

Computational Logic

Course/slides by Aart Middeldorp

Department of Computer Science University of Innsbruck

Tableau Expansion Rules

$$\frac{\neg \neg Z}{Z} \quad \frac{\neg \bot}{\top} \quad \frac{\neg \top}{\bot} \quad \frac{\alpha}{\alpha_1} \quad \frac{\beta_1}{\beta_1}$$

β

 $|\beta_2|$

Definition

finite set $\{A_1, \ldots, A_n\}$ of propositional formulas

1 following one-branch tree is tableau for $\{A_1, \ldots, A_n\}$:

 A_1 A_2 A_n

2 if T is tableau for $\{A_1, \ldots, A_n\}$ and T^* results from T by application of tableau expansion rule then T^* is tableau for $\{A_1, \ldots, A_n\}$

Outline

- Summary of Previous Lecture
- Model Existence Theorem
- Compactness
- Interpolation
- Semantic Tableaux
- Hilbert Systems
- Exercises
- Further Reading

AM/VvO (CS @ UIBK)

lecture 3

Summary of Previous Lecture

Definitions

- branch θ of tableau is closed if both X and $\neg X$ occur on θ for some propositional formula X, or if \perp occurs on θ
- branch θ of tableau is atomically closed if both A and $\neg A$ occur on θ for some propositional letter A, or if \perp occurs on θ
- tableau is (atomically) closed if every branch is (atomically) closed
- tableau proof of X is closed tableau for $\{\neg X\}$
- X is theorem if X has tableau proof, denoted by $\vdash_{pt} X$
- tableau is strict if no formula has had Tableau Expansion Rule applied to it twice on same branch

- tableau branch θ is satisfiable if set of propositional formulas on it is satisfiable
- tableau T is satisfiable if at least one branch of T is satisfiable

Lemma

any application of Tableau Expansion Rule to satisfiable tableau yields another satisfiable tableau

Lemma

if S admits closed tableau then S is not satisfiable

Theorem (Propositional Tableau Soundness)

if X has tableau proof then X is tautology

M/V_{VO}	(CS @ UIBK)	

5/5

Summary of Previous Lecture

Definition

collection C of sets of propositional formulas is propositional consistency property if, for each $S \in C$:

lecture 3

- **1** for any propositional letter A, not both $A \in S$ and $\neg A \in S$
- 3 if $\neg \neg Z \in S$ then $S \cup \{Z\} \in C$
- 4 if $\alpha \in S$ then $S \cup \{\alpha_1, \alpha_2\} \in C$
- 5 if $\beta \in S$ then $S \cup \{\beta_1\} \in C$ or $S \cup \{\beta_2\} \in C$

if $\mathcal C$ is propositional consistency property then $S\in\mathcal C$ is called $\mathcal C$ -consistent

Theorem (Propositional Model Existence)

if C is propositional consistency property and $S \in C$ then S is satisfiable

7/54

Definition

set ${\bf H}$ of propositional formulas is propositional Hintikka set provided

- **1** for any propositional letter A, not both $A \in \mathbf{H}$ and $\neg A \in \mathbf{H}$
- **2** $\perp \notin \mathbf{H}, \ \neg \top \notin \mathbf{H}$
- **i**f $\neg \neg Z \in \mathbf{H}$ then $Z \in \mathbf{H}$
- 4 if $\alpha \in \mathbf{H}$ then $\alpha_1 \in \mathbf{H}$ and $\alpha_2 \in \mathbf{H}$
- **5** if $\beta \in \mathbf{H}$ then $\beta_1 \in \mathbf{H}$ or $\beta_2 \in \mathbf{H}$

Lemma (Hintikka's Lemma)

every propositional Hintikka set is satisfiable

AM/VvO (CS @ UIBK)

6/54

ontents

Part I: Propositional Logic

compactness, completeness, Hilbert systems, Hintikka's lemma, interpolation, logical consequence, model existence theorem, propositional semantic tableaux, soundness

lecture 3

Part II: First-Order Logic

compactness, completeness, Craig's interpolation theorem, cut elimination, first-order semantic tableaux, Herbrand models, Herbrand's theorem, Hilbert systems, Hintikka's lemma, Löwenheim-Skolem, logical consequence, model existence theorem, prenex form, skolemization, soundness

