
Computational Logic

Vincent van Oostrom
Course/slides by Aart Middeldorp

Department of Computer Science
University of Innsbruck

SS 2020

http://cl-informatik.uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss20/cl/
http://cl-informatik.uibk.ac.at/
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Outline

Overviews

First-Order Logic

Herbrand Models

Uniform Notation

Hintikka’s Lemma

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 4 2/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Overviews

Overview of previous lecture

The previous lecture was concerned with two things, namely (meta-theoretic)
consequences of Model Existence and the presentation of Hilbert systems.

• The rough idea of Model Existence is based on maximally deriving
consequences of a given set formulas, without arriving at a contradiction.
Maximality is captured by the notion of a Hintikka set, which one can think
of as expressing that the set is closed under taking consequences, i.e. closed
under the tableau expansion rules, and is consistent in that it does not contain
a formula and its negation, no contradiction. Hintikka’s lemma expresses that
such sets are satisfiable (think of satisying a branch of a tableau where we
have exhousted all possible consequence without it being closed), and Model
Existence that every set in a Propositional Consistency Property, a collection
of sets of formulas having certain closure properties, is satisfiable because it
can be extended to a Hintikka set (in the collection). From this completeness
of tableaux follows, since if never a closed tableau is obtained (from the
negation of a formula), a Propositional Consistency Property is obtained, so
the negated formula is satisfiable, hence the original formula a tautology.

AM/VvO (CS @ UIBK) lecture 4 3/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Overviews

Overview of previous lecture (ctd)

• Compactness will be commented on below, for first-order logic.

• Interpolation is a meta-theoretic result having uses in model checking and
database theory. One can think of it as expressing a restriction on the
converse of transitivity: Whereas, transitivity expresses that given X implies
Y and Y implies Z , it follows that X implies Z , Craig’s interpolation theorem
expresses that given X implies Z , one can find an interpolant Y such that X
implies Y and Y implies Z , and that for finding Y we may restrict ourselves
to formulas speaking about the variables X and Z ; i.e. an
interpolant/way-point Y can always be found using only variables that are in
the common language of X and Z . Versions of interpolation hold e.g. for
first-order logic (we will see) and equational logic. There are also logics for
which interpolation does not hold, e.g. rewriting logic.

AM/VvO (CS @ UIBK) lecture 4 4/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Overviews

Overview of previous lecture (ctd)

• There is usually an exchange in inference systems, between having many
axioms and few inference rules, and having few axioms and many inference
rules. Hilbert systems are the extreme case of the former, just the inference
rule of modus ponens, whereas natural deduction is an instance of the latter,
having introduction and elimination rules for each connective. The deduction
theorem connects both by showing that Y can be inferred from X iff there is
a Hilbert proof of X ⊃ Y . The proof is constructive, so that to prove the
latter, one can first prove the former, and then transform that into a Hilbert
proof using the deduction theorem. The Hilbert system presented has only
two axioms, but was shown complete using Model Existence, showing the
versatility of the latter result.

AM/VvO (CS @ UIBK) lecture 4 5/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Overviews

Overview of this lecture

This lecture is concerned with generalising our set-up for to first-order logic, the
default logic in automated reasoning, by allowing to express properties of and
relations between individuals (predicates instead of just properties), and all (∀) or
some (∃) of these. The items below, on this page, should be known.

• syntax: terms to represent individuals (e.g. natural numbers) and operations
on them (e.g. addition), predicates to describe properties of individuals (unary
predicates) and relations between them (binary, ternary, . . . predicates), and
quantifiers to express properties holding for some/all individuals.

• semantics: meaning of terms is given by means of a domain from which
individuals are taken and over which quantifiers range; operations are
interpreted as functions on the domain, and predicates as relation on it. The
meaning of a concrete formula depends on an assignment giving meaning to
the variables in a term, as elements of the domain. This dependence is there
to allow interpreting formulas having quantifiers by recursion on the formula.
E.g. (∀x)Φ is true if for all assignments to x , the subformula Φ is true. The
semantics is then used to define the generalised notions of validity and
satisfiability.

AM/VvO (CS @ UIBK) lecture 4 6/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Overviews

Overview of this lecture (ctd)

• Herbrand models are models where terms are interpreted as themselves. That
is, Herbrand models are a kind of syntactic models; instead of taking as
domain say the natural numbers, or people or . . . we take the terms
themselves as individuals. For the Herbrand model, assignments are
substitutions for the variables. Herbrand models are counterintuitive (aren’t
interpretations meant to give meaning/semantics to the language/syntax?
how can syntax fulfill the role of semantics?) but (cf. free groups) they work:
Herbrand models are typically used for meta-theoretic results connecting
semantics to syntax, with the reasoning going roughly as follows: if a formula
is valid, then it is true in all models, so in particular in the Herbrand model;
thus (Herbrand’s theorm), if the formula is existential it suffices to find
appropriate termsfor the existentially quantified variables. This enables
automation. Proof search by enumerating terms is the basis for Prolog (how
would one check all interpretations in all domains?).

• Uniform notation is generalised by noting that ∀ is a generalised conjunction
and ∃ a generalised disjunction. For example, one can think of (∃n)n ≥ 5 in
the natural numbers as (0 ≥ 5) ∨ (1 ≥ 5) ∨ (2 ≥ 5)

AM/VvO (CS @ UIBK) lecture 4 7/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Overviews

Overview of this lecture (ctd)

• The meta-theoretic results follow by generalising the propositional case, or
rather the cpnverse: Hintikka and Model Existence were set-up for the
propositional case such that they would allow easy generalisation to the
first-order case. In the propositional case one could often do with finite sets of
propositions (e.g. for showing completeness results), but that would not do for
the first-order case. An intuition for this insufficiency is provided by the above
correspondence between quantified formulas and infinite con/disjunctions.

• Compactness is a meta-theoretic result in that it can be used to show the
limitations of first-order logic. In particular, it implies that there is no
first-order formula that can express that the domain is finite. From the
Löwenheim–Skolem theorem follows a similar limitation of first-order logic:
whatever first-order axiomatisation one gives of the real numbers, there will
always be a countable model. This means that first-order formulas cannot
capture the uncountability of the real numbers.

AM/VvO (CS @ UIBK) lecture 4 8/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Contents

Part I: Propositional Logic

compactness, completeness, Hilbert systems, Hintikka’s lemma, interpolation,
logical consequence, model existence theorem, propositional semantic tableaux,
soundness

Part II: First-Order Logic

compactness, completeness, Craig’s interpolation theorem, cut elimination,
first-order semantic tableaux, Herbrand models, Herbrand’s theorem, Hilbert
systems, Hintikka’s lemma, Löwenheim-Skolem, logical consequence, model
existence theorem, prenex form, skolemization, soundness

Part III: Limitations and Extensions of First-Order Logic

Curry-Howard isomorphism, intuitionistic logic, Kripke models, second-order logic,
simply-typed λ-calculus

AM/VvO (CS @ UIBK) lecture 4 9/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Contents

Part I: Propositional Logic

compactness, completeness, Hilbert systems, Hintikka’s lemma, interpolation,
logical consequence, model existence theorem, propositional semantic tableaux,
soundness

Part II: First-Order Logic

compactness, completeness, Craig’s interpolation theorem, cut elimination,
first-order semantic tableaux, Herbrand models, Herbrand’s theorem, Hilbert
systems, Hintikka’s lemma, Löwenheim-Skolem, logical consequence, model
existence theorem, prenex form, skolemization, soundness

Part III: Limitations and Extensions of First-Order Logic

Curry-Howard isomorphism, intuitionistic logic, Kripke models, second-order logic,
simply-typed λ-calculus

AM/VvO (CS @ UIBK) lecture 4 9/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

Outline

Overviews

First-Order Logic
Syntax
Substitutions
Semantics

Herbrand Models

Uniform Notation

Hintikka’s Lemma

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 4 10/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

First-Order Languages – Common Items

• propositional connectives: primary connectives are basic, secondary
connectives are defined, propositional constants > and ⊥

• quantifiers: ∀ and ∃
• variables: v1, v2, . . .

Definition

first-order language is determined by specifying

1 countable set R of relation or predicate symbols, each of which has positive
integer associated with it

2 countable set F of function symbols, each of which has positive integer
associated with it

3 countable set C of constant symbols

notation: L(R,F,C) (or simply L)

AM/VvO (CS @ UIBK) lecture 4 11/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

First-Order Languages – Common Items

• propositional connectives: primary connectives are basic, secondary
connectives are defined, propositional constants > and ⊥

• quantifiers: ∀ and ∃

• variables: v1, v2, . . .

Definition

first-order language is determined by specifying

1 countable set R of relation or predicate symbols, each of which has positive
integer associated with it

2 countable set F of function symbols, each of which has positive integer
associated with it

3 countable set C of constant symbols

notation: L(R,F,C) (or simply L)

AM/VvO (CS @ UIBK) lecture 4 11/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

First-Order Languages – Common Items

• propositional connectives: primary connectives are basic, secondary
connectives are defined, propositional constants > and ⊥

• quantifiers: ∀ and ∃
• variables: v1, v2, . . .

Definition

first-order language is determined by specifying

1 countable set R of relation or predicate symbols, each of which has positive
integer associated with it

2 countable set F of function symbols, each of which has positive integer
associated with it

3 countable set C of constant symbols

notation: L(R,F,C) (or simply L)

AM/VvO (CS @ UIBK) lecture 4 11/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

First-Order Languages – Common Items

• propositional connectives: primary connectives are basic, secondary
connectives are defined, propositional constants > and ⊥

• quantifiers: ∀ and ∃
• variables: v1, v2, . . .

Definition

first-order language is determined by specifying

1 countable set R of relation or predicate symbols, each of which has positive
integer associated with it

2 countable set F of function symbols, each of which has positive integer
associated with it

3 countable set C of constant symbols

notation: L(R,F,C) (or simply L)

AM/VvO (CS @ UIBK) lecture 4 11/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

First-Order Languages – Common Items

• propositional connectives: primary connectives are basic, secondary
connectives are defined, propositional constants > and ⊥

• quantifiers: ∀ and ∃
• variables: v1, v2, . . .

Definition

first-order language is determined by specifying

1 countable set R of relation or predicate symbols, each of which has positive
integer associated with it

2 countable set F of function symbols, each of which has positive integer
associated with it

3 countable set C of constant symbols

notation: L(R,F,C) (or simply L)

AM/VvO (CS @ UIBK) lecture 4 11/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

First-Order Languages – Common Items

• propositional connectives: primary connectives are basic, secondary
connectives are defined, propositional constants > and ⊥

• quantifiers: ∀ and ∃
• variables: v1, v2, . . .

Definition

first-order language is determined by specifying

1 countable set R of relation or predicate symbols, each of which has positive
integer associated with it

2 countable set F of function symbols, each of which has positive integer
associated with it

3 countable set C of constant symbols

notation: L(R,F,C) (or simply L)

AM/VvO (CS @ UIBK) lecture 4 11/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

First-Order Languages – Common Items

• propositional connectives: primary connectives are basic, secondary
connectives are defined, propositional constants > and ⊥

• quantifiers: ∀ and ∃
• variables: v1, v2, . . .

Definition

first-order language is determined by specifying

1 countable set R of relation or predicate symbols, each of which has positive
integer associated with it

2 countable set F of function symbols, each of which has positive integer
associated with it

3 countable set C of constant symbols

notation: L(R,F,C) (or simply L)

AM/VvO (CS @ UIBK) lecture 4 11/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

Definition

family of terms of L(R,F,C) is smallest set such that

1 any variable is term of L(R,F,C)

2 any constant symbol (member of C) is term of L(R,F,C)

3 if f is n -place function symbol (member of F) and t1, . . . , tn are terms of
L(R,F,C) then f (t1, . . . , tn) is term of L(R,F,C)

term is closed if it contains no variables

Example

one-place function symbol f , two-place function symbol g , constants a and b,
variables x and y

terms: f (g(a, x))

g(f (x), g(x , y)) g(a, g(a, g(a, b)))

AM/VvO (CS @ UIBK) lecture 4 12/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

Definition

family of terms of L(R,F,C) is smallest set such that

1 any variable is term of L(R,F,C)

2 any constant symbol (member of C) is term of L(R,F,C)

3 if f is n -place function symbol (member of F) and t1, . . . , tn are terms of
L(R,F,C) then f (t1, . . . , tn) is term of L(R,F,C)

term is closed if it contains no variables

Example

one-place function symbol f , two-place function symbol g , constants a and b,
variables x and y

terms: f (g(a, x))

g(f (x), g(x , y)) g(a, g(a, g(a, b)))

AM/VvO (CS @ UIBK) lecture 4 12/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

Definition

family of terms of L(R,F,C) is smallest set such that

1 any variable is term of L(R,F,C)

2 any constant symbol (member of C) is term of L(R,F,C)

3 if f is n -place function symbol (member of F) and t1, . . . , tn are terms of
L(R,F,C) then f (t1, . . . , tn) is term of L(R,F,C)

term is closed if it contains no variables

Example

one-place function symbol f , two-place function symbol g , constants a and b,
variables x and y

terms: f (g(a, x))

g(f (x), g(x , y)) g(a, g(a, g(a, b)))

AM/VvO (CS @ UIBK) lecture 4 12/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

Definition

family of terms of L(R,F,C) is smallest set such that

1 any variable is term of L(R,F,C)

2 any constant symbol (member of C) is term of L(R,F,C)

3 if f is n -place function symbol (member of F) and t1, . . . , tn are terms of
L(R,F,C) then f (t1, . . . , tn) is term of L(R,F,C)

term is closed if it contains no variables

Example

one-place function symbol f , two-place function symbol g , constants a and b,
variables x and y

terms: f (g(a, x))

g(f (x), g(x , y)) g(a, g(a, g(a, b)))

AM/VvO (CS @ UIBK) lecture 4 12/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

Definition

family of terms of L(R,F,C) is smallest set such that

1 any variable is term of L(R,F,C)

2 any constant symbol (member of C) is term of L(R,F,C)

3 if f is n -place function symbol (member of F) and t1, . . . , tn are terms of
L(R,F,C) then f (t1, . . . , tn) is term of L(R,F,C)

term is closed if it contains no variables

Example

one-place function symbol f , two-place function symbol g , constants a and b,
variables x and y

terms: f (g(a, x))

g(f (x), g(x , y)) g(a, g(a, g(a, b)))

AM/VvO (CS @ UIBK) lecture 4 12/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

Definition

family of terms of L(R,F,C) is smallest set such that

1 any variable is term of L(R,F,C)

2 any constant symbol (member of C) is term of L(R,F,C)

3 if f is n -place function symbol (member of F) and t1, . . . , tn are terms of
L(R,F,C) then f (t1, . . . , tn) is term of L(R,F,C)

term is closed if it contains no variables

Example

one-place function symbol f , two-place function symbol g , constants a and b,
variables x and y

terms: f (g(a, x))

g(f (x), g(x , y)) g(a, g(a, g(a, b)))

AM/VvO (CS @ UIBK) lecture 4 12/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

Definition

family of terms of L(R,F,C) is smallest set such that

1 any variable is term of L(R,F,C)

2 any constant symbol (member of C) is term of L(R,F,C)

3 if f is n -place function symbol (member of F) and t1, . . . , tn are terms of
L(R,F,C) then f (t1, . . . , tn) is term of L(R,F,C)

term is closed if it contains no variables

Example

one-place function symbol f , two-place function symbol g , constants a and b,
variables x and y

terms: f (g(a, x)) g(f (x), g(x , y))

g(a, g(a, g(a, b)))

AM/VvO (CS @ UIBK) lecture 4 12/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

Definition

family of terms of L(R,F,C) is smallest set such that

1 any variable is term of L(R,F,C)

2 any constant symbol (member of C) is term of L(R,F,C)

3 if f is n -place function symbol (member of F) and t1, . . . , tn are terms of
L(R,F,C) then f (t1, . . . , tn) is term of L(R,F,C)

term is closed if it contains no variables

Example

one-place function symbol f , two-place function symbol g , constants a and b,
variables x and y

terms: f (g(a, x)) g(f (x), g(x , y)) g(a, g(a, g(a, b)))

AM/VvO (CS @ UIBK) lecture 4 12/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

Definition

atomic formula of L(R,F,C) is any string of form R(t1, . . . , tn) where R is n -place
relation symbol (member of R) and t1, . . . , tn are terms of L(R,F,C)

also > and ⊥ are atomic formulas of L(R,F,C)

Definition

family of formulas of L(R,F,C) is smallest set such that

1 any atomic formula of L(R,F,C) is formula of L(R,F,C)

2 if A is formula of L(R,F,C) so is ¬A

3 if A and B are formulas of L(R,F,C) and ◦ is binary connective then
A ◦ B is formula of L(R,F,C)

4 if A is formula of L(R,F,C) and x is variable then (∀x)A and (∃x)A are
formulas of L(R,F,C)

AM/VvO (CS @ UIBK) lecture 4 13/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

Definition

atomic formula of L(R,F,C) is any string of form R(t1, . . . , tn) where R is n -place
relation symbol (member of R) and t1, . . . , tn are terms of L(R,F,C)

also > and ⊥ are atomic formulas of L(R,F,C)

Definition

family of formulas of L(R,F,C) is smallest set such that

1 any atomic formula of L(R,F,C) is formula of L(R,F,C)

2 if A is formula of L(R,F,C) so is ¬A

3 if A and B are formulas of L(R,F,C) and ◦ is binary connective then
A ◦ B is formula of L(R,F,C)

4 if A is formula of L(R,F,C) and x is variable then (∀x)A and (∃x)A are
formulas of L(R,F,C)

AM/VvO (CS @ UIBK) lecture 4 13/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

Definition

atomic formula of L(R,F,C) is any string of form R(t1, . . . , tn) where R is n -place
relation symbol (member of R) and t1, . . . , tn are terms of L(R,F,C)

also > and ⊥ are atomic formulas of L(R,F,C)

