

Computational Logic

Vincent van Oostrom
Course/slides by Aart Middeldorp

Department of Computer Science
University of Innsbruck

SS 2020

$$
\begin{aligned}
& \text { Tableau Expansion Rules } \\
& \qquad \frac{\neg \neg Z}{Z} \quad \frac{\neg \perp}{\top} \quad \frac{\neg \top}{\perp} \quad \frac{\alpha}{\alpha_{1}} \quad \frac{\beta}{\beta_{1} \mid \beta_{2}}
\end{aligned}
$$

Definition
finite set $\left\{A_{1}, \ldots, A_{n}\right\}$ of propositional formulas
1 following one-branch tree is tableau for $\left\{A_{1}, \ldots, A_{n}\right\}$:

$$
\begin{gathered}
A_{1} \\
A_{2} \\
\vdots \\
A_{n}
\end{gathered}
$$

2 if T is tableau for $\left\{A_{1}, \ldots, A_{n}\right\}$ and T^{*} results from T by application of tableau expansion rule then T^{*} is tableau for $\left\{A_{1}, \ldots, A_{n}\right\}$

Outline

- Summary of Previous Lecture
- Model Existence Theorem
- Compactness
- Interpolation
- Semantic Tableaux
- Hilbert Systems
- Exercises
- Further Reading

Definitions

- branch θ of tableau is closed if both X and $\neg X$ occur on θ for some propositional formula X, or if \perp occurs on θ
- branch θ of tableau is atomically closed if both A and $\neg A$ occur on θ for some propositional letter A, or if \perp occurs on θ
- tableau is (atomically) closed if every branch is (atomically) closed
- tableau proof of X is closed tableau for $\{\neg X\}$
- X is theorem if X has tableau proof, denoted by $\vdash_{p t} X$
- tableau is strict if no formula has had Tableau Expansion Rule applied to it twice on same branch
- tableau branch θ is satisfiable if set of propositional formulas on it is satisfiable
- tableau T is satisfiable if at least one branch of T is satisfiable

Lemma

any application of Tableau Expansion Rule to satisfiable tableau yields another satisfiable tableau

Lemma

if S admits closed tableau then S is not satisfiable

Theorem (Propositional Tableau Soundness)
if X has tableau proof then X is tautology

Summary of Previous Lecture

Definition

collection \mathcal{C} of sets of propositional formulas is propositional consistency property if, for each $S \in \mathcal{C}$:

1 for any propositional letter A, not both $A \in S$ and $\neg A \in S$
$2 \perp \notin S, \neg \top \notin S$
3 if $\neg \neg Z \in S$ then $S \cup\{Z\} \in \mathcal{C}$
4 if $\alpha \in S$ then $S \cup\left\{\alpha_{1}, \alpha_{2}\right\} \in \mathcal{C}$
5 if $\beta \in S$ then $S \cup\left\{\beta_{1}\right\} \in \mathcal{C}$ or $S \cup\left\{\beta_{2}\right\} \in \mathcal{C}$
if \mathcal{C} is propositional consistency property then $S \in \mathcal{C}$ is called \mathcal{C}-consistent

Theorem (Propositional Model Existence)

if \mathcal{C} is propositional consistency property and $S \in \mathcal{C}$ then S is satisfiable

Definition

set \mathbf{H} of propositional formulas is propositional Hintikka set provided
1 for any propositional letter A, not both $A \in \mathbf{H}$ and $\neg A \in \mathbf{H}$
$2 \perp \notin \mathbf{H}, \neg \top \notin \mathbf{H}$
3 if $\neg \neg Z \in \mathbf{H}$ then $Z \in \mathbf{H}$
4 if $\alpha \in \mathbf{H}$ then $\alpha_{1} \in \mathbf{H}$ and $\alpha_{2} \in \mathbf{H}$
5 if $\beta \in \mathbf{H}$ then $\beta_{1} \in \mathbf{H}$ or $\beta_{2} \in \mathbf{H}$