Part III: Limitations and Extensions of First-Order Logic

Curry-Howard isomorphism, intuitionistic logic, Kripke models, second-order logic, simply-typed λ -calculus

Outline

• Summary of Previous Lecture

• Model Existence Theorem

- Compactness
- Interpolation
- Semantic Tableaux
- Hilbert Systems
- Exercises
- Further Reading

AM/Vv	O (CS	@ UIBK)

lecture 3

Compactness

Outline

- Summary of Previous Lecture
- Model Existence Theorem

• Compactness

- Interpolation
- Semantic Tableaux
- Hilbert Systems
- Exercises
- Further Reading

Model Existence Theorem

Definition

collection C of sets of propositional formulas is propositional consistency property if, for each $S \in C$:

- **1** for any propositional letter A, not both $A \in S$ and $\neg A \in S$
- **2** $\perp \notin S, \neg \top \notin S$
- 3 if $\neg \neg Z \in S$ then $S \cup \{Z\} \in C$
- 4 if $\alpha \in S$ then $S \cup \{\alpha_1, \alpha_2\} \in C$
- 5 if $\beta \in S$ then $S \cup \{\beta_1\} \in C$ or $S \cup \{\beta_2\} \in C$

if $\mathcal C$ is propositional consistency property then $S \in \mathcal C$ is called $\mathcal C$ -consistent

Theorem (Propositional Model Existence)

if C is propositional consistency property and $S \in C$ then S is satisfiable

AM/VvO (CS @ UIBK)

10/54

ompactnes

Theorem (Propositional Compactness)

if every finite subset of set S of propositional formulas is satisfiable then S is satisfiable

lecture 3

Proof

- let $C = \{W \mid \text{every finite subset of } W \text{ is satisfiable}\}$
- $S \in C$ and C is propositional consistency property:
 - **1** if $A \in W$ and $\neg A \in W$ then $W \notin C$
 - **2** if $\bot \in W$ or $\neg \top \in W$ then $W \notin C$
 - **3** suppose $\neg \neg Z \in W \in C$ and let V be finite subset of $W \cup \{Z\}$

 $(V \cap W) \cup \{\neg \neg Z\}$ is finite subset of W and thus satisfiable

lecture 3

- $(V \cap W) \cup \{\neg \neg Z, Z\}$ is satisfiable
- $V \subseteq (V \cap W) \cup \{\neg \neg Z, Z\}$ is satisfiable

Compactness

Proof (cont'd)

- let $C = \{W \mid \text{every finite subset of } W \text{ is satisfiable}\}$
- $S \in C$ and C is propositional consistency property:
 - 4 suppose $\alpha \in W \in C$ and let V be finite subset of $W \cup \{\alpha_1, \alpha_2\}$
 - $(V \cap W) \cup \{\alpha\}$ is finite subset of W and thus satisfiable
 - $(V \cap W) \cup \{\alpha, \alpha_1, \alpha_2\}$ is satisfiable
 - $V \subseteq (V \cap W) \cup \{\alpha, \alpha_1, \alpha_2\}$ is satisfiable
 - **5** suppose $\beta \in W \in C$
 - suppose neither $W \cup \{\beta_1\}$ nor $W \cup \{\beta_2\}$ belongs to C
 - \exists finite unsatisfiable subsets $F_1 \subseteq W \cup \{\beta_1\}$ and $F_2 \subseteq W \cup \{\beta_2\}$
 - $(F_1 \cup F_2) \cap W \cup \{\beta\}$ is finite subset of W and thus satisfiable
 - $(F_1 \cup F_2) \cap W \cup \{\beta, \beta_1\}$ or $(F_1 \cup F_2) \cap W \cup \{\beta, \beta_2\}$ is satisfiable
 - $F_1 \subseteq (F_1 \cup F_2) \cap W \cup \{\beta, \beta_1\}$ and $F_2 \subseteq (F_1 \cup F_2) \cap W \cup \{\beta, \beta_2\}$

lecture 3

AM/VvO (CS @ UIBK)

nterpolation

Definition

formula Z is interpolant for implication $X \supset Y$ if every propositional letter of Z occurs in both X and Y, and $X \supset Z$ and $Z \supset Y$ are both tautologies

