

Computational Logic

Vincent van Oostrom Course/slides by Aart Middeldorp

Department of Computer Science University of Innsbruck

SS 2020

Outline

- Summary of Previous Lecture
- Model Existence Theorem
- Compactness
- Interpolation
- Semantic Tableaux
- Hilbert Systems
- Exercises
- Further Reading

Summary of Previous Lecture

Definition

finite set $\{A_1, \ldots, A_n\}$ of propositional formulas

1 following one-branch tree is tableau for $\{A_1, \ldots, A_n\}$:

$$\begin{array}{c} A_1 \\ A_2 \\ \vdots \\ A_n \end{array}$$

If T is tableau for {A₁,..., A_n} and T* results from T by application of tableau expansion rule then T* is tableau for {A₁,..., A_n}

- branch θ of tableau is closed if both X and ¬X occur on θ for some propositional formula X, or if ⊥ occurs on θ
- branch θ of tableau is atomically closed if both A and ¬A occur on θ for some propositional letter A, or if ⊥ occurs on θ
- tableau is (atomically) closed if every branch is (atomically) closed
- tableau proof of X is closed tableau for $\{\neg X\}$
- X is theorem if X has tableau proof, denoted by $\vdash_{pt} X$
- tableau is strict if no formula has had Tableau Expansion Rule applied to it twice on same branch
- tableau branch θ is satisfiable if set of propositional formulas on it is satisfiable
- tableau T is satisfiable if at least one branch of T is satisfiable

Lemma

any application of Tableau Expansion Rule to satisfiable tableau yields another satisfiable tableau

Lemma

if S admits closed tableau then S is not satisfiable

Theorem (Propositional Tableau Soundness)

if X has tableau proof then X is tautology

set H of propositional formulas is propositional Hintikka set provided

- **1** for any propositional letter A, not both $A \in \mathbf{H}$ and $\neg A \in \mathbf{H}$
- **2** $\perp \notin \mathbf{H}, \neg \top \notin \mathbf{H}$
- **3** if $\neg \neg Z \in \mathbf{H}$ then $Z \in \mathbf{H}$
- 4 if $\alpha \in \mathbf{H}$ then $\alpha_1 \in \mathbf{H}$ and $\alpha_2 \in \mathbf{H}$
- 5 if $\beta \in \mathbf{H}$ then $\beta_1 \in \mathbf{H}$ or $\beta_2 \in \mathbf{H}$

Lemma (Hintikka's Lemma)

every propositional Hintikka set is satisfiable

collection C of sets of propositional formulas is propositional consistency property if, for each $S \in C$:

- 1 for any propositional letter A, not both $A \in S$ and $\neg A \in S$
- 3 if $\neg \neg Z \in S$ then $S \cup \{Z\} \in C$
- 4 if $\alpha \in S$ then $S \cup \{\alpha_1, \alpha_2\} \in C$
- 5 if $\beta \in S$ then $S \cup \{\beta_1\} \in C$ or $S \cup \{\beta_2\} \in C$

if C is propositional consistency property then $S \in C$ is called C-consistent

Theorem (Propositional Model Existence)

if $\mathcal C$ is propositional consistency property and $S\in \mathcal C$ then S is satisfiable

Part I: Propositional Logic

compactness, completeness, Hilbert systems, Hintikka's lemma, interpolation, logical consequence, model existence theorem, propositional semantic tableaux, soundness

Part II: First-Order Logic

compactness, completeness, Craig's interpolation theorem, cut elimination, first-order semantic tableaux, Herbrand models, Herbrand's theorem, Hilbert systems, Hintikka's lemma, Löwenheim-Skolem, logical consequence, model existence theorem, prenex form, skolemization, soundness

Part III: Limitations and Extensions of First-Order Logic

Curry-Howard isomorphism, intuitionistic logic, Kripke models, second-order logic, simply-typed $\lambda\text{-}calculus$

Part I: Propositional Logic

compactness, completeness, Hilbert systems, Hintikka's lemma, interpolation, logical consequence, model existence theorem, propositional semantic tableaux, soundness

Part II: First-Order Logic

compactness, completeness, Craig's interpolation theorem, cut elimination, first-order semantic tableaux, Herbrand models, Herbrand's theorem, Hilbert systems, Hintikka's lemma, Löwenheim-Skolem, logical consequence, model existence theorem, prenex form, skolemization, soundness

Part III: Limitations and Extensions of First-Order Logic

Curry-Howard isomorphism, intuitionistic logic, Kripke models, second-order logic, simply-typed $\lambda\text{-}calculus$

Outline

- Summary of Previous Lecture
- Model Existence Theorem
- Compactness
- Interpolation
- Semantic Tableaux
- Hilbert Systems
- Exercises
- Further Reading

collection C of sets of propositional formulas is propositional consistency property if, for each $S \in C$:

1 for any propositional letter A, not both $A \in S$ and $\neg A \in S$

- **1** for any propositional letter *A*, not both $A \in S$ and $\neg A \in S$
- **2** $\perp \notin S, \neg \top \notin S$

- **1** for any propositional letter A, not both $A \in S$ and $\neg A \in S$
- **2** $\perp \notin S, \neg \top \notin S$
- 3 if $\neg \neg Z \in S$ then $S \cup \{Z\} \in C$

- **1** for any propositional letter A, not both $A \in S$ and $\neg A \in S$
- 3 if $\neg \neg Z \in S$ then $S \cup \{Z\} \in C$
- 4 if $\alpha \in S$ then $S \cup \{\alpha_1, \alpha_2\} \in C$

- **1** for any propositional letter A, not both $A \in S$ and $\neg A \in S$
- 3 if $\neg \neg Z \in S$ then $S \cup \{Z\} \in C$
- 4 if $\alpha \in S$ then $S \cup \{\alpha_1, \alpha_2\} \in C$
- 5 if $\beta \in S$ then $S \cup \{\beta_1\} \in C$ or $S \cup \{\beta_2\} \in C$

collection C of sets of propositional formulas is propositional consistency property if, for each $S \in C$:

- **1** for any propositional letter A, not both $A \in S$ and $\neg A \in S$
- 3 if $\neg \neg Z \in S$ then $S \cup \{Z\} \in C$
- 4 if $\alpha \in S$ then $S \cup \{\alpha_1, \alpha_2\} \in C$
- 5 if $\beta \in S$ then $S \cup \{\beta_1\} \in C$ or $S \cup \{\beta_2\} \in C$

if C is propositional consistency property then $S \in C$ is called C-consistent

collection C of sets of propositional formulas is propositional consistency property if, for each $S \in C$:

- **1** for any propositional letter A, not both $A \in S$ and $\neg A \in S$
- 3 if $\neg \neg Z \in S$ then $S \cup \{Z\} \in C$
- 4 if $\alpha \in S$ then $S \cup \{\alpha_1, \alpha_2\} \in C$
- 5 if $\beta \in S$ then $S \cup \{\beta_1\} \in C$ or $S \cup \{\beta_2\} \in C$

if C is propositional consistency property then $S \in C$ is called C-consistent

Theorem (Propositional Model Existence)

if \mathcal{C} is propositional consistency property and $S \in \mathcal{C}$ then S is satisfiable

Outline

- Summary of Previous Lecture
- Model Existence Theorem
- Compactness
- Interpolation
- Semantic Tableaux
- Hilbert Systems
- Exercises
- Further Reading

if every finite subset of set S of propositional formulas is satisfiable then S is satisfiable

if every finite subset of set S of propositional formulas is satisfiable then S is satisfiable

Proof

• let $C = \{W \mid \text{every finite subset of } W \text{ is satisfiable}\}$

if every finite subset of set S of propositional formulas is satisfiable then S is satisfiable

- let $C = \{W \mid \text{every finite subset of } W \text{ is satisfiable}\}$
- $S \in C$

if every finite subset of set S of propositional formulas is satisfiable then S is satisfiable

- let $C = \{W \mid \text{every finite subset of } W \text{ is satisfiable}\}$
- $S \in C$ and C is propositional consistency property

if every finite subset of set S of propositional formulas is satisfiable then S is satisfiable

- let $C = \{W \mid \text{every finite subset of } W \text{ is satisfiable}\}$
- $S \in C$ and C is propositional consistency property:
 - **1** if $A \in W$ and $\neg A \in W$ then $W \notin C$

if every finite subset of set S of propositional formulas is satisfiable then S is satisfiable

- let $C = \{W \mid \text{every finite subset of } W \text{ is satisfiable}\}$
- $S \in C$ and C is propositional consistency property:
 - **1** if $A \in W$ and $\neg A \in W$ then $W \notin C$
 - **2** if $\bot \in W$ or $\neg \top \in W$ then $W \notin C$

if every finite subset of set S of propositional formulas is satisfiable then S is satisfiable

- let $C = \{W \mid \text{every finite subset of } W \text{ is satisfiable}\}$
- $S \in C$ and C is propositional consistency property:
 - **1** if $A \in W$ and $\neg A \in W$ then $W \notin C$
 - **2** if $\bot \in W$ or $\neg \top \in W$ then $W \notin C$

3 suppose
$$\neg \neg Z \in W \in C$$

if every finite subset of set S of propositional formulas is satisfiable then S is satisfiable

Proof

- let $C = \{W \mid \text{every finite subset of } W \text{ is satisfiable}\}$
- $S \in C$ and C is propositional consistency property:

1 if
$$A \in W$$
 and $\neg A \in W$ then $W \notin C$

2 if
$$\bot \in W$$
 or $\neg \top \in W$ then $W \notin C$

3 suppose $\neg \neg Z \in W \in C$ and let V be finite subset of $W \cup \{Z\}$

if every finite subset of set S of propositional formulas is satisfiable then S is satisfiable

- let $C = \{W \mid \text{every finite subset of } W \text{ is satisfiable}\}$
- $S \in C$ and C is propositional consistency property:

if
$$A \in W$$
 and $\neg A \in W$ then $W \notin C$

2 if
$$\bot \in W$$
 or $\neg \top \in W$ then $W \notin C$

3 suppose
$$\neg \neg Z \in W \in C$$
 and let V be finite subset of $W \cup \{Z\}$
 $(V \cap W) \cup \{\neg \neg Z\}$ is finite subset of W and thus satisfiable

if every finite subset of set S of propositional formulas is satisfiable then S is satisfiable

- let $C = \{W \mid \text{every finite subset of } W \text{ is satisfiable}\}$
- $S \in C$ and C is propositional consistency property:

1 if
$$A \in W$$
 and $\neg A \in W$ then $W \notin C$

2 if
$$\bot \in W$$
 or $\neg \top \in W$ then $W \notin C$

if every finite subset of set S of propositional formulas is satisfiable then S is satisfiable

- let $C = \{W \mid \text{every finite subset of } W \text{ is satisfiable}\}$
- $S \in C$ and C is propositional consistency property:

if
$$A \in W$$
 and $\neg A \in W$ then $W \notin C$

2 if
$$\bot \in W$$
 or $\neg \top \in W$ then $W \notin C$

3 suppose
$$\neg \neg Z \in W \in C$$
 and let V be finite subset of $W \cup \{Z\}$
 $(V \cap W) \cup \{\neg \neg Z\}$ is finite subset of W and thus satisfiable
 $(V \cap W) \cup \{\neg \neg Z, Z\}$ is satisfiable
 $V \subseteq (V \cap W) \cup \{\neg \neg Z, Z\}$ is satisfiable

- let $C = \{W \mid \text{every finite subset of } W \text{ is satisfiable}\}$
- $S \in C$ and C is propositional consistency property:
 - 4 suppose $\alpha \in W \in C$

- let $C = \{W \mid \text{every finite subset of } W \text{ is satisfiable}\}$
- $S \in C$ and C is propositional consistency property:
 - **4** suppose $\alpha \in W \in C$ and let V be finite subset of $W \cup \{\alpha_1, \alpha_2\}$

- let $C = \{W \mid \text{every finite subset of } W \text{ is satisfiable}\}$
- $S \in C$ and C is propositional consistency property:
 - 4 suppose α ∈ W ∈ C and let V be finite subset of W ∪ {α₁, α₂}
 (V ∩ W) ∪ {α} is finite subset of W and thus satisfiable

- let $C = \{W \mid \text{every finite subset of } W \text{ is satisfiable}\}$
- $S \in C$ and C is propositional consistency property:
 - 4 suppose α ∈ W ∈ C and let V be finite subset of W ∪ {α₁, α₂}
 (V ∩ W) ∪ {α} is finite subset of W and thus satisfiable
 (V ∩ W) ∪ {α, α₁, α₂} is satisfiable

- let $C = \{W \mid \text{every finite subset of } W \text{ is satisfiable}\}$
- $S \in C$ and C is propositional consistency property:
 - suppose α ∈ W ∈ C and let V be finite subset of W ∪ {α₁, α₂}
 (V ∩ W) ∪ {α} is finite subset of W and thus satisfiable
 (V ∩ W) ∪ {α, α₁, α₂} is satisfiable
 V ⊆ (V ∩ W) ∪ {α, α₁, α₂} is satisfiable

- let $C = \{W \mid \text{every finite subset of } W \text{ is satisfiable}\}$
- $S \in C$ and C is propositional consistency property:
 - suppose α ∈ W ∈ C and let V be finite subset of W ∪ {α₁, α₂}
 (V ∩ W) ∪ {α} is finite subset of W and thus satisfiable
 (V ∩ W) ∪ {α, α₁, α₂} is satisfiable
 V ⊆ (V ∩ W) ∪ {α, α₁, α₂} is satisfiable

suppose $\beta \in W \in C$ 5

- let $C = \{W \mid \text{every finite subset of } W \text{ is satisfiable}\}$
- $S \in C$ and C is propositional consistency property:
 - suppose α ∈ W ∈ C and let V be finite subset of W ∪ {α₁, α₂}
 (V ∩ W) ∪ {α} is finite subset of W and thus satisfiable
 (V ∩ W) ∪ {α, α₁, α₂} is satisfiable
 V ⊆ (V ∩ W) ∪ {α, α₁, α₂} is satisfiable

