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Summary of Previous Lecture

Tableau Expansion Rules

—|—|Z -1 =T (6% /8
4 T 1 o BB
a2
finite set {Aq,...,Ap} of propositional formulas

following one-branch tree is tableau for {Ay,..., A, }:
Ar
A
An
if T is tableau for {Aq,...,A,} and T* results from T by application of
tableau expansion rule then T* is tableau for {As,...,Ap}

Outline

@ Summary of Previous Lecture
@ Model Existence Theorem

@ Compactness

@ Interpolation

@ Semantic Tableaux

@ Hilbert Systems

@ Exercises

@ Further Reading
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Summary of Previous Lecture

® branch @ of tableau is closed if both X and =X occur on 6 for some
propositional formula X, or if 1 occurs on 6

® branch 6 of tableau is atomically closed if both A and —A occur on 8 for
some propositional letter A, or if L occurs on 6

® tableau is (atomically) closed if every branch is (atomically) closed
® tableau proof of X is closed tableau for {—X}
® X is theorem if X has tableau proof, denoted by -, X

® tableau is strict if no formula has had Tableau Expansion Rule applied to it
twice on same branch

® tableau branch 6 is satisfiable if set of propositional formulas on it is
satisfiable

® tableau T is satisfiable if at least one branch of T is satisfiable

AM/VvO (CS @ UIBK) lecture 3
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Summary of Previous Lecture

any application of Tableau Expansion Rule to satisfiable tableau yields another
satisfiable tableau

if S admits closed tableau then S is not satisfiable

Theorem (Propositional Tableau Soundness)

if X has tableau proof then X is tautology
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Summary of Previous Lecture

Definition

collection C of sets of propositional formulas is propositional consistency property
if, for each S € C:

for any propositional letter A, not both A€ S and A€ S

1¢S5 -T¢S
if ~=Z € Sthen SU{Z} eC
if « €S then SU{ay, a0} €C

if €S then SU{fi}eCor SU{B}eC

if C is propositional consistency property then S € C is called C-consistent

Theorem (Propositional Model Existence)

if C is propositional consistency property and S € C then S is satisfiable

AM/VvO (CS @ UIBK) lecture 3

Summary of Previous Lecture

set H of propositional formulas is propositional Hintikka set provided

for any propositional letter A, not both A€ H and A€ H

1¢H -T¢H

if ==Z € H then Z € H

if o € Hthena; € Hand ar € H
B fseHthenpfyeHorp,eH

Lemma (Hintikka's Lemma)

every propositional Hintikka set is satisfiable
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Part |: Propositional Logic

compactness, completeness, Hilbert systems, interpolation,

logical consequence, .

Part II: First-Order Logic

compactness, completeness, Craig's interpolation theorem, cut elimination,
first-order semantic tableaux, Herbrand models, Herbrand's theorem, Hilbert
systems, Hintikka's lemma, Lowenheim-Skolem, logical consequence, model
existence theorem, prenex form, skolemization, soundness

Part Ill: Limitations and Extensions of First-Order Logic

Curry-Howard isomorphism, intuitionistic logic, Kripke models, second-order logic,
simply-typed A-calculus
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Model Existence Theorem

Outline

@ Model Existence Theorem

AM/WO (CS @ UIBK)

Compactness

Outline

@ Compactness

AM/WO (CS @ UIBK)

lecture 3

lecture 3

Model Existence Theorem

collection C of sets of propositional formulas is propositional consistency property
if, for each S € C:

for any propositional letter A, not both A€ S and A€ S
1¢S5 -T¢S

if -=—=Z € S then SU{Z} €C

if « €S then SU{ay, a0} €C

if 5€Sthen SU{fi}eCor SU{B}eC

if C is propositional consistency property then S € C is called C-consistent

Theorem (Propositional Model Existence)

if C is propositional consistency property and S € C then S is satisfiable

AM/VWvO (CS @ UIBK) lecture 3

Theorem (Propositional Compactness)

Compactness

if every finite subset of set S of propositional formulas is satisfiable then S is
satisfiable

e let C = {W | every finite subset of W is satisfiable}

® S € C and C is propositional consistency property:
if Ac W and A€ W then W ¢ C
if LeWor—Teé&W then W ¢C
suppose =—Z € W € C and let V be finite subset of W U {Z}
(VN W)U {=—Z2} is finite subset of W and thus satisfiable
(VN W)u{—=—Z,Z} is satisfiable
V (VN W)U {—-—2Z,Z} is satisfiable