Examples

- $P \lor Q$ is interpolant for $(P \lor (Q \land R)) \supset (P \lor \neg \neg Q)$
- \perp is interpolant for $(P \land \neg P) \supset Q$

Theorem (Craig Interpolation)

every tautology $X \supset Y$ has interpolant

Interpolatio

Outline

- Summary of Previous Lecture
- Model Existence Theorem
- Compactness
- Interpolation
- Semantic Tableaux
- Hilbert Systems
- Exercises
- Further Reading

AM/VvO (CS @ UIBK)

lecture 3

.4/54

16/54

Interpolation

Notation

 $\langle S \rangle$ denotes conjunction of all members of finite set S of formulas

Definition

finite set S of formulas is Craig consistent if $\langle S_1 \rangle \supset \neg \langle S_2 \rangle$ has no interpolant for some partition $S_1 \uplus S_2$ of S

Lemma

collection of all Craig consistent sets is propositional consistency property

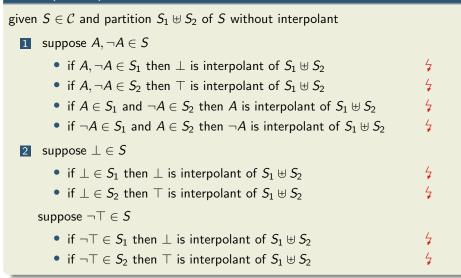
Proof

- let \mathcal{C} be collection of all Craig consistent sets
- let S ∈ C so (S₁) ⊃ ¬(S₂) has no interpolant for some partition S₁ ⊎ S₂ of S (terminology: S₁ ⊎ S₂ has no interpolant)

lecture 3

15/54

Proof (cont'd)



lecture 3

AM/VvO (CS @ UIBK)

nterpolation

Proof (cont'd)

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

- **5** suppose $\beta \in S$ and neither $S \cup \{\beta_1\}$ nor $S \cup \{\beta_2\}$ belongs to C
 - if $\beta \in S_1$ then $\langle S_1 \rangle \equiv \langle S_1 \cup \{\beta_1\} \rangle \lor \langle S_1 \cup \{\beta_2\} \rangle$

 $(S_1 \cup \{\beta_1\}) \uplus S_2$ is partition of $S \cup \{\beta_1\}$ and thus has interpolant γ_1

 $(S_1 \cup \{\beta_2\}) \uplus S_2$ is partition of $S \cup \{\beta_2\}$ and thus has interpolant γ_2

 $\begin{array}{ll} \langle S_1 \cup \{\beta_1\} \rangle \supset \gamma_1 & \gamma_1 \supset \neg \langle S_2 \rangle \\ \langle S_1 \cup \{\beta_2\} \rangle \supset \gamma_2 & \gamma_2 \supset \neg \langle S_2 \rangle \end{array}$

hence $\gamma_1 \lor \gamma_2$ is interpolant of $S_1 \uplus S_2$

4

$\langle S_1 \rangle \equiv \langle S_1 \cup \{\beta_1\} \rangle \lor \langle S_1 \cup \{\beta_2\} \rangle \supset \gamma_1 \lor \gamma_2 \supset \neg \langle S_2 \rangle$

nterpolatio

Proof (cont'd)

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

3 suppose $\neg \neg Z \in S$

- if $\neg \neg Z \in S_1$ then $(S_1 \cup \{Z\}) \uplus S_2$ has no interpolant
- if $\neg \neg Z \in S_2$ then $S_1 \uplus (S_2 \cup \{Z\})$ has no interpolant

hence $S \cup \{Z\} \in C$

4 suppose $\alpha \in S$

- if $\alpha \in S_1$ then $(S_1 \cup \{\alpha_1, \alpha_2\}) \uplus S_2$ has no interpolant
- if $\alpha \in S_2$ then $S_1 \uplus (S_2 \cup \{\alpha_1, \alpha_2\})$ has no interpolant hence $S \cup \{\alpha_1, \alpha_2\} \in C$