Definition

family of formulas of L(R,F,C) is smallest set such that

1 any atomic formula of L(R,F,C) is formula of L(R,F,C)

2 if A is formula of L(R,F,C) so is ¬A

3 if A and B are formulas of L(R,F,C) and ◦ is binary connective then
A ◦ B is formula of L(R,F,C)

4 if A is formula of L(R,F,C) and x is variable then (∀x)A and (∃x)A are
formulas of L(R,F,C)

AM/VvO (CS @ UIBK) lecture 4 13/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

Definition

atomic formula of L(R,F,C) is any string of form R(t1, . . . , tn) where R is n -place
relation symbol (member of R) and t1, . . . , tn are terms of L(R,F,C)

also > and ⊥ are atomic formulas of L(R,F,C)

Definition

family of formulas of L(R,F,C) is smallest set such that

1 any atomic formula of L(R,F,C) is formula of L(R,F,C)

2 if A is formula of L(R,F,C) so is ¬A

3 if A and B are formulas of L(R,F,C) and ◦ is binary connective then
A ◦ B is formula of L(R,F,C)

4 if A is formula of L(R,F,C) and x is variable then (∀x)A and (∃x)A are
formulas of L(R,F,C)

AM/VvO (CS @ UIBK) lecture 4 13/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

Definition

atomic formula of L(R,F,C) is any string of form R(t1, . . . , tn) where R is n -place
relation symbol (member of R) and t1, . . . , tn are terms of L(R,F,C)

also > and ⊥ are atomic formulas of L(R,F,C)

Definition

family of formulas of L(R,F,C) is smallest set such that

1 any atomic formula of L(R,F,C) is formula of L(R,F,C)

2 if A is formula of L(R,F,C) so is ¬A

3 if A and B are formulas of L(R,F,C) and ◦ is binary connective then
A ◦ B is formula of L(R,F,C)

4 if A is formula of L(R,F,C) and x is variable then (∀x)A and (∃x)A are
formulas of L(R,F,C)

AM/VvO (CS @ UIBK) lecture 4 13/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

Definition

atomic formula of L(R,F,C) is any string of form R(t1, . . . , tn) where R is n -place
relation symbol (member of R) and t1, . . . , tn are terms of L(R,F,C)

also > and ⊥ are atomic formulas of L(R,F,C)

Definition

family of formulas of L(R,F,C) is smallest set such that

1 any atomic formula of L(R,F,C) is formula of L(R,F,C)

2 if A is formula of L(R,F,C) so is ¬A

3 if A and B are formulas of L(R,F,C) and ◦ is binary connective then
A ◦ B is formula of L(R,F,C)

4 if A is formula of L(R,F,C) and x is variable then (∀x)A and (∃x)A are
formulas of L(R,F,C)

AM/VvO (CS @ UIBK) lecture 4 13/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

Example

two-place relation symbol R, two-place function symbol f

formulas: (∀x)(∀y)(R(x , y) ⊃ (∃z)(R(x , z) ∧ R(z , y)))

(∀x)(∃y)R(f (x , y), z)

Definition

free-variable occurrences in formula are defined as follows:

1 free-variable occurrences in atomic formula are all variable occurrences in
that formula

2 free-variable occurrences in ¬A are free-variable occurrences in A

3 free-variable occurrences in (A ◦ B) are free-variable occurrences in A
together with free-variable occurrences in B

4 free-variable occurrences in (∀x)A and (∃x)A are free-variable occurrences
in A, except for occurrences of x

variable occurrence is bound if it is not free

AM/VvO (CS @ UIBK) lecture 4 14/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

Example

two-place relation symbol R, two-place function symbol f

formulas: (∀x)(∀y)(R(x , y) ⊃ (∃z)(R(x , z) ∧ R(z , y)))

(∀x)(∃y)R(f (x , y), z)

Definition

free-variable occurrences in formula are defined as follows:

1 free-variable occurrences in atomic formula are all variable occurrences in
that formula

2 free-variable occurrences in ¬A are free-variable occurrences in A

3 free-variable occurrences in (A ◦ B) are free-variable occurrences in A
together with free-variable occurrences in B

4 free-variable occurrences in (∀x)A and (∃x)A are free-variable occurrences
in A, except for occurrences of x

variable occurrence is bound if it is not free

AM/VvO (CS @ UIBK) lecture 4 14/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

Example

two-place relation symbol R, two-place function symbol f

formulas: (∀x)(∀y)(R(x , y) ⊃ (∃z)(R(x , z) ∧ R(z , y))) (∀x)(∃y)R(f (x , y), z)

Definition

free-variable occurrences in formula are defined as follows:

1 free-variable occurrences in atomic formula are all variable occurrences in
that formula

2 free-variable occurrences in ¬A are free-variable occurrences in A

3 free-variable occurrences in (A ◦ B) are free-variable occurrences in A
together with free-variable occurrences in B

4 free-variable occurrences in (∀x)A and (∃x)A are free-variable occurrences
in A, except for occurrences of x

variable occurrence is bound if it is not free

AM/VvO (CS @ UIBK) lecture 4 14/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

Example

two-place relation symbol R, two-place function symbol f

formulas: (∀x)(∀y)(R(x , y) ⊃ (∃z)(R(x , z) ∧ R(z , y))) (∀x)(∃y)R(f (x , y), z)

Definition

free-variable occurrences in formula are defined as follows:

1 free-variable occurrences in atomic formula are all variable occurrences in
that formula

2 free-variable occurrences in ¬A are free-variable occurrences in A

3 free-variable occurrences in (A ◦ B) are free-variable occurrences in A
together with free-variable occurrences in B

4 free-variable occurrences in (∀x)A and (∃x)A are free-variable occurrences
in A, except for occurrences of x

variable occurrence is bound if it is not free

AM/VvO (CS @ UIBK) lecture 4 14/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

Example

two-place relation symbol R, two-place function symbol f

formulas: (∀x)(∀y)(R(x , y) ⊃ (∃z)(R(x , z) ∧ R(z , y))) (∀x)(∃y)R(f (x , y), z)

Definition

free-variable occurrences in formula are defined as follows:

1 free-variable occurrences in atomic formula are all variable occurrences in
that formula

2 free-variable occurrences in ¬A are free-variable occurrences in A

3 free-variable occurrences in (A ◦ B) are free-variable occurrences in A
together with free-variable occurrences in B

4 free-variable occurrences in (∀x)A and (∃x)A are free-variable occurrences
in A, except for occurrences of x

variable occurrence is bound if it is not free

AM/VvO (CS @ UIBK) lecture 4 14/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

Example

two-place relation symbol R, two-place function symbol f

formulas: (∀x)(∀y)(R(x , y) ⊃ (∃z)(R(x , z) ∧ R(z , y))) (∀x)(∃y)R(f (x , y), z)

Definition

free-variable occurrences in formula are defined as follows:

1 free-variable occurrences in atomic formula are all variable occurrences in
that formula

2 free-variable occurrences in ¬A are free-variable occurrences in A

3 free-variable occurrences in (A ◦ B) are free-variable occurrences in A
together with free-variable occurrences in B

4 free-variable occurrences in (∀x)A and (∃x)A are free-variable occurrences
in A, except for occurrences of x

variable occurrence is bound if it is not free

AM/VvO (CS @ UIBK) lecture 4 14/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

Example

two-place relation symbol R, two-place function symbol f

formulas: (∀x)(∀y)(R(x , y) ⊃ (∃z)(R(x , z) ∧ R(z , y))) (∀x)(∃y)R(f (x , y), z)

Definition

free-variable occurrences in formula are defined as follows:

1 free-variable occurrences in atomic formula are all variable occurrences in
that formula

2 free-variable occurrences in ¬A are free-variable occurrences in A

3 free-variable occurrences in (A ◦ B) are free-variable occurrences in A
together with free-variable occurrences in B

4 free-variable occurrences in (∀x)A and (∃x)A are free-variable occurrences
in A, except for occurrences of x

variable occurrence is bound if it is not free

AM/VvO (CS @ UIBK) lecture 4 14/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

Example

two-place relation symbol R, two-place function symbol f

formulas: (∀x)(∀y)(R(x , y) ⊃ (∃z)(R(x , z) ∧ R(z , y))) (∀x)(∃y)R(f (x , y), z)

Definition

free-variable occurrences in formula are defined as follows:

1 free-variable occurrences in atomic formula are all variable occurrences in
that formula

2 free-variable occurrences in ¬A are free-variable occurrences in A

3 free-variable occurrences in (A ◦ B) are free-variable occurrences in A
together with free-variable occurrences in B

4 free-variable occurrences in (∀x)A and (∃x)A are free-variable occurrences
in A, except for occurrences of x

variable occurrence is bound if it is not free

AM/VvO (CS @ UIBK) lecture 4 14/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

Example

(∀x)[(∃y)R(f (x , y), c) ⊃ (∃z)S(y , z)]

free-variable occurences

(∀x)[(∃y)R(f (x , y), c) ⊃ (∃z)S(y , z)] bound-variable occurences

Definition

sentence (or closed formula) of L(R,F,C) is formula of L(R,F,C) with no
free-variable occurrences

AM/VvO (CS @ UIBK) lecture 4 15/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

Example

(∀x)[(∃y)R(f (x , y), c) ⊃ (∃z)S(y , z)] free-variable occurences

(∀x)[(∃y)R(f (x , y), c) ⊃ (∃z)S(y , z)] bound-variable occurences

Definition

sentence (or closed formula) of L(R,F,C) is formula of L(R,F,C) with no
free-variable occurrences

AM/VvO (CS @ UIBK) lecture 4 15/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

Example

(∀x)[(∃y)R(f (x , y), c) ⊃ (∃z)S(y , z)] free-variable occurences

(∀x)[(∃y)R(f (x , y), c) ⊃ (∃z)S(y , z)] bound-variable occurences

Definition

sentence (or closed formula) of L(R,F,C) is formula of L(R,F,C) with no
free-variable occurrences

AM/VvO (CS @ UIBK) lecture 4 15/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Syntax

Example

(∀x)[(∃y)R(f (x , y), c) ⊃ (∃z)S(y , z)] free-variable occurences

(∀x)[(∃y)R(f (x , y), c) ⊃ (∃z)S(y , z)] bound-variable occurences

Definition

sentence (or closed formula) of L(R,F,C) is formula of L(R,F,C) with no
free-variable occurrences

AM/VvO (CS @ UIBK) lecture 4 15/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Outline

Overviews

First-Order Logic
Syntax
Substitutions
Semantics

Herbrand Models

Uniform Notation

Hintikka’s Lemma

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 4 16/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Definition

substitution is mapping σ : V→ T from set of variables V to set of terms T

Definition

given substitution σ

1 cσ = c for constant symbol c

2 f (t1, . . . , tn)σ = f (t1σ, . . . , tnσ) for n -place function symbol f

Example

xσ = f (x , y), yσ = h(a), zσ = g(c , h(x))

j(k(x), y)σ = j(k(f (x , y)), h(a))

Definition

composition of substitutions σ and τ is substitution στ such that x(στ) = (xσ)τ
for each variable x

AM/VvO (CS @ UIBK) lecture 4 17/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Definition

substitution is mapping σ : V→ T from set of variables V to set of terms T

Definition

given substitution σ

1 cσ = c for constant symbol c

2 f (t1, . . . , tn)σ = f (t1σ, . . . , tnσ) for n -place function symbol f

Example

xσ = f (x , y), yσ = h(a), zσ = g(c , h(x))

j(k(x), y)σ = j(k(f (x , y)), h(a))

Definition

composition of substitutions σ and τ is substitution στ such that x(στ) = (xσ)τ
for each variable x

AM/VvO (CS @ UIBK) lecture 4 17/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Definition

substitution is mapping σ : V→ T from set of variables V to set of terms T

Definition

given substitution σ

1 cσ = c for constant symbol c

2 f (t1, . . . , tn)σ = f (t1σ, . . . , tnσ) for n -place function symbol f

Example

xσ = f (x , y), yσ = h(a), zσ = g(c , h(x))

j(k(x), y)σ = j(k(f (x , y)), h(a))

Definition

composition of substitutions σ and τ is substitution στ such that x(στ) = (xσ)τ
for each variable x

AM/VvO (CS @ UIBK) lecture 4 17/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Definition

substitution is mapping σ : V→ T from set of variables V to set of terms T

Definition

given substitution σ

1 cσ = c for constant symbol c

2 f (t1, . . . , tn)σ = f (t1σ, . . . , tnσ) for n -place function symbol f

Example

xσ = f (x , y), yσ = h(a), zσ = g(c , h(x))

j(k(x), y)σ = j(k(f (x , y)), h(a))

Definition

composition of substitutions σ and τ is substitution στ such that x(στ) = (xσ)τ
for each variable x

AM/VvO (CS @ UIBK) lecture 4 17/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Definition

substitution is mapping σ : V→ T from set of variables V to set of terms T

Definition

given substitution σ

1 cσ = c for constant symbol c

2 f (t1, . . . , tn)σ = f (t1σ, . . . , tnσ) for n -place function symbol f

Example

xσ = f (x , y), yσ = h(a), zσ = g(c , h(x))

j(k(x), y)σ = j(k(f (x , y)), h(a))

Definition

composition of substitutions σ and τ is substitution στ such that x(στ) = (xσ)τ
for each variable x

AM/VvO (CS @ UIBK) lecture 4 17/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Definition

substitution is mapping σ : V→ T from set of variables V to set of terms T

Definition

given substitution σ

1 cσ = c for constant symbol c

2 f (t1, . . . , tn)σ = f (t1σ, . . . , tnσ) for n -place function symbol f

Example

xσ = f (x , y), yσ = h(a), zσ = g(c , h(x))

j(k(x), y)σ = j(k(f (x , y)), h(a))

Definition

composition of substitutions σ and τ is substitution στ such that x(στ) = (xσ)τ
for each variable x

AM/VvO (CS @ UIBK) lecture 4 17/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Lemma

t(στ) = (tσ)τ for every term t

Lemma

composition of substitutions is associative

Definition

• support of substitution σ is set of variables x for which xσ 6= x

• substitution has finite support if support set is finite

Lemma

composition of substitutions having finite support is substitution having finite
support

AM/VvO (CS @ UIBK) lecture 4 18/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Lemma

t(στ) = (tσ)τ for every term t

Lemma

composition of substitutions is associative

Definition

• support of substitution σ is set of variables x for which xσ 6= x

• substitution has finite support if support set is finite

Lemma

composition of substitutions having finite support is substitution having finite
support

AM/VvO (CS @ UIBK) lecture 4 18/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Lemma

t(στ) = (tσ)τ for every term t

Lemma

composition of substitutions is associative

Definition

• support of substitution σ is set of variables x for which xσ 6= x

• substitution has finite support if support set is finite

Lemma

composition of substitutions having finite support is substitution having finite
support

AM/VvO (CS @ UIBK) lecture 4 18/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Lemma

t(στ) = (tσ)τ for every term t

Lemma

composition of substitutions is associative

Definition

• support of substitution σ is set of variables x for which xσ 6= x

• substitution has finite support if support set is finite

Lemma

composition of substitutions having finite support is substitution having finite
support

AM/VvO (CS @ UIBK) lecture 4 18/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Lemma

t(στ) = (tσ)τ for every term t

Lemma

composition of substitutions is associative

Definition

• support of substitution σ is set of variables x for which xσ 6= x

• substitution has finite support if support set is finite

Lemma

composition of substitutions having finite support is substitution having finite
support

AM/VvO (CS @ UIBK) lecture 4 18/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Notation

{x1/t1, . . . , xn/tn} for substitution σ having finite support {x1, . . . , xn} and
xiσ = ti for 1 6 i 6 n

Definition

given substitution σ and variable x , substitution σx is defined as follows:

yσx = x if y = x and yσx = yσ if y 6= x

Definition

1 [A(t1, . . . , tn)]σ = A(t1σ, . . . , tnσ), >σ = >, ⊥σ = ⊥

2 [¬X]σ = ¬[Xσ]

3 (X ◦ Y)σ = (Xσ ◦ Y σ)

4 [(∀x)Φ]σ = (∀x)[Φσx]

5 [(∃x)Φ]σ = (∃x)[Φσx]

AM/VvO (CS @ UIBK) lecture 4 19/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Notation

{x1/t1, . . . , xn/tn} for substitution σ having finite support {x1, . . . , xn} and
xiσ = ti for 1 6 i 6 n

Definition

given substitution σ and variable x , substitution σx is defined as follows:

yσx = x if y = x and yσx = yσ if y 6= x

Definition

1 [A(t1, . . . , tn)]σ = A(t1σ, . . . , tnσ), >σ = >, ⊥σ = ⊥

2 [¬X]σ = ¬[Xσ]

3 (X ◦ Y)σ = (Xσ ◦ Y σ)

4 [(∀x)Φ]σ = (∀x)[Φσx]

5 [(∃x)Φ]σ = (∃x)[Φσx]

AM/VvO (CS @ UIBK) lecture 4 19/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Notation

{x1/t1, . . . , xn/tn} for substitution σ having finite support {x1, . . . , xn} and
xiσ = ti for 1 6 i 6 n

Definition

given substitution σ and variable x , substitution σx is defined as follows:

yσx = x if y = x and yσx = yσ if y 6= x

Definition

1 [A(t1, . . . , tn)]σ = A(t1σ, . . . , tnσ), >σ = >, ⊥σ = ⊥

2 [¬X]σ = ¬[Xσ]

3 (X ◦ Y)σ = (Xσ ◦ Y σ)

4 [(∀x)Φ]σ = (∀x)[Φσx]

5 [(∃x)Φ]σ = (∃x)[Φσx]

AM/VvO (CS @ UIBK) lecture 4 19/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Notation

{x1/t1, . . . , xn/tn} for substitution σ having finite support {x1, . . . , xn} and
xiσ = ti for 1 6 i 6 n