5 suppose
$$\beta \in W \in C$$

suppose neither $W \cup \{\beta_1\}$ nor $W \cup \{\beta_2\}$ belongs to $\mathcal C$
- let $C = \{W \mid \text{every finite subset of } W \text{ is satisfiable}\}$
- $S \in C$ and C is propositional consistency property:
 - 4 suppose α ∈ W ∈ C and let V be finite subset of W ∪ {α₁, α₂}
 (V ∩ W) ∪ {α} is finite subset of W and thus satisfiable
 (V ∩ W) ∪ {α, α₁, α₂} is satisfiable
 - $V \subseteq (V \cap W) \cup \{\alpha, \alpha_1, \alpha_2\}$ is satisfiable

5 suppose
$$\beta \in W \in C$$

suppose neither $W \cup \{\beta_1\}$ nor $W \cup \{\beta_2\}$ belongs to C

 \exists finite unsatisfiable subsets $F_1 \subseteq W \cup \{\beta_1\}$ and $F_2 \subseteq W \cup \{\beta_2\}$

- let $C = \{W \mid \text{every finite subset of } W \text{ is satisfiable}\}$
- $S \in C$ and C is propositional consistency property:
 - 4 suppose α ∈ W ∈ C and let V be finite subset of W ∪ {α₁, α₂}
 (V ∩ W) ∪ {α} is finite subset of W and thus satisfiable
 (V ∩ W) ∪ {α, α₁, α₂} is satisfiable

 $V \subseteq (V \cap W) \cup \{\alpha, \alpha_1, \alpha_2\}$ is satisfiable

5 suppose
$$\beta \in W \in C$$

suppose neither $W \cup \{\beta_1\}$ nor $W \cup \{\beta_2\}$ belongs to C

 \exists finite unsatisfiable subsets $F_1 \subseteq W \cup \{\beta_1\}$ and $F_2 \subseteq W \cup \{\beta_2\}$

 $(F_1 \cup F_2) \cap W \cup \{\beta\}$ is finite subset of W

- let $C = \{W \mid \text{every finite subset of } W \text{ is satisfiable}\}$
- $S \in C$ and C is propositional consistency property:
 - 4 suppose α ∈ W ∈ C and let V be finite subset of W ∪ {α₁, α₂}
 (V ∩ W) ∪ {α} is finite subset of W and thus satisfiable
 (V ∩ W) ∪ {α, α₁, α₂} is satisfiable

 $V \subseteq (V \cap W) \cup \{\alpha, \alpha_1, \alpha_2\}$ is satisfiable

5 suppose
$$\beta \in W \in C$$

suppose neither $W \cup \{\beta_1\}$ nor $W \cup \{\beta_2\}$ belongs to C

 \exists finite unsatisfiable subsets $F_1 \subseteq W \cup \{\beta_1\}$ and $F_2 \subseteq W \cup \{\beta_2\}$

 $(F_1 \cup F_2) \cap W \cup \{\beta\}$ is finite subset of W and thus satisfiable

- let $C = \{W \mid \text{every finite subset of } W \text{ is satisfiable}\}$
- $S \in C$ and C is propositional consistency property:
 - suppose α ∈ W ∈ C and let V be finite subset of W ∪ {α₁, α₂}
 (V ∩ W) ∪ {α} is finite subset of W and thus satisfiable
 (V ∩ W) ∪ {α, α₁, α₂} is satisfiable

 $V \subseteq (V \cap W) \cup \{\alpha, \alpha_1, \alpha_2\}$ is satisfiable

5 suppose
$$\beta \in W \in C$$

suppose neither $W \cup \{\beta_1\}$ nor $W \cup \{\beta_2\}$ belongs to C

 \exists finite unsatisfiable subsets $F_1 \subseteq W \cup \{\beta_1\}$ and $F_2 \subseteq W \cup \{\beta_2\}$

 $(F_1 \cup F_2) \cap W \cup \{\beta\}$ is finite subset of W and thus satisfiable

 $(F_1 \cup F_2) \cap W \cup \{\beta, \beta_1\}$ or $(F_1 \cup F_2) \cap W \cup \{\beta, \beta_2\}$ is satisfiable

- let $C = \{W \mid \text{every finite subset of } W \text{ is satisfiable}\}$
- $S \in C$ and C is propositional consistency property:
 - suppose α ∈ W ∈ C and let V be finite subset of W ∪ {α₁, α₂}
 (V ∩ W) ∪ {α} is finite subset of W and thus satisfiable
 (V ∩ W) ∪ {α, α₁, α₂} is satisfiable

 $V \subseteq (V \cap W) \cup \{\alpha, \alpha_1, \alpha_2\}$ is satisfiable

5 suppose
$$\beta \in W \in C$$

suppose neither $W \cup \{\beta_1\}$ nor $W \cup \{\beta_2\}$ belongs to C

 \exists finite unsatisfiable subsets $F_1 \subseteq W \cup \{\beta_1\}$ and $F_2 \subseteq W \cup \{\beta_2\}$

 $(F_1 \cup F_2) \cap W \cup \{\beta\}$ is finite subset of W and thus satisfiable

 $(F_1 \cup F_2) \cap W \cup \{\beta, \beta_1\}$ or $(F_1 \cup F_2) \cap W \cup \{\beta, \beta_2\}$ is satisfiable

 $F_1 \subseteq (F_1 \cup F_2) \cap W \cup \{\beta, \beta_1\}$ and $F_2 \subseteq (F_1 \cup F_2) \cap W \cup \{\beta, \beta_2\}$

- let $C = \{W \mid \text{every finite subset of } W \text{ is satisfiable}\}$
- $S \in C$ and C is propositional consistency property:
 - 4 suppose α ∈ W ∈ C and let V be finite subset of W ∪ {α₁, α₂}
 (V ∩ W) ∪ {α} is finite subset of W and thus satisfiable
 (V ∩ W) ∪ {α, α₁, α₂} is satisfiable

 $V \subseteq (V \cap W) \cup \{\alpha, \alpha_1, \alpha_2\}$ is satisfiable

5 suppose
$$\beta \in W \in C$$

suppose neither $W \cup \{\beta_1\}$ nor $W \cup \{\beta_2\}$ belongs to C

 \exists finite unsatisfiable subsets $F_1 \subseteq W \cup \{\beta_1\}$ and $F_2 \subseteq W \cup \{\beta_2\}$

 $(F_1 \cup F_2) \cap W \cup \{\beta\}$ is finite subset of W and thus satisfiable

 $(F_1 \cup F_2) \cap W \cup \{\beta, \beta_1\}$ or $(F_1 \cup F_2) \cap W \cup \{\beta, \beta_2\}$ is satisfiable

 $F_1 \subseteq (F_1 \cup F_2) \cap W \cup \{\beta, \beta_1\}$ and $F_2 \subseteq (F_1 \cup F_2) \cap W \cup \{\beta, \beta_2\}$

Outline

- Summary of Previous Lecture
- Model Existence Theorem
- Compactness

Interpolation

- Semantic Tableaux
- Hilbert Systems
- Exercises
- Further Reading

formula Z is interpolant for implication $X \supset Y$ if every propositional letter of Z occurs in both X and Y, and $X \supset Z$ and $Z \supset Y$ are both tautologies

formula Z is interpolant for implication $X \supset Y$ if every propositional letter of Z occurs in both X and Y, and $X \supset Z$ and $Z \supset Y$ are both tautologies

Examples

•
$$P \lor Q$$
 is interpolant for $(P \lor (Q \land R)) \supset (P \lor \neg \neg Q)$

formula Z is interpolant for implication $X \supset Y$ if every propositional letter of Z occurs in both X and Y, and $X \supset Z$ and $Z \supset Y$ are both tautologies

Examples

• $P \lor Q$ is interpolant for $(P \lor (Q \land R)) \supset (P \lor \neg \neg Q)$

• \perp is interpolant for $(P \land \neg P) \supset Q$

formula Z is interpolant for implication $X \supset Y$ if every propositional letter of Z occurs in both X and Y, and $X \supset Z$ and $Z \supset Y$ are both tautologies

Examples

• $P \lor Q$ is interpolant for $(P \lor (Q \land R)) \supset (P \lor \neg \neg Q)$

• \perp is interpolant for $(P \land \neg P) \supset Q$

Theorem (Craig Interpolation)

every tautology $X \supset Y$ has interpolant

 $\langle S \rangle$ denotes conjunction of all members of finite set S of formulas

 $\langle S \rangle$ denotes conjunction of all members of finite set S of formulas

Definition

finite set S of formulas is Craig consistent if $\langle S_1\rangle\supset\neg\langle S_2\rangle$ has no interpolant for some partition $S_1\uplus S_2$ of S

 $\langle S \rangle$ denotes conjunction of all members of finite set S of formulas

Definition

finite set S of formulas is Craig consistent if $\langle S_1\rangle\supset\neg\langle S_2\rangle$ has no interpolant for some partition $S_1\uplus S_2$ of S

Lemma

collection of all Craig consistent sets is propositional consistency property

 $\langle S \rangle$ denotes conjunction of all members of finite set S of formulas

Definition

finite set S of formulas is Craig consistent if $\langle S_1\rangle\supset\neg\langle S_2\rangle$ has no interpolant for some partition $S_1\uplus S_2$ of S

Lemma

collection of all Craig consistent sets is propositional consistency property

Proof

• let $\ensuremath{\mathcal{C}}$ be collection of all Craig consistent sets

 $\langle S \rangle$ denotes conjunction of all members of finite set S of formulas

Definition

finite set S of formulas is Craig consistent if $\langle S_1\rangle\supset\neg\langle S_2\rangle$ has no interpolant for some partition $S_1\uplus S_2$ of S

Lemma

collection of all Craig consistent sets is propositional consistency property

Proof

- let $\ensuremath{\mathcal{C}}$ be collection of all Craig consistent sets
- let $S \in \mathcal{C}$ so $\langle S_1
 angle \supset \neg \langle S_2
 angle$ has no interpolant for some partition $S_1 \uplus S_2$ of S

 $\langle S \rangle$ denotes conjunction of all members of finite set S of formulas

Definition

finite set S of formulas is Craig consistent if $\langle S_1\rangle\supset\neg\langle S_2\rangle$ has no interpolant for some partition $S_1\uplus S_2$ of S

Lemma

collection of all Craig consistent sets is propositional consistency property

Proof

- let $\ensuremath{\mathcal{C}}$ be collection of all Craig consistent sets
- let $S \in C$ so $\langle S_1 \rangle \supset \neg \langle S_2 \rangle$ has no interpolant for some partition $S_1 \uplus S_2$ of S (terminology: $S_1 \uplus S_2$ has no interpolant)

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

```
1 suppose A, \neg A \in S
```

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

```
1 suppose A, \neg A \in S
```

• if $A, \neg A \in S_1$ then \bot is interpolant of $S_1 \uplus S_2$

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

- **1** suppose $A, \neg A \in S$
 - if $A, \neg A \in S_1$ then \bot is interpolant of $S_1 \uplus S_2$
 - if $A, \neg A \in S_2$ then \top is interpolant of $S_1 \uplus S_2$

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

1 suppose $A, \neg A \in S$

- if $A, \neg A \in S_1$ then \bot is interpolant of $S_1 \uplus S_2$
- if $A, \neg A \in S_2$ then \top is interpolant of $S_1 \uplus S_2$
- if $A \in S_1$ and $\neg A \in S_2$ then A is interpolant of $S_1 \uplus S_2$

4

4

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

1 suppose $A, \neg A \in S$

- if $A, \neg A \in S_1$ then \bot is interpolant of $S_1 \uplus S_2$
- if $A, \neg A \in S_2$ then \top is interpolant of $S_1 \uplus S_2$
- if $A \in S_1$ and $\neg A \in S_2$ then A is interpolant of $S_1 \uplus S_2$
- if $\neg A \in S_1$ and $A \in S_2$ then $\neg A$ is interpolant of $S_1 \uplus S_2$

4

4

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

1 suppose $A, \neg A \in S$

- if $A, \neg A \in S_1$ then \bot is interpolant of $S_1 \uplus S_2$
- if $A, \neg A \in S_2$ then \top is interpolant of $S_1 \uplus S_2$
- if $A \in S_1$ and $\neg A \in S_2$ then A is interpolant of $S_1 \uplus S_2$
- if $\neg A \in S_1$ and $A \in S_2$ then $\neg A$ is interpolant of $S_1 \uplus S_2$

2 suppose $\bot \in S$

4

4 4

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

1 suppose $A, \neg A \in S$

- if $A, \neg A \in S_1$ then \bot is interpolant of $S_1 \uplus S_2$
- if $A, \neg A \in S_2$ then \top is interpolant of $S_1 \uplus S_2$
- if $A \in S_1$ and $\neg A \in S_2$ then A is interpolant of $S_1 \uplus S_2$
- if $\neg A \in S_1$ and $A \in S_2$ then $\neg A$ is interpolant of $S_1 \uplus S_2$

2 suppose $\bot \in S$

• if $\bot \in S_1$ then \bot is interpolant of $S_1 \uplus S_2$

4

4

4

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

1 suppose $A, \neg A \in S$

- if $A, \neg A \in S_1$ then \bot is interpolant of $S_1 \uplus S_2$
- if $A, \neg A \in S_2$ then \top is interpolant of $S_1 \uplus S_2$
- if $A \in S_1$ and $\neg A \in S_2$ then A is interpolant of $S_1 \uplus S_2$
- if $\neg A \in S_1$ and $A \in S_2$ then $\neg A$ is interpolant of $S_1 \uplus S_2$

2 suppose $\bot \in S$

- if $\bot \in S_1$ then \bot is interpolant of $S_1 \uplus S_2$
- if $\bot \in S_2$ then \top is interpolant of $S_1 \uplus S_2$