AM/VvO (CS @ UIBK

lecture 3

nterpolation

Proof (cont'd)

given $S \in \mathcal{C}$ and partition $S_1 \uplus S_2$ of S without interpolant

- **5** suppose $\beta \in S$ and neither $S \cup \{\beta_1\}$ nor $S \cup \{\beta_2\}$ belongs to C
 - if $\beta \in S_2$ then $\neg \langle S_2 \rangle \equiv \neg \langle S_2 \cup \{\beta_1\} \rangle \land \neg \langle S_2 \cup \{\beta_2\} \rangle$

 $S_1 \uplus (S_2 \cup \{\beta_1\})$ is partition of $S \cup \{\beta_1\}$ and thus has interpolant δ_1

 $S_1 \uplus (S_2 \cup \{\beta_2\})$ is partition of $S \cup \{\beta_2\}$ and thus has interpolant δ_2

$S_1 angle \supset \delta_1$	$\delta_1 \supset \neg \langle S_2 \cup \{\beta_1\} \rangle$
$S_1 angle \supset \delta_2$	$\delta_2 \supset \neg \langle S_2 \cup \{\beta_2\} angle$

hence $\delta_1 \wedge \delta_2$ is interpolant of $S_1 \uplus S_2$

4

$\langle S_1 \rangle \supset \delta_1 \wedge \delta_2 \supset \neg \langle S_2 \cup \{\beta_1\} \rangle \wedge \neg \langle S_2 \cup \{\beta_2\} \rangle \equiv \neg \langle S_2 \rangle$

lecture 3

 $\ensuremath{\mathcal{C}}$ is propositional consistency property

Proof (of Craig Interpolation Theorem)

• let $S = \{X, \neg Y\}$ with partition $S_1 = \{X\}$ and $S_2 = \{\neg Y\}$

• S is satisfiable by Model Existence Theorem and previous lemma

lecture 3

• interpolant for $\langle S_1 \rangle \supset \neg \langle S_2 \rangle$ is interpolant for $X \supset Y$

• suppose $X \supset Y$ has no interpolant

and hence does not exist

• hence $X \supset Y$ is no tautology

• Summary of Previous Lecture

• Completeness with Restrictions

• Propositional Consequence

Model Existence Theorem

• *S* is Craig consistent

William Craig (1918 - 2016)

lecture 3

Jaakko Hintikka

(1929 - 2015)

22/54

Completenes

Semantic Tableaux

AM/VvO (CS @ UIBK)

Definition

finite set S of propositional formulas is tableau consistent if there is no closed tableau for S

Lemma

collection of all tableau consistent sets is propositional consistency property

Proof

- properties 1, 2, 3: ... blackboard
- properties 4, 5: next two slides

lecture 3

• Exercises

AM/VvO (CS @ UIBK)

Semantic Tableaux

Outline

• Compactness

• Interpolation

• Semantic Tableaux Completeness

• Further Reading

• Hilbert Systems

21/54

Completenes

. . .

Semantic Tableaux

Completeness

Proof (cont'd)

• property 4: let $lpha \in S$ and consider $S \cup$	$\{\alpha_1, \alpha_2\}$	
suppose $\mathcal{S} \cup \{lpha_1, lpha_2\}$ is not tableau con	nsistent	
let $S = \{\alpha, X_1, \dots, X_n\}$		
closed tableau for $S \cup \{\alpha_1, \alpha_2\}$:		
α		
X_1		
: :		
X _n		
α_1	apply $lpha$ -rule	
α_2	apply $lpha$ -rule	
rest of tableau		

AM/VvO (CS @ UIBK)	lecture 3	25/54
Semantic Tableaux		Completeness

Theorem (Completeness for Propositional Tableaux)

every tautology has tableau proof

Proof

- suppose formula X does not have tableau proof
- there is no closed tableau for $\{\neg X\}$
- $\{\neg X\}$ is tableau consistent
- $\{\neg X\}$ is satisfiable by Propositional Model Existence Theorem
- X cannot be tautology

