference and at least
Axiom Schemes 1 and 2:

S ∪ {X} `ph Y ⇐⇒ S `ph X ⊃ Y

AM/VvO (CS @ UIBK) lecture 3 40/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Example

P ⊃ P is theorem:

1. (P ⊃ ((P ⊃ P) ⊃ P)) ⊃ ((P ⊃ (P ⊃ P)) ⊃ (P ⊃ P)) Axiom Scheme 2

2. P ⊃ ((P ⊃ P) ⊃ P) Axiom Scheme 1

3. (P ⊃ (P ⊃ P)) ⊃ (P ⊃ P) Modus Ponens

4. P ⊃ (P ⊃ P) Axiom Scheme 1

5. P ⊃ P Modus Ponens

Theorem (Deduction Theorem)

in any Hilbert System h with Modus Ponens as only rule of inference and at least
Axiom Schemes 1 and 2:

S ∪ {X} `ph Y ⇐⇒ S `ph X ⊃ Y

AM/VvO (CS @ UIBK) lecture 3 40/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Example

P ⊃ P is theorem:

1. (P ⊃ ((P ⊃ P) ⊃ P)) ⊃ ((P ⊃ (P ⊃ P)) ⊃ (P ⊃ P)) Axiom Scheme 2

2. P ⊃ ((P ⊃ P) ⊃ P) Axiom Scheme 1

3. (P ⊃ (P ⊃ P)) ⊃ (P ⊃ P) Modus Ponens

4. P ⊃ (P ⊃ P) Axiom Scheme 1

5. P ⊃ P Modus Ponens

Theorem (Deduction Theorem)

in any Hilbert System h with Modus Ponens as only rule of inference and at least
Axiom Schemes 1 and 2:

S ∪ {X} `ph Y ⇐⇒ S `ph X ⊃ Y

AM/VvO (CS @ UIBK) lecture 3 40/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Example

P ⊃ P is theorem:

1. (P ⊃ ((P ⊃ P) ⊃ P)) ⊃ ((P ⊃ (P ⊃ P)) ⊃ (P ⊃ P)) Axiom Scheme 2

2. P ⊃ ((P ⊃ P) ⊃ P) Axiom Scheme 1

3. (P ⊃ (P ⊃ P)) ⊃ (P ⊃ P) Modus Ponens

4. P ⊃ (P ⊃ P) Axiom Scheme 1

5. P ⊃ P Modus Ponens

Theorem (Deduction Theorem)

in any Hilbert System h with Modus Ponens as only rule of inference and at least
Axiom Schemes 1 and 2:

S ∪ {X} `ph Y ⇐⇒ S `ph X ⊃ Y

AM/VvO (CS @ UIBK) lecture 3 40/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Example

P ⊃ P is theorem:

1. (P ⊃ ((P ⊃ P) ⊃ P)) ⊃ ((P ⊃ (P ⊃ P)) ⊃ (P ⊃ P)) Axiom Scheme 2

2. P ⊃ ((P ⊃ P) ⊃ P) Axiom Scheme 1

3. (P ⊃ (P ⊃ P)) ⊃ (P ⊃ P) Modus Ponens

4. P ⊃ (P ⊃ P) Axiom Scheme 1

5. P ⊃ P Modus Ponens

Theorem (Deduction Theorem)

in any Hilbert System h with Modus Ponens as only rule of inference and at least
Axiom Schemes 1 and 2:

S ∪ {X} `ph Y ⇐⇒ S `ph X ⊃ Y

AM/VvO (CS @ UIBK) lecture 3 40/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Example

(P ⊃ (Q ⊃ R)) ⊃ (Q ⊃ (P ⊃ R)) is theorem

:

• {P ⊃ (Q ⊃ R),Q,P} `ph R:

1. P ⊃ (Q ⊃ R)

2. P

3. Q ⊃ R Modus Ponens

4. Q

5. R Modus Ponens

• {P ⊃ (Q ⊃ R),Q} `ph P ⊃ R by Deduction Theorem

• {P ⊃ (Q ⊃ R)} `ph Q ⊃ (P ⊃ R) by Deduction Theorem

• `ph (P ⊃ (Q ⊃ R)) ⊃ (Q ⊃ (P ⊃ R)) by Deduction Theorem

AM/VvO (CS @ UIBK) lecture 3 41/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Example

(P ⊃ (Q ⊃ R)) ⊃ (Q ⊃ (P ⊃ R)) is theorem:

• {P ⊃ (Q ⊃ R),Q,P} `ph R

:

1. P ⊃ (Q ⊃ R)

2. P

3. Q ⊃ R Modus Ponens

4. Q

5. R Modus Ponens

• {P ⊃ (Q ⊃ R),Q} `ph P ⊃ R by Deduction Theorem

• {P ⊃ (Q ⊃ R)} `ph Q ⊃ (P ⊃ R) by Deduction Theorem

• `ph (P ⊃ (Q ⊃ R)) ⊃ (Q ⊃ (P ⊃ R)) by Deduction Theorem

AM/VvO (CS @ UIBK) lecture 3 41/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Example

(P ⊃ (Q ⊃ R)) ⊃ (Q ⊃ (P ⊃ R)) is theorem:

• {P ⊃ (Q ⊃ R),Q,P} `ph R:

1. P ⊃ (Q ⊃ R)

2. P

3. Q ⊃ R Modus Ponens

4. Q

5. R Modus Ponens

• {P ⊃ (Q ⊃ R),Q} `ph P ⊃ R by Deduction Theorem

• {P ⊃ (Q ⊃ R)} `ph Q ⊃ (P ⊃ R) by Deduction Theorem

• `ph (P ⊃ (Q ⊃ R)) ⊃ (Q ⊃ (P ⊃ R)) by Deduction Theorem

AM/VvO (CS @ UIBK) lecture 3 41/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Example

(P ⊃ (Q ⊃ R)) ⊃ (Q ⊃ (P ⊃ R)) is theorem:

• {P ⊃ (Q ⊃ R),Q,P} `ph R:

1. P ⊃ (Q ⊃ R)

2. P

3. Q ⊃ R Modus Ponens

4. Q

5. R Modus Ponens

• {P ⊃ (Q ⊃ R),Q} `ph P ⊃ R by Deduction Theorem

• {P ⊃ (Q ⊃ R)} `ph Q ⊃ (P ⊃ R) by Deduction Theorem

• `ph (P ⊃ (Q ⊃ R)) ⊃ (Q ⊃ (P ⊃ R)) by Deduction Theorem

AM/VvO (CS @ UIBK) lecture 3 41/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Example

(P ⊃ (Q ⊃ R)) ⊃ (Q ⊃ (P ⊃ R)) is theorem:

• {P ⊃ (Q ⊃ R),Q,P} `ph R:

1. P ⊃ (Q ⊃ R)

2. P

3. Q ⊃ R Modus Ponens

4. Q

5. R Modus Ponens

• {P ⊃ (Q ⊃ R),Q} `ph P ⊃ R by Deduction Theorem

• {P ⊃ (Q ⊃ R)} `ph Q ⊃ (P ⊃ R) by Deduction Theorem

• `ph (P ⊃ (Q ⊃ R)) ⊃ (Q ⊃ (P ⊃ R)) by Deduction Theorem

AM/VvO (CS @ UIBK) lecture 3 41/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Example

(P ⊃ (Q ⊃ R)) ⊃ (Q ⊃ (P ⊃ R)) is theorem:

• {P ⊃ (Q ⊃ R),Q,P} `ph R:

1. P ⊃ (Q ⊃ R)

2. P

3. Q ⊃ R Modus Ponens

4. Q

5. R Modus Ponens

• {P ⊃ (Q ⊃ R),Q} `ph P ⊃ R by Deduction Theorem

• {P ⊃ (Q ⊃ R)} `ph Q ⊃ (P ⊃ R) by Deduction Theorem

• `ph (P ⊃ (Q ⊃ R)) ⊃ (Q ⊃ (P ⊃ R)) by Deduction Theorem

AM/VvO (CS @ UIBK) lecture 3 41/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Example

(P ⊃ (Q ⊃ R)) ⊃ (Q ⊃ (P ⊃ R)) is theorem:

• {P ⊃ (Q ⊃ R),Q,P} `ph R:

1. P ⊃ (Q ⊃ R)

2. P

3. Q ⊃ R Modus Ponens

4. Q

5. R Modus Ponens

• {P ⊃ (Q ⊃ R),Q} `ph P ⊃ R by Deduction Theorem

• {P ⊃ (Q ⊃ R)} `ph Q ⊃ (P ⊃ R) by Deduction Theorem

• `ph (P ⊃ (Q ⊃ R)) ⊃ (Q ⊃ (P ⊃ R)) by Deduction Theorem

AM/VvO (CS @ UIBK) lecture 3 41/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Example

(P ⊃ (Q ⊃ R)) ⊃ (Q ⊃ (P ⊃ R)) is theorem:

• {P ⊃ (Q ⊃ R),Q,P} `ph R:

1. P ⊃ (Q ⊃ R)

2. P

3. Q ⊃ R Modus Ponens

4. Q

5. R Modus Ponens

• {P ⊃ (Q ⊃ R),Q} `ph P ⊃ R by Deduction Theorem

• {P ⊃ (Q ⊃ R)} `ph Q ⊃ (P ⊃ R) by Deduction Theorem

• `ph (P ⊃ (Q ⊃ R)) ⊃ (Q ⊃ (P ⊃ R)) by Deduction Theorem

AM/VvO (CS @ UIBK) lecture 3 41/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Example

(P ⊃ (Q ⊃ R)) ⊃ (Q ⊃ (P ⊃ R)) is theorem:

• {P ⊃ (Q ⊃ R),Q,P} `ph R:

1. P ⊃ (Q ⊃ R)

2. P

3. Q ⊃ R Modus Ponens

4. Q

5. R Modus Ponens

• {P ⊃ (Q ⊃ R),Q} `ph P ⊃ R by Deduction Theorem

• {P ⊃ (Q ⊃ R)} `ph Q ⊃ (P ⊃ R) by Deduction Theorem

• `ph (P ⊃ (Q ⊃ R)) ⊃ (Q ⊃ (P ⊃ R)) by Deduction Theorem

AM/VvO (CS @ UIBK) lecture 3 41/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (if direction)

• suppose S ∪ {X} `ph Y

• let Π1 : Z1, . . . ,Zn be derivation of Y from S ∪ {X}

, so Zn = Y

• consider new sequence Π2 : X ⊃ Z1, . . . ,X ⊃ Zn

• insert extra lines into Π2 and use Modus Ponens

, as follows:

1 if Zi is axiom or member of S

insert Zi and Zi ⊃ (X ⊃ Zi ) before X ⊃ Zi

2 if Zi = X

insert steps of proof of X ⊃ Zi before it

3 if Zi is derived with Modus Ponens from Zj and Zk with j , k < i

then Zk = (Zj ⊃ Zi )

insert (X ⊃ (Zj ⊃ Zi )) ⊃ ((X ⊃ Zj) ⊃ (X ⊃ Zi )) and
(X ⊃ Zj) ⊃ (X ⊃ Zi ) before X ⊃ Zi

• resulting sequence is derivation of X ⊃ Y from S

AM/VvO (CS @ UIBK) lecture 3 42/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (if direction)

• suppose S ∪ {X} `ph Y

• let Π1 : Z1, . . . ,Zn be derivation of Y from S ∪ {X}

, so Zn = Y

• consider new sequence Π2 : X ⊃ Z1, . . . ,X ⊃ Zn

• insert extra lines into Π2 and use Modus Ponens

, as follows:

1 if Zi is axiom or member of S

insert Zi and Zi ⊃ (X ⊃ Zi ) before X ⊃ Zi

2 if Zi = X

insert steps of proof of X ⊃ Zi before it

3 if Zi is derived with Modus Ponens from Zj and Zk with j , k < i

then Zk = (Zj ⊃ Zi )

insert (X ⊃ (Zj ⊃ Zi )) ⊃ ((X ⊃ Zj) ⊃ (X ⊃ Zi )) and
(X ⊃ Zj) ⊃ (X ⊃ Zi ) before X ⊃ Zi

• resulting sequence is derivation of X ⊃ Y from S

AM/VvO (CS @ UIBK) lecture 3 42/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (if direction)

• suppose S ∪ {X} `ph Y

• let Π1 : Z1, . . . ,Zn be derivation of Y from S ∪ {X}, so Zn = Y

• consider new sequence Π2 : X ⊃ Z1, . . . ,X ⊃ Zn

• insert extra lines into Π2 and use Modus Ponens

, as follows:

1 if Zi is axiom or member of S

insert Zi and Zi ⊃ (X ⊃ Zi ) before X ⊃ Zi

2 if Zi = X

insert steps of proof of X ⊃ Zi before it

3 if Zi is derived with Modus Ponens from Zj and Zk with j , k < i

then Zk = (Zj ⊃ Zi )

insert (X ⊃ (Zj ⊃ Zi )) ⊃ ((X ⊃ Zj) ⊃ (X ⊃ Zi )) and
(X ⊃ Zj) ⊃ (X ⊃ Zi ) before X ⊃ Zi

• resulting sequence is derivation of X ⊃ Y from S

AM/VvO (CS @ UIBK) lecture 3 42/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (if direction)

• suppose S ∪ {X} `ph Y

• let Π1 : Z1, . . . ,Zn be derivation of Y from S ∪ {X}, so Zn = Y

• consider new sequence Π2 : X ⊃ Z1, . . . ,X ⊃ Zn

• insert extra lines into Π2 and use Modus Ponens

, as follows:

1 if Zi is axiom or member of S

insert Zi and Zi ⊃ (X ⊃ Zi ) before X ⊃ Zi

2 if Zi = X

insert steps of proof of X ⊃ Zi before it

3 if Zi is derived with Modus Ponens from Zj and Zk with j , k < i

then Zk = (Zj ⊃ Zi )

insert (X ⊃ (Zj ⊃ Zi )) ⊃ ((X ⊃ Zj) ⊃ (X ⊃ Zi )) and
(X ⊃ Zj) ⊃ (X ⊃ Zi ) before X ⊃ Zi

• resulting sequence is derivation of X ⊃ Y from S

AM/VvO (CS @ UIBK) lecture 3 42/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (if direction)

• suppose S ∪ {X} `ph Y

• let Π1 : Z1, . . . ,Zn be derivation of Y from S ∪ {X}, so Zn = Y

• consider new sequence Π2 : X ⊃ Z1, . . . ,X ⊃ Zn

• insert extra lines into Π2 and use Modus Ponens

, as follows:

1 if Zi is axiom or member of S

insert Zi and Zi ⊃ (X ⊃ Zi ) before X ⊃ Zi

2 if Zi = X

insert steps of proof of X ⊃ Zi before it

3 if Zi is derived with Modus Ponens from Zj and Zk with j , k < i

then Zk = (Zj ⊃ Zi )

insert (X ⊃ (Zj ⊃ Zi )) ⊃ ((X ⊃ Zj) ⊃ (X ⊃ Zi )) and
(X ⊃ Zj) ⊃ (X ⊃ Zi ) before X ⊃ Zi

• resulting sequence is derivation of X ⊃ Y from S

AM/VvO (CS @ UIBK) lecture 3 42/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (if direction)

• suppose S ∪ {X} `ph Y

• let Π1 : Z1, . . . ,Zn be derivation of Y from S ∪ {X}, so Zn = Y

• consider new sequence Π2 : X ⊃ Z1, . . . ,X ⊃ Zn

• insert extra lines into Π2 and use Modus Ponens, as follows:

1 if Zi is axiom or member of S

insert Zi and Zi ⊃ (X ⊃ Zi ) before X ⊃ Zi

2 if Zi = X

insert steps of proof of X ⊃ Zi before it

3 if Zi is derived with Modus Ponens from Zj and Zk with j , k < i

then Zk = (Zj ⊃ Zi )

insert (X ⊃ (Zj ⊃ Zi )) ⊃ ((X ⊃ Zj) ⊃ (X ⊃ Zi )) and
(X ⊃ Zj) ⊃ (X ⊃ Zi ) before X ⊃ Zi

• resulting sequence is derivation of X ⊃ Y from S

AM/VvO (CS @ UIBK) lecture 3 42/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (if direction)

• suppose S ∪ {X} `ph Y

• let Π1 : Z1, . . . ,Zn be derivation of Y from S ∪ {X}, so Zn = Y

• consider new sequence Π2 : X ⊃ Z1, . . . ,X ⊃ Zn

• insert extra lines into Π2 and use Modus Ponens, as follows:

1 if Zi is axiom or member of S

insert Zi and Zi ⊃ (X ⊃ Zi ) before X ⊃ Zi

2 if Zi = X

insert steps of proof of X ⊃ Zi before it

3 if Zi is derived with Modus Ponens from Zj and Zk with j , k < i

then Zk = (Zj ⊃ Zi )

insert (X ⊃ (Zj ⊃ Zi )) ⊃ ((X ⊃ Zj) ⊃ (X ⊃ Zi )) and
(X ⊃ Zj) ⊃ (X ⊃ Zi ) before X ⊃ Zi

• resulting sequence is derivation of X ⊃ Y from S

AM/VvO (CS @ UIBK) lecture 3 42/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (if direction)

• suppose S ∪ {X} `ph Y

• let Π1 : Z1, . . . ,Zn be derivation of Y from S ∪ {X}, so Zn = Y

• consider new sequence Π2 : X ⊃ Z1, . . . ,X ⊃ Zn

• insert extra lines into Π2 and use Modus Ponens, as follows:

1 if Zi is axiom or member of S

insert Zi and Zi ⊃ (X ⊃ Zi ) before X ⊃ Zi

2 if Zi = X

insert steps of proof of X ⊃ Zi before it

3 if Zi is derived with Modus Ponens from Zj and Zk with j , k < i

then Zk = (Zj ⊃ Zi )

insert (X ⊃ (Zj ⊃ Zi )) ⊃ ((X ⊃ Zj) ⊃ (X ⊃ Zi )) and
(X ⊃ Zj) ⊃ (X ⊃ Zi ) before X ⊃ Zi

• resulting sequence is derivation of X ⊃ Y from S

AM/VvO (CS @ UIBK) lecture 3 42/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (if direction)

• suppose S ∪ {X} `ph Y

• let Π1 : Z1, . . . ,Zn be derivation of Y from S ∪ {X}, so Zn = Y

• consider new sequence Π2 : X ⊃ Z1, . . . ,X ⊃ Zn

• insert extra lines into Π2 and use Modus Ponens, as follows:

1 if Zi is axiom or member of S

insert Zi and Zi ⊃ (X ⊃ Zi ) before X ⊃ Zi

2 if Zi = X

insert steps of proof of X ⊃ Zi before it

3 if Zi is derived with Modus Ponens from Zj and Zk with j , k < i
then Zk = (Zj ⊃ Zi )

insert (X ⊃ (Zj ⊃ Zi )) ⊃ ((X ⊃ Zj) ⊃ (X ⊃ Zi )) and
(X ⊃ Zj) ⊃ (X ⊃ Zi ) before X ⊃ Zi

• resulting sequence is derivation of X ⊃ Y from S

AM/VvO (CS @ UIBK) lecture 3 42/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (if direction)

• suppose S ∪ {X} `ph Y

• let Π1 : Z1, . . . ,Zn be derivation of Y from S ∪ {X}, so Zn = Y

• consider new sequence Π2 : X ⊃ Z1, . . . ,X ⊃ Zn

• insert extra lines into Π2 and use Modus Ponens, as follows:

1 if Zi is axiom or member of S

insert Zi and Zi ⊃ (X ⊃ Zi ) before X ⊃ Zi

2 if Zi = X

insert steps of proof of X ⊃ Zi before it

3 if Zi is derived with Modus Ponens from Zj and Zk with j , k < i
then Zk = (Zj ⊃ Zi )

insert (X ⊃ (Zj ⊃ Zi )) ⊃ ((X ⊃ Zj) ⊃ (X ⊃ Zi )) and
(X ⊃ Zj) ⊃ (X ⊃ Zi ) before X ⊃ Zi

• resulting sequence is derivation of X ⊃ Y from S

AM/VvO (CS @ UIBK) lecture 3 42/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (if direction)

• suppose S ∪ {X} `ph Y

• let Π1 : Z1, . . . ,Zn be derivation of Y from S ∪ {X}, so Zn = Y

• consider new sequence Π2 : X ⊃ Z1, . . . ,X ⊃ Zn

• insert extra lines into Π2 and use Modus Ponens, as follows:

1 if Zi is axiom or member of S

insert Zi and Zi ⊃ (X ⊃ Zi ) before X ⊃ Zi

2 if Zi = X

insert steps of proof of X ⊃ Zi before it

3 if Zi is derived with Modus Ponens from Zj and Zk with j , k < i
then Zk = (Zj ⊃ Zi )

insert (X ⊃ (Zj ⊃ Zi )) ⊃ ((X ⊃ Zj) ⊃ (X ⊃ Zi )) and
(X ⊃ Zj) ⊃ (X ⊃ Zi ) before X ⊃ Zi

• resulting sequence is derivation of X ⊃ Y from S

AM/VvO (CS @ UIBK) lecture 3 42/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Definition (Axiom Schemes 3 – 9)

3 ⊥ ⊃ X

7 α ⊃ α1

4 X ⊃ > 8 α ⊃ α2

5 ¬¬X ⊃ X 9 (β1 ⊃ X ) ⊃ ((β2 ⊃ X ) ⊃ (β ⊃ X ))

6 X ⊃ (¬X ⊃ Y )

Example

(¬X ⊃ X ) ⊃ X is theorem:

1. (¬¬X ⊃ X ) ⊃ ((X ⊃ X ) ⊃ ((¬X ⊃ X ) ⊃ X )) Axiom Scheme 9

2. ¬¬X ⊃ X Axiom Scheme 5

3. (X ⊃ X ) ⊃ ((¬X ⊃ X ) ⊃ X ) Modus Ponens

4. X ⊃ X earlier proof

5. (¬X ⊃ X ) ⊃ X Modus Ponens

AM/VvO (CS @ UIBK) lecture 3 43/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Definition (Axiom Schemes 3 – 9)

3 ⊥ ⊃ X

7 α ⊃ α1

4 X ⊃ >

8 α ⊃ α2

5 ¬¬X ⊃ X 9 (β1 ⊃ X ) ⊃ ((β2 ⊃ X ) ⊃ (β ⊃ X ))

6 X ⊃ (¬X ⊃ Y )

Example

(¬X ⊃ X ) ⊃ X is theorem:

1. (¬¬X ⊃ X ) ⊃ ((X ⊃ X ) ⊃ ((¬X ⊃ X ) ⊃ X )) Axiom Scheme 9

2. ¬¬X ⊃ X Axiom Scheme 5

3. (X ⊃ X ) ⊃ ((¬X ⊃ X ) ⊃ X ) Modus Ponens

4. X ⊃ X earlier proof

5. (¬X ⊃ X ) ⊃ X Modus Ponens

AM/VvO (CS @ UIBK) lecture 3 43/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Definition (Axiom Schemes 3 – 9)

3 ⊥ ⊃ X

7 α ⊃ α1

4 X ⊃ >

8 α ⊃ α2

5 ¬¬X ⊃ X

9 (β1 ⊃ X ) ⊃ ((β2 ⊃ X ) ⊃ (β ⊃ X ))

6 X ⊃ (¬X ⊃ Y )

Example

(¬X ⊃ X ) ⊃ X is theorem:

1. (¬¬X ⊃ X ) ⊃ ((X ⊃ X ) ⊃ ((¬X ⊃ X ) ⊃ X )) Axiom Scheme 9

2. ¬¬X ⊃ X Axiom Scheme 5

3. (X ⊃ X ) ⊃ ((¬X ⊃ X ) ⊃ X ) Modus Ponens

4. X ⊃ X earlier proof

5. (¬X ⊃ X ) ⊃ X Modus Ponens

AM/VvO (CS @ UIBK) lecture 3 43/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Definition (Axiom Schemes 3 – 9)

3 ⊥ ⊃ X

7 α ⊃ α1

4 X ⊃ >

8 α ⊃ α2

5 ¬¬X ⊃ X

9 (β1 ⊃ X ) ⊃ ((β2 ⊃ X ) ⊃ (β ⊃ X ))

6 X ⊃ (¬X ⊃ Y )

Example

(¬X ⊃ X ) ⊃ X is theorem:

1. (¬¬X ⊃ X ) ⊃ ((X ⊃ X ) ⊃ ((¬X ⊃ X ) ⊃ X )) Axiom Scheme 9

2. ¬¬X ⊃ X Axiom Scheme 5

3. (X ⊃ X ) ⊃ ((¬X ⊃ X ) ⊃ X ) Modus Ponens

4. X ⊃ X earlier proof

5. (¬X ⊃ X ) ⊃ X Modus Ponens

AM/VvO (CS @ UIBK) lecture 3 43/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Definition (Axiom Schemes 3 – 9)