Lemma (Hintikka's Lemma)

every propositional Hintikka set is satisfiable

Contents

Part I: Propositional Logic

compactness, completeness, Hilbert systems, Hintikka's lemma, interpolation, logical consequence, model existence theorem, propositional semantic tableaux soundness

Part II: First-Order Logic

compactness, completeness, Craig's interpolation theorem, cut elimination, first-order semantic tableaux, Herbrand models, Herbrand's theorem, Hilbert systems, Hintikka's lemma, Löwenheim-Skolem, logical consequence, model existence theorem, prenex form, skolemization, soundness

Part III: Limitations and Extensions of First-Order Logic

Curry-Howard isomorphism, intuitionistic logic, Kripke models, second-order logic, simply-typed λ-calculus

Outline

- Summary of Previous Lecture
- Model Existence Theorem
- Compactness
- Interpolation
- Semantic Tableaux
- Hillbert Systems
- Exercises
- Further Reading

Compactness

Outline

```
- Summary of Previous Lecture
```

- Model Existence Theoren
- Compactness
- Interpolation
- Semantic Tableaux
- Hilbert Systems
- Exercises
- Further Reading

Model Existence Theoren

Definition

collection \mathcal{C} of sets of propositional formulas is propositional consistency property if, for each $S \in \mathcal{C}$

1 for any propositional letter A, not both $A \in S$ and $\neg A \in S$
$2 \perp \notin S, \neg \top \notin S$
3 if $\neg \neg Z \in S$ then $S \cup\{Z\} \in \mathcal{C}$
4 if $\alpha \in S$ then $S \cup\left\{\alpha_{1}, \alpha_{2}\right\} \in \mathcal{C}$
5 if $\beta \in S$ then $S \cup\left\{\beta_{1}\right\} \in \mathcal{C}$ or $S \cup\left\{\beta_{2}\right\} \in \mathcal{C}$
if \mathcal{C} is propositional consistency property then $S \in \mathcal{C}$ is called \mathcal{C}-consistent

Theorem (Propositional Model Existence)

if \mathcal{C} is propositional consistency property and $S \in \mathcal{C}$ then S is satisfiable

Theorem (Propositional Compactness)

if every finite subset of set S of propositional formulas is satisfiable then S is satisfiable

Proof

- let $\mathcal{C}=\{W \mid$ every finite subset of W is satisfiable $\}$
- $S \in \mathcal{C}$ and \mathcal{C} is propositional consistency property:

1 if $A \in W$ and $\neg A \in W$ then $W \notin \mathcal{C}$
2 if $\perp \in W$ or $\neg \top \in W$ then $W \notin \mathcal{C}$
3 suppose $\neg \neg Z \in W \in \mathcal{C}$ and let V be finite subset of $W \cup\{Z\}$ $(V \cap W) \cup\{\neg \neg Z\}$ is finite subset of W and thus satisfiable $(V \cap W) \cup\{\neg \neg Z, Z\}$ is satisfiable $V \subseteq(V \cap W) \cup\{\neg \neg Z, Z\}$ is satisfiable

Proof (cont'd)

- let $\mathcal{C}=\{W \mid$ every finite subset of W is satisfiable $\}$
- $S \in \mathcal{C}$ and \mathcal{C} is propositional consistency property:

4 suppose $\alpha \in W \in \mathcal{C}$ and let V be finite subset of $W \cup\left\{\alpha_{1}, \alpha_{2}\right\}$
$(V \cap W) \cup\{\alpha\}$ is finite subset of W and thus satisfiable
$(V \cap W) \cup\left\{\alpha, \alpha_{1}, \alpha_{2}\right\}$ is satisfiable
$V \subseteq(V \cap W) \cup\left\{\alpha, \alpha_{1}, \alpha_{2}\right\}$ is satisfiable
5 suppose $\beta \in W \in \mathcal{C}$
suppose neither $W \cup\left\{\beta_{1}\right\}$ nor $W \cup\left\{\beta_{2}\right\}$ belongs to \mathcal{C}
\exists finite unsatisfiable subsets $F_{1} \subseteq W \cup\left\{\beta_{1}\right\}$ and $F_{2} \subseteq W \cup\left\{\beta_{2}\right\}$ $\left(F_{1} \cup F_{2}\right) \cap W \cup\{\beta\}$ is finite subset of W and thus satisfiable
$\left(F_{1} \cup F_{2}\right) \cap W \cup\left\{\beta, \beta_{1}\right\}$ or $\left(F_{1} \cup F_{2}\right) \cap W \cup\left\{\beta, \beta_{2}\right\}$ is satisfiable $F_{1} \subseteq\left(F_{1} \cup F_{2}\right) \cap W \cup\left\{\beta, \beta_{1}\right\}$ and $F_{2} \subseteq\left(F_{1} \cup F_{2}\right) \cap W \cup\left\{\beta, \beta_{2}\right\}$

Outline

```
- Summary of Previous Lecture
- Model Existence Theorem
- Compactness
- Interpolation
- Semantic Tableaux
- Hilbert Systems
- Exercises
- Further Reading
```


Notation

$\langle S\rangle$ denotes conjunction of all members of finite set S of formulas

Definition

finite set S of formulas is Craig consistent if $\left\langle S_{1}\right\rangle \supset \neg\left\langle S_{2}\right\rangle$ has no interpolant for some partition $S_{1} \uplus S_{2}$ of S

Lemma

collection of all Craig consistent sets is propositional consistency property

Proof

- let \mathcal{C} be collection of all Craig consistent sets
- let $S \in \mathcal{C}$ so $\left\langle S_{1}\right\rangle \supset \neg\left\langle S_{2}\right\rangle$ has no interpolant for some partition $S_{1} \uplus S_{2}$ of S (terminology: $S_{1} \uplus S_{2}$ has no interpolant)

Proof (cont'd)

given $S \in \mathcal{C}$ and partition $S_{1} \uplus S_{2}$ of S without interpolant
1 suppose $A, \neg A \in S$

- if $A, \neg A \in S_{1}$ then \perp is interpolant of $S_{1} \uplus S_{2}$
- if $A, \neg A \in S_{2}$ then T is interpolant of $S_{1} \uplus S_{2}$
- if $A \in S_{1}$ and $\neg A \in S_{2}$ then A is interpolant of $S_{1} \uplus S_{2}$
- if $\neg A \in S_{1}$ and $A \in S_{2}$ then $\neg A$ is interpolant of $S_{1} \uplus S_{2}$

2 suppose $\perp \in S$

- if $\perp \in S_{1}$ then \perp is interpolant of $S_{1} \uplus S_{2}$
- if $\perp \in S_{2}$ then T is interpolant of $S_{1} \uplus S_{2}$
suppose $\neg T \in S$
- if $\neg \top \in S_{1}$ then \perp is interpolant of $S_{1} \uplus S_{2}$
- if $\neg T \in S_{2}$ then T is interpolant of $S_{1} \uplus S_{2}$

Proof (cont'd)

given $S \in \mathcal{C}$ and partition $S_{1} \uplus S_{2}$ of S without interpolant
3 suppose $\neg \neg Z \in S$

- if $\neg \neg Z \in S_{1}$ then $\left(S_{1} \cup\{Z\}\right) \uplus S_{2}$ has no interpolant
- if $\neg \neg Z \in S_{2}$ then $S_{1} \uplus\left(S_{2} \cup\{Z\}\right)$ has no interpolant
hence $S \cup\{Z\} \in \mathcal{C}$
4 suppose $\alpha \in S$
- if $\alpha \in S_{1}$ then $\left(S_{1} \cup\left\{\alpha_{1}, \alpha_{2}\right\}\right) \uplus S_{2}$ has no interpolant
- if $\alpha \in S_{2}$ then $S_{1} \uplus\left(S_{2} \cup\left\{\alpha_{1}, \alpha_{2}\right\}\right)$ has no interpolant
hence $S \cup\left\{\alpha_{1}, \alpha_{2}\right\} \in \mathcal{C}$