4

4

4

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

1 suppose $A, \neg A \in S$

- if $A, \neg A \in S_1$ then \bot is interpolant of $S_1 \uplus S_2$
- if $A, \neg A \in S_2$ then \top is interpolant of $S_1 \uplus S_2$
- if $A \in S_1$ and $\neg A \in S_2$ then A is interpolant of $S_1 \uplus S_2$
- if $\neg A \in S_1$ and $A \in S_2$ then $\neg A$ is interpolant of $S_1 \uplus S_2$

2 suppose $\bot \in S$

- if $\bot \in S_1$ then \bot is interpolant of $S_1 \uplus S_2$
- if $\bot \in S_2$ then op is interpolant of $S_1 \uplus S_2$

suppose $\neg \top \in S$

4

4

4

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

1 suppose $A, \neg A \in S$

• if $A, \neg A \in S_1$ then \bot is interpolant of $S_1 \uplus S_2$

- if $A, \neg A \in S_2$ then \top is interpolant of $S_1 \uplus S_2$
- if $A \in S_1$ and $\neg A \in S_2$ then A is interpolant of $S_1 \uplus S_2$
- if $\neg A \in S_1$ and $A \in S_2$ then $\neg A$ is interpolant of $S_1 \uplus S_2$

suppose
$$\bot \in S$$

- if $\bot \in S_1$ then \bot is interpolant of $S_1 \uplus S_2$
- if $\bot \in S_2$ then op is interpolant of $S_1 \uplus S_2$

suppose $\neg \top \in S$

• if $\neg \top \in S_1$ then \bot is interpolant of $S_1 \uplus S_2$

4

4

4

2

Proof (cont'd)

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

1 suppose $A, \neg A \in S$

- if $A, \neg A \in S_1$ then \bot is interpolant of $S_1 \uplus S_2$ 4 • if $A, \neg A \in S_2$ then \top is interpolant of $S_1 \uplus S_2$ • if $A \in S_1$ and $\neg A \in S_2$ then A is interpolant of $S_1 \uplus S_2$ 4 • if $\neg A \in S_1$ and $A \in S_2$ then $\neg A$ is interpolant of $S_1 \uplus S_2$ suppose $\bot \in S$ • if $\bot \in S_1$ then \bot is interpolant of $S_1 \uplus S_2$ 4 4 • if $\bot \in S_2$ then \top is interpolant of $S_1 \uplus S_2$ suppose $\neg \top \in S$ • if $\neg \top \in S_1$ then \bot is interpolant of $S_1 \uplus S_2$
 - if $\neg \top \in S_2$ then \top is interpolant of $S_1 \uplus S_2$

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

```
3 suppose \neg \neg Z \in S
```

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

```
3 suppose \neg \neg Z \in S
```

• if $\neg \neg Z \in S_1$ then $(S_1 \cup \{Z\}) \uplus S_2$ has no interpolant

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

```
3 suppose \neg \neg Z \in S
```

- if $\neg \neg Z \in S_1$ then $(S_1 \cup \{Z\}) \uplus S_2$ has no interpolant
- if $\neg \neg Z \in S_2$ then $S_1 \uplus (S_2 \cup \{Z\})$ has no interpolant

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

3 suppose $\neg \neg Z \in S$

- if $\neg \neg Z \in S_1$ then $(S_1 \cup \{Z\}) \uplus S_2$ has no interpolant
- if $\neg \neg Z \in S_2$ then $S_1 \uplus (S_2 \cup \{Z\})$ has no interpolant

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

```
3 suppose \neg \neg Z \in S
```

- if $\neg \neg Z \in S_1$ then $(S_1 \cup \{Z\}) \uplus S_2$ has no interpolant
- if $\neg \neg Z \in S_2$ then $S_1 \uplus (S_2 \cup \{Z\})$ has no interpolant

```
4 suppose \alpha \in S
```

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

3 suppose
$$\neg \neg Z \in S$$

- if $\neg \neg Z \in S_1$ then $(S_1 \cup \{Z\}) \uplus S_2$ has no interpolant
- if $\neg \neg Z \in S_2$ then $S_1 \uplus (S_2 \cup \{Z\})$ has no interpolant

- 4 suppose $\alpha \in S$
 - if $\alpha \in S_1$ then $(S_1 \cup \{\alpha_1, \alpha_2\}) \uplus S_2$ has no interpolant

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

3 suppose
$$\neg \neg Z \in S$$

- if $\neg \neg Z \in S_1$ then $(S_1 \cup \{Z\}) \uplus S_2$ has no interpolant
- if $\neg \neg Z \in S_2$ then $S_1 \uplus (S_2 \cup \{Z\})$ has no interpolant

- 4 suppose $\alpha \in S$
 - if $\alpha \in S_1$ then $(S_1 \cup \{\alpha_1, \alpha_2\}) \uplus S_2$ has no interpolant
 - if $\alpha \in S_2$ then $S_1 \uplus (S_2 \cup \{\alpha_1, \alpha_2\})$ has no interpolant
given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

```
3 suppose \neg \neg Z \in S
```

- if $\neg \neg Z \in S_1$ then $(S_1 \cup \{Z\}) \uplus S_2$ has no interpolant
- if $\neg \neg Z \in S_2$ then $S_1 \uplus (S_2 \cup \{Z\})$ has no interpolant

```
hence S \cup \{Z\} \in C
```

- 4 suppose $\alpha \in S$
 - if $\alpha \in S_1$ then $(S_1 \cup \{\alpha_1, \alpha_2\}) \uplus S_2$ has no interpolant
 - if $\alpha \in S_2$ then $S_1 \uplus (S_2 \cup \{\alpha_1, \alpha_2\})$ has no interpolant

hence $S \cup \{\alpha_1, \alpha_2\} \in C$

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

5 suppose $\beta \in S$

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

5 suppose $\beta \in S$ and neither $S \cup \{\beta_1\}$ nor $S \cup \{\beta_2\}$ belongs to C

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

- **5** suppose $\beta \in S$ and neither $S \cup \{\beta_1\}$ nor $S \cup \{\beta_2\}$ belongs to C
 - if $\beta \in S_1$ then $\langle S_1 \rangle \equiv \langle S_1 \cup \{\beta_1\} \rangle \lor \langle S_1 \cup \{\beta_2\} \rangle$

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

5 suppose $\beta \in S$ and neither $S \cup \{\beta_1\}$ nor $S \cup \{\beta_2\}$ belongs to C

• if $\beta \in S_1$ then $\langle S_1 \rangle \equiv \langle S_1 \cup \{\beta_1\} \rangle \lor \langle S_1 \cup \{\beta_2\} \rangle$

 $(S_1 \cup \{\beta_1\}) \uplus S_2$ is partition of $S \cup \{\beta_1\}$ and thus has interpolant γ_1

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

5 suppose $\beta \in S$ and neither $S \cup \{\beta_1\}$ nor $S \cup \{\beta_2\}$ belongs to C

• if $\beta \in S_1$ then $\langle S_1 \rangle \equiv \langle S_1 \cup \{\beta_1\} \rangle \lor \langle S_1 \cup \{\beta_2\} \rangle$

 $(S_1 \cup \{\beta_1\}) \uplus S_2$ is partition of $S \cup \{\beta_1\}$ and thus has interpolant γ_1 $(S_1 \cup \{\beta_2\}) \uplus S_2$ is partition of $S \cup \{\beta_2\}$ and thus has interpolant γ_2

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

5 suppose $\beta \in S$ and neither $S \cup \{\beta_1\}$ nor $S \cup \{\beta_2\}$ belongs to C

• if
$$\beta \in S_1$$
 then $\langle S_1 \rangle \equiv \langle S_1 \cup \{\beta_1\} \rangle \lor \langle S_1 \cup \{\beta_2\} \rangle$

 $(S_1 \cup \{\beta_1\}) \uplus S_2$ is partition of $S \cup \{\beta_1\}$ and thus has interpolant γ_1 $(S_1 \cup \{\beta_2\}) \uplus S_2$ is partition of $S \cup \{\beta_2\}$ and thus has interpolant γ_2

$$\langle S_1 \cup \{\beta_1\} \rangle \supset \gamma_1 \qquad \qquad \gamma_1 \supset \neg \langle S_2 \rangle \\ \langle S_1 \cup \{\beta_2\} \rangle \supset \gamma_2 \qquad \qquad \gamma_2 \supset \neg \langle S_2 \rangle$$

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

5 suppose $\beta \in S$ and neither $S \cup \{\beta_1\}$ nor $S \cup \{\beta_2\}$ belongs to C

• if
$$\beta \in S_1$$
 then $\langle S_1 \rangle \equiv \langle S_1 \cup \{\beta_1\} \rangle \lor \langle S_1 \cup \{\beta_2\} \rangle$

 $(S_1 \cup \{\beta_1\}) \uplus S_2$ is partition of $S \cup \{\beta_1\}$ and thus has interpolant γ_1 $(S_1 \cup \{\beta_2\}) \uplus S_2$ is partition of $S \cup \{\beta_2\}$ and thus has interpolant γ_2

$$\langle S_1 \cup \{\beta_1\} \rangle \supset \gamma_1 \qquad \qquad \gamma_1 \supset \neg \langle S_2 \rangle \\ \langle S_1 \cup \{\beta_2\} \rangle \supset \gamma_2 \qquad \qquad \gamma_2 \supset \neg \langle S_2 \rangle$$

hence $\gamma_1 \lor \gamma_2$ is interpolant of $S_1 \uplus S_2$

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

5 suppose $\beta \in S$ and neither $S \cup \{\beta_1\}$ nor $S \cup \{\beta_2\}$ belongs to C

• if
$$\beta \in S_1$$
 then $\langle S_1 \rangle \equiv \langle S_1 \cup \{\beta_1\} \rangle \lor \langle S_1 \cup \{\beta_2\} \rangle$

 $(S_1 \cup \{\beta_1\}) \uplus S_2$ is partition of $S \cup \{\beta_1\}$ and thus has interpolant γ_1 $(S_1 \cup \{\beta_2\}) \uplus S_2$ is partition of $S \cup \{\beta_2\}$ and thus has interpolant γ_2

$$\langle S_1 \cup \{\beta_1\} \rangle \supset \gamma_1 \qquad \qquad \gamma_1 \supset \neg \langle S_2 \rangle \\ \langle S_1 \cup \{\beta_2\} \rangle \supset \gamma_2 \qquad \qquad \gamma_2 \supset \neg \langle S_2 \rangle$$

hence $\gamma_1 \lor \gamma_2$ is interpolant of $S_1 \uplus S_2$

 $\langle S_1 \rangle \equiv \langle S_1 \cup \{\beta_1\} \rangle \lor \langle S_1 \cup \{\beta_2\} \rangle \supset \gamma_1 \lor \gamma_2 \supset \neg \langle S_2 \rangle$

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

5 suppose $\beta \in S$ and neither $S \cup \{\beta_1\}$ nor $S \cup \{\beta_2\}$ belongs to C

• if
$$\beta \in S_1$$
 then $\langle S_1 \rangle \equiv \langle S_1 \cup \{\beta_1\} \rangle \lor \langle S_1 \cup \{\beta_2\} \rangle$

 $(S_1 \cup \{\beta_1\}) \uplus S_2$ is partition of $S \cup \{\beta_1\}$ and thus has interpolant γ_1 $(S_1 \cup \{\beta_2\}) \uplus S_2$ is partition of $S \cup \{\beta_2\}$ and thus has interpolant γ_2

$$\begin{array}{ll} \langle \mathcal{S}_1 \cup \{\beta_1\} \rangle \supset \gamma_1 & \gamma_1 \supset \neg \langle \mathcal{S}_2 \rangle \\ \langle \mathcal{S}_1 \cup \{\beta_2\} \rangle \supset \gamma_2 & \gamma_2 \supset \neg \langle \mathcal{S}_2 \rangle \end{array}$$

hence $\gamma_1 \lor \gamma_2$ is interpolant of $S_1 \uplus S_2$

$$\langle S_1 \rangle \equiv \langle S_1 \cup \{\beta_1\} \rangle \lor \langle S_1 \cup \{\beta_2\} \rangle \supset \gamma_1 \lor \gamma_2 \supset \neg \langle S_2 \rangle$$

4

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

- **5** suppose $\beta \in S$ and neither $S \cup \{\beta_1\}$ nor $S \cup \{\beta_2\}$ belongs to C
 - if $\beta \in S_2$ then $\neg \langle S_2 \rangle \equiv \neg \langle S_2 \cup \{\beta_1\} \rangle \land \neg \langle S_2 \cup \{\beta_2\} \rangle$

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

5 suppose $\beta \in S$ and neither $S \cup \{\beta_1\}$ nor $S \cup \{\beta_2\}$ belongs to C

• if
$$\beta \in S_2$$
 then $\neg \langle S_2 \rangle \equiv \neg \langle S_2 \cup \{\beta_1\} \rangle \land \neg \langle S_2 \cup \{\beta_2\} \rangle$

 $S_1 \uplus (S_2 \cup \{\beta_1\})$ is partition of $S \cup \{\beta_1\}$ and thus has interpolant δ_1

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

5 suppose $\beta \in S$ and neither $S \cup \{\beta_1\}$ nor $S \cup \{\beta_2\}$ belongs to C

• if
$$\beta \in S_2$$
 then $\neg \langle S_2 \rangle \equiv \neg \langle S_2 \cup \{\beta_1\} \rangle \land \neg \langle S_2 \cup \{\beta_2\} \rangle$

 $S_1 \uplus (S_2 \cup \{\beta_1\})$ is partition of $S \cup \{\beta_1\}$ and thus has interpolant δ_1 $S_1 \uplus (S_2 \cup \{\beta_2\})$ is partition of $S \cup \{\beta_2\}$ and thus has interpolant δ_2