3 ⊥ ⊃ X 7 α ⊃ α1

4 X ⊃ >

8 α ⊃ α2

5 ¬¬X ⊃ X

9 (β1 ⊃ X ) ⊃ ((β2 ⊃ X ) ⊃ (β ⊃ X ))

6 X ⊃ (¬X ⊃ Y )

Example

(¬X ⊃ X ) ⊃ X is theorem:

1. (¬¬X ⊃ X ) ⊃ ((X ⊃ X ) ⊃ ((¬X ⊃ X ) ⊃ X )) Axiom Scheme 9

2. ¬¬X ⊃ X Axiom Scheme 5

3. (X ⊃ X ) ⊃ ((¬X ⊃ X ) ⊃ X ) Modus Ponens

4. X ⊃ X earlier proof

5. (¬X ⊃ X ) ⊃ X Modus Ponens

AM/VvO (CS @ UIBK) lecture 3 43/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Definition (Axiom Schemes 3 – 9)

3 ⊥ ⊃ X 7 α ⊃ α1

4 X ⊃ > 8 α ⊃ α2

5 ¬¬X ⊃ X

9 (β1 ⊃ X ) ⊃ ((β2 ⊃ X ) ⊃ (β ⊃ X ))

6 X ⊃ (¬X ⊃ Y )

Example

(¬X ⊃ X ) ⊃ X is theorem:

1. (¬¬X ⊃ X ) ⊃ ((X ⊃ X ) ⊃ ((¬X ⊃ X ) ⊃ X )) Axiom Scheme 9

2. ¬¬X ⊃ X Axiom Scheme 5

3. (X ⊃ X ) ⊃ ((¬X ⊃ X ) ⊃ X ) Modus Ponens

4. X ⊃ X earlier proof

5. (¬X ⊃ X ) ⊃ X Modus Ponens

AM/VvO (CS @ UIBK) lecture 3 43/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Definition (Axiom Schemes 3 – 9)

3 ⊥ ⊃ X 7 α ⊃ α1

4 X ⊃ > 8 α ⊃ α2

5 ¬¬X ⊃ X 9 (β1 ⊃ X ) ⊃ ((β2 ⊃ X ) ⊃ (β ⊃ X ))

6 X ⊃ (¬X ⊃ Y )

Example

(¬X ⊃ X ) ⊃ X is theorem:

1. (¬¬X ⊃ X ) ⊃ ((X ⊃ X ) ⊃ ((¬X ⊃ X ) ⊃ X )) Axiom Scheme 9

2. ¬¬X ⊃ X Axiom Scheme 5

3. (X ⊃ X ) ⊃ ((¬X ⊃ X ) ⊃ X ) Modus Ponens

4. X ⊃ X earlier proof

5. (¬X ⊃ X ) ⊃ X Modus Ponens

AM/VvO (CS @ UIBK) lecture 3 43/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Definition (Axiom Schemes 3 – 9)

3 ⊥ ⊃ X 7 α ⊃ α1

4 X ⊃ > 8 α ⊃ α2

5 ¬¬X ⊃ X 9 (β1 ⊃ X ) ⊃ ((β2 ⊃ X ) ⊃ (β ⊃ X ))

6 X ⊃ (¬X ⊃ Y )

Example

(¬X ⊃ X ) ⊃ X is theorem:

1. (¬¬X ⊃ X ) ⊃ ((X ⊃ X ) ⊃ ((¬X ⊃ X ) ⊃ X )) Axiom Scheme 9

2. ¬¬X ⊃ X Axiom Scheme 5

3. (X ⊃ X ) ⊃ ((¬X ⊃ X ) ⊃ X ) Modus Ponens

4. X ⊃ X earlier proof

5. (¬X ⊃ X ) ⊃ X Modus Ponens

AM/VvO (CS @ UIBK) lecture 3 43/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Definition (Axiom Schemes 3 – 9)

3 ⊥ ⊃ X 7 α ⊃ α1

4 X ⊃ > 8 α ⊃ α2

5 ¬¬X ⊃ X 9 (β1 ⊃ X ) ⊃ ((β2 ⊃ X ) ⊃ (β ⊃ X ))

6 X ⊃ (¬X ⊃ Y )

Example

(¬X ⊃ X ) ⊃ X is theorem:

1. (¬¬X ⊃ X ) ⊃ ((X ⊃ X ) ⊃ ((¬X ⊃ X ) ⊃ X )) Axiom Scheme 9

2. ¬¬X ⊃ X Axiom Scheme 5

3. (X ⊃ X ) ⊃ ((¬X ⊃ X ) ⊃ X ) Modus Ponens

4. X ⊃ X earlier proof

5. (¬X ⊃ X ) ⊃ X Modus Ponens

AM/VvO (CS @ UIBK) lecture 3 43/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Definition (Axiom Schemes 3 – 9)

3 ⊥ ⊃ X 7 α ⊃ α1

4 X ⊃ > 8 α ⊃ α2

5 ¬¬X ⊃ X 9 (β1 ⊃ X ) ⊃ ((β2 ⊃ X ) ⊃ (β ⊃ X ))

6 X ⊃ (¬X ⊃ Y )

Example

(¬X ⊃ X ) ⊃ X is theorem:

1. (¬¬X ⊃ X ) ⊃ ((X ⊃ X ) ⊃ ((¬X ⊃ X ) ⊃ X )) Axiom Scheme 9

2. ¬¬X ⊃ X Axiom Scheme 5

3. (X ⊃ X ) ⊃ ((¬X ⊃ X ) ⊃ X ) Modus Ponens

4. X ⊃ X earlier proof

5. (¬X ⊃ X ) ⊃ X Modus Ponens

AM/VvO (CS @ UIBK) lecture 3 43/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Definition (Axiom Schemes 3 – 9)

3 ⊥ ⊃ X 7 α ⊃ α1

4 X ⊃ > 8 α ⊃ α2

5 ¬¬X ⊃ X 9 (β1 ⊃ X ) ⊃ ((β2 ⊃ X ) ⊃ (β ⊃ X ))

6 X ⊃ (¬X ⊃ Y )

Example

(¬X ⊃ X ) ⊃ X is theorem:

1. (¬¬X ⊃ X ) ⊃ ((X ⊃ X ) ⊃ ((¬X ⊃ X ) ⊃ X )) Axiom Scheme 9

2. ¬¬X ⊃ X Axiom Scheme 5

3. (X ⊃ X ) ⊃ ((¬X ⊃ X ) ⊃ X ) Modus Ponens

4. X ⊃ X earlier proof

5. (¬X ⊃ X ) ⊃ X Modus Ponens

AM/VvO (CS @ UIBK) lecture 3 43/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Definition (Axiom Schemes 3 – 9)

3 ⊥ ⊃ X 7 α ⊃ α1

4 X ⊃ > 8 α ⊃ α2

5 ¬¬X ⊃ X 9 (β1 ⊃ X ) ⊃ ((β2 ⊃ X ) ⊃ (β ⊃ X ))

6 X ⊃ (¬X ⊃ Y )

Example

(¬X ⊃ X ) ⊃ X is theorem:

1. (¬¬X ⊃ X ) ⊃ ((X ⊃ X ) ⊃ ((¬X ⊃ X ) ⊃ X )) Axiom Scheme 9

2. ¬¬X ⊃ X Axiom Scheme 5

3. (X ⊃ X ) ⊃ ((¬X ⊃ X ) ⊃ X ) Modus Ponens

4. X ⊃ X earlier proof

5. (¬X ⊃ X ) ⊃ X Modus Ponens

AM/VvO (CS @ UIBK) lecture 3 43/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Theorem (Strong Hilbert Soundness)

if S `ph X then S �p X

Proof

• let Z1, . . . ,Zn be derivation of X from S , so Zn = X

• we show S �p Zi by induction on i

1 if Zi is axiom then Zi is tautology

and thus also S �p Zi

2 if Zi ∈ S then S �p Zi holds trivially

3 if Zi is obtained from Zj and Zk by Modus Ponens then
Zk = (Zj ⊃ Zi ) and j , k < i

S �p Zj and S �p Zj ⊃ Zi follow from induction hypothesis

S �p Zi follows from definition of �p

AM/VvO (CS @ UIBK) lecture 3 44/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Theorem (Strong Hilbert Soundness)

if S `ph X then S �p X

Proof

• let Z1, . . . ,Zn be derivation of X from S , so Zn = X

• we show S �p Zi by induction on i

1 if Zi is axiom then Zi is tautology

and thus also S �p Zi

2 if Zi ∈ S then S �p Zi holds trivially

3 if Zi is obtained from Zj and Zk by Modus Ponens then
Zk = (Zj ⊃ Zi ) and j , k < i