Proof (cont'd)

given $S \in \mathcal{C}$ and partition $S_{1} \uplus S_{2}$ of S without interpolant
5 suppose $\beta \in S$ and neither $S \cup\left\{\beta_{1}\right\}$ nor $S \cup\left\{\beta_{2}\right\}$ belongs to \mathcal{C}

- if $\beta \in S_{1}$ then $\left\langle S_{1}\right\rangle \equiv\left\langle S_{1} \cup\left\{\beta_{1}\right\}\right\rangle \vee\left\langle S_{1} \cup\left\{\beta_{2}\right\}\right\rangle$
$\left(S_{1} \cup\left\{\beta_{1}\right\}\right) \uplus S_{2}$ is partition of $S \cup\left\{\beta_{1}\right\}$ and thus has interpolant γ_{1} $\left(S_{1} \cup\left\{\beta_{2}\right\}\right) \uplus S_{2}$ is partition of $S \cup\left\{\beta_{2}\right\}$ and thus has interpolant γ_{2}

$$
\begin{array}{ll}
\left\langle S_{1} \cup\left\{\beta_{1}\right\}\right\rangle \supset \gamma_{1} & \gamma_{1} \supset \neg\left\langle S_{2}\right\rangle \\
\left\langle S_{1} \cup\left\{\beta_{2}\right\}\right\rangle \supset \gamma_{2} & \gamma_{2} \supset \neg\left\langle S_{2}\right\rangle
\end{array}
$$

hence $\gamma_{1} \vee \gamma_{2}$ is interpolant of $S_{1} \uplus S_{2}$
$ל$

$$
\left\langle S_{1}\right\rangle \equiv\left\langle S_{1} \cup\left\{\beta_{1}\right\}\right\rangle \vee\left\langle S_{1} \cup\left\{\beta_{2}\right\}\right\rangle \supset \gamma_{1} \vee \gamma_{2} \supset \neg\left\langle S_{2}\right\rangle
$$

Proof (cont'd)

given $S \in \mathcal{C}$ and partition $S_{1} \uplus S_{2}$ of S without interpolant
5 suppose $\beta \in S$ and neither $S \cup\left\{\beta_{1}\right\}$ nor $S \cup\left\{\beta_{2}\right\}$ belongs to \mathcal{C}

- if $\beta \in S_{2}$ then $\neg\left\langle S_{2}\right\rangle \equiv \neg\left\langle S_{2} \cup\left\{\beta_{1}\right\}\right\rangle \wedge \neg\left\langle S_{2} \cup\left\{\beta_{2}\right\}\right\rangle$ $S_{1} \uplus\left(S_{2} \cup\left\{\beta_{1}\right\}\right)$ is partition of $S \cup\left\{\beta_{1}\right\}$ and thus has interpolant δ_{1} $S_{1} \uplus\left(S_{2} \cup\left\{\beta_{2}\right\}\right)$ is partition of $S \cup\left\{\beta_{2}\right\}$ and thus has interpolant δ_{2}
$\left\langle S_{1}\right\rangle \supset \delta_{1}$
$\delta_{1} \supset \neg\left\langle S_{2} \cup\left\{\beta_{1}\right\}\right\rangle$
$\left\langle S_{1}\right\rangle \supset \delta_{2}$
$\delta_{2} \supset \neg\left\langle S_{2} \cup\left\{\beta_{2}\right\}\right\rangle$
hence $\delta_{1} \wedge \delta_{2}$ is interpolant of $S_{1} \uplus S_{2}$

$$
\left\langle S_{1}\right\rangle \supset \delta_{1} \wedge \delta_{2} \supset \neg\left\langle S_{2} \cup\left\{\beta_{1}\right\}\right\rangle \wedge \neg\left\langle S_{2} \cup\left\{\beta_{2}\right\}\right\rangle \equiv \neg\left\langle S_{2}\right\rangle
$$