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

5 suppose $\beta \in S$ and neither $S \cup \{\beta_1\}$ nor $S \cup \{\beta_2\}$ belongs to C

• if
$$\beta \in S_2$$
 then $\neg \langle S_2 \rangle \equiv \neg \langle S_2 \cup \{\beta_1\} \rangle \land \neg \langle S_2 \cup \{\beta_2\} \rangle$

 $S_1 \uplus (S_2 \cup \{\beta_1\})$ is partition of $S \cup \{\beta_1\}$ and thus has interpolant δ_1 $S_1 \uplus (S_2 \cup \{\beta_2\})$ is partition of $S \cup \{\beta_2\}$ and thus has interpolant δ_2

$$\begin{array}{ll} \langle S_1 \rangle \supset \delta_1 & \qquad \delta_1 \supset \neg \langle S_2 \cup \{\beta_1\} \rangle \\ \langle S_1 \rangle \supset \delta_2 & \qquad \delta_2 \supset \neg \langle S_2 \cup \{\beta_2\} \rangle \end{array}$$

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

5 suppose $\beta \in S$ and neither $S \cup \{\beta_1\}$ nor $S \cup \{\beta_2\}$ belongs to C

• if
$$\beta \in S_2$$
 then $\neg \langle S_2 \rangle \equiv \neg \langle S_2 \cup \{\beta_1\} \rangle \land \neg \langle S_2 \cup \{\beta_2\} \rangle$

 $S_1 \uplus (S_2 \cup \{\beta_1\})$ is partition of $S \cup \{\beta_1\}$ and thus has interpolant δ_1 $S_1 \uplus (S_2 \cup \{\beta_2\})$ is partition of $S \cup \{\beta_2\}$ and thus has interpolant δ_2

$$\begin{array}{ll} \langle S_1 \rangle \supset \delta_1 & \qquad \delta_1 \supset \neg \langle S_2 \cup \{\beta_1\} \rangle \\ \langle S_1 \rangle \supset \delta_2 & \qquad \delta_2 \supset \neg \langle S_2 \cup \{\beta_2\} \rangle \end{array}$$

hence $\delta_1 \wedge \delta_2$ is interpolant of $S_1 \uplus S_2$

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

5 suppose $\beta \in S$ and neither $S \cup \{\beta_1\}$ nor $S \cup \{\beta_2\}$ belongs to C

• if
$$\beta \in S_2$$
 then $\neg \langle S_2 \rangle \equiv \neg \langle S_2 \cup \{\beta_1\} \rangle \land \neg \langle S_2 \cup \{\beta_2\} \rangle$

 $S_1 \uplus (S_2 \cup \{\beta_1\})$ is partition of $S \cup \{\beta_1\}$ and thus has interpolant δ_1 $S_1 \uplus (S_2 \cup \{\beta_2\})$ is partition of $S \cup \{\beta_2\}$ and thus has interpolant δ_2

$$\begin{array}{ll} \langle S_1 \rangle \supset \delta_1 & & \delta_1 \supset \neg \langle S_2 \cup \{\beta_1\} \rangle \\ \langle S_1 \rangle \supset \delta_2 & & \delta_2 \supset \neg \langle S_2 \cup \{\beta_2\} \rangle \end{array}$$

hence $\delta_1 \wedge \delta_2$ is interpolant of $S_1 \uplus S_2$

 $\langle S_1 \rangle \supset \delta_1 \land \delta_2 \supset \neg \langle S_2 \cup \{\beta_1\} \rangle \land \neg \langle S_2 \cup \{\beta_2\} \rangle \equiv \neg \langle S_2 \rangle$

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

5 suppose $\beta \in S$ and neither $S \cup \{\beta_1\}$ nor $S \cup \{\beta_2\}$ belongs to C

• if
$$\beta \in S_2$$
 then $\neg \langle S_2 \rangle \equiv \neg \langle S_2 \cup \{\beta_1\} \rangle \land \neg \langle S_2 \cup \{\beta_2\} \rangle$

 $S_1 \uplus (S_2 \cup \{\beta_1\})$ is partition of $S \cup \{\beta_1\}$ and thus has interpolant δ_1 $S_1 \uplus (S_2 \cup \{\beta_2\})$ is partition of $S \cup \{\beta_2\}$ and thus has interpolant δ_2

$$\begin{split} \langle S_1 \rangle \supset \delta_1 & \delta_1 \supset \neg \langle S_2 \cup \{\beta_1\} \rangle \\ \langle S_1 \rangle \supset \delta_2 & \delta_2 \supset \neg \langle S_2 \cup \{\beta_2\} \rangle \end{split}$$

hence $\delta_1 \wedge \delta_2$ is interpolant of $S_1 \uplus S_2$

4

 $\langle S_1 \rangle \supset \delta_1 \land \delta_2 \supset \neg \langle S_2 \cup \{\beta_1\} \rangle \land \neg \langle S_2 \cup \{\beta_2\} \rangle \equiv \neg \langle S_2 \rangle$

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

5 suppose $\beta \in S$ and neither $S \cup \{\beta_1\}$ nor $S \cup \{\beta_2\}$ belongs to C

• if
$$\beta \in S_2$$
 then $\neg \langle S_2 \rangle \equiv \neg \langle S_2 \cup \{\beta_1\} \rangle \land \neg \langle S_2 \cup \{\beta_2\} \rangle$

 $S_1 \uplus (S_2 \cup \{\beta_1\})$ is partition of $S \cup \{\beta_1\}$ and thus has interpolant δ_1 $S_1 \uplus (S_2 \cup \{\beta_2\})$ is partition of $S \cup \{\beta_2\}$ and thus has interpolant δ_2

$$\begin{array}{ll} \langle \mathcal{S}_1 \rangle \supset \delta_1 & & \delta_1 \supset \neg \langle \mathcal{S}_2 \cup \{\beta_1\} \rangle \\ \langle \mathcal{S}_1 \rangle \supset \delta_2 & & \delta_2 \supset \neg \langle \mathcal{S}_2 \cup \{\beta_2\} \rangle \end{array}$$

hence $\delta_1 \wedge \delta_2$ is interpolant of $S_1 \uplus S_2$

 $\langle S_1 \rangle \supset \delta_1 \land \delta_2 \supset \neg \langle S_2 \cup \{\beta_1\} \rangle \land \neg \langle S_2 \cup \{\beta_2\} \rangle \equiv \neg \langle S_2 \rangle$

 \mathcal{C} is propositional consistency property

4

• suppose $X \supset Y$ has no interpolant

- suppose $X \supset Y$ has no interpolant
- let $S = \{X, \neg Y\}$ with partition $S_1 = \{X\}$ and $S_2 = \{\neg Y\}$

- suppose $X \supset Y$ has no interpolant
- let $S = \{X, \neg Y\}$ with partition $S_1 = \{X\}$ and $S_2 = \{\neg Y\}$
- interpolant for $\langle S_1
 angle \supset \neg \langle S_2
 angle$ is interpolant for $X \supset Y$

- suppose $X \supset Y$ has no interpolant
- let $S = \{X, \neg Y\}$ with partition $S_1 = \{X\}$ and $S_2 = \{\neg Y\}$
- interpolant for $\langle S_1 \rangle \supset \neg \langle S_2 \rangle$ is interpolant for $X \supset Y$ and hence does not exist

- suppose X ⊃ Y has no interpolant
- let $S = \{X, \neg Y\}$ with partition $S_1 = \{X\}$ and $S_2 = \{\neg Y\}$
- interpolant for $\langle S_1 \rangle \supset \neg \langle S_2 \rangle$ is interpolant for $X \supset Y$ and hence does not exist
- S is Craig consistent

- suppose X ⊃ Y has no interpolant
- let $S = \{X, \neg Y\}$ with partition $S_1 = \{X\}$ and $S_2 = \{\neg Y\}$
- interpolant for ⟨S₁⟩ ⊃ ¬⟨S₂⟩ is interpolant for X ⊃ Y and hence does not exist
- *S* is Craig consistent
- S is satisfiable by Model Existence Theorem and previous lemma

- suppose $X \supset Y$ has no interpolant
- let $S = \{X, \neg Y\}$ with partition $S_1 = \{X\}$ and $S_2 = \{\neg Y\}$
- interpolant for ⟨S₁⟩ ⊃ ¬⟨S₂⟩ is interpolant for X ⊃ Y and hence does not exist
- *S* is Craig consistent
- S is satisfiable by Model Existence Theorem and previous lemma
- hence $X \supset Y$ is no tautology

Interpolation

Jaakko Hintikka (1929–2015)

AM/VvO (CS @ UIBK)

Interpolation

William Craig (1918-2016)

Jaakko Hintikka (1929–2015)

Outline

- Summary of Previous Lecture
- Model Existence Theorem
- Compactness
- Interpolation
- Semantic Tableaux
 - Completeness
 - Completeness with Restrictions
 - Propositional Consequence
- Hilbert Systems
- Exercises
- Further Reading

finite set ${\cal S}$ of propositional formulas is tableau consistent if there is no closed tableau for ${\cal S}$

finite set ${\cal S}$ of propositional formulas is tableau consistent if there is no closed tableau for ${\cal S}$

Lemma

collection of all tableau consistent sets is propositional consistency property

finite set ${\cal S}$ of propositional formulas is tableau consistent if there is no closed tableau for ${\cal S}$

Lemma

collection of all tableau consistent sets is propositional consistency property

Proof

• properties 1, 2, 3: ... blackboard ...

finite set ${\cal S}$ of propositional formulas is tableau consistent if there is no closed tableau for ${\cal S}$

Lemma

collection of all tableau consistent sets is propositional consistency property

Proof

- properties 1, 2, 3: ... blackboard ...
- properties 4, 5: next two slides

• property 4: let $\alpha \in S$ and consider $S \cup \{\alpha_1, \alpha_2\}$

property 4: let α ∈ S and consider S ∪ {α₁, α₂}
 suppose S ∪ {α₁, α₂} is not tableau consistent

 property 4: let α ∈ S and consider S ∪ {α₁, α₂} suppose S ∪ {α₁, α₂} is not tableau consistent let S = {α, X₁,..., X_n}

- property 4: let α ∈ S and consider S ∪ {α₁, α₂} suppose S ∪ {α₁, α₂} is not tableau consistent let S = {α, X₁,..., X_n}
 - closed tableau for $S \cup \{\alpha_1, \alpha_2\}$:

iosed tableau for $\mathbf{J} \cup \{\alpha_1, \alpha_2\}$:

 $\alpha \\ X_1 \\ \vdots \\ X_n \\ \alpha_1 \\ \alpha_2 \\ \text{rest of tableau}$
- property 4: let α ∈ S and consider S ∪ {α₁, α₂}
 suppose S ∪ {α₁, α₂} is not tableau consistent
 - let $S = \{\alpha, X_1, \ldots, X_n\}$

closed tableau for S:

 $\begin{array}{c} \alpha \\ X_1 \\ \vdots \\ X_n \\ \alpha_1 \\ \alpha_2 \\ \text{rest of tableau} \end{array} \qquad \text{apply } \alpha \text{-rule}$

• property 5: let $\beta \in S$ and consider $S \cup \{\beta_1\}$ and $S \cup \{\beta_2\}$

property 5: let β ∈ S and consider S ∪ {β₁} and S ∪ {β₂}
 suppose neither S ∪ {β₁} nor S ∪ {β₂} is tableau consistent

property 5: let β ∈ S and consider S ∪ {β₁} and S ∪ {β₂} suppose neither S ∪ {β₁} nor S ∪ {β₂} is tableau consistent let S = {β, X₁,..., X_n}

property 5: let β ∈ S and consider S ∪ {β₁} and S ∪ {β₂} suppose neither S ∪ {β₁} nor S ∪ {β₂} is tableau consistent let S = {β, X₁,..., X_n}

closed tableaux for $S \cup \{\beta_1\}$ and $S \cup \{\beta_2\}$:

$$\begin{array}{cccc} \beta & & \beta \\ X_1 & & X_1 \\ \vdots & & \vdots \\ X_n & & X_n \\ \beta_1 & & \beta_2 \\ T_1 & & T_2 \end{array}$$

property 5: let β ∈ S and consider S ∪ {β₁} and S ∪ {β₂} suppose neither S ∪ {β₁} nor S ∪ {β₂} is tableau consistent let S = {β, X₁,..., X_n}

closed tableaux for $S \cup \{\beta_1\}$ and $S \cup \{\beta_2\}$:

β	β
X_1	X_1
:	÷
X _n	X _n
β_1	β_2
T_1	T_2

can be merged into closed tableau for ${\boldsymbol{S}}$

every tautology has tableau proof

every tautology has tableau proof

Proof

suppose formula X does not have tableau proof

every tautology has tableau proof

- suppose formula X does not have tableau proof
- there is no closed tableau for $\{\neg X\}$

every tautology has tableau proof

- suppose formula X does not have tableau proof
- there is no closed tableau for $\{\neg X\}$
- {¬X} is tableau consistent

every tautology has tableau proof

- suppose formula X does not have tableau proof
- there is no closed tableau for $\{\neg X\}$
- {¬X} is tableau consistent
- $\{\neg X\}$ is satisfiable by Propositional Model Existence Theorem

every tautology has tableau proof

- suppose formula X does not have tableau proof
- there is no closed tableau for $\{\neg X\}$
- {¬X} is tableau consistent
- $\{\neg X\}$ is satisfiable by Propositional Model Existence Theorem
- X cannot be tautology

Outline

- Summary of Previous Lecture
- Model Existence Theorem
- Compactness
- Interpolation

Semantic Tableaux

- Completeness
- Completeness with Restrictions
- Propositional Consequence
- Hilbert Systems
- Exercises
- Further Reading

for every tautology X

strict tableau construction process for $\{\neg X\}$ that is continued until every non-literal formula occurrence on every branch has been used must terminate and do so in atomically closed tableau

for every tautology X

strict tableau construction process for $\{\neg X\}$ that is continued until every non-literal formula occurrence on every branch has been used must terminate and do so in atomically closed tableau