S �p Zj and S �p Zj ⊃ Zi follow from induction hypothesis

S �p Zi follows from definition of �p

AM/VvO (CS @ UIBK) lecture 3 44/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Theorem (Strong Hilbert Soundness)

if S `ph X then S �p X

Proof

• let Z1, . . . ,Zn be derivation of X from S , so Zn = X

• we show S �p Zi by induction on i

1 if Zi is axiom then Zi is tautology

and thus also S �p Zi

2 if Zi ∈ S then S �p Zi holds trivially

3 if Zi is obtained from Zj and Zk by Modus Ponens then
Zk = (Zj ⊃ Zi ) and j , k < i

S �p Zj and S �p Zj ⊃ Zi follow from induction hypothesis

S �p Zi follows from definition of �p

AM/VvO (CS @ UIBK) lecture 3 44/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Theorem (Strong Hilbert Soundness)

if S `ph X then S �p X

Proof

• let Z1, . . . ,Zn be derivation of X from S , so Zn = X

• we show S �p Zi by induction on i

1 if Zi is axiom then Zi is tautology

and thus also S �p Zi

2 if Zi ∈ S then S �p Zi holds trivially

3 if Zi is obtained from Zj and Zk by Modus Ponens then
Zk = (Zj ⊃ Zi ) and j , k < i

S �p Zj and S �p Zj ⊃ Zi follow from induction hypothesis

S �p Zi follows from definition of �p

AM/VvO (CS @ UIBK) lecture 3 44/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Theorem (Strong Hilbert Soundness)

if S `ph X then S �p X

Proof

• let Z1, . . . ,Zn be derivation of X from S , so Zn = X

• we show S �p Zi by induction on i

1 if Zi is axiom then Zi is tautology and thus also S �p Zi

2 if Zi ∈ S then S �p Zi holds trivially

3 if Zi is obtained from Zj and Zk by Modus Ponens then
Zk = (Zj ⊃ Zi ) and j , k < i

S �p Zj and S �p Zj ⊃ Zi follow from induction hypothesis

S �p Zi follows from definition of �p

AM/VvO (CS @ UIBK) lecture 3 44/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Theorem (Strong Hilbert Soundness)

if S `ph X then S �p X

Proof

• let Z1, . . . ,Zn be derivation of X from S , so Zn = X

• we show S �p Zi by induction on i

1 if Zi is axiom then Zi is tautology and thus also S �p Zi

2 if Zi ∈ S then S �p Zi holds trivially

3 if Zi is obtained from Zj and Zk by Modus Ponens then
Zk = (Zj ⊃ Zi ) and j , k < i

S �p Zj and S �p Zj ⊃ Zi follow from induction hypothesis

S �p Zi follows from definition of �p

AM/VvO (CS @ UIBK) lecture 3 44/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Theorem (Strong Hilbert Soundness)

if S `ph X then S �p X

Proof

• let Z1, . . . ,Zn be derivation of X from S , so Zn = X

• we show S �p Zi by induction on i

1 if Zi is axiom then Zi is tautology and thus also S �p Zi

2 if Zi ∈ S then S �p Zi holds trivially

3 if Zi is obtained from Zj and Zk by Modus Ponens then
Zk = (Zj ⊃ Zi ) and j , k < i

S �p Zj and S �p Zj ⊃ Zi follow from induction hypothesis

S �p Zi follows from definition of �p

AM/VvO (CS @ UIBK) lecture 3 44/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Theorem (Strong Hilbert Soundness)

if S `ph X then S �p X

Proof

• let Z1, . . . ,Zn be derivation of X from S , so Zn = X

• we show S �p Zi by induction on i

1 if Zi is axiom then Zi is tautology and thus also S �p Zi

2 if Zi ∈ S then S �p Zi holds trivially

3 if Zi is obtained from Zj and Zk by Modus Ponens then
Zk = (Zj ⊃ Zi ) and j , k < i

S �p Zj and S �p Zj ⊃ Zi follow from induction hypothesis

S �p Zi follows from definition of �p

AM/VvO (CS @ UIBK) lecture 3 44/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Theorem (Strong Hilbert Soundness)

if S `ph X then S �p X

Proof

• let Z1, . . . ,Zn be derivation of X from S , so Zn = X

• we show S �p Zi by induction on i

1 if Zi is axiom then Zi is tautology and thus also S �p Zi

2 if Zi ∈ S then S �p Zi holds trivially

3 if Zi is obtained from Zj and Zk by Modus Ponens then
Zk = (Zj ⊃ Zi ) and j , k < i

S �p Zj and S �p Zj ⊃ Zi follow from induction hypothesis

S �p Zi follows from definition of �p

AM/VvO (CS @ UIBK) lecture 3 44/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Definition

• set S of formulas is X – Hilbert inconsistent if S `ph X

• set S of formulas is X – Hilbert consistent if S `ph X does not hold

Lemma

collection of all X – Hilbert consistent sets is propositional consistency property

Proof

let S be X – Hilbert consistent

1 if A ∈ S and ¬A ∈ S

then S `ph A and S `ph ¬A

Axiom Scheme 6: `ph A ⊃ (¬A ⊃ X )

S `ph X by two applications of Modus Ponens

�

AM/VvO (CS @ UIBK) lecture 3 45/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Definition

• set S of formulas is X – Hilbert inconsistent if S `ph X

• set S of formulas is X – Hilbert consistent if S `ph X does not hold

Lemma

collection of all X – Hilbert consistent sets is propositional consistency property

Proof

let S be X – Hilbert consistent

1 if A ∈ S and ¬A ∈ S

then S `ph A and S `ph ¬A

Axiom Scheme 6: `ph A ⊃ (¬A ⊃ X )

S `ph X by two applications of Modus Ponens

�

AM/VvO (CS @ UIBK) lecture 3 45/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Definition

• set S of formulas is X – Hilbert inconsistent if S `ph X

• set S of formulas is X – Hilbert consistent if S `ph X does not hold

Lemma

collection of all X – Hilbert consistent sets is propositional consistency property

Proof

let S be X – Hilbert consistent

1 if A ∈ S and ¬A ∈ S

then S `ph A and S `ph ¬A

Axiom Scheme 6: `ph A ⊃ (¬A ⊃ X )

S `ph X by two applications of Modus Ponens

�

AM/VvO (CS @ UIBK) lecture 3 45/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Definition

• set S of formulas is X – Hilbert inconsistent if S `ph X

• set S of formulas is X – Hilbert consistent if S `ph X does not hold

Lemma

collection of all X – Hilbert consistent sets is propositional consistency property

Proof

let S be X – Hilbert consistent

1 if A ∈ S and ¬A ∈ S

then S `ph A and S `ph ¬A

Axiom Scheme 6: `ph A ⊃ (¬A ⊃ X )

S `ph X by two applications of Modus Ponens

�

AM/VvO (CS @ UIBK) lecture 3 45/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Definition

• set S of formulas is X – Hilbert inconsistent if S `ph X

• set S of formulas is X – Hilbert consistent if S `ph X does not hold

Lemma

collection of all X – Hilbert consistent sets is propositional consistency property

Proof

let S be X – Hilbert consistent

1 if A ∈ S and ¬A ∈ S

then S `ph A and S `ph ¬A

Axiom Scheme 6: `ph A ⊃ (¬A ⊃ X )

S `ph X by two applications of Modus Ponens

�

AM/VvO (CS @ UIBK) lecture 3 45/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Definition

• set S of formulas is X – Hilbert inconsistent if S `ph X

• set S of formulas is X – Hilbert consistent if S `ph X does not hold

Lemma

collection of all X – Hilbert consistent sets is propositional consistency property

Proof

let S be X – Hilbert consistent

1 if A ∈ S and ¬A ∈ S then S `ph A and S `ph ¬A

Axiom Scheme 6: `ph A ⊃ (¬A ⊃ X )

S `ph X by two applications of Modus Ponens

�

AM/VvO (CS @ UIBK) lecture 3 45/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Definition

• set S of formulas is X – Hilbert inconsistent if S `ph X

• set S of formulas is X – Hilbert consistent if S `ph X does not hold

Lemma

collection of all X – Hilbert consistent sets is propositional consistency property

Proof

let S be X – Hilbert consistent

1 if A ∈ S and ¬A ∈ S then S `ph A and S `ph ¬A

Axiom Scheme 6: `ph A ⊃ (¬A ⊃ X )