Proof (cont'd)

 property 5: let β ∈ S and consider S ∪ {β₁} and S ∪ {β₂} suppose neither S ∪ {β₁} nor S ∪ {β₂} is tableau consistent let S = {β, X₁,, X_n} 			
closed tableaux for S	closed tableaux for $S \cup \{\beta_1\}$ and $S \cup \{\beta_2\}$:		
	$\beta \\ X_1 \\ \vdots \\ X_n \\ \beta_1 \\ T_1$	$\beta \\ X_1 \\ \vdots \\ X_n \\ \beta_2 \\ T_2$	
can be merged into closed tableau for S			

AM/VvO (CS @ UIBK)

lecture 3

26/54

Completeness with Restrictions

Semantic Tableaux

- Summary of Previous Lecture
- Model Existence Theorem
- Compactness
- Interpolation
- Semantic Tableaux
 - Completeness
 - Completeness with Restrictions
 - Propositional Consequence
- Hilbert Systems
- Exercises
- Further Reading

Semantic Tableaux

Completeness with Restriction

Theorem

for every tautology X

strict tableau construction process for $\{\neg X\}$ that is continued until every non-literal formula occurrence on every branch has been used must terminate and do so in atomically closed tableau

Proof

- termination follows by considering $\sum \sum \{r(Y) \mid Y \text{ is unused formula}\}$
- suppose final tableau T is not atomically closed
- let θ be branch of T that is not atomically closed
- if ¬¬Z occurs on θ then Z occurs on θ
 if α occurs on θ then α₁ and α₂ occur on θ
 if β occurs on θ then β₁ or β₂ occurs on θ
- set of formulas S occurring on θ is Hintikka set and thus satisfiable

lecture 3

• $\neg X \in S$ and thus $v(\neg X) = t$ for some valuation v

$AM/V\nu O$ (CS @ UIBK)

Semantic Tableaux

Outline

- Summary of Previous Lecture
- Model Existence Theorem
- Compactness
- Interpolation

• Semantic Tableaux

- Completeness
- Completeness with Restrictions
- Propositional Consequence
- Hilbert Systems
- Exercises
- Further Reading

lecture 3

31/54

4

29/54

Propositional Consequence

I/VvO	(CS	0	U	IE

lecture 3

Corollary

emantic Tableaux

tableau systems provide decision procedure for being tautology

AM/VvO (CS @ UIBK)

Semantic Tableaux

Propositional Consequence

Definition

propositional formula X is propositional consequence of set S of propositional formulas, denoted by $S \vDash_p X$, if X evaluates to t for every valuation v that maps every member of S to t

lecture 3

Remark

X is tautology if and only if $\emptyset \vDash_p X$ (simplified notation: $\vDash_p X$)

Theorem

 $S \vDash_p X$ if and only if $S_0 \vDash_p X$ for some finite subset S_0 of S

Propositional Consequence

set of formulas S

Theorem

 $S \vDash_p X$ if and only if $S_0 \vDash_p X$ for some finite subset S_0 of S

Proof

⇒ if $S \vDash_p X$ then $S \cup \{\neg X\}$ is not satisfiable some finite subset S' of $S \cup \{\neg X\}$ is not satisfiable by compactness let $S_0 = S' \cap S$ S_0 is finite subset of S and $S_0 \cup \{\neg X\}$ is not satisfiable $S_0 \vDash_p X$ \Leftarrow obvious

AM/VvO (CS @ UIBK)

33/54

Semantic Tableaux

Propositional Consequ

Lemmata

• any application of Tableau Expansion Rule as well as S-introduction rule to S-satisfiable tableau yields another S-satisfiable tableau

lecture 3

• there are no closed S-satisfiable tableaux

Definition

S is X-tableau consistent if $S \vdash_{pt} X$ does not hold

Lemmata

for each formula X

- collection of X tableau consistent sets is propositional consistency property
- if S is X tableau consistent then $S \cup \{\neg X\}$ is X tableau consistent

Definitions

- S-introduction rule for tableaux: any member of S can be added to end of any tableau branch
- $S \vdash_{pt} X$ if there exists closed propositional tableau for $\{\neg X\}$, allowing *S*-introduction rule