[^0]
Proof (of Craig Interpolation Theorem)

- suppose $X \supset Y$ has no interpolant
- let $S=\{X, \neg Y\}$ with partition $S_{1}=\{X\}$ and $S_{2}=\{\neg Y\}$
- interpolant for $\left\langle S_{1}\right\rangle \supset \neg\left\langle S_{2}\right\rangle$ is interpolant for $X \supset Y$ and hence does not exist
- S is Craig consistent
- S is satisfiable by Model Existence Theorem and previous lemma
- hence $X \supset Y$ is no tautology

Definition

finite set S of propositional formulas is tableau consistent if there is no closed tableau for S

Lemma

collection of all tableau consistent sets is propositional consistency property

Proof

- properties 1, 2, 3: ... blackboard
- properties 4, 5: next two slides
- Exercises
- Further Reading

Proof (cont'd)

- property 4: let $\alpha \in S$ and consider $S \cup\left\{\alpha_{1}, \alpha_{2}\right\}$
suppose $S \cup\left\{\alpha_{1}, \alpha_{2}\right\}$ is not tableau consistent
let $S=\left\{\alpha, X_{1}, \ldots, X_{n}\right\}$
closed tableau for $S \cup\left\{\alpha_{1}, \alpha_{2}\right\}$:

α	
X_{1}	
\vdots	
X_{n}	
α_{1}	apply α-rule
α_{2}	apply α-rule

rest of tableau

Theorem (Completeness for Propositional Tableaux)

every tautology has tableau proof

Proof

- suppose formula X does not have tableau proof
- there is no closed tableau for $\{\neg X\}$
- $\{\neg X\}$ is tableau consistent
- $\{\neg X\}$ is satisfiable by Propositional Model Existence Theorem
- X cannot be tautology

Proof (cont'd)

- property 5: let $\beta \in S$ and consider $S \cup\left\{\beta_{1}\right\}$ and $S \cup\left\{\beta_{2}\right\}$ suppose neither $S \cup\left\{\beta_{1}\right\}$ nor $S \cup\left\{\beta_{2}\right\}$ is tableau consistent let $S=\left\{\beta, X_{1}, \ldots, X_{n}\right\}$
closed tableaux for $S \cup\left\{\beta_{1}\right\}$ and $S \cup\left\{\beta_{2}\right\}$:

β	β
X_{1}	X_{1}
\vdots	\vdots
X_{n}	X_{n}
β_{1}	β_{2}
T_{1}	T_{2}

can be merged into closed tableau for S

Outline

```
- Summary of Previous Lecture
- Model Existence Theorem
- Compactness
- Interpolation
- Semantic Tableaux
    - Completeness
    - Completeness with Restrictions
    - Propositional Consequence
- Hilbert Systems
- Exercises
- Further Reading
```

for every tautology X
strict tableau construction process for $\{\neg X\}$ that is continued until every non-literal formula occurrence on every branch has been used must terminate and do so in atomically closed tableau

Proof

- termination follows by considering $\sum \sum\{r(Y) \mid Y$ is unused formula $\}$
- suppose final tableau T is not atomically closed
- let θ be branch of T that is not atomically closed
- if $\neg \neg Z$ occurs on θ then Z occurs on θ if α occurs on θ then α_{1} and α_{2} occur on θ if β occurs on θ then β_{1} or β_{2} occurs on θ
- set of formulas S occurring on θ is Hintikka set and thus satisfiable
- $\neg X \in S$ and thus $v(\neg X)=\mathrm{t}$ for some valuation v