S `ph X by two applications of Modus Ponens

�

AM/VvO (CS @ UIBK) lecture 3 45/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Definition

• set S of formulas is X – Hilbert inconsistent if S `ph X

• set S of formulas is X – Hilbert consistent if S `ph X does not hold

Lemma

collection of all X – Hilbert consistent sets is propositional consistency property

Proof

let S be X – Hilbert consistent

1 if A ∈ S and ¬A ∈ S then S `ph A and S `ph ¬A

Axiom Scheme 6: `ph A ⊃ (¬A ⊃ X )

S `ph X by two applications of Modus Ponens

�

AM/VvO (CS @ UIBK) lecture 3 45/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Definition

• set S of formulas is X – Hilbert inconsistent if S `ph X

• set S of formulas is X – Hilbert consistent if S `ph X does not hold

Lemma

collection of all X – Hilbert consistent sets is propositional consistency property

Proof

let S be X – Hilbert consistent

1 if A ∈ S and ¬A ∈ S then S `ph A and S `ph ¬A

Axiom Scheme 6: `ph A ⊃ (¬A ⊃ X )

S `ph X by two applications of Modus Ponens �

AM/VvO (CS @ UIBK) lecture 3 45/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (cont’d)

let S be X – Hilbert consistent

2 if ⊥ ∈ S then S `ph ⊥

Axiom Scheme 3: `ph ⊥ ⊃ X

S `ph X by Modus Ponens

�

if ¬> ∈ S then S `ph ¬>

Axiom Scheme 4: `ph ¬> ⊃ >

S `ph > by Modus Ponens

Axiom Scheme 6: `ph > ⊃ (¬> ⊃ X )

S `ph X by two applications of Modus Ponens

�

AM/VvO (CS @ UIBK) lecture 3 46/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (cont’d)

let S be X – Hilbert consistent

2 if ⊥ ∈ S then S `ph ⊥

Axiom Scheme 3: `ph ⊥ ⊃ X

S `ph X by Modus Ponens

�

if ¬> ∈ S then S `ph ¬>

Axiom Scheme 4: `ph ¬> ⊃ >

S `ph > by Modus Ponens

Axiom Scheme 6: `ph > ⊃ (¬> ⊃ X )

S `ph X by two applications of Modus Ponens

�

AM/VvO (CS @ UIBK) lecture 3 46/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (cont’d)

let S be X – Hilbert consistent

2 if ⊥ ∈ S then S `ph ⊥

Axiom Scheme 3: `ph ⊥ ⊃ X

S `ph X by Modus Ponens

�

if ¬> ∈ S then S `ph ¬>

Axiom Scheme 4: `ph ¬> ⊃ >

S `ph > by Modus Ponens

Axiom Scheme 6: `ph > ⊃ (¬> ⊃ X )

S `ph X by two applications of Modus Ponens

�

AM/VvO (CS @ UIBK) lecture 3 46/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (cont’d)

let S be X – Hilbert consistent

2 if ⊥ ∈ S then S `ph ⊥

Axiom Scheme 3: `ph ⊥ ⊃ X

S `ph X by Modus Ponens �

if ¬> ∈ S then S `ph ¬>

Axiom Scheme 4: `ph ¬> ⊃ >

S `ph > by Modus Ponens

Axiom Scheme 6: `ph > ⊃ (¬> ⊃ X )

S `ph X by two applications of Modus Ponens

�

AM/VvO (CS @ UIBK) lecture 3 46/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (cont’d)

let S be X – Hilbert consistent

2 if ⊥ ∈ S then S `ph ⊥

Axiom Scheme 3: `ph ⊥ ⊃ X

S `ph X by Modus Ponens �

if ¬> ∈ S then S `ph ¬>

Axiom Scheme 4: `ph ¬> ⊃ >

S `ph > by Modus Ponens

Axiom Scheme 6: `ph > ⊃ (¬> ⊃ X )

S `ph X by two applications of Modus Ponens

�

AM/VvO (CS @ UIBK) lecture 3 46/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (cont’d)

let S be X – Hilbert consistent

2 if ⊥ ∈ S then S `ph ⊥

Axiom Scheme 3: `ph ⊥ ⊃ X

S `ph X by Modus Ponens �

if ¬> ∈ S then S `ph ¬>

Axiom Scheme 4: `ph ¬> ⊃ >

S `ph > by Modus Ponens

Axiom Scheme 6: `ph > ⊃ (¬> ⊃ X )

S `ph X by two applications of Modus Ponens

�

AM/VvO (CS @ UIBK) lecture 3 46/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (cont’d)

let S be X – Hilbert consistent

2 if ⊥ ∈ S then S `ph ⊥

Axiom Scheme 3: `ph ⊥ ⊃ X

S `ph X by Modus Ponens �

if ¬> ∈ S then S `ph ¬>

Axiom Scheme 4: `ph ¬> ⊃ >

S `ph > by Modus Ponens

Axiom Scheme 6: `ph > ⊃ (¬> ⊃ X )

S `ph X by two applications of Modus Ponens

�

AM/VvO (CS @ UIBK) lecture 3 46/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (cont’d)

let S be X – Hilbert consistent

2 if ⊥ ∈ S then S `ph ⊥

Axiom Scheme 3: `ph ⊥ ⊃ X

S `ph X by Modus Ponens �

if ¬> ∈ S then S `ph ¬>

Axiom Scheme 4: `ph ¬> ⊃ >

S `ph > by Modus Ponens

Axiom Scheme 6: `ph > ⊃ (¬> ⊃ X )

S `ph X by two applications of Modus Ponens

�

AM/VvO (CS @ UIBK) lecture 3 46/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (cont’d)

let S be X – Hilbert consistent

2 if ⊥ ∈ S then S `ph ⊥

Axiom Scheme 3: `ph ⊥ ⊃ X

S `ph X by Modus Ponens �

if ¬> ∈ S then S `ph ¬>

Axiom Scheme 4: `ph ¬> ⊃ >

S `ph > by Modus Ponens

Axiom Scheme 6: `ph > ⊃ (¬> ⊃ X )

S `ph X by two applications of Modus Ponens �

AM/VvO (CS @ UIBK) lecture 3 46/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (cont’d)

let S be X – Hilbert consistent

3 if ¬¬Z ∈ S then S `ph ¬¬Z

Axiom Scheme 5: `ph ¬¬Z ⊃ Z

S `ph Z by Modus Ponens

if S ∪ {Z} `ph X then S `ph Z ⊃ X by Deduction Theorem

S `ph X by Modus Ponens

�

S ∪ {Z} is X – Hilbert consistent

4 if α ∈ S then . . . exercise . . .

AM/VvO (CS @ UIBK) lecture 3 47/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (cont’d)

let S be X – Hilbert consistent

3 if ¬¬Z ∈ S then S `ph ¬¬Z

Axiom Scheme 5: `ph ¬¬Z ⊃ Z

S `ph Z by Modus Ponens

if S ∪ {Z} `ph X then S `ph Z ⊃ X by Deduction Theorem

S `ph X by Modus Ponens

�

S ∪ {Z} is X – Hilbert consistent

4 if α ∈ S then . . . exercise . . .

AM/VvO (CS @ UIBK) lecture 3 47/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (cont’d)

let S be X – Hilbert consistent

3 if ¬¬Z ∈ S then S `ph ¬¬Z

Axiom Scheme 5: `ph ¬¬Z ⊃ Z

S `ph Z by Modus Ponens

if S ∪ {Z} `ph X then S `ph Z ⊃ X by Deduction Theorem

S `ph X by Modus Ponens

�

S ∪ {Z} is X – Hilbert consistent

4 if α ∈ S then . . . exercise . . .

AM/VvO (CS @ UIBK) lecture 3 47/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (cont’d)

let S be X – Hilbert consistent

3 if ¬¬Z ∈ S then S `ph ¬¬Z

Axiom Scheme 5: `ph ¬¬Z ⊃ Z

S `ph Z by Modus Ponens

if S ∪ {Z} `ph X then S `ph Z ⊃ X by Deduction Theorem

S `ph X by Modus Ponens

�

S ∪ {Z} is X – Hilbert consistent

4 if α ∈ S then . . . exercise . . .