Definitions

- tableau branch θ is *S*-satisfiable if union of *S* and set of propositional formulas on θ is satisfiable
- tableau T is S-satisfiable if at least one branch of T is S-satisfiable

lecture 3

AM/VvO (CS @ UIBK)

Propositional Consequence

Semantic Tableaux

Theorem (Strong Soundness and Completeness)

for any set S of propositional formulas and any propositional formula X

$$S \vDash_p X \iff S \vdash_{pt} X$$

Proof

- \Rightarrow suppose $S \vdash_{pt} X$ does not hold, so S is X-tableau consistent
 - $S \cup \{\neg X\}$ is X tableau consistent
 - $S \cup \{\neg X\}$ is satisfiable by Model Existence Theorem
 - $S \vDash_p X$ does not hold
- $\Leftarrow \text{ there exists closed tableau for } \{\neg X\}, \text{ allowing } S\text{-introduction rule}$

lecture 3

- initial tableau cannot be S-satisfiable
- $S \cup \{\neg X\}$ is not satisfiable
- $S \vDash_p X$

AM/VvO (CS @ UIBK)

Outline

- Summary of Previous Lecture
- Model Existence Theorem
- Compactness
- Interpolation
- Semantic Tableaux
- Hilbert Systems
- Exercises
- Further Reading

AM/VvO (CS @ UIBK)	lecture 3	37/54
Hilbert Systems		
Definition (Modus Ponens)		
	$X X \supset Y$	
	Y	

Definition (Axiom Scheme 1) $X \supset (Y \supset X)$

Definition (Axiom Scheme 2)

 $(X \supset (Y \supset Z)) \supset ((X \supset Y) \supset (X \supset Z))$

Definitions

- derivation in Hilbert system from set *S* of formulas is finite sequence X_1, X_2, \ldots, X_n of formulas such that each formula is axiom, or member of S, or follows from earlier formulas by rule of inference
- proof in Hilbert system is derivation from Ø

Definitions

given Hilbert system h

- X is consequence of set S in h, denoted by $S \vdash_{ph} X$, if X is last line of derivation from S
- formula X is theorem of h, denoted by $\vdash_{ph} X$, if X is consequence of \emptyset in h

lecture 3

AM/VvO (CS @ UIBK)

38/54

Hilbert Systems

Example

$P \supset P$ is theorem:

1.	$(P \supset ((P \supset P) \supset P)) \supset ((P \supset (P \supset P)) \supset (P \supset P))$	Axiom Scheme 2
2.	$P \supset ((P \supset P) \supset P)$	Axiom Scheme 1
3.	$(P \supset (P \supset P)) \supset (P \supset P)$	Modus Ponens

- 3. $(P \supset (P \supset P)) \supset (P \supset P)$
- 4. $P \supset (P \supset P)$
- 5. $P \supset P$

- - Axiom Scheme 1
 - Modus Ponens

Theorem (Deduction Theorem)

in any Hilbert System h with Modus Ponens as only rule of inference and at least Axiom Schemes 1 and 2:

$$S \cup \{X\} \vdash_{ph} Y \quad \Longleftrightarrow \quad S \vdash_{ph} X \supset Y$$

Example

$(P \supset (Q \supset R)) \supset (Q \supset (P))$	$\supset R$)) is theorem:	
• $\{P \supset (Q \supset R), Q, P\}$	- _{ph} R:	
1.	$P \supset (Q \supset R)$	
2.	Р	
3.	$Q \supset R$	Modus Ponens
4.	Q	

- 5. *R* Modus Ponens
- $\{P \supset (Q \supset R), Q\} \vdash_{ph} P \supset R$ by Deduction Theorem
- $\{P \supset (Q \supset R)\} \vdash_{ph} Q \supset (P \supset R)$ by Deduction Theorem
- $\vdash_{ph} (P \supset (Q \supset R)) \supset (Q \supset (P \supset R))$ by Deduction Theorem

AM/VvO (CS @ UIBK)

K)