AM/VvO (CS @ UIBK) lecture 3
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Proof (cont'd)

e let C = {W | every finite subset of W is satisfiable}
® S € and C is propositional consistency property:
suppose o € W € C and let V be finite subset of W U {aq, a0}
(VN W)U {a} is finite subset of W and thus satisfiable
(VN W)U {a,a1,as} is satisfiable
V (VN W)U {a,ar,ar} is satisfiable
suppose S € W € C
suppose neither W U {1} nor W U {$>} belongs to C
3 finite unsatisfiable subsets F; C W U {f1} and F, C W U {B,}
(FLU FR) N W U{B} is finite subset of W and thus satisfiable
(FRUR)NWU{B,B1} or (FLUF)NWU{B, B} is satisfiable
FFC(RUR)NWU{B,p1}and F, C(FRUFR)NWU{S, B} 4
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Interpolation

Definition

formula Z is interpolant for implication X D Y if every propositional letter of Z
occurs in both X and Y, and X D Z and Z D Y are both tautologies

® PV Q is interpolant for (PV (QAR)) D (PV-=Q)
® | is interpolant for (P A—=P) D Q

Theorem (Craig Interpolation)

every tautology X D Y has interpolant

AM/VvO (CS @ UIBK) lecture 3

Interpolation

Outline

@ Interpolation
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Interpolation

(S) denotes conjunction of all members of finite set S of formulas

v

finite set S of formulas is Craig consistent if (S1) D —=(S,) has no interpolant for
some partition S; W S, of S

v

Lemma

collection of all Craig consistent sets is propositional consistency property

v

Proof

® let C be collection of all Craig consistent sets

® let S €C so (51) D —(Sy) has no interpolant for some partition S; W S, of S
(terminology: S; W S, has no interpolant)
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Interpolation

Proof (cont'd)

given S € C and partition S; W S, of S without interpolant
suppose A,—A € S

e if A, A c S; then L is interpolant of $; & S, 4
® if A,mAc S, then T is interpolant of S; W S, 4
® f Ac S; and “A € S, then A is interpolant of S; W S, 4
® if =A< S; and A€ S, then —A is interpolant of S; W S, 4

suppose 1 € S

® if L € 5; then L is interpolant of S; W S, 4
® if L €5, then T is interpolant of S; W S, 4
suppose =T € S
® if =T € S; then L is interpolant of S; W S, 4
® if =T € S, then T is interpolant of S W S, 4
AM/WO (CS @ UIBK) lecture 3 17/54

Interpolation

Proof (cont'd)
given S € C and partition S; W S, of S without interpolant
suppose 3 € S and neither SU {31} nor SU {5,} belongs to C
e if € S then (S51) = (S1U{B1}) V(S1U{B2})
(S1 U{B1}) WS, is partition of SU{B31} and thus has interpolant ~;
(S1 U{B2}) WS, is partition of SU {3} and thus has interpolant

(S1U{B}) om M D ~(S2)
(S1U{B2}) D72 12 D ~(S2)
hence 71 V 2 is interpolant of 5; W S, %

(S1) =(S1U{B1}) V(S1U{B2}) DM V72 D ~(S2)
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Interpolation

Proof (cont'd)

given S € C and partition S; W S, of S without interpolant
suppose =—Z € S
e if -—=Z € 5; then (51 U{Z}) W S, has no interpolant
® if -~—=Z € S, then $1 W (52 U {Z}) has no interpolant
hence SU{Z} € C
suppose o € S
® if « € 5 then (51 U {ay,a2}) W S, has no interpolant
® if o € S, then S; W (S, U {ag, an}) has no interpolant
hence SU{a1,a} €C
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Interpolation

Proof (cont'd)

given S € C and partition S; W S, of S without interpolant
suppose 3 € S and neither SU {31} nor SU {5,} belongs to C
® if B € Sy then =(S) = (S U{B1}) A (S U{B2})
Sy W (S, U{pB1}) is partition of SU {B1} and thus has interpolant d;
S W (S, U{pBa}) is partition of SU {fB,2} and thus has interpolant &,