Definition

given substitution σ and variable x , substitution σx is defined as follows:

yσx = x if y = x and yσx = yσ if y 6= x

Definition

1 [A(t1, . . . , tn)]σ = A(t1σ, . . . , tnσ), >σ = >, ⊥σ = ⊥

2 [¬X]σ = ¬[Xσ]

3 (X ◦ Y)σ = (Xσ ◦ Y σ)

4 [(∀x)Φ]σ = (∀x)[Φσx]

5 [(∃x)Φ]σ = (∃x)[Φσx]

AM/VvO (CS @ UIBK) lecture 4 19/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Notation

{x1/t1, . . . , xn/tn} for substitution σ having finite support {x1, . . . , xn} and
xiσ = ti for 1 6 i 6 n

Definition

given substitution σ and variable x , substitution σx is defined as follows:

yσx = x if y = x and yσx = yσ if y 6= x

Definition

1 [A(t1, . . . , tn)]σ = A(t1σ, . . . , tnσ), >σ = >, ⊥σ = ⊥

2 [¬X]σ = ¬[Xσ]

3 (X ◦ Y)σ = (Xσ ◦ Y σ)

4 [(∀x)Φ]σ = (∀x)[Φσx]

5 [(∃x)Φ]σ = (∃x)[Φσx]

AM/VvO (CS @ UIBK) lecture 4 19/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Notation

{x1/t1, . . . , xn/tn} for substitution σ having finite support {x1, . . . , xn} and
xiσ = ti for 1 6 i 6 n

Definition

given substitution σ and variable x , substitution σx is defined as follows:

yσx = x if y = x and yσx = yσ if y 6= x

Definition

1 [A(t1, . . . , tn)]σ = A(t1σ, . . . , tnσ), >σ = >, ⊥σ = ⊥

2 [¬X]σ = ¬[Xσ]

3 (X ◦ Y)σ = (Xσ ◦ Y σ)

4 [(∀x)Φ]σ = (∀x)[Φσx]

5 [(∃x)Φ]σ = (∃x)[Φσx]

AM/VvO (CS @ UIBK) lecture 4 19/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Notation

{x1/t1, . . . , xn/tn} for substitution σ having finite support {x1, . . . , xn} and
xiσ = ti for 1 6 i 6 n

Definition

given substitution σ and variable x , substitution σx is defined as follows:

yσx = x if y = x and yσx = yσ if y 6= x

Definition

1 [A(t1, . . . , tn)]σ = A(t1σ, . . . , tnσ), >σ = >, ⊥σ = ⊥

2 [¬X]σ = ¬[Xσ]

3 (X ◦ Y)σ = (Xσ ◦ Y σ)

4 [(∀x)Φ]σ = (∀x)[Φσx]

5 [(∃x)Φ]σ = (∃x)[Φσx]

AM/VvO (CS @ UIBK) lecture 4 19/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Example

if σ = {x/a, y/b} then

[(∀x)R(x , y) ⊃ (∃y)R(x , y)]σ

= [(∀x)R(x , y)]σ ⊃ [(∃y)R(x , y)]σ

= (∀x)[R(x , y)]σx ⊃ (∃y)[R(x , y)]σy

= (∀x)R(x , b) ⊃ (∃y)R(a, y)

Remark

(Φσ)τ = Φ(στ) need not hold

Example

Φ = (∀y)R(x , y), σ = {x/y}, τ = {y/c}

• (Φσ)τ = (∀y)R(y , y)τ

= (∀y)R(y , y)

• στ = {x/c , y/c}
• Φ(στ) = (∀y)R(c , y)

AM/VvO (CS @ UIBK) lecture 4 20/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Example

if σ = {x/a, y/b} then

[(∀x)R(x , y) ⊃ (∃y)R(x , y)]σ = [(∀x)R(x , y)]σ ⊃ [(∃y)R(x , y)]σ

= (∀x)[R(x , y)]σx ⊃ (∃y)[R(x , y)]σy

= (∀x)R(x , b) ⊃ (∃y)R(a, y)

Remark

(Φσ)τ = Φ(στ) need not hold

Example

Φ = (∀y)R(x , y), σ = {x/y}, τ = {y/c}

• (Φσ)τ = (∀y)R(y , y)τ

= (∀y)R(y , y)

• στ = {x/c , y/c}
• Φ(στ) = (∀y)R(c , y)

AM/VvO (CS @ UIBK) lecture 4 20/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Example

if σ = {x/a, y/b} then

[(∀x)R(x , y) ⊃ (∃y)R(x , y)]σ = [(∀x)R(x , y)]σ ⊃ [(∃y)R(x , y)]σ

= (∀x)[R(x , y)]σx ⊃ (∃y)[R(x , y)]σy

= (∀x)R(x , b) ⊃ (∃y)R(a, y)

Remark

(Φσ)τ = Φ(στ) need not hold

Example

Φ = (∀y)R(x , y), σ = {x/y}, τ = {y/c}

• (Φσ)τ = (∀y)R(y , y)τ

= (∀y)R(y , y)

• στ = {x/c , y/c}
• Φ(στ) = (∀y)R(c , y)

AM/VvO (CS @ UIBK) lecture 4 20/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Example

if σ = {x/a, y/b} then

[(∀x)R(x , y) ⊃ (∃y)R(x , y)]σ = [(∀x)R(x , y)]σ ⊃ [(∃y)R(x , y)]σ

= (∀x)[R(x , y)]σx ⊃ (∃y)[R(x , y)]σy

= (∀x)R(x , b) ⊃ (∃y)R(a, y)

Remark

(Φσ)τ = Φ(στ) need not hold

Example

Φ = (∀y)R(x , y), σ = {x/y}, τ = {y/c}

• (Φσ)τ = (∀y)R(y , y)τ

= (∀y)R(y , y)

• στ = {x/c , y/c}
• Φ(στ) = (∀y)R(c , y)

AM/VvO (CS @ UIBK) lecture 4 20/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Example

if σ = {x/a, y/b} then

[(∀x)R(x , y) ⊃ (∃y)R(x , y)]σ = [(∀x)R(x , y)]σ ⊃ [(∃y)R(x , y)]σ

= (∀x)[R(x , y)]σx ⊃ (∃y)[R(x , y)]σy

= (∀x)R(x , b) ⊃ (∃y)R(a, y)

Remark

(Φσ)τ = Φ(στ) need not hold

Example

Φ = (∀y)R(x , y), σ = {x/y}, τ = {y/c}

• (Φσ)τ = (∀y)R(y , y)τ

= (∀y)R(y , y)

• στ = {x/c , y/c}
• Φ(στ) = (∀y)R(c , y)

AM/VvO (CS @ UIBK) lecture 4 20/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Example

if σ = {x/a, y/b} then

[(∀x)R(x , y) ⊃ (∃y)R(x , y)]σ = [(∀x)R(x , y)]σ ⊃ [(∃y)R(x , y)]σ

= (∀x)[R(x , y)]σx ⊃ (∃y)[R(x , y)]σy

= (∀x)R(x , b) ⊃ (∃y)R(a, y)

Remark

(Φσ)τ = Φ(στ) need not hold

Example

Φ = (∀y)R(x , y), σ = {x/y}, τ = {y/c}

• (Φσ)τ = (∀y)R(y , y)τ

= (∀y)R(y , y)

• στ = {x/c , y/c}
• Φ(στ) = (∀y)R(c , y)

AM/VvO (CS @ UIBK) lecture 4 20/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Example

if σ = {x/a, y/b} then

[(∀x)R(x , y) ⊃ (∃y)R(x , y)]σ = [(∀x)R(x , y)]σ ⊃ [(∃y)R(x , y)]σ

= (∀x)[R(x , y)]σx ⊃ (∃y)[R(x , y)]σy

= (∀x)R(x , b) ⊃ (∃y)R(a, y)

Remark

(Φσ)τ = Φ(στ) need not hold

Example

Φ = (∀y)R(x , y), σ = {x/y}, τ = {y/c}
• (Φσ)τ = (∀y)R(y , y)τ

= (∀y)R(y , y)

• στ = {x/c , y/c}
• Φ(στ) = (∀y)R(c , y)

AM/VvO (CS @ UIBK) lecture 4 20/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Example

if σ = {x/a, y/b} then

[(∀x)R(x , y) ⊃ (∃y)R(x , y)]σ = [(∀x)R(x , y)]σ ⊃ [(∃y)R(x , y)]σ

= (∀x)[R(x , y)]σx ⊃ (∃y)[R(x , y)]σy

= (∀x)R(x , b) ⊃ (∃y)R(a, y)

Remark

(Φσ)τ = Φ(στ) need not hold

Example

Φ = (∀y)R(x , y), σ = {x/y}, τ = {y/c}
• (Φσ)τ = (∀y)R(y , y)τ = (∀y)R(y , y)

• στ = {x/c , y/c}
• Φ(στ) = (∀y)R(c , y)

AM/VvO (CS @ UIBK) lecture 4 20/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Example

if σ = {x/a, y/b} then

[(∀x)R(x , y) ⊃ (∃y)R(x , y)]σ = [(∀x)R(x , y)]σ ⊃ [(∃y)R(x , y)]σ

= (∀x)[R(x , y)]σx ⊃ (∃y)[R(x , y)]σy

= (∀x)R(x , b) ⊃ (∃y)R(a, y)

Remark

(Φσ)τ = Φ(στ) need not hold

Example

Φ = (∀y)R(x , y), σ = {x/y}, τ = {y/c}
• (Φσ)τ = (∀y)R(y , y)τ = (∀y)R(y , y)

• στ = {x/c , y/c}

• Φ(στ) = (∀y)R(c , y)

AM/VvO (CS @ UIBK) lecture 4 20/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Example

if σ = {x/a, y/b} then

[(∀x)R(x , y) ⊃ (∃y)R(x , y)]σ = [(∀x)R(x , y)]σ ⊃ [(∃y)R(x , y)]σ

= (∀x)[R(x , y)]σx ⊃ (∃y)[R(x , y)]σy

= (∀x)R(x , b) ⊃ (∃y)R(a, y)

Remark

(Φσ)τ = Φ(στ) need not hold

Example

Φ = (∀y)R(x , y), σ = {x/y}, τ = {y/c}
• (Φσ)τ = (∀y)R(y , y)τ = (∀y)R(y , y)

• στ = {x/c , y/c}
• Φ(στ) = (∀y)R(c , y)

AM/VvO (CS @ UIBK) lecture 4 20/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Definition

substitution σ being free for formula is defined as follows:

1 if A is atomic then σ free for A

2 σ is free for ¬X if σ is free for X

3 σ is free for (X ◦ Y) if σ is free for X and σ is free for Y

4 σ is free for (∀x)Φ and (∃x)Φ provided

• σx is free for Φ

• if y is free variable of Φ other than x , yσ does not contain x

Theorem

if substitution σ is free for formula X and substitution τ is free for Xσ then
(Xσ)τ = X (στ)

AM/VvO (CS @ UIBK) lecture 4 21/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Definition

substitution σ being free for formula is defined as follows:

1 if A is atomic then σ free for A

2 σ is free for ¬X if σ is free for X

3 σ is free for (X ◦ Y) if σ is free for X and σ is free for Y

4 σ is free for (∀x)Φ and (∃x)Φ provided

• σx is free for Φ

• if y is free variable of Φ other than x , yσ does not contain x

Theorem

if substitution σ is free for formula X and substitution τ is free for Xσ then
(Xσ)τ = X (στ)

AM/VvO (CS @ UIBK) lecture 4 21/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Definition

substitution σ being free for formula is defined as follows:

1 if A is atomic then σ free for A

2 σ is free for ¬X if σ is free for X

3 σ is free for (X ◦ Y) if σ is free for X and σ is free for Y

4 σ is free for (∀x)Φ and (∃x)Φ provided

• σx is free for Φ

• if y is free variable of Φ other than x , yσ does not contain x

Theorem

if substitution σ is free for formula X and substitution τ is free for Xσ then
(Xσ)τ = X (στ)

AM/VvO (CS @ UIBK) lecture 4 21/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Definition

substitution σ being free for formula is defined as follows:

1 if A is atomic then σ free for A

2 σ is free for ¬X if σ is free for X

3 σ is free for (X ◦ Y) if σ is free for X and σ is free for Y

4 σ is free for (∀x)Φ and (∃x)Φ provided

• σx is free for Φ

• if y is free variable of Φ other than x , yσ does not contain x

Theorem

if substitution σ is free for formula X and substitution τ is free for Xσ then
(Xσ)τ = X (στ)

AM/VvO (CS @ UIBK) lecture 4 21/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Definition

substitution σ being free for formula is defined as follows:

1 if A is atomic then σ free for A

2 σ is free for ¬X if σ is free for X

3 σ is free for (X ◦ Y) if σ is free for X and σ is free for Y

4 σ is free for (∀x)Φ and (∃x)Φ provided

• σx is free for Φ

• if y is free variable of Φ other than x , yσ does not contain x

Theorem

if substitution σ is free for formula X and substitution τ is free for Xσ then
(Xσ)τ = X (στ)

AM/VvO (CS @ UIBK) lecture 4 21/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Definition

substitution σ being free for formula is defined as follows:

1 if A is atomic then σ free for A

2 σ is free for ¬X if σ is free for X

3 σ is free for (X ◦ Y) if σ is free for X and σ is free for Y

4 σ is free for (∀x)Φ and (∃x)Φ provided

• σx is free for Φ

• if y is free variable of Φ other than x , yσ does not contain x

Theorem

if substitution σ is free for formula X and substitution τ is free for Xσ then
(Xσ)τ = X (στ)

AM/VvO (CS @ UIBK) lecture 4 21/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof

structural induction on X

• atomic case is obvious

• X = ¬Y

σ is free for Y Xσ = ¬(Y σ)

τ is free for Y σ

(Y σ)τ = Y (στ) follows from induction hypothesis

(Xσ)τ = [¬(Y σ)]τ = ¬((Y σ)τ) = ¬(Y (στ)) = (¬Y)(στ) = X (στ)

• X = (Y ◦ Z) σ is free for Y and Z Xσ = (Y σ ◦ Zσ)

τ is free for Y σ and Zσ

(Y σ)τ = Y (στ) and (Zσ)τ = Z (στ) follow from induction hypothesis

(Xσ)τ = ((Y σ)τ ◦ (Zσ)τ) = (Y (στ) ◦ Z (στ)) = (Y ◦ Z)(στ) = X (στ)

AM/VvO (CS @ UIBK) lecture 4 22/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof

structural induction on X

• atomic case is obvious

• X = ¬Y

σ is free for Y Xσ = ¬(Y σ)

τ is free for Y σ

(Y σ)τ = Y (στ) follows from induction hypothesis

(Xσ)τ = [¬(Y σ)]τ = ¬((Y σ)τ) = ¬(Y (στ)) = (¬Y)(στ) = X (στ)

• X = (Y ◦ Z) σ is free for Y and Z Xσ = (Y σ ◦ Zσ)

τ is free for Y σ and Zσ

(Y σ)τ = Y (στ) and (Zσ)τ = Z (στ) follow from induction hypothesis

(Xσ)τ = ((Y σ)τ ◦ (Zσ)τ) = (Y (στ) ◦ Z (στ)) = (Y ◦ Z)(στ) = X (στ)

AM/VvO (CS @ UIBK) lecture 4 22/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof

structural induction on X

• atomic case is obvious

• X = ¬Y σ is free for Y

Xσ = ¬(Y σ)

τ is free for Y σ

(Y σ)τ = Y (στ) follows from induction hypothesis

(Xσ)τ = [¬(Y σ)]τ = ¬((Y σ)τ) = ¬(Y (στ)) = (¬Y)(στ) = X (στ)

• X = (Y ◦ Z) σ is free for Y and Z Xσ = (Y σ ◦ Zσ)

τ is free for Y σ and Zσ

(Y σ)τ = Y (στ) and (Zσ)τ = Z (στ) follow from induction hypothesis

(Xσ)τ = ((Y σ)τ ◦ (Zσ)τ) = (Y (στ) ◦ Z (στ)) = (Y ◦ Z)(στ) = X (στ)

AM/VvO (CS @ UIBK) lecture 4 22/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof

structural induction on X

• atomic case is obvious

• X = ¬Y σ is free for Y Xσ = ¬(Y σ)

τ is free for Y σ

(Y σ)τ = Y (στ) follows from induction hypothesis

(Xσ)τ = [¬(Y σ)]τ = ¬((Y σ)τ) = ¬(Y (στ)) = (¬Y)(στ) = X (στ)

• X = (Y ◦ Z) σ is free for Y and Z Xσ = (Y σ ◦ Zσ)

τ is free for Y σ and Zσ

(Y σ)τ = Y (στ) and (Zσ)τ = Z (στ) follow from induction hypothesis

(Xσ)τ = ((Y σ)τ ◦ (Zσ)τ) = (Y (στ) ◦ Z (στ)) = (Y ◦ Z)(στ) = X (στ)

AM/VvO (CS @ UIBK) lecture 4 22/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof

structural induction on X

• atomic case is obvious

• X = ¬Y σ is free for Y Xσ = ¬(Y σ)

τ is free for Y σ

(Y σ)τ = Y (στ) follows from induction hypothesis

(Xσ)τ = [¬(Y σ)]τ = ¬((Y σ)τ) = ¬(Y (στ)) = (¬Y)(στ) = X (στ)

• X = (Y ◦ Z) σ is free for Y and Z Xσ = (Y σ ◦ Zσ)

τ is free for Y σ and Zσ

(Y σ)τ = Y (στ) and (Zσ)τ = Z (στ) follow from induction hypothesis

(Xσ)τ = ((Y σ)τ ◦ (Zσ)τ) = (Y (στ) ◦ Z (στ)) = (Y ◦ Z)(στ) = X (στ)

AM/VvO (CS @ UIBK) lecture 4 22/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof

structural induction on X

• atomic case is obvious

• X = ¬Y σ is free for Y Xσ = ¬(Y σ)