Hilbert Systems

Definition	n (Axiom Scheme	es 3–9)	
3	$\perp \supset X$	7	$\alpha \supset \alpha_1$
4	$X \supset \top$	8	$\alpha \supset \alpha_2$
5	$\neg \neg X \supset X$	9	$(eta_1 \supset X) \supset ((eta_2 \supset X) \supset (eta \supset X))$
6	$X \supset (\neg X \supset Y)$		

lecture 3

Example

 $(\neg X \supset X) \supset X$ is theorem:

1. $(\neg \neg X \supset X) \supset ((X \supset X) \supset ((\neg X \supset X) \supset X))$	Axiom Scheme 9
2. $\neg \neg X \supset X$	Axiom Scheme 5
3. $(X \supset X) \supset ((\neg X \supset X) \supset X)$	Modus Ponens
4. $X \supset X$	earlier proof
5. $(\neg X \supset X) \supset X$	Modus Ponens

lecture 3

Hilbert System

Proof (if direction)

- suppose $S \cup \{X\} \vdash_{ph} Y$
- let $\Pi_1: Z_1, \ldots, Z_n$ be derivation of Y from $S \cup \{X\}$, so $Z_n = Y$
- consider new sequence $\Pi_2: X \supset Z_1, \ldots, X \supset Z_n$
- insert extra lines into Π_2 and use Modus Ponens, as follows:
 - 1 if Z_i is axiom or member of Sinsert Z_i and $Z_i \supset (X \supset Z_i)$ before $X \supset Z_i$
 - 2 if $Z_i = X$ insert steps of proof of $X \supset Z_i$ before it
 - **3** if Z_i is derived with Modus Ponens from Z_j and Z_k with j, k < ithen $Z_k = (Z_j \supset Z_i)$ insert $(X \supset (Z_j \supset Z_i)) \supset ((X \supset Z_j) \supset (X \supset Z_i))$ and $(X \supset Z_j) \supset (X \supset Z_i)$ before $X \supset Z_i$

lecture 3

• resulting sequence is derivation of $X \supset Y$ from S

AM/VvO (CS @ UIBK)

Hilbert Systems

Theorem (Strong Hilbert Soundness)

if $S \vdash_{ph} X$ then $S \vDash_{p} X$

Proof

- let Z_1, \ldots, Z_n be derivation of X from S, so $Z_n = X$
- we show $S \vDash_p Z_i$ by induction on *i*
 - **1** if Z_i is axiom then Z_i is tautology and thus also $S \vDash_p Z_i$
 - **2** if $Z_i \in S$ then $S \vDash_p Z_i$ holds trivially
 - 3 if Z_i is obtained from Z_j and Z_k by Modus Ponens then $Z_k = (Z_j \supset Z_i)$ and j, k < i
 - $S \vDash_p Z_j$ and $S \vDash_p Z_j \supset Z_i$ follow from induction hypothesis

lecture 3

 $S \vDash_p Z_i$ follows from definition of \vDash_p

Definition

- set S of formulas is X Hilbert inconsistent if $S \vdash_{ph} X$
- set S of formulas is X Hilbert consistent if $S \vdash_{ph} X$ does not hold

Lemma

collection of all X – Hilbert consistent sets is propositional consistency property

Proof

let *S* be X – Hilbert consistent

1 if $A \in S$ and $\neg A \in S$ then $S \vdash_{ph} A$ and $S \vdash_{ph} \neg A$

Axiom Scheme 6: $\vdash_{ph} A \supset (\neg A \supset X)$

```
S \vdash_{ph} X by two applications of Modus Ponens
```

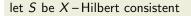
AM/VvO (CS @ UIBK)

lecture 3

4

Hilbert Systems

Proof (cont'd)



- 3 if $\neg \neg Z \in S$ then $S \vdash_{ph} \neg \neg Z$
 - Axiom Scheme 5: $\vdash_{ph} \neg \neg Z \supset Z$

 $S \vdash_{ph} Z$ by Modus Ponens

- if $S \cup \{Z\} \vdash_{ph} X$ then $S \vdash_{ph} Z \supset X$ by Deduction Theorem
- $S \vdash_{ph} X$ by Modus Ponens 4
- $S \cup \{Z\}$ is X Hilbert consistent
- 4 if $\alpha \in S$ then ... exercise ...

