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Summary of Previous Lecture

Tableau Expansion Rules

V4 T 1 Bl B
a2
finite set {Ay,...,A,} of propositional formulas
following one-branch tree is tableau for {Ay, ..., A,}:
A
A
An
if T is tableau for {A1,...,A,} and T* results from T by application of
tableau expansion rule then T* is tableau for {As,...,A,}
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® branch 6 of tableau is closed if both X and —X occur on 6 for some
propositional formula X, or if L occurs on 6

® branch 6 of tableau is atomically closed if both A and —A occur on 6 for
some propositional letter A, or if L occurs on 6

® tableau is (atomically) closed if every branch is (atomically) closed
® tableau proof of X is closed tableau for {=X}
® X is theorem if X has tableau proof, denoted by F,; X

® tableau is strict if no formula has had Tableau Expansion Rule applied to it
twice on same branch

® tableau branch 6 is satisfiable if set of propositional formulas on it is
satisfiable

® tableau T is satisfiable if at least one branch of T is satisfiable
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Summary of Previous Lecture

any application of Tableau Expansion Rule to satisfiable tableau yields another
satisfiable tableau

if S admits closed tableau then S is not satisfiable

Theorem (Propositional Tableau Soundness)

if X has tableau proof then X is tautology
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Summary of Previous Lecture

set H of propositional formulas is propositional Hintikka set provided

for any propositional letter A, not both A€ H and A€ H
L ¢H -T¢H

if ——Z € Hthen ZcH

if o € Hthen a; € Hand ap € H

if € Hthen 8y €Hor B eH

Lemma (Hintikka's Lemma)

every propositional Hintikka set is satisfiable
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Summary of Previous Lecture

collection C of sets of propositional formulas is propositional consistency property
if, for each S € C:

if C is propositional consistency property then S € C is called C-consistent

for any propositional letter A, not both A€ S and ~A€ S
1¢S5 -T¢S

if ~—Z € Sthen SU{Z} €C

if « € S then SU{ay,a0} €C

if 8€Sthen SU{Bi} €Cor SU{B}eC

Theorem (Propositional Model Existence)

if C is propositional consistency property and S € C then S is satisfiable
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Part I: Propositional Logic

compactness, completeness, Hilbert systems, interpolation,
logical consequence, ,

Part Il: First-Order Logic

compactness, completeness, Craig's interpolation theorem, cut elimination,
first-order semantic tableaux, Herbrand models, Herbrand’s theorem, Hilbert
systems, Hintikka's lemma, Léwenheim-Skolem, logical consequence, model
existence theorem, prenex form, skolemization, soundness

Part Ill: Limitations and Extensions of First-Order Logic

Curry-Howard isomorphism, intuitionistic logic, Kripke models, second-order logic,
simply-typed A-calculus
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Model Existence Theorem

Outline

@ Model Existence Theorem
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Model Existence Theorem

collection C of sets of propositional formulas is propositional consistency property
if, for each S € C:

if C is propositional consistency property then S € C is called C-consistent

for any propositional letter A, not both A€ S and “A€ S
1¢S5 -T¢S

if -==Z € Sthen SU{Z} €C

if « € S then SU{ay,a0} €C

if 8€Sthen SU{Bi} eCor SU{B}eC

Theorem (Propositional Model Existence)

if C is propositional consistency property and S € C then S is satisfiable
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Compactness

Outline

@ Compactness
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Theorem (Propositional Compactness)

if every finite subset of set S of propositional formulas is satisfiable then S is
satisfiable