Proof

• termination follows by considering $\sum \sum \{r(Y) \mid Y \text{ is unused formula}\}$

for every tautology X

strict tableau construction process for $\{\neg X\}$ that is continued until every non-literal formula occurrence on every branch has been used must terminate and do so in atomically closed tableau

- termination follows by considering $\sum \sum \{r(Y) \mid Y \text{ is unused formula}\}$
- suppose final tableau T is not atomically closed

for every tautology X

strict tableau construction process for $\{\neg X\}$ that is continued until every non-literal formula occurrence on every branch has been used must terminate and do so in atomically closed tableau

- termination follows by considering $\sum \sum \{r(Y) \mid Y \text{ is unused formula}\}$
- suppose final tableau T is not atomically closed
- let θ be branch of T that is not atomically closed

for every tautology X

strict tableau construction process for $\{\neg X\}$ that is continued until every non-literal formula occurrence on every branch has been used must terminate and do so in atomically closed tableau

- termination follows by considering $\sum \sum \{r(Y) \mid Y \text{ is unused formula}\}$
- suppose final tableau T is not atomically closed
- let θ be branch of T that is not atomically closed
- if $\neg \neg Z$ occurs on θ then Z occurs on θ

for every tautology X

strict tableau construction process for $\{\neg X\}$ that is continued until every non-literal formula occurrence on every branch has been used must terminate and do so in atomically closed tableau

- termination follows by considering $\sum \sum \{r(Y) \mid Y \text{ is unused formula}\}$
- suppose final tableau T is not atomically closed
- let θ be branch of T that is not atomically closed
- if ¬¬Z occurs on θ then Z occurs on θ
 if α occurs on θ then α₁ and α₂ occur on θ

for every tautology X

strict tableau construction process for $\{\neg X\}$ that is continued until every non-literal formula occurrence on every branch has been used must terminate and do so in atomically closed tableau

- termination follows by considering $\sum \sum \{r(Y) \mid Y \text{ is unused formula}\}$
- suppose final tableau T is not atomically closed
- let θ be branch of T that is not atomically closed
- if ¬¬Z occurs on θ then Z occurs on θ
 if α occurs on θ then α₁ and α₂ occur on θ
 if β occurs on θ then β₁ or β₂ occurs on θ

for every tautology X

strict tableau construction process for $\{\neg X\}$ that is continued until every non-literal formula occurrence on every branch has been used must terminate and do so in atomically closed tableau

- termination follows by considering $\sum \sum \{r(Y) \mid Y \text{ is unused formula}\}$
- suppose final tableau T is not atomically closed
- let θ be branch of T that is not atomically closed
- if ¬¬Z occurs on θ then Z occurs on θ
 if α occurs on θ then α₁ and α₂ occur on θ
 if β occurs on θ then β₁ or β₂ occurs on θ
- set of formulas S occurring on θ is Hintikka set

for every tautology X

strict tableau construction process for $\{\neg X\}$ that is continued until every non-literal formula occurrence on every branch has been used must terminate and do so in atomically closed tableau

- termination follows by considering $\sum \sum \{r(Y) \mid Y \text{ is unused formula}\}$
- suppose final tableau T is not atomically closed
- let θ be branch of T that is not atomically closed
- if ¬¬Z occurs on θ then Z occurs on θ
 if α occurs on θ then α₁ and α₂ occur on θ
 if β occurs on θ then β₁ or β₂ occurs on θ
- set of formulas S occurring on θ is Hintikka set and thus satisfiable

for every tautology X

strict tableau construction process for $\{\neg X\}$ that is continued until every non-literal formula occurrence on every branch has been used must terminate and do so in atomically closed tableau

- termination follows by considering $\sum \sum \{r(Y) \mid Y \text{ is unused formula}\}$
- suppose final tableau T is not atomically closed
- let θ be branch of T that is not atomically closed
- if ¬¬Z occurs on θ then Z occurs on θ
 if α occurs on θ then α₁ and α₂ occur on θ
 if β occurs on θ then β₁ or β₂ occurs on θ
- set of formulas S occurring on θ is Hintikka set and thus satisfiable
- ¬*X* ∈ *S*

for every tautology X

strict tableau construction process for $\{\neg X\}$ that is continued until every non-literal formula occurrence on every branch has been used must terminate and do so in atomically closed tableau

- termination follows by considering $\sum \sum \{r(Y) \mid Y \text{ is unused formula}\}$
- suppose final tableau T is not atomically closed
- let θ be branch of T that is not atomically closed
- if ¬¬Z occurs on θ then Z occurs on θ
 if α occurs on θ then α₁ and α₂ occur on θ
 if β occurs on θ then β₁ or β₂ occurs on θ
- set of formulas S occurring on θ is Hintikka set and thus satisfiable
- $\neg X \in S$ and thus $v(\neg X) = t$ for some valuation v

for every tautology X

strict tableau construction process for $\{\neg X\}$ that is continued until every non-literal formula occurrence on every branch has been used must terminate and do so in atomically closed tableau

Proof

- termination follows by considering $\sum \sum \{r(Y) \mid Y \text{ is unused formula}\}$
- suppose final tableau T is not atomically closed
- let θ be branch of T that is not atomically closed
- if ¬¬Z occurs on θ then Z occurs on θ
 if α occurs on θ then α₁ and α₂ occur on θ
 if β occurs on θ then β₁ or β₂ occurs on θ
- set of formulas S occurring on θ is Hintikka set and thus satisfiable
- $\neg X \in S$ and thus $v(\neg X) = t$ for some valuation v

4

Corollary

tableau systems provide decision procedure for being tautology

Outline

- Summary of Previous Lecture
- Model Existence Theorem
- Compactness
- Interpolation

Semantic Tableaux

- Completeness
- Completeness with Restrictions
- Propositional Consequence
- Hilbert Systems
- Exercises
- Further Reading

Definition

propositional formula X is propositional consequence of set S of propositional formulas, denoted by $S \vDash_p X$, if X evaluates to t for every valuation v that maps every member of S to t

Definition

propositional formula X is propositional consequence of set S of propositional formulas, denoted by $S \vDash_p X$, if X evaluates to t for every valuation v that maps every member of S to t

Remark

X is tautology if and only if $\emptyset \vDash_p X$ (simplified notation: $\vDash_p X$)

Definition

propositional formula X is propositional consequence of set S of propositional formulas, denoted by $S \vDash_p X$, if X evaluates to t for every valuation v that maps every member of S to t

Remark

X is tautology if and only if $\emptyset \vDash_p X$ (simplified notation: $\vDash_p X$)

Theorem

 $S \vDash_p X$ if and only if $S_0 \vDash_p X$ for some finite subset S_0 of S

$$S \vDash_p X$$
 if and only if $S_0 \vDash_p X$ for some finite subset S_0 of S

Proof

\Rightarrow if $S \vDash_p X$ then $S \cup \{\neg X\}$ is not satisfiable

 $S \vDash_p X$ if and only if $S_0 \vDash_p X$ for some finite subset S_0 of S

Proof

 \Rightarrow if $S \vDash_p X$ then $S \cup \{\neg X\}$ is not satisfiable

some finite subset S' of $S \cup \{\neg X\}$ is not satisfiable by compactness

 $S \vDash_p X$ if and only if $S_0 \vDash_p X$ for some finite subset S_0 of S

Proof

 \Rightarrow if $S \vDash_p X$ then $S \cup \{\neg X\}$ is not satisfiable

some finite subset S' of $S\cup\{\neg X\}$ is not satisfiable by compactness let $S_0=S'\cap S$

 $S \vDash_p X$ if and only if $S_0 \vDash_p X$ for some finite subset S_0 of S

Proof

 \Rightarrow if $S \vDash_p X$ then $S \cup \{\neg X\}$ is not satisfiable

some finite subset S' of $S\cup\{\neg X\}$ is not satisfiable by compactness let $S_0=S'\cap S$

 S_0 is finite subset of S and $S_0 \cup \{\neg X\}$ is not satisfiable

 $S \vDash_p X$ if and only if $S_0 \vDash_p X$ for some finite subset S_0 of S

Proof

 \Rightarrow if $S \vDash_p X$ then $S \cup \{\neg X\}$ is not satisfiable

some finite subset S' of $S \cup \{\neg X\}$ is not satisfiable by compactness let $S_0 = S' \cap S$ S_0 is finite subset of S and $S_0 \cup \{\neg X\}$ is not satisfiable $S_0 \models_p X$

 $S \vDash_p X$ if and only if $S_0 \vDash_p X$ for some finite subset S_0 of S

Proof

 \Rightarrow if $S \vDash_p X$ then $S \cup \{\neg X\}$ is not satisfiable

some finite subset S' of $S \cup \{\neg X\}$ is not satisfiable by compactness let $S_0 = S' \cap S$ S_0 is finite subset of S and $S_0 \cup \{\neg X\}$ is not satisfiable $S_0 \models_p X$

 \Leftarrow obvious
set of formulas ${\cal S}$

Definitions

• *S*-introduction rule for tableaux: any member of *S* can be added to end of any tableau branch

set of formulas S

Definitions

- S-introduction rule for tableaux: any member of S can be added to end of any tableau branch
- $S \vdash_{pt} X$ if there exists closed propositional tableau for $\{\neg X\}$, allowing *S*-introduction rule

set of formulas ${\cal S}$

Definitions

- S-introduction rule for tableaux: any member of S can be added to end of any tableau branch
- $S \vdash_{pt} X$ if there exists closed propositional tableau for $\{\neg X\}$, allowing *S*-introduction rule

Definitions

• tableau branch θ is *S*-satisfiable if union of *S* and set of propositional formulas on θ is satisfiable

set of formulas ${\cal S}$

Definitions

- S-introduction rule for tableaux: any member of S can be added to end of any tableau branch
- $S \vdash_{pt} X$ if there exists closed propositional tableau for $\{\neg X\}$, allowing *S*-introduction rule

Definitions

- tableau branch θ is S-satisfiable if union of S and set of propositional formulas on θ is satisfiable
- tableau T is S-satisfiable if at least one branch of T is S-satisfiable

• any application of Tableau Expansion Rule as well as S-introduction rule to S-satisfiable tableau yields another S-satisfiable tableau

- any application of Tableau Expansion Rule as well as S-introduction rule to S-satisfiable tableau yields another S-satisfiable tableau
- there are no closed S-satisfiable tableaux

- any application of Tableau Expansion Rule as well as S-introduction rule to S-satisfiable tableau yields another S-satisfiable tableau
- there are no closed S-satisfiable tableaux

Definition

S is X-tableau consistent if $S \vdash_{pt} X$ does not hold

- any application of Tableau Expansion Rule as well as S-introduction rule to S-satisfiable tableau yields another S-satisfiable tableau
- there are no closed S-satisfiable tableaux

Definition

S is X-tableau consistent if $S \vdash_{pt} X$ does not hold

Lemmata

for each formula X

• collection of X – tableau consistent sets is propositional consistency property

- any application of Tableau Expansion Rule as well as S-introduction rule to S-satisfiable tableau yields another S-satisfiable tableau
- there are no closed S-satisfiable tableaux

Definition

S is X-tableau consistent if $S \vdash_{pt} X$ does not hold

Lemmata

for each formula X

- collection of X tableau consistent sets is propositional consistency property
- if *S* is *X*-tableau consistent then $S \cup \{\neg X\}$ is *X*-tableau consistent

for any set S of propositional formulas and any propositional formula X

 $S \vDash_p X \iff S \vdash_{pt} X$

for any set S of propositional formulas and any propositional formula X

 $S \vDash_p X \iff S \vdash_{pt} X$

Proof

 \Rightarrow suppose $S \vdash_{pt} X$ does not hold

for any set S of propositional formulas and any propositional formula X

 $S \vDash_p X \iff S \vdash_{pt} X$

Proof

 \Rightarrow suppose $S \vdash_{pt} X$ does not hold, so S is X-tableau consistent

for any set S of propositional formulas and any propositional formula X

 $S \vDash_p X \iff S \vdash_{pt} X$

Proof

 \Rightarrow suppose $S \vdash_{pt} X$ does not hold, so S is X-tableau consistent