Hilbert System

Proof (cont'd)

let *S* be X – Hilbert consistent

2 if $\perp \in S$ then $S \vdash_{ph} \perp$ Axiom Scheme 3: $\vdash_{ph} \perp \supset X$ $S \vdash_{ph} X$ by Modus Ponens \checkmark if $\neg \top \in S$ then $S \vdash_{ph} \neg \top$ Axiom Scheme 4: $\vdash_{ph} \neg \top \supset \top$ $S \vdash_{ph} \top$ by Modus Ponens Axiom Scheme 6: $\vdash_{ph} \top \supset (\neg \top \supset X)$ $S \vdash_{ph} X$ by two applications of Modus Ponens \checkmark

lecture 3

AM/VvO (CS @ UIBK)

6/54

Hilbert Systems

Proof (cont'd)

let S be X – Hilbert consistent

5 if $\beta \in S$ then $S \vdash_{ph} \beta$ suppose both $S \cup \{\beta_1\}$ and $S \cup \{\beta_2\}$ are X-Hilbert inconsistent $S \cup \{\beta_1\} \vdash_{ph} X$ and $S \cup \{\beta_2\} \vdash_{ph} X$

 $S \vdash_{ph} \beta_1 \supset X$ and $S \vdash_{ph} \beta_2 \supset X$ by Deduction Theorem

Axiom Scheme 9: $\vdash_{ph} (\beta_1 \supset X) \supset ((\beta_2 \supset X) \supset (\beta \supset X))$

 $S \vdash_{ph} \beta \supset X$ by two applications of Modus Ponens

 $S \vdash_{ph} X$ by Modus Ponens 4

Theorem (Strong Hilbert Completeness)

if $S \vDash_p X$ then $S \succ_{ph} X$

Proof

- suppose $S \vdash_{ph} X$ does not hold, so S is X Hilbert consistent
- $\vdash_{ph} (\neg X \supset X) \supset X$
- if $S \cup \{\neg X\} \vdash_{ph} X$ then $S \vdash_{ph} \neg X \supset X$ and thus $S \vdash_{ph} X$ - 4
- $S \cup \{\neg X\} \vdash_{ph} X$ does not hold
- $S \cup \{\neg X\}$ is X Hilbert consistent
- $S \cup \{\neg X\}$ is satisfiable (by previous lemma and Model Existence Theorem)
- $S \vDash_p X$ does not hold

AM/VvO (CS @ UIBK)

lecture 3

49/54

Exercise

Outline

- Summary of Previous Lecture
- Model Existence Theorem
- Compactness
- Interpolation
- Semantic Tableaux
- Hilbert Systems

• Exercises

• Further Reading

Exercises

Hilbert Systems

Fitting

AM/VvO (CS @ UIBK)

• Bonus: Exercise 3.6.6 or Exercise 3.6.7 (where 'or' means that you can get at most 1 bonus-exercise point)

- Exercise 3.7.1
- Exercise 3.7.2.(1) and (2)
- Bonus: Exercise 3.7.4 (hence 3.7.3 and 3.7.2 as well)
- Exercise 3.9.1
- Bonus: Exercise 3.9.2 or Exercise 3.9.3
- Exercise 4.1.1
- Exercise 4.1.2
- Bonus: Exercise 4.1.4 or 4.1.5 or Exercise 4.1.6
- Exercise 4.1.7 !
- Exercise 4.1.8
- Bonus: Exercise 4.5.2

AM/VvO (CS @ UIBK)

50/54

William Craig (1918 - 2016)

(1862 - 1943)

Jaakko Hintikka (1929 - 2015)

lecture 3

- Summary of Previous Lecture
- Model Existence Theorem
- Compactness
- Interpolation
- Semantic Tableaux
- Hilbert Systems
- Exercises
- Further Reading

Fitting

- Section 3.7 (until Theorem 3.7.3)
- Section 3.8 (until Corollary 3.8.2) !
- Section 3.9
- Section 4.1 !
- Section 4.5

AM/VvO (CS @ UIBK)	lecture 3	53/54	AM/VvO (CS @ UIBK)	lecture 3	54/54