® let C = {W | every finite subset of W is satisfiable}

® S € (C and C is propositional consistency property:
if Ae Wand -A € W then W ¢ C
if LeWor—-TeW then W¢C
suppose =—Z € W € C and let V be finite subset of W U {Z}
(VN W)U {——Z} is finite subset of W and thus satisfiable
(VN W)u{-—Z,Z} is satisfiable
V C(VnW)u{-—Z,Z} is satisfiable
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Proof (cont'd)

e let C = {W | every finite subset of W is satisfiable}
® S e C and C is propositional consistency property:
suppose € W € C and let V be finite subset of W U {as, a0}
(VN W)U {a} is finite subset of W and thus satisfiable
(VN W)U {a, o, ar} is satisfiable
V C (VN W)U {a,a1,a} is satisfiable
suppose S € W € C
suppose neither W U {81} nor W U {,} belongs to C
3 finite unsatisfiable subsets F; € W U {1} and F, C W U {5}
(FLUF) N W U{B} is finite subset of W and thus satisfiable
(RUR)NWU{B,B1}or (FRUFR)NWU{B, B} is satisfiable
FiC(RUR)NWU{B, B} and F, C (RUFR)NWU{B,B} %

v
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Interpolation

Outline

@ Interpolation
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Interpolation

Definition

formula Z is interpolant for implication X D Y if every propositional letter of Z
occurs in both X and Y, and X D Z and Z D Y are both tautologies

® PV Q is interpolant for (PV (QAR)) D (PV —=Q)
e | is interpolant for (P A—-P) D Q

Theorem (Craig Interpolation)

every tautology X D Y has interpolant
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(S) denotes conjunction of all members of finite set S of formulas

v

finite set S of formulas is Craig consistent if (S1) D —(S2) has no interpolant for
some partition S; W S, of S

v

collection of all Craig consistent sets is propositional consistency property

Proof

® let C be collection of all Craig consistent sets

® let S € C so (S1) D —(Sz) has no interpolant for some partition S; W S, of S
(terminology: S; W S, has no interpolant)
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Proof (cont'd)

given S € C and partition S; W S, of S without interpolant
suppose A,—A€ S
® if A=A € S; then L is interpolant of S; W S, 4
® if A=A €S, then T is interpolant of S; W S, 4
® if Ac S; and A € S, then A is interpolant of S; W S, 4
e if ~A€ S; and A € S, then —A is interpolant of S; W S, 4
suppose L € S
® if L € S5; then L is interpolant of S; W S, 4
® if L €5, then T is interpolant of S; W S, 4
suppose =T € §
e if =T € S; then L is interpolant of S; W S, 45
® if =T € S, then T is interpolant of S; W S, 5
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Proof (cont'd)

given S € C and partition S; W S, of S without interpolant
suppose =——Z € S
® if -—Z € S; then (S; U{Z}) W S, has no interpolant
® if =—=Z € S; then S; W (S, U {Z}) has no interpolant
hence SU{Z} €C
suppose a € S
® if a € Sy then (S; U {ay,az}) WS, has no interpolant
® if « €S, then S; W (S, U {ay,az}) has no interpolant
hence S U {ay, a0} €C
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Proof (cont'd)

given S € C and partition S; W S, of S without interpolant
suppose B € S and neither SU {81} nor S U {5,} belongs to C
® if €S then (S1) = (St U{B1}) V (St U{B2})
(51 U{B1}) W S, is partition of SU{B;1} and thus has interpolant ~;

(51 U{B2}) W S, is partition of S U {B>} and thus has interpolant v,

(StU{B1}) O m 1 2 ~(S2)
(S1U{B2}) D72 Y2 O ~(S2)
hence v1 V 7, is interpolant of S; W S, 4

(S1) = (S1U{B}) V(StU{B2}) D11 V72 D ~(S)

AM/VvO (CS @ UIBK) lecture 3 19/54


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Proof (cont'd)
given S € C and partition S; W S, of S without interpolant
suppose B € S and neither SU {81} nor S U {5,} belongs to C
e if €S, then =(S) = (S U{B1}) A (S U{B2})
S W (S U{B1}) is partition of SU {B;1} and thus has interpolant &;

S1 W (S2U{B2}) is partition of S U {f>} and thus has interpolant ¢,

<51> D (51 (51 D) _\<52 U {61}>
(S1) D & 52 D (S U{B:})
hence 01 A §5 is interpolant of S; W S, 4