τ is free for Y σ

(Y σ)τ = Y (στ) follows from induction hypothesis

(Xσ)τ = [¬(Y σ)]τ = ¬((Y σ)τ) = ¬(Y (στ)) = (¬Y)(στ) = X (στ)

• X = (Y ◦ Z) σ is free for Y and Z Xσ = (Y σ ◦ Zσ)

τ is free for Y σ and Zσ

(Y σ)τ = Y (στ) and (Zσ)τ = Z (στ) follow from induction hypothesis

(Xσ)τ = ((Y σ)τ ◦ (Zσ)τ) = (Y (στ) ◦ Z (στ)) = (Y ◦ Z)(στ) = X (στ)

AM/VvO (CS @ UIBK) lecture 4 22/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof

structural induction on X

• atomic case is obvious

• X = ¬Y σ is free for Y Xσ = ¬(Y σ)

τ is free for Y σ

(Y σ)τ = Y (στ) follows from induction hypothesis

(Xσ)τ = [¬(Y σ)]τ

= ¬((Y σ)τ) = ¬(Y (στ)) = (¬Y)(στ) = X (στ)

• X = (Y ◦ Z) σ is free for Y and Z Xσ = (Y σ ◦ Zσ)

τ is free for Y σ and Zσ

(Y σ)τ = Y (στ) and (Zσ)τ = Z (στ) follow from induction hypothesis

(Xσ)τ = ((Y σ)τ ◦ (Zσ)τ) = (Y (στ) ◦ Z (στ)) = (Y ◦ Z)(στ) = X (στ)

AM/VvO (CS @ UIBK) lecture 4 22/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof

structural induction on X

• atomic case is obvious

• X = ¬Y σ is free for Y Xσ = ¬(Y σ)

τ is free for Y σ

(Y σ)τ = Y (στ) follows from induction hypothesis

(Xσ)τ = [¬(Y σ)]τ = ¬((Y σ)τ)

= ¬(Y (στ)) = (¬Y)(στ) = X (στ)

• X = (Y ◦ Z) σ is free for Y and Z Xσ = (Y σ ◦ Zσ)

τ is free for Y σ and Zσ

(Y σ)τ = Y (στ) and (Zσ)τ = Z (στ) follow from induction hypothesis

(Xσ)τ = ((Y σ)τ ◦ (Zσ)τ) = (Y (στ) ◦ Z (στ)) = (Y ◦ Z)(στ) = X (στ)

AM/VvO (CS @ UIBK) lecture 4 22/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof

structural induction on X

• atomic case is obvious

• X = ¬Y σ is free for Y Xσ = ¬(Y σ)

τ is free for Y σ

(Y σ)τ = Y (στ) follows from induction hypothesis

(Xσ)τ = [¬(Y σ)]τ = ¬((Y σ)τ) = ¬(Y (στ))

= (¬Y)(στ) = X (στ)

• X = (Y ◦ Z) σ is free for Y and Z Xσ = (Y σ ◦ Zσ)

τ is free for Y σ and Zσ

(Y σ)τ = Y (στ) and (Zσ)τ = Z (στ) follow from induction hypothesis

(Xσ)τ = ((Y σ)τ ◦ (Zσ)τ) = (Y (στ) ◦ Z (στ)) = (Y ◦ Z)(στ) = X (στ)

AM/VvO (CS @ UIBK) lecture 4 22/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof

structural induction on X

• atomic case is obvious

• X = ¬Y σ is free for Y Xσ = ¬(Y σ)

τ is free for Y σ

(Y σ)τ = Y (στ) follows from induction hypothesis

(Xσ)τ = [¬(Y σ)]τ = ¬((Y σ)τ) = ¬(Y (στ)) = (¬Y)(στ)

= X (στ)

• X = (Y ◦ Z) σ is free for Y and Z Xσ = (Y σ ◦ Zσ)

τ is free for Y σ and Zσ

(Y σ)τ = Y (στ) and (Zσ)τ = Z (στ) follow from induction hypothesis

(Xσ)τ = ((Y σ)τ ◦ (Zσ)τ) = (Y (στ) ◦ Z (στ)) = (Y ◦ Z)(στ) = X (στ)

AM/VvO (CS @ UIBK) lecture 4 22/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof

structural induction on X

• atomic case is obvious

• X = ¬Y σ is free for Y Xσ = ¬(Y σ)

τ is free for Y σ

(Y σ)τ = Y (στ) follows from induction hypothesis

(Xσ)τ = [¬(Y σ)]τ = ¬((Y σ)τ) = ¬(Y (στ)) = (¬Y)(στ) = X (στ)

• X = (Y ◦ Z)

σ is free for Y and Z Xσ = (Y σ ◦ Zσ)

τ is free for Y σ and Zσ

(Y σ)τ = Y (στ) and (Zσ)τ = Z (στ) follow from induction hypothesis

(Xσ)τ = ((Y σ)τ ◦ (Zσ)τ) = (Y (στ) ◦ Z (στ)) = (Y ◦ Z)(στ) = X (στ)

AM/VvO (CS @ UIBK) lecture 4 22/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof

structural induction on X

• atomic case is obvious

• X = ¬Y σ is free for Y Xσ = ¬(Y σ)

τ is free for Y σ

(Y σ)τ = Y (στ) follows from induction hypothesis

(Xσ)τ = [¬(Y σ)]τ = ¬((Y σ)τ) = ¬(Y (στ)) = (¬Y)(στ) = X (στ)

• X = (Y ◦ Z)

σ is free for Y and Z Xσ = (Y σ ◦ Zσ)

τ is free for Y σ and Zσ

(Y σ)τ = Y (στ) and (Zσ)τ = Z (στ) follow from induction hypothesis

(Xσ)τ = ((Y σ)τ ◦ (Zσ)τ) = (Y (στ) ◦ Z (στ)) = (Y ◦ Z)(στ) = X (στ)

AM/VvO (CS @ UIBK) lecture 4 22/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof

structural induction on X

• atomic case is obvious

• X = ¬Y σ is free for Y Xσ = ¬(Y σ)

τ is free for Y σ

(Y σ)τ = Y (στ) follows from induction hypothesis

(Xσ)τ = [¬(Y σ)]τ = ¬((Y σ)τ) = ¬(Y (στ)) = (¬Y)(στ) = X (στ)

• X = (Y ◦ Z) σ is free for Y and Z

Xσ = (Y σ ◦ Zσ)

τ is free for Y σ and Zσ

(Y σ)τ = Y (στ) and (Zσ)τ = Z (στ) follow from induction hypothesis

(Xσ)τ = ((Y σ)τ ◦ (Zσ)τ) = (Y (στ) ◦ Z (στ)) = (Y ◦ Z)(στ) = X (στ)

AM/VvO (CS @ UIBK) lecture 4 22/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof

structural induction on X

• atomic case is obvious

• X = ¬Y σ is free for Y Xσ = ¬(Y σ)

τ is free for Y σ

(Y σ)τ = Y (στ) follows from induction hypothesis

(Xσ)τ = [¬(Y σ)]τ = ¬((Y σ)τ) = ¬(Y (στ)) = (¬Y)(στ) = X (στ)

• X = (Y ◦ Z) σ is free for Y and Z Xσ = (Y σ ◦ Zσ)

τ is free for Y σ and Zσ

(Y σ)τ = Y (στ) and (Zσ)τ = Z (στ) follow from induction hypothesis

(Xσ)τ = ((Y σ)τ ◦ (Zσ)τ) = (Y (στ) ◦ Z (στ)) = (Y ◦ Z)(στ) = X (στ)

AM/VvO (CS @ UIBK) lecture 4 22/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof

structural induction on X

• atomic case is obvious

• X = ¬Y σ is free for Y Xσ = ¬(Y σ)

τ is free for Y σ

(Y σ)τ = Y (στ) follows from induction hypothesis

(Xσ)τ = [¬(Y σ)]τ = ¬((Y σ)τ) = ¬(Y (στ)) = (¬Y)(στ) = X (στ)

• X = (Y ◦ Z) σ is free for Y and Z Xσ = (Y σ ◦ Zσ)

τ is free for Y σ and Zσ

(Y σ)τ = Y (στ) and (Zσ)τ = Z (στ) follow from induction hypothesis

(Xσ)τ = ((Y σ)τ ◦ (Zσ)τ) = (Y (στ) ◦ Z (στ)) = (Y ◦ Z)(στ) = X (στ)

AM/VvO (CS @ UIBK) lecture 4 22/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof

structural induction on X

• atomic case is obvious

• X = ¬Y σ is free for Y Xσ = ¬(Y σ)

τ is free for Y σ

(Y σ)τ = Y (στ) follows from induction hypothesis

(Xσ)τ = [¬(Y σ)]τ = ¬((Y σ)τ) = ¬(Y (στ)) = (¬Y)(στ) = X (στ)

• X = (Y ◦ Z) σ is free for Y and Z Xσ = (Y σ ◦ Zσ)

τ is free for Y σ and Zσ

(Y σ)τ = Y (στ) and (Zσ)τ = Z (στ) follow from induction hypothesis

(Xσ)τ = ((Y σ)τ ◦ (Zσ)τ) = (Y (στ) ◦ Z (στ)) = (Y ◦ Z)(στ) = X (στ)

AM/VvO (CS @ UIBK) lecture 4 22/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof

structural induction on X

• atomic case is obvious

• X = ¬Y σ is free for Y Xσ = ¬(Y σ)

τ is free for Y σ

(Y σ)τ = Y (στ) follows from induction hypothesis

(Xσ)τ = [¬(Y σ)]τ = ¬((Y σ)τ) = ¬(Y (στ)) = (¬Y)(στ) = X (στ)

• X = (Y ◦ Z) σ is free for Y and Z Xσ = (Y σ ◦ Zσ)

τ is free for Y σ and Zσ

(Y σ)τ = Y (στ) and (Zσ)τ = Z (στ) follow from induction hypothesis

(Xσ)τ = ((Y σ)τ ◦ (Zσ)τ)

= (Y (στ) ◦ Z (στ)) = (Y ◦ Z)(στ) = X (στ)

AM/VvO (CS @ UIBK) lecture 4 22/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof

structural induction on X

• atomic case is obvious

• X = ¬Y σ is free for Y Xσ = ¬(Y σ)

τ is free for Y σ

(Y σ)τ = Y (στ) follows from induction hypothesis

(Xσ)τ = [¬(Y σ)]τ = ¬((Y σ)τ) = ¬(Y (στ)) = (¬Y)(στ) = X (στ)

• X = (Y ◦ Z) σ is free for Y and Z Xσ = (Y σ ◦ Zσ)

τ is free for Y σ and Zσ

(Y σ)τ = Y (στ) and (Zσ)τ = Z (στ) follow from induction hypothesis

(Xσ)τ = ((Y σ)τ ◦ (Zσ)τ) = (Y (στ) ◦ Z (στ))

= (Y ◦ Z)(στ) = X (στ)

AM/VvO (CS @ UIBK) lecture 4 22/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof

structural induction on X

• atomic case is obvious

• X = ¬Y σ is free for Y Xσ = ¬(Y σ)

τ is free for Y σ

(Y σ)τ = Y (στ) follows from induction hypothesis

(Xσ)τ = [¬(Y σ)]τ = ¬((Y σ)τ) = ¬(Y (στ)) = (¬Y)(στ) = X (στ)

• X = (Y ◦ Z) σ is free for Y and Z Xσ = (Y σ ◦ Zσ)

τ is free for Y σ and Zσ

(Y σ)τ = Y (στ) and (Zσ)τ = Z (στ) follow from induction hypothesis

(Xσ)τ = ((Y σ)τ ◦ (Zσ)τ) = (Y (στ) ◦ Z (στ)) = (Y ◦ Z)(στ)

= X (στ)

AM/VvO (CS @ UIBK) lecture 4 22/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof

structural induction on X

• atomic case is obvious

• X = ¬Y σ is free for Y Xσ = ¬(Y σ)

τ is free for Y σ

(Y σ)τ = Y (στ) follows from induction hypothesis

(Xσ)τ = [¬(Y σ)]τ = ¬((Y σ)τ) = ¬(Y (στ)) = (¬Y)(στ) = X (στ)

• X = (Y ◦ Z) σ is free for Y and Z Xσ = (Y σ ◦ Zσ)

τ is free for Y σ and Zσ

(Y σ)τ = Y (στ) and (Zσ)τ = Z (στ) follow from induction hypothesis

(Xσ)τ = ((Y σ)τ ◦ (Zσ)τ) = (Y (στ) ◦ Z (στ)) = (Y ◦ Z)(στ) = X (στ)

AM/VvO (CS @ UIBK) lecture 4 22/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof (cont’d)

structural induction on X

• X = (∀x)Φ

σx is free for Φ τ is free for [(∀x)Φ]σ = (∀x)[Φσx]

τx is free for Φσx

(Φσx)τx = Φ(σxτx) follows from induction hypothesis

claim: Φ(σxτx) = Φ(στ)x

let y be free variable of Φ

• if y = x

then y(σxτx) = (yσx)τx

= xτx = x = y(στ)x

• if y 6= x then y(σxτx) = (yσx)τx = (yσ)τx = (yσ)τ = y(στ) = y(στ)x

(Xσ)τ = ((∀x)[Φσx])τ

= (∀x)[(Φσx)τx] = (∀x)[Φ(σxτx)]

= (∀x)[Φ(στ)x] = X (στ)

• X = (∃x)Φ similar

AM/VvO (CS @ UIBK) lecture 4 23/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof (cont’d)

structural induction on X

• X = (∀x)Φ σx is free for Φ

τ is free for [(∀x)Φ]σ = (∀x)[Φσx]

τx is free for Φσx

(Φσx)τx = Φ(σxτx) follows from induction hypothesis

claim: Φ(σxτx) = Φ(στ)x

let y be free variable of Φ

• if y = x

then y(σxτx) = (yσx)τx

= xτx = x = y(στ)x

• if y 6= x then y(σxτx) = (yσx)τx = (yσ)τx = (yσ)τ = y(στ) = y(στ)x

(Xσ)τ = ((∀x)[Φσx])τ

= (∀x)[(Φσx)τx] = (∀x)[Φ(σxτx)]

= (∀x)[Φ(στ)x] = X (στ)

• X = (∃x)Φ similar

AM/VvO (CS @ UIBK) lecture 4 23/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof (cont’d)

structural induction on X

• X = (∀x)Φ σx is free for Φ τ is free for [(∀x)Φ]σ = (∀x)[Φσx]

τx is free for Φσx

(Φσx)τx = Φ(σxτx) follows from induction hypothesis

claim: Φ(σxτx) = Φ(στ)x

let y be free variable of Φ

• if y = x

then y(σxτx) = (yσx)τx

= xτx = x = y(στ)x

• if y 6= x then y(σxτx) = (yσx)τx = (yσ)τx = (yσ)τ = y(στ) = y(στ)x

(Xσ)τ = ((∀x)[Φσx])τ

= (∀x)[(Φσx)τx] = (∀x)[Φ(σxτx)]

= (∀x)[Φ(στ)x] = X (στ)

• X = (∃x)Φ similar

AM/VvO (CS @ UIBK) lecture 4 23/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof (cont’d)

structural induction on X

• X = (∀x)Φ σx is free for Φ τ is free for [(∀x)Φ]σ = (∀x)[Φσx]

τx is free for Φσx

(Φσx)τx = Φ(σxτx) follows from induction hypothesis

claim: Φ(σxτx) = Φ(στ)x

let y be free variable of Φ

• if y = x

then y(σxτx) = (yσx)τx

= xτx = x = y(στ)x

• if y 6= x then y(σxτx) = (yσx)τx = (yσ)τx = (yσ)τ = y(στ) = y(στ)x

(Xσ)τ = ((∀x)[Φσx])τ

= (∀x)[(Φσx)τx] = (∀x)[Φ(σxτx)]

= (∀x)[Φ(στ)x] = X (στ)

• X = (∃x)Φ similar

AM/VvO (CS @ UIBK) lecture 4 23/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof (cont’d)

structural induction on X

• X = (∀x)Φ σx is free for Φ τ is free for [(∀x)Φ]σ = (∀x)[Φσx]

τx is free for Φσx

(Φσx)τx = Φ(σxτx) follows from induction hypothesis

claim: Φ(σxτx) = Φ(στ)x

let y be free variable of Φ

• if y = x

then y(σxτx) = (yσx)τx

= xτx = x = y(στ)x

• if y 6= x then y(σxτx) = (yσx)τx = (yσ)τx = (yσ)τ = y(στ) = y(στ)x

(Xσ)τ = ((∀x)[Φσx])τ

= (∀x)[(Φσx)τx] = (∀x)[Φ(σxτx)]

= (∀x)[Φ(στ)x] = X (στ)

• X = (∃x)Φ similar

AM/VvO (CS @ UIBK) lecture 4 23/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof (cont’d)

structural induction on X

• X = (∀x)Φ σx is free for Φ τ is free for [(∀x)Φ]σ = (∀x)[Φσx]

τx is free for Φσx

(Φσx)τx = Φ(σxτx) follows from induction hypothesis

claim: Φ(σxτx) = Φ(στ)x

let y be free variable of Φ

• if y = x

then y(σxτx) = (yσx)τx

= xτx = x = y(στ)x

• if y 6= x then y(σxτx) = (yσx)τx = (yσ)τx = (yσ)τ = y(στ) = y(στ)x

(Xσ)τ = ((∀x)[Φσx])τ

= (∀x)[(Φσx)τx] = (∀x)[Φ(σxτx)]

= (∀x)[Φ(στ)x] = X (στ)

• X = (∃x)Φ similar

AM/VvO (CS @ UIBK) lecture 4 23/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof (cont’d)

structural induction on X

• X = (∀x)Φ σx is free for Φ τ is free for [(∀x)Φ]σ = (∀x)[Φσx]