 $S \cup \{\neg X\}$ is X-tableau consistent

for any set S of propositional formulas and any propositional formula X

 $S \vDash_p X \iff S \vdash_{pt} X$

- \Rightarrow suppose $S \vdash_{pt} X$ does not hold, so S is X-tableau consistent
 - $S \cup \{\neg X\}$ is X-tableau consistent
 - $S \cup \{\neg X\}$ is satisfiable by Model Existence Theorem

for any set S of propositional formulas and any propositional formula X

 $S \vDash_p X \iff S \vdash_{pt} X$

- \Rightarrow suppose $S \vdash_{pt} X$ does not hold, so S is X-tableau consistent
 - $S \cup \{\neg X\}$ is X-tableau consistent
 - $S \cup \{\neg X\}$ is satisfiable by Model Existence Theorem
 - $S \vDash_p X$ does not hold

for any set S of propositional formulas and any propositional formula X

 $S \vDash_p X \iff S \vdash_{pt} X$

- \Rightarrow suppose $S \vdash_{pt} X$ does not hold, so S is X-tableau consistent
 - $S \cup \{\neg X\}$ is X-tableau consistent
 - $S \cup \{\neg X\}$ is satisfiable by Model Existence Theorem
 - $S \vDash_p X$ does not hold
- \leftarrow there exists closed tableau for $\{\neg X\}$, allowing S-introduction rule

for any set S of propositional formulas and any propositional formula X

 $S \vDash_p X \iff S \vdash_{pt} X$

- \Rightarrow suppose $S \vdash_{pt} X$ does not hold, so S is X-tableau consistent
 - $S \cup \{\neg X\}$ is X-tableau consistent
 - $S \cup \{\neg X\}$ is satisfiable by Model Existence Theorem
 - $S \vDash_p X$ does not hold
- $\leftarrow \text{ there exists closed tableau for } \{\neg X\}, \text{ allowing } S\text{-introduction rule}$ initial tableau cannot be S-satisfiable

for any set S of propositional formulas and any propositional formula X

 $S \vDash_p X \iff S \vdash_{pt} X$

- \Rightarrow suppose $S \vdash_{pt} X$ does not hold, so S is X-tableau consistent
 - $S \cup \{\neg X\}$ is X-tableau consistent
 - $S \cup \{\neg X\}$ is satisfiable by Model Existence Theorem
 - $S \vDash_p X$ does not hold
- $\leftarrow \text{ there exists closed tableau for } \{\neg X\}, \text{ allowing } S\text{-introduction rule}$ initial tableau cannot be S-satisfiable
 - $S \cup \{\neg X\}$ is not satisfiable

for any set S of propositional formulas and any propositional formula X

 $S \vDash_p X \iff S \vdash_{pt} X$

- \Rightarrow suppose $S \vdash_{pt} X$ does not hold, so S is X-tableau consistent
 - $S \cup \{\neg X\}$ is X-tableau consistent
 - $S \cup \{\neg X\}$ is satisfiable by Model Existence Theorem
 - $S \vDash_p X$ does not hold
- $\leftarrow \text{ there exists closed tableau for } \{\neg X\}, \text{ allowing } S\text{-introduction rule}$ initial tableau cannot be S-satisfiable
 - $S \cup \{\neg X\}$ is not satisfiable

$$S \vDash_p X$$

Outline

- Summary of Previous Lecture
- Model Existence Theorem
- Compactness
- Interpolation
- Semantic Tableaux
- Hilbert Systems
- Exercises
- Further Reading

derivation in Hilbert system from set S of formulas is finite sequence
 X₁, X₂, ..., X_n of formulas such that each formula is axiom, or member of S, or follows from earlier formulas by rule of inference

- derivation in Hilbert system from set S of formulas is finite sequence
 X₁, X₂, ..., X_n of formulas such that each formula is axiom, or member of S, or follows from earlier formulas by rule of inference
- proof in Hilbert system is derivation from Ø

- derivation in Hilbert system from set S of formulas is finite sequence
 X₁, X₂, ..., X_n of formulas such that each formula is axiom, or member of S, or follows from earlier formulas by rule of inference
- proof in Hilbert system is derivation from Ø

Definitions

given Hilbert system h

X is consequence of set S in h, denoted by S ⊢_{ph} X, if X is last line of derivation from S

- derivation in Hilbert system from set S of formulas is finite sequence
 X₁, X₂, ..., X_n of formulas such that each formula is axiom, or member of S, or follows from earlier formulas by rule of inference
- proof in Hilbert system is derivation from Ø

Definitions

given Hilbert system h

- X is consequence of set S in h, denoted by S ⊢_{ph} X, if X is last line of derivation from S
- formula X is theorem of h, denoted by $\vdash_{ph} X$, if X is consequence of \emptyset in h

Definition (Modus Ponens)
$$\frac{X \quad X \supset Y}{Y}$$

Definition (Axiom Scheme 1)

$$X \supset (Y \supset X)$$

Definition (Axiom Scheme 2)

$$(X \supset (Y \supset Z)) \supset ((X \supset Y) \supset (X \supset Z))$$

 $P \supset P$ is theorem:

1. $(P \supset ((P \supset P) \supset P)) \supset ((P \supset (P \supset P)) \supset (P \supset P))$ Axiom Scheme 2

 $P \supset P$ is theorem:

1.
$$(P \supset ((P \supset P) \supset P)) \supset ((P \supset (P \supset P))) \supset (P \supset P))$$
Axiom Scheme 22. $P \supset ((P \supset P) \supset P)$ Axiom Scheme 1

 $P \supset P$ is theorem:

1. $(P \supset ((P \supset P) \supset P)) \supset ((P \supset (P \supset P)) \supset (P \supset P))$

2.
$$P \supset ((P \supset P) \supset P)$$

3.
$$(P \supset (P \supset P)) \supset (P \supset P)$$

Axiom Scheme 2 Axiom Scheme 1 Modus Ponens

 $P \supset P$ is theorem:

1. $(P \supset ((P \supset P) \supset P)) \supset ((P \supset (P \supset P)) \supset (P \supset P))$

2.
$$P \supset ((P \supset P) \supset P)$$

3.
$$(P \supset (P \supset P)) \supset (P \supset P)$$

$$4. \quad P \supset (P \supset P)$$

Axiom Scheme 2 Axiom Scheme 1 Modus Ponens Axiom Scheme 1

 $P \supset P$ is theorem:

- 1. $(P \supset ((P \supset P) \supset P)) \supset ((P \supset (P \supset P)) \supset (P \supset P))$
- 2. $P \supset ((P \supset P) \supset P)$
- 3. $(P \supset (P \supset P)) \supset (P \supset P)$
- 4. $P \supset (P \supset P)$
- 5. $P \supset P$

Axiom Scheme 2 Axiom Scheme 1 Modus Ponens Axiom Scheme 1 Modus Ponens

 $P \supset P$ is theorem:

- 1. $(P \supset ((P \supset P) \supset P)) \supset ((P \supset (P \supset P)) \supset (P \supset P))$
- 2. $P \supset ((P \supset P) \supset P)$
- 3. $(P \supset (P \supset P)) \supset (P \supset P)$
- 4. $P \supset (P \supset P)$
- 5. $P \supset P$

Axiom Scheme 2 Axiom Scheme 1 Modus Ponens Axiom Scheme 1 Modus Ponens

Theorem (Deduction Theorem)

in any Hilbert System h with Modus Ponens as only rule of inference and at least Axiom Schemes 1 and 2:

$$S \cup \{X\} \vdash_{ph} Y \iff S \vdash_{ph} X \supset Y$$

 $(P \supset (Q \supset R)) \supset (Q \supset (P \supset R))$ is theorem

 $(P \supset (Q \supset R)) \supset (Q \supset (P \supset R))$ is theorem:

```
• \{P \supset (Q \supset R), Q, P\} \vdash_{ph} R
```

 $(P \supset (Q \supset R)) \supset (Q \supset (P \supset R))$ is theorem:

•
$$\{P \supset (Q \supset R), Q, P\} \vdash_{ph} R$$
:

1.
$$P \supset (Q \supset R)$$

2. P
$(P \supset (Q \supset R)) \supset (Q \supset (P \supset R))$ is theorem:

- $\{P \supset (Q \supset R), Q, P\} \vdash_{ph} R$:
 - 1. $P \supset (Q \supset R)$ 2. P3. $Q \supset R$ Modus Ponens

 $(P \supset (Q \supset R)) \supset (Q \supset (P \supset R))$ is theorem:

- $\{P \supset (Q \supset R), Q, P\} \vdash_{ph} R$:
 - 1. $P \supset (Q \supset R)$ 2. P3. $Q \supset R$ Modus Ponens 4. Q

 $(P \supset (Q \supset R)) \supset (Q \supset (P \supset R))$ is theorem:

- $\{P \supset (Q \supset R), Q, P\} \vdash_{ph} R$:
 - 1. $P \supset (Q \supset R)$ 2. P3. $Q \supset R$ Modus Ponens 4. Q5. R Modus Ponens

 $(P \supset (Q \supset R)) \supset (Q \supset (P \supset R))$ is theorem:

- $\{P \supset (Q \supset R), Q, P\} \vdash_{ph} R$:
 - 1. $P \supset (Q \supset R)$ 2. P3. $Q \supset R$ Modus Ponens 4. Q5. R Modus Ponens

• $\{P \supset (Q \supset R), Q\} \vdash_{ph} P \supset R$ by Deduction Theorem

 $(P \supset (Q \supset R)) \supset (Q \supset (P \supset R))$ is theorem:

• $\{P \supset (Q \supset R), Q, P\} \vdash_{ph} R$:

1.	$P \supset (Q \supset R)$	
2.	Р	
3.	$Q \supset R$	Modus Ponens
4.	Q	
5.	R	Modus Ponens

• $\{P \supset (Q \supset R), Q\} \vdash_{ph} P \supset R$ by Deduction Theorem

• $\{P \supset (Q \supset R)\} \vdash_{ph} Q \supset (P \supset R)$ by Deduction Theorem

 $(P \supset (Q \supset R)) \supset (Q \supset (P \supset R))$ is theorem:

- $\{P \supset (Q \supset R), Q, P\} \vdash_{ph} R$:
 - 1. $P \supset (Q \supset R)$ 2.P3. $Q \supset R$ Modus Ponens4.Q5.RModus Ponens

• $\{P \supset (Q \supset R), Q\} \vdash_{ph} P \supset R$ by Deduction Theorem

• $\{P \supset (Q \supset R)\} \vdash_{ph} Q \supset (P \supset R)$ by Deduction Theorem

• $\vdash_{ph} (P \supset (Q \supset R)) \supset (Q \supset (P \supset R))$ by Deduction Theorem

• suppose $S \cup \{X\} \vdash_{ph} Y$

- suppose $S \cup \{X\} \vdash_{ph} Y$
- let $\Pi_1: Z_1, \ldots, Z_n$ be derivation of Y from $S \cup \{X\}$

- suppose $S \cup \{X\} \vdash_{ph} Y$
- let $\Pi_1: Z_1, \ldots, Z_n$ be derivation of Y from $S \cup \{X\}$, so $Z_n = Y$

- suppose $S \cup \{X\} \vdash_{ph} Y$
- let $\Pi_1: Z_1, \ldots, Z_n$ be derivation of Y from $S \cup \{X\}$, so $Z_n = Y$
- consider new sequence $\Pi_2 \colon X \supset Z_1, \ldots, X \supset Z_n$

- suppose $S \cup \{X\} \vdash_{ph} Y$
- let $\Pi_1: Z_1, \ldots, Z_n$ be derivation of Y from $S \cup \{X\}$, so $Z_n = Y$
- consider new sequence $\Pi_2 \colon X \supset Z_1, \ldots, X \supset Z_n$
- insert extra lines into Π_2 and use Modus Ponens

- suppose $S \cup \{X\} \vdash_{ph} Y$
- let $\Pi_1: Z_1, \ldots, Z_n$ be derivation of Y from $S \cup \{X\}$, so $Z_n = Y$
- consider new sequence $\Pi_2 \colon X \supset Z_1, \ldots, X \supset Z_n$
- insert extra lines into Π_2 and use Modus Ponens, as follows:

1 if Z_i is axiom or member of S

2 if $Z_i = X$

3 if Z_i is derived with Modus Ponens from Z_j and Z_k with j, k < i

- suppose $S \cup \{X\} \vdash_{ph} Y$
- let $\Pi_1: Z_1, \ldots, Z_n$ be derivation of Y from $S \cup \{X\}$, so $Z_n = Y$
- consider new sequence $\Pi_2 \colon X \supset Z_1, \ldots, X \supset Z_n$
- insert extra lines into Π_2 and use Modus Ponens, as follows:
 - 1 if Z_i is axiom or member of Sinsert Z_i and $Z_i \supset (X \supset Z_i)$ before $X \supset Z_i$

2 if
$$Z_i = X$$

3 if Z_i is derived with Modus Ponens from Z_j and Z_k with j, k < i

- suppose $S \cup \{X\} \vdash_{ph} Y$
- let $\Pi_1: Z_1, \ldots, Z_n$ be derivation of Y from $S \cup \{X\}$, so $Z_n = Y$
- consider new sequence $\Pi_2 \colon X \supset Z_1, \ldots, X \supset Z_n$
- insert extra lines into Π_2 and use Modus Ponens, as follows:
 - 1 if Z_i is axiom or member of Sinsert Z_i and $Z_i \supset (X \supset Z_i)$ before $X \supset Z_i$

2 if
$$Z_i = X$$

insert steps of proof of $X \supset Z_i$ before it

3 if Z_i is derived with Modus Ponens from Z_j and Z_k with j, k < i

- suppose $S \cup \{X\} \vdash_{ph} Y$
- let $\Pi_1: Z_1, \ldots, Z_n$ be derivation of Y from $S \cup \{X\}$, so $Z_n = Y$
- consider new sequence $\Pi_2 \colon X \supset Z_1, \ldots, X \supset Z_n$
- insert extra lines into Π_2 and use Modus Ponens, as follows:
 - 1 if Z_i is axiom or member of Sinsert Z_i and $Z_i \supset (X \supset Z_i)$ before $X \supset Z_i$

2 if
$$Z_i = X$$

insert steps of proof of $X \supset Z_i$ before it

3 if Z_i is derived with Modus Ponens from Z_j and Z_k with j, k < ithen $Z_k = (Z_j \supset Z_i)$

- suppose $S \cup \{X\} \vdash_{ph} Y$
- let $\Pi_1: Z_1, \ldots, Z_n$ be derivation of Y from $S \cup \{X\}$, so $Z_n = Y$
- consider new sequence $\Pi_2 \colon X \supset Z_1, \ldots, X \supset Z_n$
- insert extra lines into Π_2 and use Modus Ponens, as follows:
 - 1 if Z_i is axiom or member of Sinsert Z_i and $Z_i \supset (X \supset Z_i)$ before $X \supset Z_i$

2 if
$$Z_i = X$$

insert steps of proof of $X \supset Z_i$ before it

3 if Z_i is derived with Modus Ponens from Z_j and Z_k with j, k < ithen $Z_k = (Z_j \supset Z_i)$ insert $(X \supset (Z_j \supset Z_i)) \supset ((X \supset Z_j) \supset (X \supset Z_i))$ and $(X \supset Z_j) \supset (X \supset Z_i)$ before $X \supset Z_i$