<51> Do ANdr D —\<52 U {61}> N —|<52 U {,82}> = —\<52>

C is propositional consistency property
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Interpolation

Proof (of Craig Interpolation Theorem)

® suppose X D Y has no interpolant
let S = {X,-Y} with partition $; = {X} and S, = {=Y}

interpolant for (51) D —(S2) is interpolant for X D Y
and hence does not exist

® S is Craig consistent
® S is satisfiable by Model Existence Theorem and previous lemma

® hence X D Y is no tautology
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Interpolation

William Craig
(1918-2016)

Jaakko Hintikka
(1929 -2015)
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Semantic Tableaux Completeness

Outline

@ Semantic Tableaux
o Completeness
o Completeness with Restrictions
@ Propositional Consequence
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Semantic Tableaux Completeness

Definition

finite set S of propositional formulas is tableau consistent if there is no closed
tableau for S

collection of all tableau consistent sets is propositional consistency property

Proof
® properties 1, 2, 3: ... blackboard
® properties 4, 5: next two slides
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Proof (cont'd)

® property 4: let a € S and consider S U {a, oo}
suppose S U {ay,az} is not tableau consistent
let S ={a, X1,..., X}

closed tableau for SU {aq, as}:

@
X1

X

ay apply a-rule
ap apply a-rule

rest of tableau
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Semantic Tableaux Completeness

Proof (cont'd)

® property 5: let 8 € S and consider SU {f:1} and SU {5,}
suppose neither S U {B1} nor S U {82} is tableau consistent
let S = {8, X1,..., Xn}
closed tableaux for SU {1} and SU {5,}:

B B
X, X,
X, X,
b1 B2
Ty T

can be merged into closed tableau for S
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Semantic Tableaux Completeness

Theorem (Completeness for Propositional Tableaux)

every tautology has tableau proof

® suppose formula X does not have tableau proof

® there is no closed tableau for {=X}

{—=X} is tableau consistent

{—=X} is satisfiable by Propositional Model Existence Theorem

® X cannot be tautology
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Semantic Tableaux Completeness with Restrictions

Outline

@ Semantic Tableaux

o Completeness with Restrictions
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Theorem

for every tautology X

strict tableau construction process for {—X} that is continued until every
non-literal formula occurrence on every branch has been used must terminate
and do so in atomically closed tableau

| \

Proof

® termination follows by considering > >~ {r(Y) | Y is unused formula}

® suppose final tableau T is not atomically closed
® |et 6 be branch of T that is not atomically closed

® if =—Z occurs on # then Z occurs on 6
if o occurs on 0 then «o; and ap occur on 6

if 8 occurs on 6 then 3y or B> occurs on 6

® set of formulas S occurring on 6 is Hintikka set and thus satisfiable

® =X € S and thus v(=X) =t for some valuation v r’
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Semantic Tableaux Completeness with Restrictions

tableau systems provide decision procedure for being tautology
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Semantic Tableaux Propositional Consequence

Outline

@ Semantic Tableaux

@ Propositional Consequence
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Semantic Tableaux Propositional Consequence

Definition

propositional formula X is propositional consequence of set S of propositional
formulas, denoted by S ¥, X, if X evaluates to t for every valuation v that maps
every member of S to t

X is tautology if and only if @ F, X (simplified notation: F, X)

S F, X if and only if S F, X for some finite subset Sy of S
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Semantic Tableaux Propositional Consequence

S Ep X if and only if So Ep X for some finite subset Sy of S

v

= if Sk, X then SU {=X} is not satisfiable

some finite subset S’ of SU {—X} is not satisfiable by compactness
let So=5'NS

Sp is finite subset of S and Sp U {—X} is not satisfiable

SoFp X

< obvious
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Semantic Tableaux Propositional Consequence

set of formulas S J

Definitions

® S-introduction rule for tableaux: any member of S can be added to end of
any tableau branch

® S, X if there exists closed propositional tableau for {=X}, allowing
S-introduction rule

Definitions

® tableau branch 6 is S-satisfiable if union of S and set of propositional
formulas on 6 is satisfiable