(S1) D & 91 D ~(S2U{h})
(51) D 02 92 D ~(S2 U {B2})
hence ; A 95 is interpolant of $; W S, 5

(S1) D01 A% D (SU{B1}) A (S2U{B2}) = ~(S2)

C is propositional consistency property
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Interpolation

Proof (of Craig Interpolation Theorem)

® suppose X D Y has no interpolant
let S ={X,—Y} with partition S; = {X} and S, = {-Y}

interpolant for (S1) D —(S,) is interpolant for X D Y
and hence does not exist

S is Craig consistent

S is satisfiable by Model Existence Theorem and previous lemma

® hence X D Y is no tautology
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Semantic Tableaux Completeness

Outline

@ Semantic Tableaux
o Completeness
o Completeness with Restrictions
@ Propositional Consequence

Interpolation

William Craig
(1918-2016)

Jaakko Hintikka
(1929-2015)
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Semantic Tableaux Completeness

Definition

finite set S of propositional formulas is tableau consistent if there is no closed
tableau for S

Lemma

collection of all tableau consistent sets is propositional consistency property

® properties 1, 2, 3: ... blackboard

® properties 4, 5: next two slides

AM/VvO (CS @ UIBK) lecture 3
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Semantic Tableaux Completeness

Proof (cont'd)

® property 4: let « € S and consider S U {a1, az}
suppose S U {ay, ap} is not tableau consistent
let S = {o, X1, ..., X}

closed tableau for S U {ay, az}:

Q@
X1
Xn
i apply a-rule
ap apply a-rule

rest of tableau
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Semantic Tableaux Completeness

Theorem (Completeness for Propositional Tableaux)

every tautology has tableau proof

® suppose formula X does not have tableau proof
® there is no closed tableau for {—X}

e {=X} is tableau consistent

{—=X} is satisfiable by Propositional Model Existence Theorem

X cannot be tautology

Semantic Tableaux Completeness

Proof (cont'd)

® property 5: let 5 € S and consider SU {f1} and SU {f,}
suppose neither SU {31} nor SU {3,} is tableau consistent
let S = {5, Xu,..., Xy}
closed tableaux for SU {1} and SU{f,}:

B B
X1 X1
X, Xn
B1 B2
Ty T

can be merged into closed tableau for S
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Semantic Tableaux Completeness with Restrictions

Outline

@ Semantic Tableaux

o Completeness with Restrictions
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Theorem
for every tautology X

strict tableau construction process for {=X} that is continued until every
non-literal formula occurrence on every branch has been used must terminate
and do so in atomically closed tableau

termination follows by considering > > {r(Y) | Y is unused formula}

® suppose final tableau T is not atomically closed
® |et € be branch of T that is not atomically closed

® if =—Z occurs on A then Z occurs on 6
if o occurs on 6 then a1 and a» occur on 6

if 3 occurs on 6 then (31 or 3> occurs on 6
® set of formulas S occurring on 6 is Hintikka set and thus satisfiable

e —X € S and thus v(—=X) = t for some valuation v 4
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Semantic Tableaux Propositional Consequence

Outline

@ Semantic Tableaux

@ Propositional Consequence
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Semantic Tableaux Completeness with Restrictions

tableau systems provide decision procedure for being tautology

AM/VvO (CS @ UIBK) lecture 3 30/54
Semantic Tableaux Propositional Consequence

Definition

propositional formula X is propositional consequence of set S of propositional
formulas, denoted by S F, X, if X evaluates to t for every valuation v that maps
every member of S to t

X is tautology if and only if &, X (simplified notation: F, X)

S Ep, X if and only if So Ep, X for some finite subset Sy of S

AM/VvO (CS @ UIBK) lecture 3
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Semantic Tableaux Propositional Consequence

S E, X if and only if So E, X for some finite subset Sy of S

= if SF, X then SU {—X} is not satisfiable
some finite subset S’ of S U {=X} is not satisfiable by compactness
let Sp = snS
Sp is finite subset of S and Sp U {—X} is not satisfiable
So Ep X
<« obvious
v
AM/VvO (CS @ UIBK) lecture 3 33/54

® any application of Tableau Expansion Rule as well as S-introduction rule to
S-satisfiable tableau yields another S-satisfiable tableau