τx is free for Φσx

(Φσx)τx = Φ(σxτx) follows from induction hypothesis

claim: Φ(σxτx) = Φ(στ)x

let y be free variable of Φ

• if y = x

then y(σxτx) = (yσx)τx

= xτx = x = y(στ)x

• if y 6= x

then y(σxτx) = (yσx)τx = (yσ)τx = (yσ)τ = y(στ) = y(στ)x

(Xσ)τ = ((∀x)[Φσx])τ

= (∀x)[(Φσx)τx] = (∀x)[Φ(σxτx)]

= (∀x)[Φ(στ)x] = X (στ)

• X = (∃x)Φ similar

AM/VvO (CS @ UIBK) lecture 4 23/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof (cont’d)

structural induction on X

• X = (∀x)Φ σx is free for Φ τ is free for [(∀x)Φ]σ = (∀x)[Φσx]

τx is free for Φσx

(Φσx)τx = Φ(σxτx) follows from induction hypothesis

claim: Φ(σxτx) = Φ(στ)x

let y be free variable of Φ

• if y = x

then y(σxτx) = (yσx)τx

= xτx = x = y(στ)x

• if y 6= x

then y(σxτx) = (yσx)τx = (yσ)τx = (yσ)τ = y(στ) = y(στ)x

(Xσ)τ = ((∀x)[Φσx])τ

= (∀x)[(Φσx)τx] = (∀x)[Φ(σxτx)]

= (∀x)[Φ(στ)x] = X (στ)

• X = (∃x)Φ similar

AM/VvO (CS @ UIBK) lecture 4 23/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof (cont’d)

structural induction on X

• X = (∀x)Φ σx is free for Φ τ is free for [(∀x)Φ]σ = (∀x)[Φσx]

τx is free for Φσx

(Φσx)τx = Φ(σxτx) follows from induction hypothesis

claim: Φ(σxτx) = Φ(στ)x

let y be free variable of Φ

• if y = x then y(σxτx) = (yσx)τx

= xτx = x = y(στ)x

• if y 6= x

then y(σxτx) = (yσx)τx = (yσ)τx = (yσ)τ = y(στ) = y(στ)x

(Xσ)τ = ((∀x)[Φσx])τ

= (∀x)[(Φσx)τx] = (∀x)[Φ(σxτx)]

= (∀x)[Φ(στ)x] = X (στ)

• X = (∃x)Φ similar

AM/VvO (CS @ UIBK) lecture 4 23/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof (cont’d)

structural induction on X

• X = (∀x)Φ σx is free for Φ τ is free for [(∀x)Φ]σ = (∀x)[Φσx]

τx is free for Φσx

(Φσx)τx = Φ(σxτx) follows from induction hypothesis

claim: Φ(σxτx) = Φ(στ)x

let y be free variable of Φ

• if y = x then y(σxτx) = (yσx)τx = xτx

= x = y(στ)x

• if y 6= x

then y(σxτx) = (yσx)τx = (yσ)τx = (yσ)τ = y(στ) = y(στ)x

(Xσ)τ = ((∀x)[Φσx])τ

= (∀x)[(Φσx)τx] = (∀x)[Φ(σxτx)]

= (∀x)[Φ(στ)x] = X (στ)

• X = (∃x)Φ similar

AM/VvO (CS @ UIBK) lecture 4 23/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof (cont’d)

structural induction on X

• X = (∀x)Φ σx is free for Φ τ is free for [(∀x)Φ]σ = (∀x)[Φσx]

τx is free for Φσx

(Φσx)τx = Φ(σxτx) follows from induction hypothesis

claim: Φ(σxτx) = Φ(στ)x

let y be free variable of Φ

• if y = x then y(σxτx) = (yσx)τx = xτx = x

= y(στ)x

• if y 6= x

then y(σxτx) = (yσx)τx = (yσ)τx = (yσ)τ = y(στ) = y(στ)x

(Xσ)τ = ((∀x)[Φσx])τ

= (∀x)[(Φσx)τx] = (∀x)[Φ(σxτx)]

= (∀x)[Φ(στ)x] = X (στ)

• X = (∃x)Φ similar

AM/VvO (CS @ UIBK) lecture 4 23/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof (cont’d)

structural induction on X

• X = (∀x)Φ σx is free for Φ τ is free for [(∀x)Φ]σ = (∀x)[Φσx]

τx is free for Φσx

(Φσx)τx = Φ(σxτx) follows from induction hypothesis

claim: Φ(σxτx) = Φ(στ)x

let y be free variable of Φ

• if y = x then y(σxτx) = (yσx)τx = xτx = x = y(στ)x

• if y 6= x

then y(σxτx) = (yσx)τx = (yσ)τx = (yσ)τ = y(στ) = y(στ)x

(Xσ)τ = ((∀x)[Φσx])τ

= (∀x)[(Φσx)τx] = (∀x)[Φ(σxτx)]

= (∀x)[Φ(στ)x] = X (στ)

• X = (∃x)Φ similar

AM/VvO (CS @ UIBK) lecture 4 23/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof (cont’d)

structural induction on X

• X = (∀x)Φ σx is free for Φ τ is free for [(∀x)Φ]σ = (∀x)[Φσx]

τx is free for Φσx

(Φσx)τx = Φ(σxτx) follows from induction hypothesis

claim: Φ(σxτx) = Φ(στ)x

let y be free variable of Φ

• if y = x then y(σxτx) = (yσx)τx = xτx = x = y(στ)x

• if y 6= x then y(σxτx) = (yσx)τx

= (yσ)τx = (yσ)τ = y(στ) = y(στ)x

(Xσ)τ = ((∀x)[Φσx])τ

= (∀x)[(Φσx)τx] = (∀x)[Φ(σxτx)]

= (∀x)[Φ(στ)x] = X (στ)

• X = (∃x)Φ similar

AM/VvO (CS @ UIBK) lecture 4 23/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof (cont’d)

structural induction on X

• X = (∀x)Φ σx is free for Φ τ is free for [(∀x)Φ]σ = (∀x)[Φσx]

τx is free for Φσx

(Φσx)τx = Φ(σxτx) follows from induction hypothesis

claim: Φ(σxτx) = Φ(στ)x

let y be free variable of Φ

• if y = x then y(σxτx) = (yσx)τx = xτx = x = y(στ)x

• if y 6= x then y(σxτx) = (yσx)τx = (yσ)τx

= (yσ)τ = y(στ) = y(στ)x

(Xσ)τ = ((∀x)[Φσx])τ

= (∀x)[(Φσx)τx] = (∀x)[Φ(σxτx)]

= (∀x)[Φ(στ)x] = X (στ)

• X = (∃x)Φ similar

AM/VvO (CS @ UIBK) lecture 4 23/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof (cont’d)

structural induction on X

• X = (∀x)Φ σx is free for Φ τ is free for [(∀x)Φ]σ = (∀x)[Φσx]

τx is free for Φσx

(Φσx)τx = Φ(σxτx) follows from induction hypothesis

claim: Φ(σxτx) = Φ(στ)x

let y be free variable of Φ

• if y = x then y(σxτx) = (yσx)τx = xτx = x = y(στ)x

• if y 6= x then y(σxτx) = (yσx)τx = (yσ)τx = (yσ)τ

= y(στ) = y(στ)x

(Xσ)τ = ((∀x)[Φσx])τ

= (∀x)[(Φσx)τx] = (∀x)[Φ(σxτx)]

= (∀x)[Φ(στ)x] = X (στ)

• X = (∃x)Φ similar

AM/VvO (CS @ UIBK) lecture 4 23/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof (cont’d)

structural induction on X

• X = (∀x)Φ σx is free for Φ τ is free for [(∀x)Φ]σ = (∀x)[Φσx]

τx is free for Φσx

(Φσx)τx = Φ(σxτx) follows from induction hypothesis

claim: Φ(σxτx) = Φ(στ)x

let y be free variable of Φ

• if y = x then y(σxτx) = (yσx)τx = xτx = x = y(στ)x

• if y 6= x then y(σxτx) = (yσx)τx = (yσ)τx = (yσ)τ = y(στ)

= y(στ)x

(Xσ)τ = ((∀x)[Φσx])τ

= (∀x)[(Φσx)τx] = (∀x)[Φ(σxτx)]

= (∀x)[Φ(στ)x] = X (στ)

• X = (∃x)Φ similar

AM/VvO (CS @ UIBK) lecture 4 23/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof (cont’d)

structural induction on X

• X = (∀x)Φ σx is free for Φ τ is free for [(∀x)Φ]σ = (∀x)[Φσx]

τx is free for Φσx

(Φσx)τx = Φ(σxτx) follows from induction hypothesis

claim: Φ(σxτx) = Φ(στ)x

let y be free variable of Φ

• if y = x then y(σxτx) = (yσx)τx = xτx = x = y(στ)x

• if y 6= x then y(σxτx) = (yσx)τx = (yσ)τx = (yσ)τ = y(στ) = y(στ)x

(Xσ)τ = ((∀x)[Φσx])τ

= (∀x)[(Φσx)τx] = (∀x)[Φ(σxτx)]

= (∀x)[Φ(στ)x] = X (στ)

• X = (∃x)Φ similar

AM/VvO (CS @ UIBK) lecture 4 23/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof (cont’d)

structural induction on X

• X = (∀x)Φ σx is free for Φ τ is free for [(∀x)Φ]σ = (∀x)[Φσx]

τx is free for Φσx

(Φσx)τx = Φ(σxτx) follows from induction hypothesis

claim: Φ(σxτx) = Φ(στ)x

let y be free variable of Φ

• if y = x then y(σxτx) = (yσx)τx = xτx = x = y(στ)x

• if y 6= x then y(σxτx) = (yσx)τx = (yσ)τx = (yσ)τ = y(στ) = y(στ)x

(Xσ)τ = ((∀x)[Φσx])τ

= (∀x)[(Φσx)τx] = (∀x)[Φ(σxτx)]

= (∀x)[Φ(στ)x] = X (στ)

• X = (∃x)Φ similar

AM/VvO (CS @ UIBK) lecture 4 23/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof (cont’d)

structural induction on X

• X = (∀x)Φ σx is free for Φ τ is free for [(∀x)Φ]σ = (∀x)[Φσx]

τx is free for Φσx

(Φσx)τx = Φ(σxτx) follows from induction hypothesis

claim: Φ(σxτx) = Φ(στ)x

let y be free variable of Φ

• if y = x then y(σxτx) = (yσx)τx = xτx = x = y(στ)x

• if y 6= x then y(σxτx) = (yσx)τx = (yσ)τx = (yσ)τ = y(στ) = y(στ)x

(Xσ)τ = ((∀x)[Φσx])τ = (∀x)[(Φσx)τx]

= (∀x)[Φ(σxτx)]

= (∀x)[Φ(στ)x] = X (στ)

• X = (∃x)Φ similar

AM/VvO (CS @ UIBK) lecture 4 23/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof (cont’d)

structural induction on X

• X = (∀x)Φ σx is free for Φ τ is free for [(∀x)Φ]σ = (∀x)[Φσx]

τx is free for Φσx

(Φσx)τx = Φ(σxτx) follows from induction hypothesis

claim: Φ(σxτx) = Φ(στ)x

let y be free variable of Φ

• if y = x then y(σxτx) = (yσx)τx = xτx = x = y(στ)x

• if y 6= x then y(σxτx) = (yσx)τx = (yσ)τx = (yσ)τ = y(στ) = y(στ)x

(Xσ)τ = ((∀x)[Φσx])τ = (∀x)[(Φσx)τx] = (∀x)[Φ(σxτx)]

= (∀x)[Φ(στ)x] = X (στ)

• X = (∃x)Φ similar

AM/VvO (CS @ UIBK) lecture 4 23/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof (cont’d)

structural induction on X

• X = (∀x)Φ σx is free for Φ τ is free for [(∀x)Φ]σ = (∀x)[Φσx]

τx is free for Φσx

(Φσx)τx = Φ(σxτx) follows from induction hypothesis

claim: Φ(σxτx) = Φ(στ)x

let y be free variable of Φ

• if y = x then y(σxτx) = (yσx)τx = xτx = x = y(στ)x

• if y 6= x then y(σxτx) = (yσx)τx = (yσ)τx = (yσ)τ = y(στ) = y(στ)x

(Xσ)τ = ((∀x)[Φσx])τ = (∀x)[(Φσx)τx] = (∀x)[Φ(σxτx)]

= (∀x)[Φ(στ)x]

= X (στ)

• X = (∃x)Φ similar

AM/VvO (CS @ UIBK) lecture 4 23/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof (cont’d)

structural induction on X

• X = (∀x)Φ σx is free for Φ τ is free for [(∀x)Φ]σ = (∀x)[Φσx]

τx is free for Φσx

(Φσx)τx = Φ(σxτx) follows from induction hypothesis

claim: Φ(σxτx) = Φ(στ)x

let y be free variable of Φ

• if y = x then y(σxτx) = (yσx)τx = xτx = x = y(στ)x

• if y 6= x then y(σxτx) = (yσx)τx = (yσ)τx = (yσ)τ = y(στ) = y(στ)x

(Xσ)τ = ((∀x)[Φσx])τ = (∀x)[(Φσx)τx] = (∀x)[Φ(σxτx)]

= (∀x)[Φ(στ)x] = X (στ)

• X = (∃x)Φ similar

AM/VvO (CS @ UIBK) lecture 4 23/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Substitutions

Proof (cont’d)

structural induction on X

• X = (∀x)Φ σx is free for Φ τ is free for [(∀x)Φ]σ = (∀x)[Φσx]

τx is free for Φσx

(Φσx)τx = Φ(σxτx) follows from induction hypothesis

claim: Φ(σxτx) = Φ(στ)x

let y be free variable of Φ

• if y = x then y(σxτx) = (yσx)τx = xτx = x = y(στ)x

• if y 6= x then y(σxτx) = (yσx)τx = (yσ)τx = (yσ)τ = y(στ) = y(στ)x

(Xσ)τ = ((∀x)[Φσx])τ = (∀x)[(Φσx)τx] = (∀x)[Φ(σxτx)]

= (∀x)[Φ(στ)x] = X (στ)

• X = (∃x)Φ similar

AM/VvO (CS @ UIBK) lecture 4 23/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Outline

Overviews

First-Order Logic
Syntax
Substitutions
Semantics

Herbrand Models

Uniform Notation

Hintikka’s Lemma

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 4 24/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Definition

model for first-order language L(R,F,C) is pair M = 〈D, I〉

where

• D is nonempty set, called domain of M

• I is mapping, called interpretation, that associates

• to every c ∈ C some member c I ∈ D

• to every n -place f ∈ F some n -ary function f I : Dn → D

• to every n -place P ∈ R some n -ary relation P I ⊆ Dn

Definition

assignment in model M = 〈D, I〉 is mapping A from set of variables to set D

image of variable v under assignment A is denoted by vA

AM/VvO (CS @ UIBK) lecture 4 25/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Definition

model for first-order language L(R,F,C) is pair M = 〈D, I〉 where

• D is nonempty set, called domain of M

• I is mapping, called interpretation

, that associates

• to every c ∈ C some member c I ∈ D

• to every n -place f ∈ F some n -ary function f I : Dn → D

• to every n -place P ∈ R some n -ary relation P I ⊆ Dn

Definition

assignment in model M = 〈D, I〉 is mapping A from set of variables to set D

image of variable v under assignment A is denoted by vA

AM/VvO (CS @ UIBK) lecture 4 25/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Definition

model for first-order language L(R,F,C) is pair M = 〈D, I〉 where

• D is nonempty set, called domain of M

• I is mapping, called interpretation

, that associates

• to every c ∈ C some member c I ∈ D

• to every n -place f ∈ F some n -ary function f I : Dn → D

• to every n -place P ∈ R some n -ary relation P I ⊆ Dn

Definition

assignment in model M = 〈D, I〉 is mapping A from set of variables to set D

image of variable v under assignment A is denoted by vA

AM/VvO (CS @ UIBK) lecture 4 25/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Definition

model for first-order language L(R,F,C) is pair M = 〈D, I〉 where

• D is nonempty set, called domain of M

• I is mapping, called interpretation, that associates

• to every c ∈ C some member c I ∈ D

• to every n -place f ∈ F some n -ary function f I : Dn → D

• to every n -place P ∈ R some n -ary relation P I ⊆ Dn

Definition

assignment in model M = 〈D, I〉 is mapping A from set of variables to set D

image of variable v under assignment A is denoted by vA

AM/VvO (CS @ UIBK) lecture 4 25/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Definition

model for first-order language L(R,F,C) is pair M = 〈D, I〉 where

• D is nonempty set, called domain of M

• I is mapping, called interpretation, that associates

• to every c ∈ C some member c I ∈ D

• to every n -place f ∈ F some n -ary function f I : Dn → D

• to every n -place P ∈ R some n -ary relation P I ⊆ Dn

Definition

assignment in model M = 〈D, I〉 is mapping A from set of variables to set D

image of variable v under assignment A is denoted by vA

AM/VvO (CS @ UIBK) lecture 4 25/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Definition

model for first-order language L(R,F,C) is pair M = 〈D, I〉 where

• D is nonempty set, called domain of M

• I is mapping, called interpretation, that associates

• to every c ∈ C some member c I ∈ D

• to every n -place f ∈ F some n -ary function f I : Dn → D

• to every n -place P ∈ R some n -ary relation P I ⊆ Dn

Definition

assignment in model M = 〈D, I〉 is mapping A from set of variables to set D

image of variable v under assignment A is denoted by vA

AM/VvO (CS @ UIBK) lecture 4 25/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Definition

model for first-order language L(R,F,C) is pair M = 〈D, I〉 where

• D is nonempty set, called domain of M

• I is mapping, called interpretation, that associates

• to every c ∈ C some member c I ∈ D

• to every n -place f ∈ F some n -ary function f I : Dn → D

• to every n -place P ∈ R some n -ary relation P I ⊆ Dn

Definition

assignment in model M = 〈D, I〉 is mapping A from set of variables to set D

image of variable v under assignment A is denoted by vA

AM/VvO (CS @ UIBK) lecture 4 25/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Definition

model for first-order language L(R,F,C) is pair M = 〈D, I〉 where

• D is nonempty set, called domain of M

• I is mapping, called interpretation, that associates

• to every c ∈ C some member c I ∈ D

• to every n -place f ∈ F some n -ary function f I : Dn → D

• to every n -place P ∈ R some n -ary relation P I ⊆ Dn

Definition

assignment in model M = 〈D, I〉 is mapping A from set of variables to set D

image of variable v under assignment A is denoted by vA

AM/VvO (CS @ UIBK) lecture 4 25/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Definition

given model M = 〈D, I〉 for language L(R,F,C) and assignment A in M,
value t I,A in D is defined inductively:

1 c I,A = c I for constant symbol c

2 v I,A = vA for variable v

3 [f (t1, . . . , tn)]I,A = f I(t I,A1 , . . . , t I,An) for n -place function symbol f

Example

L with constant 0, one-place function symbol s, two-place function symbol +

terms t1 = s(s(0) + s(x)) and t2 = s(x + s(x + s(0)))

model M1 = 〈D, I〉 with D = N, 0I = 0, s I(n) = n + 1, +I(m, n) = m + n

assignment A with xA = 3

t I,A1 = 6 and t I,A2 =

9

AM/VvO (CS @ UIBK) lecture 4 26/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Definition

given model M = 〈D, I〉 for language L(R,F,C) and assignment A in M,
value t I,A in D is defined inductively:

1 c I,A = c I for constant symbol c

2 v I,A = vA for variable v

3 [f (t1, . . . , tn)]I,A = f I(t I,A1 , . . . , t I,An) for n -place function symbol f

Example

L with constant 0, one-place function symbol s, two-place function symbol +

terms t1 = s(s(0) + s(x)) and t2 = s(x + s(x + s(0)))

model M1 = 〈D, I〉 with D = N, 0I = 0, s I(n) = n + 1, +I(m, n) = m + n

assignment A with xA = 3

t I,A1 = 6 and t I,A2 =

9

AM/VvO (CS @ UIBK) lecture 4 26/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Definition

given model M = 〈D, I〉 for language L(R,F,C) and assignment A in M,
value t I,A in D is defined inductively:

1 c I,A = c I for constant symbol c

2 v I,A = vA for variable v

3 [f (t1, . . . , tn)]I,A = f I(t I,A1 , . . . , t I,An) for n -place function symbol f

Example

L with constant 0, one-place function symbol s, two-place function symbol +

terms t1 = s(s(0) + s(x)) and t2 = s(x + s(x + s(0)))

model M1 = 〈D, I〉 with D = N, 0I = 0, s I(n) = n + 1, +I(m, n) = m + n

assignment A with xA = 3

t I,A1 = 6 and t I,A2 =

9

AM/VvO (CS @ UIBK) lecture 4 26/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Definition

given model M = 〈D, I〉 for language L(R,F,C) and assignment A in M,
value t I,A in D is defined inductively:

1 c I,A = c I for constant symbol c

2 v I,A = vA for variable v

3 [f (t1, . . . , tn)]I,A = f I(t I,A1 , . . . , t I,An) for n -place function symbol f

Example

L with constant 0, one-place function symbol s, two-place function symbol +

terms t1 = s(s(0) + s(x)) and t2 = s(x + s(x + s(0)))

model M1 = 〈D, I〉 with D = N, 0I = 0, s I(n) = n + 1, +I(m, n) = m + n

assignment A with xA = 3

t I,A1 = 6 and t I,A2 =

9

AM/VvO (CS @ UIBK) lecture 4 26/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Definition

given model M = 〈D, I〉 for language L(R,F,C) and assignment A in M,
value t I,A in D is defined inductively:

1 c I,A = c I for constant symbol c

2 v I,A = vA for variable v

3 [f (t1, . . . , tn)]I,A = f I(t I,A1 , . . . , t I,An) for n -place function symbol f

Example

L with constant 0, one-place function symbol s, two-place function symbol +

terms t1 = s(s(0) + s(x)) and t2 = s(x + s(x + s(0)))

model M1 = 〈D, I〉 with D = N, 0I = 0, s I(n) = n + 1, +I(m, n) = m + n

assignment A with xA = 3

t I,A1 = 6 and t I,A2 =

9

AM/VvO (CS @ UIBK) lecture 4 26/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Definition

given model M = 〈D, I〉 for language L(R,F,C) and assignment A in M,
value t I,A in D is defined inductively:

1 c I,A = c I for constant symbol c

2 v I,A = vA for variable v

3 [f (t1, . . . , tn)]I,A = f I(t I,A1 , . . . , t I,An) for n -place function symbol f

Example

L with constant 0, one-place function symbol s, two-place function symbol +

terms t1 = s(s(0) + s(x)) and t2 = s(x + s(x + s(0)))

model M1 = 〈D, I〉 with D = N, 0I = 0, s I(n) = n + 1, +I(m, n) = m + n

assignment A with xA = 3

t I,A1 = 6 and t I,A2 =

9

AM/VvO (CS @ UIBK) lecture 4 26/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Definition

given model M = 〈D, I〉 for language L(R,F,C) and assignment A in M,
value t I,A in D is defined inductively:

1 c I,A = c I for constant symbol c

2 v I,A = vA for variable v

3 [f (t1, . . . , tn)]I,A = f I(t I,A1 , . . . , t I,An) for n -place function symbol f

Example

L with constant 0, one-place function symbol s, two-place function symbol +

terms t1 = s(s(0) + s(x)) and t2 = s(x + s(x + s(0)))

model M1 = 〈D, I〉 with D = N, 0I = 0, s I(n) = n + 1, +I(m, n) = m + n

assignment A with xA = 3

t I,A1 = 6 and t I,A2 =

9

AM/VvO (CS @ UIBK) lecture 4 26/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Definition

given model M = 〈D, I〉 for language L(R,F,C) and assignment A in M,
value t I,A in D is defined inductively:

1 c I,A = c I for constant symbol c

2 v I,A = vA for variable v

3 [f (t1, . . . , tn)]I,A = f I(t I,A1 , . . . , t I,An) for n -place function symbol f

Example

L with constant 0, one-place function symbol s, two-place function symbol +

terms t1 = s(s(0) + s(x)) and t2 = s(x + s(x + s(0)))

model M1 = 〈D, I〉 with D = N, 0I = 0, s I(n) = n + 1, +I(m, n) = m + n

assignment A with xA = 3

t I,A1 = 6

and t I,A2 =

9

AM/VvO (CS @ UIBK) lecture 4 26/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Definition

given model M = 〈D, I〉 for language L(R,F,C) and assignment A in M,
value t I,A in D is defined inductively:

1 c I,A = c I for constant symbol c

2 v I,A = vA for variable v

3 [f (t1, . . . , tn)]I,A = f I(t I,A1 , . . . , t I,An) for n -place function symbol f

Example

L with constant 0, one-place function symbol s, two-place function symbol +

terms t1 = s(s(0) + s(x)) and t2 = s(x + s(x + s(0)))

model M1 = 〈D, I〉 with D = N, 0I = 0, s I(n) = n + 1, +I(m, n) = m + n

assignment A with xA = 3

t I,A1 = 6 and t I,A2 =

9

AM/VvO (CS @ UIBK) lecture 4 26/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Definition

given model M = 〈D, I〉 for language L(R,F,C) and assignment A in M,
value t I,A in D is defined inductively:

1 c I,A = c I for constant symbol c

2 v I,A = vA for variable v

3 [f (t1, . . . , tn)]I,A = f I(t I,A1 , . . . , t I,An) for n -place function symbol f

Example

L with constant 0, one-place function symbol s, two-place function symbol +

terms t1 = s(s(0) + s(x)) and t2 = s(x + s(x + s(0)))

model M1 = 〈D, I〉 with D = N, 0I = 0, s I(n) = n + 1, +I(m, n) = m + n

assignment A with xA = 3

t I,A1 = 6 and t I,A2 = 9

AM/VvO (CS @ UIBK) lecture 4 26/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Definition

given model M = 〈D, I〉 for language L(R,F,C) and assignment A in M,
value t I,A in D is defined inductively:

1 c I,A = c I for constant symbol c

2 v I,A = vA for variable v

3 [f (t1, . . . , tn)]I,A = f I(t I,A1 , . . . , t I,An) for n -place function symbol f

Example

L with constant 0, one-place function symbol s, two-place function symbol +

terms t1 = s(s(0) + s(x)) and t2 = s(x + s(x + s(0)))

model M2 = 〈D, I〉 with D = {a, b}∗, 0I = a, s I(w) = wa, +I(v ,w) = vw

assignment A with xA = aba

t I,A1 =

aaabaaa

and t I,A2 =

abaabaaaaa

AM/VvO (CS @ UIBK) lecture 4 26/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Definition

given model M = 〈D, I〉 for language L(R,F,C) and assignment A in M,
value t I,A in D is defined inductively:

1 c I,A = c I for constant symbol c

2 v I,A = vA for variable v

3 [f (t1, . . . , tn)]I,A = f I(t I,A1 , . . . , t I,An) for n -place function symbol f

Example

L with constant 0, one-place function symbol s, two-place function symbol +

terms t1 = s(s(0) + s(x)) and t2 = s(x + s(x + s(0)))

model M2 = 〈D, I〉 with D = {a, b}∗, 0I = a, s I(w) = wa, +I(v ,w) = vw

assignment A with xA = aba

t I,A1 =

aaabaaa

and t I,A2 =

abaabaaaaa

AM/VvO (CS @ UIBK) lecture 4 26/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Definition

given model M = 〈D, I〉 for language L(R,F,C) and assignment A in M,
value t I,A in D is defined inductively:

1 c I,A = c I for constant symbol c

2 v I,A = vA for variable v

3 [f (t1, . . . , tn)]I,A = f I(t I,A1 , . . . , t I,An) for n -place function symbol f

Example

L with constant 0, one-place function symbol s, two-place function symbol +

terms t1 = s(s(0) + s(x)) and t2 = s(x + s(x + s(0)))

model M2 = 〈D, I〉 with D = {a, b}∗, 0I = a, s I(w) = wa, +I(v ,w) = vw

assignment A with xA = aba

t I,A1 =

aaabaaa

and t I,A2 =

abaabaaaaa

AM/VvO (CS @ UIBK) lecture 4 26/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Definition

given model M = 〈D, I〉 for language L(R,F,C) and assignment A in M,
value t I,A in D is defined inductively:

1 c I,A = c I for constant symbol c

2 v I,A = vA for variable v

3 [f (t1, . . . , tn)]I,A = f I(t I,A1 , . . . , t I,An) for n -place function symbol f

Example

L with constant 0, one-place function symbol s, two-place function symbol +

terms t1 = s(s(0) + s(x)) and t2 = s(x + s(x + s(0)))

model M2 = 〈D, I〉 with D = {a, b}∗, 0I = a, s I(w) = wa, +I(v ,w) = vw

assignment A with xA = aba

t I,A1 = aaabaaa and t I,A2 =

abaabaaaaa

AM/VvO (CS @ UIBK) lecture 4 26/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Definition

given model M = 〈D, I〉 for language L(R,F,C) and assignment A in M,
value t I,A in D is defined inductively:

1 c I,A = c I for constant symbol c

2 v I,A = vA for variable v

3 [f (t1, . . . , tn)]I,A = f I(t I,A1 , . . . , t I,An) for n -place function symbol f

Example

L with constant 0, one-place function symbol s, two-place function symbol +

terms t1 = s(s(0) + s(x)) and t2 = s(x + s(x + s(0)))

model M2 = 〈D, I〉 with D = {a, b}∗, 0I = a, s I(w) = wa, +I(v ,w) = vw

assignment A with xA = aba

t I,A1 = aaabaaa and t I,A2 = abaabaaaaa

AM/VvO (CS @ UIBK) lecture 4 26/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Definition

assignment B in model M is x-variant of assignment A provided A and B assign
same values to every variable except possibly x

Definition

given model M = 〈D, I〉 for language L(R,F,C) and assignment A in M,
truth value ΦI,A for formula Φ of L(R,F,C) is defined inductively:

1 [P(t1, . . . , tn)]I,A = t ⇐⇒ 〈t I,A1 , . . . , t I,An 〉 ∈ P I

>I,A = t ⊥I,A = f

2 [¬X]I,A = ¬[X I,A]

3 [X ◦ Y]I,A = X I,A ◦ Y I,A

4 [(∀x)Φ]I,A = t ⇐⇒ ΦI,B = t for every assignment B in M that is
x-variant of A

5 [(∃x)Φ]I,A = t ⇐⇒ ΦI,B = t for some assignment B in M that is
x-variant of A

AM/VvO (CS @ UIBK) lecture 4 27/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Definition

assignment B in model M is x-variant of assignment A provided A and B assign
same values to every variable except possibly x

Definition

given model M = 〈D, I〉 for language L(R,F,C) and assignment A in M,
truth value ΦI,A for formula Φ of L(R,F,C) is defined inductively:

1 [P(t1, . . . , tn)]I,A = t ⇐⇒ 〈t I,A1 , . . . , t I,An 〉 ∈ P I

>I,A = t ⊥I,A = f

2 [¬X]I,A = ¬[X I,A]

3 [X ◦ Y]I,A = X I,A ◦ Y I,A

4 [(∀x)Φ]I,A = t ⇐⇒ ΦI,B = t for every assignment B in M that is
x-variant of A

5 [(∃x)Φ]I,A = t ⇐⇒ ΦI,B = t for some assignment B in M that is
x-variant of A

AM/VvO (CS @ UIBK) lecture 4 27/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Definition

assignment B in model M is x-variant of assignment A provided A and B assign
same values to every variable except possibly x

Definition

given model M = 〈D, I〉 for language L(R,F,C) and assignment A in M,
truth value ΦI,A for formula Φ of L(R,F,C) is defined inductively:

1 [P(t1, . . . , tn)]I,A = t ⇐⇒ 〈t I,A1 , . . . , t I,An 〉 ∈ P I >I,A = t ⊥I,A = f

2 [¬X]I,A = ¬[X I,A]

3 [X ◦ Y]I,A = X I,A ◦ Y I,A

4 [(∀x)Φ]I,A = t ⇐⇒ ΦI,B = t for every assignment B in M that is
x-variant of A

5 [(∃x)Φ]I,A = t ⇐⇒ ΦI,B = t for some assignment B in M that is
x-variant of A

AM/VvO (CS @ UIBK) lecture 4 27/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Definition

assignment B in model M is x-variant of assignment A provided A and B assign
same values to every variable except possibly x

Definition

given model M = 〈D, I〉 for language L(R,F,C) and assignment A in M,
truth value ΦI,A for formula Φ of L(R,F,C) is defined inductively:

1 [P(t1, . . . , tn)]I,A = t ⇐⇒ 〈t I,A1 , . . . , t I,An 〉 ∈ P I >I,A = t ⊥I,A = f

2 [¬X]I,A = ¬[X I,A]

3 [X ◦ Y]I,A = X I,A ◦ Y I,A

4 [(∀x)Φ]I,A = t ⇐⇒ ΦI,B = t for every assignment B in M that is
x-variant of A

5 [(∃x)Φ]I,A = t ⇐⇒ ΦI,B = t for some assignment B in M that is
x-variant of A

AM/VvO (CS @ UIBK) lecture 4 27/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Definition

assignment B in model M is x-variant of assignment A provided A and B assign
same values to every variable except possibly x

Definition

given model M = 〈D, I〉 for language L(R,F,C) and assignment A in M,
truth value ΦI,A for formula Φ of L(R,F,C) is defined inductively:

1 [P(t1, . . . , tn)]I,A = t ⇐⇒ 〈t I,A1 , . . . , t I,An 〉 ∈ P I >I,A = t ⊥I,A = f

2 [¬X]I,A = ¬[X I,A]

3 [X ◦ Y]I,A = X I,A ◦ Y I,A

4 [(∀x)Φ]I,A = t ⇐⇒ ΦI,B = t for every assignment B in M that is
x-variant of A

5 [(∃x)Φ]I,A = t ⇐⇒ ΦI,B = t for some assignment B in M that is
x-variant of A

AM/VvO (CS @ UIBK) lecture 4 27/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Definition

assignment B in model M is x-variant of assignment A provided A and B assign
same values to every variable except possibly x

Definition

given model M = 〈D, I〉 for language L(R,F,C) and assignment A in M,
truth value ΦI,A for formula Φ of L(R,F,C) is defined inductively:

1 [P(t1, . . . , tn)]I,A = t ⇐⇒ 〈t I,A1 , . . . , t I,An 〉 ∈ P I >I,A = t ⊥I,A = f

2 [¬X]I,A = ¬[X I,A]

3 [X ◦ Y]I,A = X I,A ◦ Y I,A

4 [(∀x)Φ]I,A = t ⇐⇒ ΦI,B = t for every assignment B in M that is
x-variant of A

5 [(∃x)Φ]I,A = t ⇐⇒ ΦI,B = t for some assignment B in M that is
x-variant of A

AM/VvO (CS @ UIBK) lecture 4 27/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Definition

assignment B in model M is x-variant of assignment A provided A and B assign
same values to every variable except possibly x

Definition

given model M = 〈D, I〉 for language L(R,F,C) and assignment A in M,
truth value ΦI,A for formula Φ of L(R,F,C) is defined inductively:

1 [P(t1, . . . , tn)]I,A = t ⇐⇒ 〈t I,A1 , . . . , t I,An 〉 ∈ P I >I,A = t ⊥I,A = f

2 [¬X]I,A = ¬[X I,A]

3 [X ◦ Y]I,A = X I,A ◦ Y I,A

4 [(∀x)Φ]I,A = t ⇐⇒ ΦI,B = t for every assignment B in M that is
x-variant of A

5 [(∃x)Φ]I,A = t ⇐⇒ ΦI,B = t for some assignment B in M that is
x-variant of A

AM/VvO (CS @ UIBK) lecture 4 27/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Notation