® tableau T is S-satisfiable if at least one branch of T is S-satisfiable
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Semantic Tableaux Propositional Consequence

® any application of Tableau Expansion Rule as well as S-introduction rule to
S-satisfiable tableau yields another S-satisfiable tableau

® there are no closed S-satisfiable tableaux

Definition

S is X —tableau consistent if S I, X does not hold

for each formula X

® collection of X —tableau consistent sets is propositional consistency property

® ifS is X —tableau consistent then S U {—X} is X —tableau consistent
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Theorem (Strong Soundness and Completeness)

for any set S of propositional formulas and any propositional formula X

SE, X <= SkxX

= suppose S k-, X does not hold, so S is X —tableau consistent

SU{=X} is X —tableau consistent
S U {=X} is satisfiable by Model Existence Theorem
S Ep X does not hold
< there exists closed tableau for {—X}, allowing S-introduction rule
initial tableau cannot be S-satisfiable
S U {=X} is not satisfiable
Sk, X
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Hilbert Systems

Outline

@ Hilbert Systems
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Hilbert Systems

Definitions

® derivation in Hilbert system from set S of formulas is finite sequence
X1, Xo, ..., X, of formulas such that each formula is axiom, or member of S,
or follows from earlier formulas by rule of inference

® proof in Hilbert system is derivation from &

Definitions

given Hilbert system h

® X is consequence of set S in h, denoted by S ., X, if X is last line of
derivation from S

e formula X is theorem of h, denoted by -, X, if X is consequence of & in h
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Hilbert Systems

Definition (Modus Ponens)

X XDY

Definition (Axiom Scheme 1)

XD (Y DX)

Definition (Axiom Scheme 2)

X2(YD22Z2)D((XDY)D(XD2)
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Hilbert Systems

P D P is theorem:

1. (PO>((P>P)DP)D((PD(PDP)D(PDP) Axiom Scheme 2
2. P>((P>P)DP) Axiom Scheme 1
3. (P>(PD>P)D(PDP) Modus Ponens
4. P> (PDP) Axiom Scheme 1
5. PDOP Modus Ponens

Theorem (Deduction Theorem)

in any Hilbert System h with Modus Ponens as only rule of inference and at least
Axiom Schemes 1 and 2:

SU{X kY < SkmXDY
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Hilbert Systems

(P2(QRDR))D(QRD(PDR)) is theorem:
* {PD>(QRDR),Q,P}FumR:

1. PO>(QRDR)

2. P

3. DR Modus Ponens
4. Q

5. R Modus Ponens

* {PD(QDR),Q} Fpn P D R by Deduction Theorem
* {PD(QRDR)}Fpn Q D (P D R) by Deduction Theorem
®* Fpn (PD(QDR))D(QD(PDR)) by Deduction Theorem
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Proof (if direction)

® suppose SU{X} Fpn Y
® let My: Z1,...,Z, be derivation of Y from SU{X}, so Z,=Y
® consider new sequence y: X D Z,...,X D Z,
® insert extra lines into > and use Modus Ponens, as follows:
if Z; is axiom or member of S
insert Z; and Z; D (X D Z;) before X D Z;
if Zi =X
insert steps of proof of X D Z; before it
if Z; is derived with Modus Ponens from Z; and Zj with j, k <
then Z, = (Z; D Z))

insert (X > (Z; 2 Z)) > ((X > Z)>D(XDZ))and
(X D Z) D (XD Z) before X D Z;

® resulting sequence is derivation of X D Y from S

v
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Hilbert Systems

Definition (Axiom Schemes 3-9)

3 10X 7 a Do
4 XDT 8 a D o
5 -—X DX 9 (B1DX)D((B22 X)D (B2 X))
6 XD (=XDY)
Example

(=X D X) D X is theorem:

L. (mXDX)D((XDX)D((—-X>X)DX)) Axiom Scheme 9
2. - —=XD>X Axiom Scheme 5
3. (X2X)D((-X>X)>DX) Modus Ponens
4. XD X earlier proof