Outline

- Summary of Previous Lecture
- Model Existence Theorem
- Compactness
- Interpolation
- Semantic Tableaux
- Completeness
- Completeness with Restrictions
- Propositional Consequence
- Hilbert Systems
- Exercises
- Further Reading

Theorem

$S \vDash_{p} X$ if and only if $S_{0} \vDash_{p} X$ for some finite subset S_{0} of S

Proof

\Rightarrow if $S \vDash_{p} X$ then $S \cup\{\neg X\}$ is not satisfiable some finite subset S^{\prime} of $S \cup\{\neg X\}$ is not satisfiable by compactness let $S_{0}=S^{\prime} \cap S$
S_{0} is finite subset of S and $S_{0} \cup\{\neg X\}$ is not satisfiable
$S_{0} \vDash_{p} X$
\Leftarrow obvious

_emmata

- any application of Tableau Expansion Rule as well as S-introduction rule to S-satisfiable tableau yields another S-satisfiable tableau
- there are no closed S-satisfiable tableaux

Definition

S is X-tableau consistent if $S \vdash_{p t} X$ does not hold

Lemmata

for each formula X

- collection of X-tableau consistent sets is propositional consistency property
- if S is X-tableau consistent then $S \cup\{\neg X\}$ is X-tableau consistent

Definitions

- S-introduction rule for tableaux: any member of S can be added to end of any tableau branch
- $S \vdash_{p t} X$ if there exists closed propositional tableau for $\{\neg X\}$, allowing S-introduction rule

Definitions

- tableau branch θ is S-satisfiable if union of S and set of propositional formulas on θ is satisfiable
- tableau T is S-satisfiable if at least one branch of T is S-satisfiable

Theorem (Strong Soundness and Completeness)

for any set S of propositional formulas and any propositional formula X

$$
S \vDash_{p} X \quad \Longleftrightarrow \quad S \vdash_{p t} X
$$

Proof

\Rightarrow suppose $S \vdash_{p t} X$ does not hold, so S is X-tableau consistent $S \cup\{\neg X\}$ is X-tableau consistent $S \cup\{\neg X\}$ is satisfiable by Model Existence Theorem $S \vDash_{p} X$ does not hold
\Leftarrow there exists closed tableau for $\{\neg X\}$, allowing S-introduction rule initial tableau cannot be S-satisfiable $S \cup\{\neg X\}$ is not satisfiable $S \vDash_{p} X$

Outline

```
- Summary of Previous Lecture
```

- Model Existence Theorem
- Compactness
- Interpolation
- Semantic Tableaux
- Hilbert Systems
- Exercises
- Further Reading

Definitions

- derivation in Hilbert system from set S of formulas is finite sequence $X_{1}, X_{2}, \ldots, X_{n}$ of formulas such that each formula is axiom, or member of S or follows from earlier formulas by rule of inference
- proof in Hilbert system is derivation from \varnothing

Definitions

given Hilbert system h

- X is consequence of set S in h, denoted by $S \vdash_{p h} X$, if X is last line of derivation from S
- formula X is theorem of h, denoted by $\vdash_{p h} X$, if X is consequence of \varnothing in h

Example

$P \supset P$ is theorem:

1. $(P \supset((P \supset P) \supset P)) \supset((P \supset(P \supset P)) \supset(P \supset P)) \quad$ Axiom Scheme 2
2. $P \supset((P \supset P) \supset P)$
Axiom Scheme 1
3. $(P \supset(P \supset P)) \supset(P \supset P)$
4. $P \supset(P \supset P)$

Modus Ponens
Axiom Scheme 1
5. $P \supset P$

Modus Ponens

Theorem (Deduction Theorem)

in any Hilbert System h with Modus Ponens as only rule of inference and at least Axiom Schemes 1 and 2:

$$
S \cup\{X\} \vdash_{p h} Y \quad \Longleftrightarrow \quad S \vdash_{p h} X \supset Y
$$