ΦI instead of ΦI,A for formulas Φ without free variables

Definitions

• formula Φ of L(R,F,C) is true in model M = 〈D, I〉 for L(R,F,C) provided
ΦI,A = t for all assignments A

• formula Φ is valid if Φ is true in all models for L(R,F,C)

• set S of formulas is satisfiable in M = 〈D, I〉 provided there exists assignment
A (called satisfying assignment) such that ΦI,A = t for all Φ ∈ S

• set S of formulas is satisfiable if S is satisfiable in some model

AM/VvO (CS @ UIBK) lecture 4 28/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Notation

ΦI instead of ΦI,A for formulas Φ without free variables

Definitions

• formula Φ of L(R,F,C) is true in model M = 〈D, I〉 for L(R,F,C) provided
ΦI,A = t for all assignments A

• formula Φ is valid if Φ is true in all models for L(R,F,C)

• set S of formulas is satisfiable in M = 〈D, I〉 provided there exists assignment
A (called satisfying assignment) such that ΦI,A = t for all Φ ∈ S

• set S of formulas is satisfiable if S is satisfiable in some model

AM/VvO (CS @ UIBK) lecture 4 28/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Notation

ΦI instead of ΦI,A for formulas Φ without free variables

Definitions

• formula Φ of L(R,F,C) is true in model M = 〈D, I〉 for L(R,F,C) provided
ΦI,A = t for all assignments A

• formula Φ is valid if Φ is true in all models for L(R,F,C)

• set S of formulas is satisfiable in M = 〈D, I〉 provided there exists assignment
A (called satisfying assignment) such that ΦI,A = t for all Φ ∈ S

• set S of formulas is satisfiable if S is satisfiable in some model

AM/VvO (CS @ UIBK) lecture 4 28/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Notation

ΦI instead of ΦI,A for formulas Φ without free variables

Definitions

• formula Φ of L(R,F,C) is true in model M = 〈D, I〉 for L(R,F,C) provided
ΦI,A = t for all assignments A

• formula Φ is valid if Φ is true in all models for L(R,F,C)

• set S of formulas is satisfiable in M = 〈D, I〉 provided there exists assignment
A (called satisfying assignment) such that ΦI,A = t for all Φ ∈ S

• set S of formulas is satisfiable if S is satisfiable in some model

AM/VvO (CS @ UIBK) lecture 4 28/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Example

L with two-place function symbol ⊕ and two-place relation symbol R

• model M = 〈D, I〉 with D = N, ⊕I(x , y) = x + y , R I is equality relation

formula (∃y)R(x , y ⊕ y)

(∃y)R(x , y ⊕ y)I,A is true if and only if xA is even number

• model M = 〈D, I〉 with D = N+, ⊕I(x , y) = x + y , R I is greater-than relation

sentence (∀x)(∀y)(∃z)R(x ⊕ y , z) is true in M

Lemma

given closed term t, formula Φ of first-order language L, model M = 〈D, I〉 for L

if x is variable and A assignment such that xA = t I then [Φ{x/t}]I,B = ΦI,A for
any x-variant B of A

AM/VvO (CS @ UIBK) lecture 4 29/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Example

L with two-place function symbol ⊕ and two-place relation symbol R

• model M = 〈D, I〉 with D = N, ⊕I(x , y) = x + y , R I is equality relation

formula (∃y)R(x , y ⊕ y)

(∃y)R(x , y ⊕ y)I,A is true if and only if xA is even number

• model M = 〈D, I〉 with D = N+, ⊕I(x , y) = x + y , R I is greater-than relation

sentence (∀x)(∀y)(∃z)R(x ⊕ y , z) is true in M

Lemma

given closed term t, formula Φ of first-order language L, model M = 〈D, I〉 for L

if x is variable and A assignment such that xA = t I then [Φ{x/t}]I,B = ΦI,A for
any x-variant B of A

AM/VvO (CS @ UIBK) lecture 4 29/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Example

L with two-place function symbol ⊕ and two-place relation symbol R

• model M = 〈D, I〉 with D = N, ⊕I(x , y) = x + y , R I is equality relation

formula (∃y)R(x , y ⊕ y)

(∃y)R(x , y ⊕ y)I,A is true if and only if xA is even number

• model M = 〈D, I〉 with D = N+, ⊕I(x , y) = x + y , R I is greater-than relation

sentence (∀x)(∀y)(∃z)R(x ⊕ y , z) is true in M

Lemma

given closed term t, formula Φ of first-order language L, model M = 〈D, I〉 for L

if x is variable and A assignment such that xA = t I then [Φ{x/t}]I,B = ΦI,A for
any x-variant B of A

AM/VvO (CS @ UIBK) lecture 4 29/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Example

L with two-place function symbol ⊕ and two-place relation symbol R

• model M = 〈D, I〉 with D = N, ⊕I(x , y) = x + y , R I is equality relation

formula (∃y)R(x , y ⊕ y)

(∃y)R(x , y ⊕ y)I,A is true if and only if xA is even number

• model M = 〈D, I〉 with D = N+, ⊕I(x , y) = x + y , R I is greater-than relation

sentence (∀x)(∀y)(∃z)R(x ⊕ y , z) is true in M

Lemma

given closed term t, formula Φ of first-order language L, model M = 〈D, I〉 for L

if x is variable and A assignment such that xA = t I then [Φ{x/t}]I,B = ΦI,A for
any x-variant B of A

AM/VvO (CS @ UIBK) lecture 4 29/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Example

L with two-place function symbol ⊕ and two-place relation symbol R

• model M = 〈D, I〉 with D = N, ⊕I(x , y) = x + y , R I is equality relation

formula (∃y)R(x , y ⊕ y)

(∃y)R(x , y ⊕ y)I,A is true if and only if xA is even number

• model M = 〈D, I〉 with D = N+, ⊕I(x , y) = x + y , R I is greater-than relation

sentence (∀x)(∀y)(∃z)R(x ⊕ y , z) is true in M

Lemma

given closed term t, formula Φ of first-order language L, model M = 〈D, I〉 for L

if x is variable and A assignment such that xA = t I then [Φ{x/t}]I,B = ΦI,A for
any x-variant B of A

AM/VvO (CS @ UIBK) lecture 4 29/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Example

L with two-place function symbol ⊕ and two-place relation symbol R

• model M = 〈D, I〉 with D = N, ⊕I(x , y) = x + y , R I is equality relation

formula (∃y)R(x , y ⊕ y)

(∃y)R(x , y ⊕ y)I,A is true if and only if xA is even number

• model M = 〈D, I〉 with D = N+, ⊕I(x , y) = x + y , R I is greater-than relation

sentence (∀x)(∀y)(∃z)R(x ⊕ y , z)

is true in M

Lemma

given closed term t, formula Φ of first-order language L, model M = 〈D, I〉 for L

if x is variable and A assignment such that xA = t I then [Φ{x/t}]I,B = ΦI,A for
any x-variant B of A

AM/VvO (CS @ UIBK) lecture 4 29/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Example

L with two-place function symbol ⊕ and two-place relation symbol R

• model M = 〈D, I〉 with D = N, ⊕I(x , y) = x + y , R I is equality relation

formula (∃y)R(x , y ⊕ y)

(∃y)R(x , y ⊕ y)I,A is true if and only if xA is even number

• model M = 〈D, I〉 with D = N+, ⊕I(x , y) = x + y , R I is greater-than relation

sentence (∀x)(∀y)(∃z)R(x ⊕ y , z) is true in M

Lemma

given closed term t, formula Φ of first-order language L, model M = 〈D, I〉 for L

if x is variable and A assignment such that xA = t I then [Φ{x/t}]I,B = ΦI,A for
any x-variant B of A

AM/VvO (CS @ UIBK) lecture 4 29/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Example

L with two-place function symbol ⊕ and two-place relation symbol R

• model M = 〈D, I〉 with D = N, ⊕I(x , y) = x + y , R I is equality relation

formula (∃y)R(x , y ⊕ y)

(∃y)R(x , y ⊕ y)I,A is true if and only if xA is even number

• model M = 〈D, I〉 with D = N+, ⊕I(x , y) = x + y , R I is greater-than relation

sentence (∀x)(∀y)(∃z)R(x ⊕ y , z) is true in M

Lemma

given closed term t, formula Φ of first-order language L, model M = 〈D, I〉 for L

if x is variable and A assignment such that xA = t I then [Φ{x/t}]I,B = ΦI,A for
any x-variant B of A

AM/VvO (CS @ UIBK) lecture 4 29/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Lemma

given model M = 〈D, I〉 for language L, formula Φ in L, assignment A in M,
substitution σ that is free for Φ

if assignment B is defined by vB = (vσ)I,A for each variable v then ΦI,B = (Φσ)I,A

Proof

structural induction on Φ

• atomic and propositional cases are straightforward

t I,B = (tσ)I,A for all terms t is obtained by induction on t

• Φ = (∃x)ϕ suppose (Φσ)I,A = [(∃x)(ϕσx)]I,A = t

(ϕσx)I,A
′

= t for some x-variant A′ of A

define assignment B′ by vB′
= (vσx)I,A

′
for each variable v

σx is free for ϕ

ϕI,B′
= (ϕσx)I,A

′
= t by induction hypothesis

AM/VvO (CS @ UIBK) lecture 4 30/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Lemma

given model M = 〈D, I〉 for language L, formula Φ in L, assignment A in M,
substitution σ that is free for Φ

if assignment B is defined by vB = (vσ)I,A for each variable v then ΦI,B = (Φσ)I,A

Proof

structural induction on Φ

• atomic and propositional cases are straightforward

t I,B = (tσ)I,A for all terms t is obtained by induction on t

• Φ = (∃x)ϕ suppose (Φσ)I,A = [(∃x)(ϕσx)]I,A = t

(ϕσx)I,A
′

= t for some x-variant A′ of A

define assignment B′ by vB′
= (vσx)I,A

′
for each variable v

σx is free for ϕ

ϕI,B′
= (ϕσx)I,A

′
= t by induction hypothesis

AM/VvO (CS @ UIBK) lecture 4 30/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Lemma

given model M = 〈D, I〉 for language L, formula Φ in L, assignment A in M,
substitution σ that is free for Φ

if assignment B is defined by vB = (vσ)I,A for each variable v then ΦI,B = (Φσ)I,A

Proof

structural induction on Φ

• atomic and propositional cases are straightforward

t I,B = (tσ)I,A for all terms t is obtained by induction on t

• Φ = (∃x)ϕ suppose (Φσ)I,A = [(∃x)(ϕσx)]I,A = t

(ϕσx)I,A
′

= t for some x-variant A′ of A

define assignment B′ by vB′
= (vσx)I,A

′
for each variable v

σx is free for ϕ

ϕI,B′
= (ϕσx)I,A

′
= t by induction hypothesis

AM/VvO (CS @ UIBK) lecture 4 30/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Lemma

given model M = 〈D, I〉 for language L, formula Φ in L, assignment A in M,
substitution σ that is free for Φ

if assignment B is defined by vB = (vσ)I,A for each variable v then ΦI,B = (Φσ)I,A

Proof

structural induction on Φ

• atomic and propositional cases are straightforward

t I,B = (tσ)I,A for all terms t is obtained by induction on t

• Φ = (∃x)ϕ

suppose (Φσ)I,A = [(∃x)(ϕσx)]I,A = t

(ϕσx)I,A
′

= t for some x-variant A′ of A

define assignment B′ by vB′
= (vσx)I,A

′
for each variable v

σx is free for ϕ

ϕI,B′
= (ϕσx)I,A

′
= t by induction hypothesis

AM/VvO (CS @ UIBK) lecture 4 30/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Lemma

given model M = 〈D, I〉 for language L, formula Φ in L, assignment A in M,
substitution σ that is free for Φ

if assignment B is defined by vB = (vσ)I,A for each variable v then ΦI,B = (Φσ)I,A

Proof

structural induction on Φ

• atomic and propositional cases are straightforward

t I,B = (tσ)I,A for all terms t is obtained by induction on t

• Φ = (∃x)ϕ

suppose (Φσ)I,A = [(∃x)(ϕσx)]I,A = t

(ϕσx)I,A
′

= t for some x-variant A′ of A

define assignment B′ by vB′
= (vσx)I,A

′
for each variable v

σx is free for ϕ

ϕI,B′
= (ϕσx)I,A

′
= t by induction hypothesis

AM/VvO (CS @ UIBK) lecture 4 30/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Lemma

given model M = 〈D, I〉 for language L, formula Φ in L, assignment A in M,
substitution σ that is free for Φ

if assignment B is defined by vB = (vσ)I,A for each variable v then ΦI,B = (Φσ)I,A

Proof

structural induction on Φ

• atomic and propositional cases are straightforward

t I,B = (tσ)I,A for all terms t is obtained by induction on t

• Φ = (∃x)ϕ suppose (Φσ)I,A = [(∃x)(ϕσx)]I,A = t

(ϕσx)I,A
′

= t for some x-variant A′ of A

define assignment B′ by vB′
= (vσx)I,A

′
for each variable v

σx is free for ϕ

ϕI,B′
= (ϕσx)I,A

′
= t by induction hypothesis

AM/VvO (CS @ UIBK) lecture 4 30/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Lemma

given model M = 〈D, I〉 for language L, formula Φ in L, assignment A in M,
substitution σ that is free for Φ

if assignment B is defined by vB = (vσ)I,A for each variable v then ΦI,B = (Φσ)I,A

Proof

structural induction on Φ

• atomic and propositional cases are straightforward

t I,B = (tσ)I,A for all terms t is obtained by induction on t

• Φ = (∃x)ϕ suppose (Φσ)I,A = [(∃x)(ϕσx)]I,A = t

(ϕσx)I,A
′

= t for some x-variant A′ of A

define assignment B′ by vB′
= (vσx)I,A

′
for each variable v

σx is free for ϕ

ϕI,B′
= (ϕσx)I,A

′
= t by induction hypothesis

AM/VvO (CS @ UIBK) lecture 4 30/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Lemma

given model M = 〈D, I〉 for language L, formula Φ in L, assignment A in M,
substitution σ that is free for Φ

if assignment B is defined by vB = (vσ)I,A for each variable v then ΦI,B = (Φσ)I,A

Proof

structural induction on Φ

• atomic and propositional cases are straightforward

t I,B = (tσ)I,A for all terms t is obtained by induction on t

• Φ = (∃x)ϕ suppose (Φσ)I,A = [(∃x)(ϕσx)]I,A = t

(ϕσx)I,A
′

= t for some x-variant A′ of A

define assignment B′ by vB′
= (vσx)I,A

′
for each variable v

σx is free for ϕ

ϕI,B′
= (ϕσx)I,A

′
= t by induction hypothesis

AM/VvO (CS @ UIBK) lecture 4 30/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Lemma

given model M = 〈D, I〉 for language L, formula Φ in L, assignment A in M,
substitution σ that is free for Φ

if assignment B is defined by vB = (vσ)I,A for each variable v then ΦI,B = (Φσ)I,A

Proof

structural induction on Φ

• atomic and propositional cases are straightforward

t I,B = (tσ)I,A for all terms t is obtained by induction on t

• Φ = (∃x)ϕ suppose (Φσ)I,A = [(∃x)(ϕσx)]I,A = t

(ϕσx)I,A
′

= t for some x-variant A′ of A

define assignment B′ by vB′
= (vσx)I,A

′
for each variable v

σx is free for ϕ

ϕI,B′
= (ϕσx)I,A

′
= t by induction hypothesis

AM/VvO (CS @ UIBK) lecture 4 30/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Lemma

given model M = 〈D, I〉 for language L, formula Φ in L, assignment A in M,
substitution σ that is free for Φ

if assignment B is defined by vB = (vσ)I,A for each variable v then ΦI,B = (Φσ)I,A

Proof

structural induction on Φ

• atomic and propositional cases are straightforward

t I,B = (tσ)I,A for all terms t is obtained by induction on t

• Φ = (∃x)ϕ suppose (Φσ)I,A = [(∃x)(ϕσx)]I,A = t

(ϕσx)I,A
′

= t for some x-variant A′ of A

define assignment B′ by vB′
= (vσx)I,A

′
for each variable v

σx is free for ϕ

ϕI,B′
= (ϕσx)I,A

′
= t by induction hypothesis

AM/VvO (CS @ UIBK) lecture 4 30/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Proof (cont’d)

• Φ = (∃x)ϕ (Φσ)I,A = [(∃x)(ϕσx)]I,A = t σ is free for Φ

assignment B′ with vB′
= (vσx)I,A

′
for each variable v

ϕI,B′
= (ϕσx)I,A

′
= t

claim: B′ is x-variant B

if v 6= x then vB′
= (vσx)I,A

′
= (vσ)I,A

′
= (vσ)I,A = vB

ΦI,B = [(∃x)ϕ]I,B = ϕI,B′
= t

proof of converse direction is similar

• Φ = (∀x)ϕ similar

AM/VvO (CS @ UIBK) lecture 4 31/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Proof (cont’d)

• Φ = (∃x)ϕ (Φσ)I,A = [(∃x)(ϕσx)]I,A = t σ is free for Φ

assignment B′ with vB′
= (vσx)I,A

′
for each variable v

ϕI,B′
= (ϕσx)I,A

′
= t

claim: B′ is x-variant B

if v 6= x then vB′
= (vσx)I,A

′
= (vσ)I,A

′
= (vσ)I,A = vB

ΦI,B = [(∃x)ϕ]I,B = ϕI,B′
= t

proof of converse direction is similar

• Φ = (∀x)ϕ similar

AM/VvO (CS @ UIBK) lecture 4 31/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Proof (cont’d)