5. (- X>X)>X Modus Ponens
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Hilbert Systems

Theorem (Strong Hilbert Soundness)
if S o X then S Ep X

® |let Zy,...,Z, be derivation of X from S, so Z, = X

® we show S F, Z; by induction on i
if Z; is axiom then Z; is tautology and thus also S F, Z;
if Z; € S then S &, Z; holds trivially

if Z; is obtained from Z; and Z, by Modus Ponens then
Zk=(Z D> Z)and j,k <i

SFp Ziand S, Z; D Z; follow from induction hypothesis

S Ep Z; follows from definition of =,
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Hilbert Systems

Definition

® set S of formulas is X —Hilbert inconsistent if S Fpp X

® set S of formulas is X —Hilbert consistent if S I=,;, X does not hold

collection of all X —Hilbert consistent sets is propositional consistency property

let S be X —Hilbert consistent
if Ac S and ~A€ S then S,y Aand Sk, A
Axiom Scheme 6: Fp AD (0A D X)
S Fpn X by two applications of Modus Ponens 4
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Proof (cont'd)

let S be X —Hilbert consistent
if L €Sthen Skp L
Axiom Scheme 3: I, L D X
S tpn X by Modus Ponens 2

if =T € Sthen Sty =T

Axiom Scheme 4: k=T DT

S Fpn T by Modus Ponens

Axiom Scheme 6:  Fp, T D (=T D X)

S Fpn X by two applications of Modus Ponens 4
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Proof (cont'd)

let S be X —Hilbert consistent
if ~=Z € S then S Fpp ——Z

Axiom Scheme 5: F,, =—Z D Z

S Fpn Z by Modus Ponens

if SU{Z} Fpn X then S F,, Z D X by Deduction Theorem
S Fpn X by Modus Ponens 4

SuU{Z} is X—Hilbert consistent

if o € Sthen ... exercise
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Proof (cont'd)

let S be X —Hilbert consistent
if 5€ S then Stpp 8

suppose both SU {31} and S U {f2} are X —Hilbert inconsistent
SU{B1}Fpn X and SU{B} Fpn X
Stpn 1D X and Sty B2 D X by Deduction Theorem
Axiom Scheme 9:  Fpp (61 D X) D ((B2 D X) D (8 D X))
S Fpn B D X by two applications of Modus Ponens
S Fpn X by Modus Ponens 2
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Hilbert Systems

Theorem (Strong Hilbert Completeness)

if SE, X then S Fpp X

® suppose S Fpp X does not hold, so S is X —Hilbert consistent
(X DX)DX

e if SU{=X}Fpp X then S Fpp =X D X and thus S Fpp X '
® SU{=X} Fpn X does not hold

e SU{-X} is X —Hilbert consistent

® SU{—=X} is satisfiable (by previous lemma and Model Existence Theorem)
S F, X does not hold
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Hilbert Systems

William Craig
(1918-2016)

David Hilbert Jaakko Hintikka
(1862—1943) (1929 -2015)
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Exercises

Outline

@ Exercises
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Bonus: Exercise 3.6.6 or Exercise 3.6.7
(where ‘or' means that you can get at most 1 bonus-exercise point)

Exercise 3.7.1

Exercise 3.7.2.(1) and (2)

Bonus: Exercise 3.7.4 (hence 3.7.3 and 3.7.2 as well)
Exercise 3.9.1

Bonus: Exercise 3.9.2 or Exercise 3.9.3

Exercise 4.1.1

Exercise 4.1.2 |

Bonus: Exercise 4.1.4 or 4.1.5 or Exercise 4.1.6
Exercise 4.1.7 |

Exercise 4.1.8

Bonus: Exercise 4.5.2

AM/VWvO (CS @ UIBK) lecture 3

52/54


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Further Reading

Outline

@ Further Reading
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Further Reading

Fitting
® Section 3.7 (until Theorem 3.7.3)

Section 3.8 (until Corollary 3.8.2) !
Section 3.9

Section 4.1 !

Section 4.5
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