AM/VvO (CS @ UIBK) lecture 3 47/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (cont’d)

let S be X – Hilbert consistent

3 if ¬¬Z ∈ S then S `ph ¬¬Z

Axiom Scheme 5: `ph ¬¬Z ⊃ Z

S `ph Z by Modus Ponens

if S ∪ {Z} `ph X then S `ph Z ⊃ X by Deduction Theorem

S `ph X by Modus Ponens

�

S ∪ {Z} is X – Hilbert consistent

4 if α ∈ S then . . . exercise . . .

AM/VvO (CS @ UIBK) lecture 3 47/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (cont’d)

let S be X – Hilbert consistent

3 if ¬¬Z ∈ S then S `ph ¬¬Z

Axiom Scheme 5: `ph ¬¬Z ⊃ Z

S `ph Z by Modus Ponens

if S ∪ {Z} `ph X then S `ph Z ⊃ X by Deduction Theorem

S `ph X by Modus Ponens �

S ∪ {Z} is X – Hilbert consistent

4 if α ∈ S then . . . exercise . . .

AM/VvO (CS @ UIBK) lecture 3 47/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (cont’d)

let S be X – Hilbert consistent

3 if ¬¬Z ∈ S then S `ph ¬¬Z

Axiom Scheme 5: `ph ¬¬Z ⊃ Z

S `ph Z by Modus Ponens

if S ∪ {Z} `ph X then S `ph Z ⊃ X by Deduction Theorem

S `ph X by Modus Ponens �

S ∪ {Z} is X – Hilbert consistent

4 if α ∈ S then . . . exercise . . .

AM/VvO (CS @ UIBK) lecture 3 47/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (cont’d)

let S be X – Hilbert consistent

3 if ¬¬Z ∈ S then S `ph ¬¬Z

Axiom Scheme 5: `ph ¬¬Z ⊃ Z

S `ph Z by Modus Ponens

if S ∪ {Z} `ph X then S `ph Z ⊃ X by Deduction Theorem

S `ph X by Modus Ponens �

S ∪ {Z} is X – Hilbert consistent

4 if α ∈ S then . . . exercise . . .

AM/VvO (CS @ UIBK) lecture 3 47/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (cont’d)

let S be X – Hilbert consistent

5 if β ∈ S then S `ph β

suppose both S ∪ {β1} and S ∪ {β2} are X – Hilbert inconsistent

S ∪ {β1} `ph X and S ∪ {β2} `ph X

S `ph β1 ⊃ X and S `ph β2 ⊃ X by Deduction Theorem

Axiom Scheme 9: `ph (β1 ⊃ X ) ⊃ ((β2 ⊃ X ) ⊃ (β ⊃ X ))

S `ph β ⊃ X by two applications of Modus Ponens

S `ph X by Modus Ponens

�

AM/VvO (CS @ UIBK) lecture 3 48/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (cont’d)

let S be X – Hilbert consistent

5 if β ∈ S then S `ph β

suppose both S ∪ {β1} and S ∪ {β2} are X – Hilbert inconsistent

S ∪ {β1} `ph X and S ∪ {β2} `ph X

S `ph β1 ⊃ X and S `ph β2 ⊃ X by Deduction Theorem

Axiom Scheme 9: `ph (β1 ⊃ X ) ⊃ ((β2 ⊃ X ) ⊃ (β ⊃ X ))

S `ph β ⊃ X by two applications of Modus Ponens

S `ph X by Modus Ponens

�

AM/VvO (CS @ UIBK) lecture 3 48/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (cont’d)

let S be X – Hilbert consistent

5 if β ∈ S then S `ph β

suppose both S ∪ {β1} and S ∪ {β2} are X – Hilbert inconsistent

S ∪ {β1} `ph X and S ∪ {β2} `ph X

S `ph β1 ⊃ X and S `ph β2 ⊃ X by Deduction Theorem

Axiom Scheme 9: `ph (β1 ⊃ X ) ⊃ ((β2 ⊃ X ) ⊃ (β ⊃ X ))

S `ph β ⊃ X by two applications of Modus Ponens

S `ph X by Modus Ponens

�

AM/VvO (CS @ UIBK) lecture 3 48/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (cont’d)

let S be X – Hilbert consistent

5 if β ∈ S then S `ph β

suppose both S ∪ {β1} and S ∪ {β2} are X – Hilbert inconsistent

S ∪ {β1} `ph X and S ∪ {β2} `ph X

S `ph β1 ⊃ X and S `ph β2 ⊃ X by Deduction Theorem

Axiom Scheme 9: `ph (β1 ⊃ X ) ⊃ ((β2 ⊃ X ) ⊃ (β ⊃ X ))

S `ph β ⊃ X by two applications of Modus Ponens

S `ph X by Modus Ponens

�

AM/VvO (CS @ UIBK) lecture 3 48/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (cont’d)

let S be X – Hilbert consistent

5 if β ∈ S then S `ph β

suppose both S ∪ {β1} and S ∪ {β2} are X – Hilbert inconsistent

S ∪ {β1} `ph X and S ∪ {β2} `ph X

S `ph β1 ⊃ X and S `ph β2 ⊃ X by Deduction Theorem

Axiom Scheme 9: `ph (β1 ⊃ X ) ⊃ ((β2 ⊃ X ) ⊃ (β ⊃ X ))

S `ph β ⊃ X by two applications of Modus Ponens

S `ph X by Modus Ponens

�

AM/VvO (CS @ UIBK) lecture 3 48/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (cont’d)

let S be X – Hilbert consistent

5 if β ∈ S then S `ph β

suppose both S ∪ {β1} and S ∪ {β2} are X – Hilbert inconsistent

S ∪ {β1} `ph X and S ∪ {β2} `ph X

S `ph β1 ⊃ X and S `ph β2 ⊃ X by Deduction Theorem

Axiom Scheme 9: `ph (β1 ⊃ X ) ⊃ ((β2 ⊃ X ) ⊃ (β ⊃ X ))

S `ph β ⊃ X by two applications of Modus Ponens

S `ph X by Modus Ponens

�

AM/VvO (CS @ UIBK) lecture 3 48/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (cont’d)

let S be X – Hilbert consistent

5 if β ∈ S then S `ph β

suppose both S ∪ {β1} and S ∪ {β2} are X – Hilbert inconsistent

S ∪ {β1} `ph X and S ∪ {β2} `ph X

S `ph β1 ⊃ X and S `ph β2 ⊃ X by Deduction Theorem

Axiom Scheme 9: `ph (β1 ⊃ X ) ⊃ ((β2 ⊃ X ) ⊃ (β ⊃ X ))

S `ph β ⊃ X by two applications of Modus Ponens

S `ph X by Modus Ponens

�

AM/VvO (CS @ UIBK) lecture 3 48/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Proof (cont’d)

let S be X – Hilbert consistent

5 if β ∈ S then S `ph β

suppose both S ∪ {β1} and S ∪ {β2} are X – Hilbert inconsistent

S ∪ {β1} `ph X and S ∪ {β2} `ph X

S `ph β1 ⊃ X and S `ph β2 ⊃ X by Deduction Theorem

Axiom Scheme 9: `ph (β1 ⊃ X ) ⊃ ((β2 ⊃ X ) ⊃ (β ⊃ X ))

S `ph β ⊃ X by two applications of Modus Ponens

S `ph X by Modus Ponens �

AM/VvO (CS @ UIBK) lecture 3 48/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Theorem (Strong Hilbert Completeness)

if S �p X then S `ph X

Proof

• suppose S `ph X does not hold

, so S is X – Hilbert consistent

• `ph (¬X ⊃ X ) ⊃ X

• if S ∪ {¬X} `ph X then S `ph ¬X ⊃ X

and thus S `ph X

�

• S ∪ {¬X} `ph X does not hold

• S ∪ {¬X} is X – Hilbert consistent

• S ∪ {¬X} is satisfiable (by previous lemma and Model Existence Theorem)

• S �p X does not hold

AM/VvO (CS @ UIBK) lecture 3 49/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Theorem (Strong Hilbert Completeness)

if S �p X then S `ph X

Proof

• suppose S `ph X does not hold

, so S is X – Hilbert consistent

• `ph (¬X ⊃ X ) ⊃ X

• if S ∪ {¬X} `ph X then S `ph ¬X ⊃ X

and thus S `ph X

�

• S ∪ {¬X} `ph X does not hold

• S ∪ {¬X} is X – Hilbert consistent

• S ∪ {¬X} is satisfiable (by previous lemma and Model Existence Theorem)