- suppose $S \cup \{X\} \vdash_{ph} Y$
- let $\Pi_1: Z_1, \ldots, Z_n$ be derivation of Y from $S \cup \{X\}$, so $Z_n = Y$
- consider new sequence $\Pi_2 \colon X \supset Z_1, \ldots, X \supset Z_n$
- insert extra lines into Π_2 and use Modus Ponens, as follows:
 - 1 if Z_i is axiom or member of Sinsert Z_i and $Z_i \supset (X \supset Z_i)$ before $X \supset Z_i$

2 if
$$Z_i = X$$

insert steps of proof of $X \supset Z_i$ before it

3 if Z_i is derived with Modus Ponens from Z_j and Z_k with j, k < ithen $Z_k = (Z_j \supset Z_i)$ insert $(X \supset (Z_j \supset Z_i)) \supset ((X \supset Z_j) \supset (X \supset Z_i))$ and $(X \supset Z_j) \supset (X \supset Z_i)$ before $X \supset Z_i$

• resulting sequence is derivation of $X \supset Y$ from S

3
$$\perp \supset X$$

$$\begin{array}{ll} 3 & \bot \supset X \\ 4 & X \supset \top \end{array}$$

$$\begin{array}{ll} 3 & \bot \supset X \\ 4 & X \supset \top \\ 5 & \neg \neg X \supset X \end{array}$$

 $\begin{array}{ll} 3 & \perp \supset X \\ 4 & X \supset \top \\ 5 & \neg \neg X \supset X \\ 6 & X \supset (\neg X \supset Y) \end{array}$

3	$\perp \supset X$	7	$\alpha \supset \alpha_1$
4	$X \supset \top$		
5	$\neg \neg X \supset X$		
6	$X \supset (\neg X \supset Y)$		

3	$\perp \supset X$	7	$\alpha \supset \alpha_1$
4	$X \supset \top$	8	$\alpha \supset \alpha_2$
5	$\neg \neg X \supset X$		
6	$X \supset (\neg X \supset Y)$		

$3 \perp \supset X$	7 $\alpha \supset \alpha_1$
---------------------	-----------------------------

 $4 \quad X \supset \top \qquad 8 \quad \alpha \supset \alpha_2$

9

- 5 $\neg \neg X \supset X$
- $6 \qquad X \supset (\neg X \supset Y)$

- $\alpha \supset \alpha_2$
 - $(\beta_1 \supset X) \supset ((\beta_2 \supset X) \supset (\beta \supset X))$

3	$\perp \supset X$	7	$\alpha \supset \alpha_1$
4	$X \supset \top$	8	$\alpha \supset \alpha_2$
5	$\neg \neg X \supset X$	9	$(\beta_1 \supset X) \supset ((\beta_2 \supset X) \supset (\beta \supset X))$
6	$X \supset (\neg X \supset Y)$		

Example

 $(\neg X \supset X) \supset X$ is theorem:

1. $(\neg \neg X \supset X) \supset ((X \supset X) \supset ((\neg X \supset X) \supset X))$ Axiom Scheme 9

3	$\perp \supset X$	7	$\alpha \supset \alpha_1$
4	$X \supset \top$	8	$\alpha \supset \alpha_2$
5	$\neg \neg X \supset X$	9	$(eta_1 \supset X) \supset ((eta_2 \supset X) \supset (eta \supset X))$
6	$X \supset (\neg X \supset Y)$		

Example

 $(\neg X \supset X) \supset X$ is theorem:

1. $(\neg \neg X \supset X) \supset ((X \supset X) \supset ((\neg X \supset X) \supset X))$ Axiom Scheme 92. $\neg \neg X \supset X$ Axiom Scheme 5

3	$\perp \supset X$	7	$\alpha \supset \alpha_1$
4	$X \supset \top$	8	$\alpha \supset \alpha_2$
5	$\neg \neg X \supset X$	9	$(\beta_1 \supset X) \supset ((\beta_2 \supset X) \supset (\beta \supset X))$
6	$X \supset (\neg X \supset Y)$		

Example

 $(\neg X \supset X) \supset X$ is theorem:

- 1. $(\neg \neg X \supset X) \supset ((X \supset X) \supset ((\neg X \supset X) \supset X))$
- $2. \quad \neg \neg X \supset X$
- 3. $(X \supset X) \supset ((\neg X \supset X) \supset X)$

Axiom Scheme 9 Axiom Scheme 5 Modus Ponens

3	$\perp \supset X$	7	$\alpha \supset \alpha_1$
4	$X \supset \top$	8	$\alpha \supset \alpha_2$
5	$\neg \neg X \supset X$	9	$(\beta_1 \supset X) \supset ((\beta_2 \supset X) \supset (\beta \supset X))$
6	$X \supset (\neg X \supset Y)$		

Example

 $(\neg X \supset X) \supset X$ is theorem:

1. $(\neg \neg X \supset X) \supset ((X \supset X) \supset ((\neg X \supset X) \supset X))$

$$2. \quad \neg \neg X \supset X$$

3.
$$(X \supset X) \supset ((\neg X \supset X) \supset X)$$

4.
$$X \supset X$$

Axiom Scheme 9 Axiom Scheme 5 Modus Ponens earlier proof

3	$\perp \supset X$	7	$\alpha \supset \alpha_1$
4	$X \supset \top$	8	$\alpha \supset \alpha_2$
5	$\neg \neg X \supset X$	9	$(\beta_1 \supset X) \supset ((\beta_2 \supset X) \supset (\beta \supset X)$
6	$X \supset (\neg X \supset Y)$		

Example

 $(\neg X \supset X) \supset X$ is theorem:

1. $(\neg \neg X \supset X) \supset ((X \supset X) \supset ((\neg X \supset X) \supset X))$

$$2. \quad \neg \neg X \supset X$$

3.
$$(X \supset X) \supset ((\neg X \supset X) \supset X)$$

4.
$$X \supset X$$

5. $(\neg X \supset X) \supset X$

Axiom Scheme 9 Axiom Scheme 5 Modus Ponens earlier proof Modus Ponens

if $S \vdash_{ph} X$ then $S \vDash_{p} X$

if $S \vdash_{ph} X$ then $S \vDash_{p} X$

Proof

• let Z_1, \ldots, Z_n be derivation of X from S, so $Z_n = X$

if $S \vdash_{ph} X$ then $S \vDash_{p} X$

- let Z_1, \ldots, Z_n be derivation of X from S, so $Z_n = X$
- we show $S \vDash_p Z_i$ by induction on *i*

if $S \vdash_{ph} X$ then $S \vDash_{p} X$

- let Z_1, \ldots, Z_n be derivation of X from S, so $Z_n = X$
- we show $S \vDash_p Z_i$ by induction on *i*
 - **1** if Z_i is axiom then Z_i is tautology

if $S \vdash_{ph} X$ then $S \vDash_{p} X$

- let Z_1, \ldots, Z_n be derivation of X from S, so $Z_n = X$
- we show $S \vDash_p Z_i$ by induction on *i*
 - **1** if Z_i is axiom then Z_i is tautology and thus also $S \vDash_p Z_i$

if $S \vdash_{ph} X$ then $S \vDash_{p} X$

- let Z_1, \ldots, Z_n be derivation of X from S, so $Z_n = X$
- we show $S \vDash_p Z_i$ by induction on *i*
 - **1** if Z_i is axiom then Z_i is tautology and thus also $S \vDash_p Z_i$
 - **2** if $Z_i \in S$ then $S \vDash_p Z_i$ holds trivially

if $S \vdash_{ph} X$ then $S \vDash_{p} X$

- let Z_1, \ldots, Z_n be derivation of X from S, so $Z_n = X$
- we show $S \vDash_{p} Z_{i}$ by induction on *i*
 - **1** if Z_i is axiom then Z_i is tautology and thus also $S \vDash_p Z_i$
 - **2** if $Z_i \in S$ then $S \vDash_p Z_i$ holds trivially
 - 3 if Z_i is obtained from Z_j and Z_k by Modus Ponens then $Z_k = (Z_j \supset Z_i)$ and j, k < i
Theorem (Strong Hilbert Soundness)

if $S \vdash_{ph} X$ then $S \vDash_{p} X$

Proof

- let Z_1, \ldots, Z_n be derivation of X from S, so $Z_n = X$
- we show $S \vDash_{p} Z_{i}$ by induction on *i*
 - **1** if Z_i is axiom then Z_i is tautology and thus also $S \vDash_p Z_i$
 - **2** if $Z_i \in S$ then $S \vDash_p Z_i$ holds trivially
 - 3 if Z_i is obtained from Z_j and Z_k by Modus Ponens then $Z_k = (Z_j \supset Z_i)$ and j, k < i
 - $S \vDash_p Z_j$ and $S \vDash_p Z_j \supset Z_i$ follow from induction hypothesis

Theorem (Strong Hilbert Soundness)

if $S \vdash_{ph} X$ then $S \vDash_{p} X$

Proof

- let Z_1, \ldots, Z_n be derivation of X from S, so $Z_n = X$
- we show $S \vDash_p Z_i$ by induction on *i*
 - **1** if Z_i is axiom then Z_i is tautology and thus also $S \vDash_p Z_i$
 - **2** if $Z_i \in S$ then $S \vDash_p Z_i$ holds trivially

3 if Z_i is obtained from Z_j and Z_k by Modus Ponens then $Z_k = (Z_j \supset Z_i)$ and j, k < i $S \vDash_p Z_j$ and $S \vDash_p Z_j \supset Z_i$ follow from induction hypothesis $S \vDash_p Z_i$ follows from definition of \vDash_p

• set S of formulas is X – Hilbert inconsistent if $S \vdash_{ph} X$

- set S of formulas is $X \text{Hilbert inconsistent if } S \vdash_{ph} X$
- set S of formulas is X Hilbert consistent if $S \vdash_{ph} X$ does not hold

- set S of formulas is X Hilbert inconsistent if $S \vdash_{ph} X$
- set S of formulas is X Hilbert consistent if $S \vdash_{ph} X$ does not hold

Lemma

collection of all X – Hilbert consistent sets is propositional consistency property

- set S of formulas is X Hilbert inconsistent if $S \vdash_{ph} X$
- set S of formulas is X Hilbert consistent if $S \vdash_{ph} X$ does not hold

Lemma

collection of all X – Hilbert consistent sets is propositional consistency property

Proof

let S be X – Hilbert consistent

- set S of formulas is X Hilbert inconsistent if $S \vdash_{ph} X$
- set S of formulas is X Hilbert consistent if $S \vdash_{ph} X$ does not hold

Lemma

collection of all X – Hilbert consistent sets is propositional consistency property

Proof

let S be X – Hilbert consistent

1 if $A \in S$ and $\neg A \in S$

- set S of formulas is X Hilbert inconsistent if $S \vdash_{ph} X$
- set S of formulas is X Hilbert consistent if $S \vdash_{ph} X$ does not hold

Lemma

collection of all X – Hilbert consistent sets is propositional consistency property

Proof

let S be X – Hilbert consistent

1 if $A \in S$ and $\neg A \in S$ then $S \vdash_{ph} A$ and $S \vdash_{ph} \neg A$

- set S of formulas is X Hilbert inconsistent if $S \vdash_{ph} X$
- set S of formulas is X Hilbert consistent if $S \vdash_{ph} X$ does not hold

Lemma

collection of all X – Hilbert consistent sets is propositional consistency property

Proof

let S be X – Hilbert consistent

1 if $A \in S$ and $\neg A \in S$ then $S \vdash_{ph} A$ and $S \vdash_{ph} \neg A$

Axiom Scheme 6: $\vdash_{ph} A \supset (\neg A \supset X)$

- set S of formulas is X Hilbert inconsistent if $S \vdash_{ph} X$
- set S of formulas is X Hilbert consistent if $S \vdash_{ph} X$ does not hold

Lemma

collection of all X – Hilbert consistent sets is propositional consistency property

Proof

let S be X – Hilbert consistent

1 if $A \in S$ and $\neg A \in S$ then $S \vdash_{ph} A$ and $S \vdash_{ph} \neg A$

Axiom Scheme 6: $\vdash_{ph} A \supset (\neg A \supset X)$

 $S \vdash_{ph} X$ by two applications of Modus Ponens

- set S of formulas is X Hilbert inconsistent if $S \vdash_{ph} X$
- set S of formulas is X Hilbert consistent if $S \vdash_{ph} X$ does not hold

Lemma

collection of all X – Hilbert consistent sets is propositional consistency property

Proof

let S be X – Hilbert consistent

1 if $A \in S$ and $\neg A \in S$ then $S \vdash_{ph} A$ and $S \vdash_{ph} \neg A$

Axiom Scheme 6: $\vdash_{ph} A \supset (\neg A \supset X)$

 $S \vdash_{ph} X$ by two applications of Modus Ponens 4

- let S be X Hilbert consistent
 - 2 if $\bot \in S$ then $S \vdash_{ph} \bot$

- let S be X Hilbert consistent
 - 2 if $\bot \in S$ then $S \vdash_{ph} \bot$

Axiom Scheme 3: $\vdash_{ph} \bot \supset X$

- let S be X Hilbert consistent
 - 2 if $\bot \in S$ then $S \vdash_{ph} \bot$

Axiom Scheme 3: $\vdash_{ph} \bot \supset X$

 $S \vdash_{ph} X$ by Modus Ponens

- let S be X Hilbert consistent
 - 2 if $\perp \in S$ then $S \vdash_{ph} \perp$

Axiom Scheme 3: $\vdash_{ph} \bot \supset X$

 $S \vdash_{ph} X$ by Modus Ponens \checkmark

- let S be X Hilbert consistent
 - 2 if $\bot \in S$ then $S \vdash_{ph} \bot$ Axiom Scheme 3: $\vdash_{ph} \bot \supset X$
 - $S \vdash_{ph} X$ by Modus Ponens 4

```
if \neg \top \in S then S \vdash_{ph} \neg \top
```