® there are no closed S-satisfiable tableaux

Definition

S is X —tableau consistent if S 5+ X does not hold

for each formula X

® collection of X —tableau consistent sets is propositional consistency property

® fS is X —tableau consistent then S U {—X} is X —tableau consistent

AM/VvO (CS @ UIBK) lecture 3 35/54

Semantic Tableaux Propositional Consequence

set of formulas S J

Definitions

® S-introduction rule for tableaux: any member of S can be added to end of
any tableau branch

® S, X if there exists closed propositional tableau for {—X}, allowing
S-introduction rule

Definitions

® tableau branch 6 is S-satisfiable if union of S and set of propositional
formulas on @ is satisfiable

® tableau T is S-satisfiable if at least one branch of T is S-satisfiable
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Theorem (Strong Soundness and Completeness)

for any set S of propositional formulas and any propositional formula X

SE, X = SkiX

v

Proof

= suppose S k-, X does not hold, so S is X —tableau consistent
SU{=X} is X —tableau consistent
SU{—X} is satisfiable by Model Existence Theorem
S Fp, X does not hold

< there exists closed tableau for {—X}, allowing S-introduction rule
initial tableau cannot be S-satisfiable
SU{—X} is not satisfiable
SE, X
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Hilbert Systems Hilbert Systems

Outline

Definitions

® derivation in Hilbert system from set S of formulas is finite sequence
X1, Xo, ..., X, of formulas such that each formula is axiom, or member of S,
or follows from earlier formulas by rule of inference

® proof in Hilbert system is derivation from &

given Hilbert system h
@ Hilbert Systems ) ) . . .
® X is consequence of set S in h, denoted by S I, X, if X is last line of

derivation from S

e formula X is theorem of h, denoted by I, X, if X is consequence of @ in h

v
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Definition (Modus Ponens) P > P is theorem:
X—;DY 1. (P>((P>P)DP)D((P>(PDP)D(P>P)  Axiom Scheme 2
2. P>((PDP)DP) Axiom Scheme 1
3. (P>(PD>P)D(PDP) Modus Ponens
Definition (Axiom Scheme 1) boFIEoE Axiom Scheme 1
5. PDOP Modus Ponens
XD (Y DX) )

Theorem (Deduction Theorem)

Definition (Axiom Scheme 2)

in any Hilbert System h with Modus Ponens as only rule of inference and at least
X2(Y22)>((XDY)D(XD2) Axiom Schemes 1 and 2:

SU{X}bpmY < SkupXDY

AM/VvO (CS @ UIBK) lecture 3 39/54 AM/VvO (CS @ UIBK) lecture 3
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Hilbert Systems Hilbert Systems

Proof (if direction)

suppose SU{X} Fpn Y
(PS(QSR)S(Q35(PS R)) s theorem: let My: Z1,...,Z, be derivation of Y from SU{X}, so Z,=Y
* {PD>(Q@DR),Q,P}Fp R:

® consider new sequence [,: X D Z3,...,X D Z,

1. P>(QDR) ® insert extra lines into I, and use Modus Ponens, as follows:
2. P if Z; is axiom or member of S

3. RDOR Modus Ponens insert Z; and Z; D (X D Z;) before X D Z;

4. Q if Z =X

5 R Modus Ponens

insert steps of proof of X D Z; before it

* {P>(Q D R),Q}Fp P D R by Deduction Theorem if Z; is derived with Modus Ponens from Z; and Z with j, k <i
. then Z, = (ZJ D) Z,)
* {PD(QDR)}Fpn Q@ D (P D R) by Deduction Theorem insert (X 5 (2,5 Z)) > (X > Z) > (X > Z))) and

* Fon (PD(QDR))D(QD(PDR)) by Deduction Theorem (X D Z) D (X D Z) before X D Z;

® resulting sequence is derivation of X D Y from S
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Definition (Axiom Schemes 3—9 ,
( ) Theorem (Strong Hilbert Soundness)
3 1oX 7 a D if S Fpn X then S Ep X
4 XDOT 8 o D Qo o
5  —=XDX 9 (Bi2dX)D((A22X)D(8DX)) Proof
6 XD(=XDY)
J ® let Z1,...,Z, be derivation of X from S, so Z, = X