Example

$(P \supset(Q \supset R)) \supset(Q \supset(P \supset R))$ is theorem：
－$\{P \supset(Q \supset R), Q, P\} \vdash_{p h} R:$
1．$P \supset(Q \supset R)$
2．P
3．$Q \supset R \quad$ Modus Ponens
4．Q
5．$R \quad$ Modus Ponens
－$\{P \supset(Q \supset R), Q\} \vdash_{p h} P \supset R$ by Deduction Theorem
－$\{P \supset(Q \supset R)\} \vdash_{p h} Q \supset(P \supset R)$ by Deduction Theorem
－$\vdash_{p h}(P \supset(Q \supset R)) \supset(Q \supset(P \supset R))$ by Deduction Theorem

Hilbert Systems

Definition（Axiom Schemes 3－9）

```
\perp\supsetX 7 < 凉
X\supset丁 8 < 人 的
\neg\negX\supsetX 9 ( 
X\supset(\negX\supsetY)
```


Example

$(\neg X \supset X) \supset X$ is theorem：

1．	$(\neg \neg X \supset X) \supset((X \supset X) \supset((\neg X \supset X) \supset X))$
2．	$\neg \neg X \supset X$
3．	$(X \supset X) \supset((\neg X \supset X) \supset X)$
4．	$X \supset X$
5．	$(\neg X \supset X) \supset X$

Axiom Scheme 9
Axiom Scheme 5
Modus Ponens
earlier proof
Modus Ponens

Proof（if direction）

－suppose $S \cup\{X\} \vdash_{p h} Y$
－let $\Pi_{1}: Z_{1}, \ldots, Z_{n}$ be derivation of Y from $S \cup\{X\}$ ，so $Z_{n}=Y$
－consider new sequence $\Pi_{2}: X \supset Z_{1}, \ldots, X \supset Z_{n}$
－insert extra lines into Π_{2} and use Modus Ponens，as follows：
1 if Z_{i} is axiom or member of S insert Z_{i} and $Z_{i} \supset\left(X \supset Z_{i}\right)$ before $X \supset Z_{i}$
2 if $Z_{i}=X$
insert steps of proof of $X \supset Z_{i}$ before it
3 if Z_{i} is derived with Modus Ponens from Z_{j} and Z_{k} with $j, k<i$ then $Z_{k}=\left(Z_{j} \supset Z_{i}\right)$ insert $\left(X \supset\left(Z_{j} \supset Z_{i}\right)\right) \supset\left(\left(X \supset Z_{j}\right) \supset\left(X \supset Z_{i}\right)\right)$ and $\left(X \supset Z_{j}\right) \supset\left(X \supset Z_{i}\right)$ before $X \supset Z_{i}$
－resulting sequence is derivation of $X \supset Y$ from S

Theorem（Strong Hilbert Soundness）

if $S \vdash_{p h} X$ then $S \vDash_{p} X$

Proof

－let Z_{1}, \ldots, Z_{n} be derivation of X from S ，so $Z_{n}=X$
－we show $S \vDash_{p} Z_{i}$ by induction on i
1 if Z_{i} is axiom then Z_{i} is tautology and thus also $S \vDash_{p} Z_{i}$
2 if $Z_{i} \in S$ then $S \vDash_{p} Z_{i}$ holds trivially
3 if Z_{i} is obtained from Z_{j} and Z_{k} by Modus Ponens then $Z_{k}=\left(Z_{j} \supset Z_{i}\right)$ and $j, k<i$
$S \vDash_{p} Z_{j}$ and $S \vDash_{p} Z_{j} \supset Z_{i}$ follow from induction hypothesis $S \vDash_{p} Z_{i}$ follows from definition of \vDash_{p}

Definition

- set S of formulas is X-Hilbert inconsistent if $S \vdash_{p h} X$
- set S of formulas is X - Hilbert consistent if $S \vdash_{p h} X$ does not hold