- let S be X Hilbert consistent
 - 2 if $\bot \in S$ then $S \vdash_{ph} \bot$ Axiom Scheme 3: $\vdash_{ph} \bot \supset X$ $S \vdash_{ph} X$ by Modus Ponens if $\neg \top \in S$ then $S \vdash_{ph} \neg \top$ Axiom Scheme 4: $\vdash_{ph} \neg \top \supset \top$ $S \vdash_{ph} \top$ by Modus Ponens

- let S be X Hilbert consistent
 - 2 if $\perp \in S$ then $S \vdash_{ph} \perp$ Axiom Scheme 3: $\vdash_{ph} \perp \supset X$ $S \vdash_{ph} X$ by Modus Ponens \checkmark if $\neg \top \in S$ then $S \vdash_{ph} \neg \top$ Axiom Scheme 4: $\vdash_{ph} \neg \top \supset \top$ $S \vdash_{ph} \top$ by Modus Ponens Axiom Scheme 6: $\vdash_{ph} \top \supset (\neg \top \supset X)$

- let S be X Hilbert consistent
 - 2 if $\bot \in S$ then $S \vdash_{ph} \bot$ Axiom Scheme 3: $\vdash_{ph} \perp \supset X$ $S \vdash_{ph} X$ by Modus Ponens - 4 if $\neg \top \in S$ then $S \vdash_{ph} \neg \top$ Axiom Scheme 4: $\vdash_{ph} \neg \top \supset \top$ $S \vdash_{ph} \top$ by Modus Ponens Axiom Scheme 6: $\vdash_{ph} \top \supset (\neg \top \supset X)$ $S \vdash_{ph} X$ by two applications of Modus Ponens

let S be X – Hilbert consistent

3 if $\neg \neg Z \in S$ then $S \vdash_{ph} \neg \neg Z$

- let S be X Hilbert consistent
 - 3 if $\neg \neg Z \in S$ then $S \vdash_{ph} \neg \neg Z$

Axiom Scheme 5: $\vdash_{ph} \neg \neg Z \supset Z$

let S be X – Hilbert consistent

3 if $\neg \neg Z \in S$ then $S \vdash_{ph} \neg \neg Z$

Axiom Scheme 5: $\vdash_{ph} \neg \neg Z \supset Z$

 $S \vdash_{ph} Z$ by Modus Ponens

let S be X – Hilbert consistent

3 if $\neg \neg Z \in S$ then $S \vdash_{ph} \neg \neg Z$

Axiom Scheme 5: $\vdash_{ph} \neg \neg Z \supset Z$

 $S \vdash_{ph} Z$ by Modus Ponens

if $S \cup \{Z\} \vdash_{ph} X$ then $S \vdash_{ph} Z \supset X$ by Deduction Theorem

- let S be X Hilbert consistent
 - 3 if $\neg \neg Z \in S$ then $S \vdash_{ph} \neg \neg Z$ Axiom Scheme 5: $\vdash_{ph} \neg \neg Z \supset Z$ $S \vdash_{ph} Z$ by Modus Ponens if $S \cup \{Z\} \vdash_{ph} X$ then $S \vdash_{ph} Z \supset X$ by Deduction Theorem $S \vdash_{ph} X$ by Modus Ponens

- let S be X Hilbert consistent
 - **3** if $\neg \neg Z \in S$ then $S \vdash_{ph} \neg \neg Z$ Axiom Scheme 5: $\vdash_{ph} \neg \neg Z \supset Z$ $S \vdash_{ph} Z$ by Modus Ponens if $S \cup \{Z\} \vdash_{ph} X$ then $S \vdash_{ph} Z \supset X$ by Deduction Theorem $S \vdash_{ph} X$ by Modus Ponens \checkmark

- let S be X Hilbert consistent
 - 3 if $\neg \neg Z \in S$ then $S \vdash_{ph} \neg \neg Z$ Axiom Scheme 5: $\vdash_{ph} \neg \neg Z \supset Z$ $S \vdash_{ph} Z$ by Modus Ponens if $S \cup \{Z\} \vdash_{ph} X$ then $S \vdash_{ph} Z \supset X$ by Deduction Theorem $S \vdash_{ph} X$ by Modus Ponens \checkmark $S \cup \{Z\}$ is X-Hilbert consistent

- let S be X Hilbert consistent
- if ¬¬Z ∈ S then S ⊢_{ph} ¬¬Z
 Axiom Scheme 5: ⊢_{ph} ¬¬Z ⊃ Z
 S ⊢_{ph} Z by Modus Ponens
 if S ∪ {Z} ⊢_{ph} X then S ⊢_{ph} Z ⊃ X by Deduction Theorem
 S ⊢_{ph} X by Modus Ponens 4
 S ∪ {Z} is X Hilbert consistent
 if α ∈ S then ... exercise ...

- let S be X Hilbert consistent
 - 5 if $\beta \in S$ then $S \vdash_{ph} \beta$

let S be X – Hilbert consistent

5 if $\beta \in S$ then $S \vdash_{ph} \beta$

suppose both $S \cup \{\beta_1\}$ and $S \cup \{\beta_2\}$ are X-Hilbert inconsistent

let S be X – Hilbert consistent

5 if $\beta \in S$ then $S \vdash_{ph} \beta$

suppose both $S \cup \{\beta_1\}$ and $S \cup \{\beta_2\}$ are X-Hilbert inconsistent $S \cup \{\beta_1\} \vdash_{ph} X$ and $S \cup \{\beta_2\} \vdash_{ph} X$

let S be X – Hilbert consistent

5 if $\beta \in S$ then $S \vdash_{ph} \beta$

suppose both $S \cup \{\beta_1\}$ and $S \cup \{\beta_2\}$ are X-Hilbert inconsistent $S \cup \{\beta_1\} \vdash_{ph} X$ and $S \cup \{\beta_2\} \vdash_{ph} X$ $S \vdash_{ph} \beta_1 \supset X$ and $S \vdash_{ph} \beta_2 \supset X$ by Deduction Theorem

let S be X – Hilbert consistent

5 if
$$\beta \in S$$
 then $S \vdash_{ph} \beta$

suppose both $S \cup \{\beta_1\}$ and $S \cup \{\beta_2\}$ are X – Hilbert inconsistent $S \cup \{\beta_1\} \vdash_{ph} X$ and $S \cup \{\beta_2\} \vdash_{ph} X$ $S \vdash_{ph} \beta_1 \supset X$ and $S \vdash_{ph} \beta_2 \supset X$ by Deduction Theorem Axiom Scheme 9: $\vdash_{ph} (\beta_1 \supset X) \supset ((\beta_2 \supset X) \supset (\beta \supset X))$

- let S be X Hilbert consistent
 - 5 if $\beta \in S$ then $S \vdash_{ph} \beta$

suppose both $S \cup \{\beta_1\}$ and $S \cup \{\beta_2\}$ are X – Hilbert inconsistent $S \cup \{\beta_1\} \vdash_{ph} X$ and $S \cup \{\beta_2\} \vdash_{ph} X$ $S \vdash_{ph} \beta_1 \supset X$ and $S \vdash_{ph} \beta_2 \supset X$ by Deduction Theorem Axiom Scheme 9: $\vdash_{ph} (\beta_1 \supset X) \supset ((\beta_2 \supset X) \supset (\beta \supset X))$ $S \vdash_{ph} \beta \supset X$ by two applications of Modus Ponens

- let S be X Hilbert consistent
 - 5 if $\beta \in S$ then $S \vdash_{ph} \beta$

suppose both $S \cup \{\beta_1\}$ and $S \cup \{\beta_2\}$ are X – Hilbert inconsistent $S \cup \{\beta_1\} \vdash_{ph} X$ and $S \cup \{\beta_2\} \vdash_{ph} X$ $S \vdash_{ph} \beta_1 \supset X$ and $S \vdash_{ph} \beta_2 \supset X$ by Deduction Theorem Axiom Scheme 9: $\vdash_{ph} (\beta_1 \supset X) \supset ((\beta_2 \supset X) \supset (\beta \supset X))$ $S \vdash_{ph} \beta \supset X$ by two applications of Modus Ponens $S \vdash_{ph} X$ by Modus Ponens

- let S be X Hilbert consistent
 - 5 if $\beta \in S$ then $S \vdash_{ph} \beta$

suppose both $S \cup \{\beta_1\}$ and $S \cup \{\beta_2\}$ are X – Hilbert inconsistent $S \cup \{\beta_1\} \vdash_{ph} X$ and $S \cup \{\beta_2\} \vdash_{ph} X$ $S \vdash_{ph} \beta_1 \supset X$ and $S \vdash_{ph} \beta_2 \supset X$ by Deduction Theorem Axiom Scheme 9: $\vdash_{ph} (\beta_1 \supset X) \supset ((\beta_2 \supset X) \supset (\beta \supset X))$ $S \vdash_{ph} \beta \supset X$ by two applications of Modus Ponens $S \vdash_{ph} X$ by Modus Ponens \checkmark
if $S \vDash_p X$ then $S \vdash_{ph} X$

if $S \vDash_p X$ then $S \vdash_{ph} X$

Proof

• suppose $S \vdash_{ph} X$ does not hold

if $S \vDash_p X$ then $S \vdash_{ph} X$

Proof

• suppose $S \vdash_{ph} X$ does not hold, so S is X – Hilbert consistent

if $S \vDash_p X$ then $S \vdash_{ph} X$

- suppose $S \vdash_{ph} X$ does not hold, so S is X-Hilbert consistent
- $\vdash_{ph} (\neg X \supset X) \supset X$

if $S \vDash_p X$ then $S \vdash_{ph} X$

- suppose $S \vdash_{ph} X$ does not hold, so S is X Hilbert consistent
- $\vdash_{ph} (\neg X \supset X) \supset X$
- if $S \cup \{\neg X\} \vdash_{ph} X$ then $S \vdash_{ph} \neg X \supset X$

if $S \vDash_p X$ then $S \vdash_{ph} X$

Proof

• suppose $S \vdash_{ph} X$ does not hold, so S is X - Hilbert consistent

•
$$\vdash_{ph} (\neg X \supset X) \supset X$$

• if $S \cup \{\neg X\} \vdash_{ph} X$ then $S \vdash_{ph} \neg X \supset X$ and thus $S \vdash_{ph} X$

if $S \vDash_p X$ then $S \vdash_{ph} X$

- suppose $S \vdash_{ph} X$ does not hold, so S is X-Hilbert consistent
- $\vdash_{ph} (\neg X \supset X) \supset X$
- if $S \cup \{\neg X\} \vdash_{ph} X$ then $S \vdash_{ph} \neg X \supset X$ and thus $S \vdash_{ph} X \qquad 4$
- $S \cup \{\neg X\} \vdash_{ph} X$ does not hold

if $S \vDash_p X$ then $S \vdash_{ph} X$

- suppose $S \vdash_{ph} X$ does not hold, so S is X Hilbert consistent
- $\vdash_{ph} (\neg X \supset X) \supset X$
- if $S \cup \{\neg X\} \vdash_{ph} X$ then $S \vdash_{ph} \neg X \supset X$ and thus $S \vdash_{ph} X \qquad 4$
- $S \cup \{\neg X\} \vdash_{ph} X$ does not hold
- $S \cup \{\neg X\}$ is X Hilbert consistent

if $S \vDash_p X$ then $S \vdash_{ph} X$

- suppose $S \vdash_{ph} X$ does not hold, so S is X Hilbert consistent
- $\vdash_{ph} (\neg X \supset X) \supset X$
- if $S \cup \{\neg X\} \vdash_{ph} X$ then $S \vdash_{ph} \neg X \supset X$ and thus $S \vdash_{ph} X \qquad 4$
- $S \cup \{\neg X\} \vdash_{ph} X$ does not hold
- $S \cup \{\neg X\}$ is X Hilbert consistent
- $S \cup \{\neg X\}$ is satisfiable (by previous lemma and Model Existence Theorem)

if $S \vDash_p X$ then $S \vdash_{ph} X$

- suppose $S \vdash_{ph} X$ does not hold, so S is X Hilbert consistent
- $\vdash_{ph} (\neg X \supset X) \supset X$
- if $S \cup \{\neg X\} \vdash_{ph} X$ then $S \vdash_{ph} \neg X \supset X$ and thus $S \vdash_{ph} X \qquad 4$
- $S \cup \{\neg X\} \vdash_{ph} X$ does not hold
- $S \cup \{\neg X\}$ is X Hilbert consistent
- $S \cup \{\neg X\}$ is satisfiable (by previous lemma and Model Existence Theorem)
- $S \vDash_p X$ does not hold

Hilbert Systems

William Craig (1918-2016)

Jaakko Hintikka (1929–2015)

Hilbert Systems

William Craig (1918-2016)

David Hilbert (1862-1943)

Jaakko Hintikka (1929–2015)

Outline

- Summary of Previous Lecture
- Model Existence Theorem
- Compactness
- Interpolation
- Semantic Tableaux
- Hilbert Systems
- Exercises
- Further Reading

Fitting

- Bonus: Exercise 3.6.6 or Exercise 3.6.7 (where 'or' means that you can get at most 1 bonus-exercise point)
- Exercise 3.7.1
- Exercise 3.7.2.(1) and (2)
- Bonus: Exercise 3.7.4 (hence 3.7.3 and 3.7.2 as well)
- Exercise 3.9.1
- Bonus: Exercise 3.9.2 or Exercise 3.9.3
- Exercise 4.1.1
- Exercise 4.1.2 !
- Bonus: Exercise 4.1.4 or 4.1.5 or Exercise 4.1.6
- Exercise 4.1.7 !
- Exercise 4.1.8
- Bonus: Exercise 4.5.2

Outline

- Summary of Previous Lecture
- Model Existence Theorem
- Compactness
- Interpolation
- Semantic Tableaux
- Hilbert Systems
- Exercises

• Further Reading

Fitting

- Section 3.7 (until Theorem 3.7.3)
- Section 3.8 (until Corollary 3.8.2) !
- Section 3.9
- Section 4.1 !
- Section 4.5