® we show S ¥, Z; by induction on i

£ 2 is axiom then Z, s tautology and thus also S b, Z

(5X'> X) > X is theorem: if Z € S then S F, Z; holds trivially
L (= XD2X)D((XD>X)D((—=X>X)>DX)) Axiom Scheme 9 if Z; is obtained from Z; and Zx by Modus Ponens then
2. ——XDX Axiom Scheme 5 Zk=(Z; > Z)and j,k <i
3. (X2X)>((=X>X)>X) Modus Ponens Sk, Ziand Sk, Z; O Z; follow from induction hypothesis
w KA earlier proof S Fp Z; follows from definition of =,
5. (- X>X)>X Modus Ponens )
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Hilbert Systems Hilbert Systems

Definition Proof (cont'd)

let S be X —Hilbert consistent

® set S of formulas is X —Hilbert inconsistent if S -y, X

® set S of formulas is X —Hilbert consistent if S -, X does not hold if L €Sthen Skp, L
Axiom Scheme 3: F,, L D X

S Fpn X by Modus Ponens 7

collection of all X —Hilbert consistent sets is propositional consistency property if =T €S then Sk =T
— p —/

v

Axiom Scheme 4: Fp =T DT

5 Fan T by Modus Ponens

let S be X —Hilbert consistent Axiom Scheme 6:  Fop T 5 (=T S X)
FAESand A €S then Shpy Aand S Fpp 24 S Fpn X by two applications of Modus Ponens 7
Axiom Scheme 6:  Fpp AD (2A D X) )

S Fpn X by two applications of Modus Ponens 4
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Hilbert Systems Hilbert Systems

Proof (cont'd) Proof (cont'd)

let S be X —Hilbert consistent let S be X —Hilbert consistent

if ==Z € S then S tp, ——Z if €S then Stkp, 3
Axiom Scheme b:  Fp, =—Z D Z suppose both SU {1} and S U {82} are X —Hilbert inconsistent
S Fpn Z by Modus Ponens SU{B1}Fpn X and SU{Bs} Fpn X
if SU{Z} Fpp X then S +pn Z D X by Deduction Theorem Stpn B D X and Sy B2 D X by Deduction Theorem
S Fpn X by Modus Ponens i Axiom Scheme 9:  Fp; (61 D X) D ((B2 2 X) D (8 D X))
SuU{Z} is X —Hilbert consistent S Fpn B D X by two applications of Modus Ponens

if o € Sthen ... exercise S F=pn X by Modus Ponens v

AM/VvO (CS @ UIBK) lecture 3
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Hilbert Systems

Theorem (Strong Hilbert Completeness)

if SEp X then S bpp X

® suppose S -, X does not hold, so S is X —Hilbert consistent

by (mXDX)DX

® if SU{—=X}Fpy X then Sp, =X D X and thus S Fpp X 4

® SU{=X} Fpn X does not hold

® SU{=X} is X—Hilbert consistent

® SU{-X} is satisfiable (by previous lemma and Model Existence Theorem)
S E, X does not hold
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Exercises

Outline

@ Exercises
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Hilbert Systems

William Craig
(1918-2016)

David Hilbert Jaakko Hintikka
(1862 -1943) (1929-2015)
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Fitting
® Bonus: Exercise 3.6.6 or Exercise 3.6.7
(where ‘or' means that you can get at most 1 bonus-exercise point)

® Exercise 3.7.1

® Exercise 3.7.2.(1) and (2)

® Bonus: Exercise 3.7.4 (hence 3.7.3 and 3.7.2 as well)
® Exercise 3.9.1

® Bonus: Exercise 3.9.2 or Exercise 3.9.3

® Exercise 4.1.1

® Exercise 4.1.2 !

® Bonus: Exercise 4.1.4 or 4.1.5 or Exercise 4.1.6

® Exercise 4.1.7 !

® Exercise 4.1.8

® Bonus: Exercise 4.5.2
AM/VvO (CS @ UIBK) lecture 3
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Further Reading Further Reading

Outline

Fitting
® Section 3.7 (until Theorem 3.7.3)

® Section 3.8 (until Corollary 3.8.2) !

® Section 3.9

Section 4.1 !

Section 4.5

@ Further Reading
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