• S �p X does not hold

AM/VvO (CS @ UIBK) lecture 3 49/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Theorem (Strong Hilbert Completeness)

if S �p X then S `ph X

Proof

• suppose S `ph X does not hold, so S is X – Hilbert consistent

• `ph (¬X ⊃ X ) ⊃ X

• if S ∪ {¬X} `ph X then S `ph ¬X ⊃ X

and thus S `ph X

�

• S ∪ {¬X} `ph X does not hold

• S ∪ {¬X} is X – Hilbert consistent

• S ∪ {¬X} is satisfiable (by previous lemma and Model Existence Theorem)

• S �p X does not hold

AM/VvO (CS @ UIBK) lecture 3 49/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Theorem (Strong Hilbert Completeness)

if S �p X then S `ph X

Proof

• suppose S `ph X does not hold, so S is X – Hilbert consistent

• `ph (¬X ⊃ X ) ⊃ X

• if S ∪ {¬X} `ph X then S `ph ¬X ⊃ X

and thus S `ph X

�

• S ∪ {¬X} `ph X does not hold

• S ∪ {¬X} is X – Hilbert consistent

• S ∪ {¬X} is satisfiable (by previous lemma and Model Existence Theorem)

• S �p X does not hold

AM/VvO (CS @ UIBK) lecture 3 49/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Theorem (Strong Hilbert Completeness)

if S �p X then S `ph X

Proof

• suppose S `ph X does not hold, so S is X – Hilbert consistent

• `ph (¬X ⊃ X ) ⊃ X

• if S ∪ {¬X} `ph X then S `ph ¬X ⊃ X

and thus S `ph X

�

• S ∪ {¬X} `ph X does not hold

• S ∪ {¬X} is X – Hilbert consistent

• S ∪ {¬X} is satisfiable (by previous lemma and Model Existence Theorem)

• S �p X does not hold

AM/VvO (CS @ UIBK) lecture 3 49/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Theorem (Strong Hilbert Completeness)

if S �p X then S `ph X

Proof

• suppose S `ph X does not hold, so S is X – Hilbert consistent

• `ph (¬X ⊃ X ) ⊃ X

• if S ∪ {¬X} `ph X then S `ph ¬X ⊃ X and thus S `ph X

�
• S ∪ {¬X} `ph X does not hold

• S ∪ {¬X} is X – Hilbert consistent

• S ∪ {¬X} is satisfiable (by previous lemma and Model Existence Theorem)

• S �p X does not hold

AM/VvO (CS @ UIBK) lecture 3 49/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Theorem (Strong Hilbert Completeness)

if S �p X then S `ph X

Proof

• suppose S `ph X does not hold, so S is X – Hilbert consistent

• `ph (¬X ⊃ X ) ⊃ X

• if S ∪ {¬X} `ph X then S `ph ¬X ⊃ X and thus S `ph X �
• S ∪ {¬X} `ph X does not hold

• S ∪ {¬X} is X – Hilbert consistent

• S ∪ {¬X} is satisfiable (by previous lemma and Model Existence Theorem)

• S �p X does not hold

AM/VvO (CS @ UIBK) lecture 3 49/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Theorem (Strong Hilbert Completeness)

if S �p X then S `ph X

Proof

• suppose S `ph X does not hold, so S is X – Hilbert consistent

• `ph (¬X ⊃ X ) ⊃ X

• if S ∪ {¬X} `ph X then S `ph ¬X ⊃ X and thus S `ph X �
• S ∪ {¬X} `ph X does not hold

• S ∪ {¬X} is X – Hilbert consistent

• S ∪ {¬X} is satisfiable (by previous lemma and Model Existence Theorem)

• S �p X does not hold

AM/VvO (CS @ UIBK) lecture 3 49/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Theorem (Strong Hilbert Completeness)

if S �p X then S `ph X

Proof

• suppose S `ph X does not hold, so S is X – Hilbert consistent

• `ph (¬X ⊃ X ) ⊃ X

• if S ∪ {¬X} `ph X then S `ph ¬X ⊃ X and thus S `ph X �
• S ∪ {¬X} `ph X does not hold

• S ∪ {¬X} is X – Hilbert consistent

• S ∪ {¬X} is satisfiable (by previous lemma and Model Existence Theorem)

• S �p X does not hold

AM/VvO (CS @ UIBK) lecture 3 49/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Theorem (Strong Hilbert Completeness)

if S �p X then S `ph X

Proof

• suppose S `ph X does not hold, so S is X – Hilbert consistent

• `ph (¬X ⊃ X ) ⊃ X

• if S ∪ {¬X} `ph X then S `ph ¬X ⊃ X and thus S `ph X �
• S ∪ {¬X} `ph X does not hold

• S ∪ {¬X} is X – Hilbert consistent

• S ∪ {¬X} is satisfiable (by previous lemma and Model Existence Theorem)

• S �p X does not hold

AM/VvO (CS @ UIBK) lecture 3 49/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Haskell Curry
(1900 – 1982)

William Craig
(1918 – 2016)

Jacques Herbrand
(1908 – 1931)

David Hilbert
(1862 – 1943)

Jaakko Hintikka
(1929 – 2015)

William Howard
(1926 – )

Saul Kripke
(1940 – )

Leopold Löwenheim
(1878 – 1957)

Thoralf Skolem
(1887 – 1963)

AM/VvO (CS @ UIBK) lecture 3 50/54

https://en.wikipedia.org/wiki/Haskell_Curry
https://en.wikipedia.org/wiki/William_Craig_(philosopher)
https://en.wikipedia.org/wiki/Jacques_Herbrand
https://en.wikipedia.org/wiki/David_Hilbert
https://en.wikipedia.org/wiki/Jaakko_Hintikka
https://en.wikipedia.org/wiki/William_Alvin_Howard
https://en.wikipedia.org/wiki/Saul_Kripke
https://en.wikipedia.org/wiki/Leopold_Loewenheim
https://en.wikipedia.org/wiki/Thoralf_Skolem
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Hilbert Systems

Haskell Curry
(1900 – 1982)

William Craig
(1918 – 2016)

Jacques Herbrand
(1908 – 1931)

David Hilbert
(1862 – 1943)

Jaakko Hintikka
(1929 – 2015)

William Howard
(1926 – )

Saul Kripke
(1940 – )

Leopold Löwenheim
(1878 – 1957)

Thoralf Skolem
(1887 – 1963)

AM/VvO (CS @ UIBK) lecture 3 50/54

https://en.wikipedia.org/wiki/Haskell_Curry
https://en.wikipedia.org/wiki/William_Craig_(philosopher)
https://en.wikipedia.org/wiki/Jacques_Herbrand
https://en.wikipedia.org/wiki/David_Hilbert
https://en.wikipedia.org/wiki/Jaakko_Hintikka
https://en.wikipedia.org/wiki/William_Alvin_Howard
https://en.wikipedia.org/wiki/Saul_Kripke
https://en.wikipedia.org/wiki/Leopold_Loewenheim
https://en.wikipedia.org/wiki/Thoralf_Skolem
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Exercises

Outline

Summary of Previous Lecture

Model Existence Theorem

Compactness

Interpolation

Semantic Tableaux

Hilbert Systems

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 3 51/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Exercises

Fitting

• Bonus: Exercise 3.6.6 or Exercise 3.6.7
(where ‘or’ means that you can get at most 1 bonus-exercise point)

• Exercise 3.7.1

• Exercise 3.7.2.(1) and (2)

• Bonus: Exercise 3.7.4 (hence 3.7.3 and 3.7.2 as well)

• Exercise 3.9.1

• Bonus: Exercise 3.9.2 or Exercise 3.9.3

• Exercise 4.1.1

• Exercise 4.1.2 !

• Bonus: Exercise 4.1.4 or 4.1.5 or Exercise 4.1.6

• Exercise 4.1.7 !

• Exercise 4.1.8

• Bonus: Exercise 4.5.2
AM/VvO (CS @ UIBK) lecture 3 52/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Further Reading

Outline

Summary of Previous Lecture

Model Existence Theorem

Compactness

Interpolation

Semantic Tableaux

Hilbert Systems

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 3 53/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Further Reading

Fitting

• Section 3.7 (until Theorem 3.7.3)

• Section 3.8 (until Corollary 3.8.2) !

• Section 3.9

• Section 4.1 !

• Section 4.5

AM/VvO (CS @ UIBK) lecture 3 54/54

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	lecture 3
	Summary of Previous Lecture
	Contents
	Model Existence Theorem
	Compactness
	Interpolation
	Semantic Tableaux
	Completeness
	Completeness with Restrictions
	Propositional Consequence

	Hilbert Systems
	Exercises
	Further Reading