Lemma

collection of all X-Hilbert consistent sets is propositional consistency property

Proof

let S be X-Hilbert consistent
1 if $A \in S$ and $\neg A \in S$ then $S \vdash_{p h} A$ and $S \vdash_{p h} \neg A$ Axiom Scheme 6: $\quad \vdash_{p h} A \supset(\neg A \supset X)$ $S \vdash_{p h} X$ by two applications of Modus Ponens \downarrow

Proof (cont'd)

let S be X-Hilbert consistent
2 if $\perp \in S$ then $S \vdash_{p h} \perp$

$$
\text { Axiom Scheme 3: } \quad \vdash_{p h} \perp \supset X
$$

$S \vdash_{p h} X$ by Modus Ponens \langle
if $\neg \top \in S$ then $S \vdash_{p h} \neg T$
Axiom Scheme 4: $\vdash_{p h} \neg \top \supset \top$
$S \vdash_{p h} \top$ by Modus Ponens
Axiom Scheme 6: $\quad \vdash_{p h} \top \supset(\neg \top \supset X)$
$S \vdash_{p h} X$ by two applications of Modus Ponens \langle

Proof (cont'd)

let S be X-Hilbert consistent
5 if $\beta \in S$ then $S \vdash_{p h} \beta$
suppose both $S \cup\left\{\beta_{1}\right\}$ and $S \cup\left\{\beta_{2}\right\}$ are X-Hilbert inconsistent
$S \cup\left\{\beta_{1}\right\} \vdash_{p h} X$ and $S \cup\left\{\beta_{2}\right\} \vdash_{p h} X$
$S \vdash_{p h} \beta_{1} \supset X$ and $S \vdash_{p h} \beta_{2} \supset X$ by Deduction Theorem
Axiom Scheme 9: $\quad \vdash_{p h}\left(\beta_{1} \supset X\right) \supset\left(\left(\beta_{2} \supset X\right) \supset(\beta \supset X)\right)$
$S \vdash_{p h} \beta \supset X$ by two applications of Modus Ponens
$S \vdash_{p h} X$ by Modus Ponens \langle

Proof

- suppose $S \vdash_{p h} X$ does not hold, so S is X-Hilbert consistent
- $\vdash_{p h}(\neg X \supset X) \supset X$
- if $S \cup\{\neg X\} \vdash_{p h} X$ then $S \vdash_{p h} \neg X \supset X$ and thus $S \vdash_{p h} X$
- $S \cup\{\neg X\} \vdash_{p h} X$ does not hold
- $S \cup\{\neg X\}$ is X - Hilbert consistent
- $S \cup\{\neg X\}$ is satisfiable (by previous lemma and Model Existence Theorem)
- $S \vDash_{p} X$ does not hold
 (1929-2015)

Exercises

Outline

```
- Summary of Previous Lecture
```

- Model Existence Theorem
- Compactness
- interpolation
- Semantic Tableaux
- Hilbert Systems
- Exercises
- Further Reading

Exercises

Fitting

- Bonus: Exercise 3.6.6 or Exercise 3.6.7
(where 'or' means that you can get at most 1 bonus-exercise point)
- Exercise 3.7.1
- Exercise 3.7.2.(1) and (2)
- Bonus: Exercise 3.7.4 (hence 3.7.3 and 3.7.2 as well)
- Exercise 3.9.1
- Bonus: Exercise 3.9.2 or Exercise 3.9.3
- Exercise 4.1.1
- Exercise 4.1.2 !
- Bonus: Exercise 4.1.4 or 4.1.5 or Exercise 4.1.6
- Exercise 4.1.7
- Exercise 4.1.8
- Bonus: Exercise 4.5.2
- Summary of Previous Lecture
- Model Existence Theorem
- Compactness
- Interpolation
- Semantic Tableaux
- Hilbert Systems
- Exercises
- Further Reading

[^0]: \mathcal{C} is propositional consistency property