• Φ = (∃x)ϕ (Φσ)I,A = [(∃x)(ϕσx)]I,A = t σ is free for Φ

assignment B′ with vB′
= (vσx)I,A

′
for each variable v

ϕI,B′
= (ϕσx)I,A

′
= t

claim: B′ is x-variant B

if v 6= x then vB′
= (vσx)I,A

′

= (vσ)I,A
′

= (vσ)I,A = vB

ΦI,B = [(∃x)ϕ]I,B = ϕI,B′
= t

proof of converse direction is similar

• Φ = (∀x)ϕ similar

AM/VvO (CS @ UIBK) lecture 4 31/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Proof (cont’d)

• Φ = (∃x)ϕ (Φσ)I,A = [(∃x)(ϕσx)]I,A = t σ is free for Φ

assignment B′ with vB′
= (vσx)I,A

′
for each variable v

ϕI,B′
= (ϕσx)I,A

′
= t

claim: B′ is x-variant B

if v 6= x then vB′
= (vσx)I,A

′
= (vσ)I,A

′

= (vσ)I,A = vB

ΦI,B = [(∃x)ϕ]I,B = ϕI,B′
= t

proof of converse direction is similar

• Φ = (∀x)ϕ similar

AM/VvO (CS @ UIBK) lecture 4 31/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Proof (cont’d)

• Φ = (∃x)ϕ (Φσ)I,A = [(∃x)(ϕσx)]I,A = t σ is free for Φ

assignment B′ with vB′
= (vσx)I,A

′
for each variable v

ϕI,B′
= (ϕσx)I,A

′
= t

claim: B′ is x-variant B

if v 6= x then vB′
= (vσx)I,A

′
= (vσ)I,A

′
= (vσ)I,A

= vB

ΦI,B = [(∃x)ϕ]I,B = ϕI,B′
= t

proof of converse direction is similar

• Φ = (∀x)ϕ similar

AM/VvO (CS @ UIBK) lecture 4 31/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Proof (cont’d)

• Φ = (∃x)ϕ (Φσ)I,A = [(∃x)(ϕσx)]I,A = t σ is free for Φ

assignment B′ with vB′
= (vσx)I,A

′
for each variable v

ϕI,B′
= (ϕσx)I,A

′
= t

claim: B′ is x-variant B

if v 6= x then vB′
= (vσx)I,A

′
= (vσ)I,A

′
= (vσ)I,A = vB

ΦI,B = [(∃x)ϕ]I,B = ϕI,B′
= t

proof of converse direction is similar

• Φ = (∀x)ϕ similar

AM/VvO (CS @ UIBK) lecture 4 31/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Proof (cont’d)

• Φ = (∃x)ϕ (Φσ)I,A = [(∃x)(ϕσx)]I,A = t σ is free for Φ

assignment B′ with vB′
= (vσx)I,A

′
for each variable v

ϕI,B′
= (ϕσx)I,A

′
= t

claim: B′ is x-variant B

if v 6= x then vB′
= (vσx)I,A

′
= (vσ)I,A

′
= (vσ)I,A = vB

ΦI,B = [(∃x)ϕ]I,B

= ϕI,B′
= t

proof of converse direction is similar

• Φ = (∀x)ϕ similar

AM/VvO (CS @ UIBK) lecture 4 31/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Proof (cont’d)

• Φ = (∃x)ϕ (Φσ)I,A = [(∃x)(ϕσx)]I,A = t σ is free for Φ

assignment B′ with vB′
= (vσx)I,A

′
for each variable v

ϕI,B′
= (ϕσx)I,A

′
= t

claim: B′ is x-variant B

if v 6= x then vB′
= (vσx)I,A

′
= (vσ)I,A

′
= (vσ)I,A = vB

ΦI,B = [(∃x)ϕ]I,B = ϕI,B′
= t

proof of converse direction is similar

• Φ = (∀x)ϕ similar

AM/VvO (CS @ UIBK) lecture 4 31/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Proof (cont’d)

• Φ = (∃x)ϕ (Φσ)I,A = [(∃x)(ϕσx)]I,A = t σ is free for Φ

assignment B′ with vB′
= (vσx)I,A

′
for each variable v

ϕI,B′
= (ϕσx)I,A

′
= t

claim: B′ is x-variant B

if v 6= x then vB′
= (vσx)I,A

′
= (vσ)I,A

′
= (vσ)I,A = vB

ΦI,B = [(∃x)ϕ]I,B = ϕI,B′
= t

proof of converse direction is similar

• Φ = (∀x)ϕ similar

AM/VvO (CS @ UIBK) lecture 4 31/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-Order Logic Semantics

Proof (cont’d)

• Φ = (∃x)ϕ (Φσ)I,A = [(∃x)(ϕσx)]I,A = t σ is free for Φ

assignment B′ with vB′
= (vσx)I,A

′
for each variable v

ϕI,B′
= (ϕσx)I,A

′
= t

claim: B′ is x-variant B

if v 6= x then vB′
= (vσx)I,A

′
= (vσ)I,A

′
= (vσ)I,A = vB

ΦI,B = [(∃x)ϕ]I,B = ϕI,B′
= t

proof of converse direction is similar

• Φ = (∀x)ϕ similar

AM/VvO (CS @ UIBK) lecture 4 31/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Herbrand Models

Outline

Overviews

First-Order Logic

Herbrand Models

Uniform Notation

Hintikka’s Lemma

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 4 32/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Herbrand Models

Definition

model M = 〈D, I〉 for language L is Herbrand model if

1 D is set of closed terms of L (which is assumed to be nonempty)

2 t I = t for each closed term t

Remark

assigments in Herbrand model are substitutions

Lemma

if M = 〈D, I〉 is Herbrand model for L then t I,A = (tA)I for each term t of L

Proof

structural induction on t

• if t is variable v then t I,A = v I,A

= vA = vA = (vA)I = (tA)I

AM/VvO (CS @ UIBK) lecture 4 33/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Herbrand Models

Definition

model M = 〈D, I〉 for language L is Herbrand model if

1 D is set of closed terms of L (which is assumed to be nonempty)

2 t I = t for each closed term t

Remark

assigments in Herbrand model are substitutions

Lemma

if M = 〈D, I〉 is Herbrand model for L then t I,A = (tA)I for each term t of L

Proof

structural induction on t

• if t is variable v then t I,A = v I,A

= vA = vA = (vA)I = (tA)I

AM/VvO (CS @ UIBK) lecture 4 33/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Herbrand Models

Definition

model M = 〈D, I〉 for language L is Herbrand model if

1 D is set of closed terms of L (which is assumed to be nonempty)

2 t I = t for each closed term t

Remark

assigments in Herbrand model are substitutions

Lemma

if M = 〈D, I〉 is Herbrand model for L then t I,A = (tA)I for each term t of L

Proof

structural induction on t

• if t is variable v then t I,A = v I,A

= vA = vA = (vA)I = (tA)I

AM/VvO (CS @ UIBK) lecture 4 33/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Herbrand Models

Definition

model M = 〈D, I〉 for language L is Herbrand model if

1 D is set of closed terms of L (which is assumed to be nonempty)

2 t I = t for each closed term t

Remark

assigments in Herbrand model are substitutions

Lemma

if M = 〈D, I〉 is Herbrand model for L then t I,A = (tA)I for each term t of L

Proof

structural induction on t

• if t is variable v then t I,A = v I,A

= vA = vA = (vA)I = (tA)I

AM/VvO (CS @ UIBK) lecture 4 33/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Herbrand Models

Definition

model M = 〈D, I〉 for language L is Herbrand model if

1 D is set of closed terms of L (which is assumed to be nonempty)

2 t I = t for each closed term t

Remark

assigments in Herbrand model are substitutions

Lemma

if M = 〈D, I〉 is Herbrand model for L then t I,A = (tA)I for each term t of L

Proof

structural induction on t

• if t is variable v then t I,A = v I,A

= vA = vA = (vA)I = (tA)I

AM/VvO (CS @ UIBK) lecture 4 33/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Herbrand Models

Definition

model M = 〈D, I〉 for language L is Herbrand model if

1 D is set of closed terms of L (which is assumed to be nonempty)

2 t I = t for each closed term t

Remark

assigments in Herbrand model are substitutions

Lemma

if M = 〈D, I〉 is Herbrand model for L then t I,A = (tA)I for each term t of L

Proof

structural induction on t

• if t is variable v then t I,A = v I,A

= vA = vA = (vA)I = (tA)I

AM/VvO (CS @ UIBK) lecture 4 33/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Herbrand Models

Definition

model M = 〈D, I〉 for language L is Herbrand model if

1 D is set of closed terms of L (which is assumed to be nonempty)

2 t I = t for each closed term t

Remark

assigments in Herbrand model are substitutions

Lemma

if M = 〈D, I〉 is Herbrand model for L then t I,A = (tA)I for each term t of L

Proof

structural induction on t

• if t is variable v then t I,A = v I,A = vA

= vA = (vA)I = (tA)I

AM/VvO (CS @ UIBK) lecture 4 33/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Herbrand Models

Definition

model M = 〈D, I〉 for language L is Herbrand model if

1 D is set of closed terms of L (which is assumed to be nonempty)

2 t I = t for each closed term t

Remark

assigments in Herbrand model are substitutions

Lemma

if M = 〈D, I〉 is Herbrand model for L then t I,A = (tA)I for each term t of L

Proof

structural induction on t

• if t is variable v then t I,A = v I,A = vA = vA

= (vA)I = (tA)I

AM/VvO (CS @ UIBK) lecture 4 33/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Herbrand Models

Definition

model M = 〈D, I〉 for language L is Herbrand model if

1 D is set of closed terms of L (which is assumed to be nonempty)

2 t I = t for each closed term t

Remark

assigments in Herbrand model are substitutions

Lemma

if M = 〈D, I〉 is Herbrand model for L then t I,A = (tA)I for each term t of L

Proof

structural induction on t

• if t is variable v then t I,A = v I,A = vA = vA = (vA)I = (tA)I

AM/VvO (CS @ UIBK) lecture 4 33/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Herbrand Models

Proof (cont’d)

structural induction on t

• if t is constant symbol c of L then t I,A = c I,A

= c I = (cA)I = (tA)I

• if t = f (t1, . . . , tn) then

t I,A = f I(t I,A1 , . . . , t I,An)

= f I((t1A)I, . . . , (tnA)I) = [f (t1A, . . . , tnA)]I = (tA)I

Lemma

if M = 〈D, I〉 is Herbrand model for L then ΦI,A = (ΦA)I for each formula Φ of L

Proof

. . . exercise . . .

AM/VvO (CS @ UIBK) lecture 4 34/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Herbrand Models

Proof (cont’d)

structural induction on t

• if t is constant symbol c of L then t I,A = c I,A = c I

= (cA)I = (tA)I

• if t = f (t1, . . . , tn) then

t I,A = f I(t I,A1 , . . . , t I,An)

= f I((t1A)I, . . . , (tnA)I) = [f (t1A, . . . , tnA)]I = (tA)I

Lemma

if M = 〈D, I〉 is Herbrand model for L then ΦI,A = (ΦA)I for each formula Φ of L

Proof

. . . exercise . . .

AM/VvO (CS @ UIBK) lecture 4 34/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Herbrand Models

Proof (cont’d)

structural induction on t

• if t is constant symbol c of L then t I,A = c I,A = c I = (cA)I = (tA)I

• if t = f (t1, . . . , tn) then

t I,A = f I(t I,A1 , . . . , t I,An)

= f I((t1A)I, . . . , (tnA)I) = [f (t1A, . . . , tnA)]I = (tA)I

Lemma

if M = 〈D, I〉 is Herbrand model for L then ΦI,A = (ΦA)I for each formula Φ of L

Proof

. . . exercise . . .

AM/VvO (CS @ UIBK) lecture 4 34/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Herbrand Models

Proof (cont’d)

structural induction on t

• if t is constant symbol c of L then t I,A = c I,A = c I = (cA)I = (tA)I

• if t = f (t1, . . . , tn) then

t I,A = f I(t I,A1 , . . . , t I,An)

= f I((t1A)I, . . . , (tnA)I) = [f (t1A, . . . , tnA)]I = (tA)I

Lemma

if M = 〈D, I〉 is Herbrand model for L then ΦI,A = (ΦA)I for each formula Φ of L

Proof

. . . exercise . . .

AM/VvO (CS @ UIBK) lecture 4 34/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Herbrand Models

Proof (cont’d)

structural induction on t

• if t is constant symbol c of L then t I,A = c I,A = c I = (cA)I = (tA)I

• if t = f (t1, . . . , tn) then

t I,A = f I(t I,A1 , . . . , t I,An) = f I((t1A)I, . . . , (tnA)I)

= [f (t1A, . . . , tnA)]I = (tA)I

Lemma

if M = 〈D, I〉 is Herbrand model for L then ΦI,A = (ΦA)I for each formula Φ of L

Proof

. . . exercise . . .

AM/VvO (CS @ UIBK) lecture 4 34/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Herbrand Models

Proof (cont’d)

structural induction on t

• if t is constant symbol c of L then t I,A = c I,A = c I = (cA)I = (tA)I

• if t = f (t1, . . . , tn) then

t I,A = f I(t I,A1 , . . . , t I,An) = f I((t1A)I, . . . , (tnA)I) = [f (t1A, . . . , tnA)]I

= (tA)I

Lemma

if M = 〈D, I〉 is Herbrand model for L then ΦI,A = (ΦA)I for each formula Φ of L

Proof

. . . exercise . . .

AM/VvO (CS @ UIBK) lecture 4 34/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Herbrand Models

Proof (cont’d)

structural induction on t

• if t is constant symbol c of L then t I,A = c I,A = c I = (cA)I = (tA)I

• if t = f (t1, . . . , tn) then

t I,A = f I(t I,A1 , . . . , t I,An) = f I((t1A)I, . . . , (tnA)I) = [f (t1A, . . . , tnA)]I = (tA)I

Lemma

if M = 〈D, I〉 is Herbrand model for L then ΦI,A = (ΦA)I for each formula Φ of L

Proof

. . . exercise . . .

AM/VvO (CS @ UIBK) lecture 4 34/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Herbrand Models

Proof (cont’d)

structural induction on t

• if t is constant symbol c of L then t I,A = c I,A = c I = (cA)I = (tA)I

• if t = f (t1, . . . , tn) then

t I,A = f I(t I,A1 , . . . , t I,An) = f I((t1A)I, . . . , (tnA)I) = [f (t1A, . . . , tnA)]I = (tA)I

Lemma

if M = 〈D, I〉 is Herbrand model for L then ΦI,A = (ΦA)I for each formula Φ of L

Proof

. . . exercise . . .

AM/VvO (CS @ UIBK) lecture 4 34/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Herbrand Models

Proof (cont’d)

structural induction on t

• if t is constant symbol c of L then t I,A = c I,A = c I = (cA)I = (tA)I

• if t = f (t1, . . . , tn) then

t I,A = f I(t I,A1 , . . . , t I,An) = f I((t1A)I, . . . , (tnA)I) = [f (t1A, . . . , tnA)]I = (tA)I

Lemma

if M = 〈D, I〉 is Herbrand model for L then ΦI,A = (ΦA)I for each formula Φ of L

Proof

. . . exercise . . .

AM/VvO (CS @ UIBK) lecture 4 34/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Herbrand Models

Lemma

if M = 〈D, I〉 is Herbrand model for L then

1 (∀x)Φ is true in M ⇐⇒ Φ{x/d} is true in M for every d ∈ D

2 (∃x)Φ is true in M ⇐⇒ Φ{x/d} is true in M for some d ∈ D

Proof

. . . exercise . . .

AM/VvO (CS @ UIBK) lecture 4 35/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Herbrand Models

Lemma

if M = 〈D, I〉 is Herbrand model for L then

1 (∀x)Φ is true in M ⇐⇒ Φ{x/d} is true in M for every d ∈ D

2 (∃x)Φ is true in M ⇐⇒ Φ{x/d} is true in M for some d ∈ D

Proof

. . . exercise . . .

AM/VvO (CS @ UIBK) lecture 4 35/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Herbrand Models

Lemma

if M = 〈D, I〉 is Herbrand model for L then

1 (∀x)Φ is true in M ⇐⇒ Φ{x/d} is true in M for every d ∈ D

2 (∃x)Φ is true in M ⇐⇒ Φ{x/d} is true in M for some d ∈ D

Proof

. . . exercise . . .

AM/VvO (CS @ UIBK) lecture 4 35/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Herbrand Models

Haskell Curry
(1900 – 1982)

William Craig
(1918 – 2016)

Jacques Herbrand
(1908 – 1931)

David Hilbert
(1862 – 1943)

Jaakko Hintikka
(1929 – 2015)

William Howard
(1926 –)

Saul Kripke
(1940 –)

Leopold Löwenheim
(1878 – 1957)

Thoralf Skolem
(1887 – 1963)

AM/VvO (CS @ UIBK) lecture 4 36/63

https://en.wikipedia.org/wiki/Haskell_Curry
https://en.wikipedia.org/wiki/William_Craig_(philosopher)
https://en.wikipedia.org/wiki/Jacques_Herbrand
https://en.wikipedia.org/wiki/David_Hilbert
https://en.wikipedia.org/wiki/Jaakko_Hintikka
https://en.wikipedia.org/wiki/William_Alvin_Howard
https://en.wikipedia.org/wiki/Saul_Kripke
https://en.wikipedia.org/wiki/Leopold_Loewenheim
https://en.wikipedia.org/wiki/Thoralf_Skolem
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Herbrand Models

Haskell Curry
(1900 – 1982)

William Craig
(1918 – 2016)

Jacques Herbrand
(1908 – 1931)

David Hilbert
(1862 – 1943)

Jaakko Hintikka
(1929 – 2015)

William Howard
(1926 –)

Saul Kripke
(1940 –)

Leopold Löwenheim
(1878 – 1957)

Thoralf Skolem
(1887 – 1963)

AM/VvO (CS @ UIBK) lecture 4 36/63

https://en.wikipedia.org/wiki/Haskell_Curry
https://en.wikipedia.org/wiki/William_Craig_(philosopher)
https://en.wikipedia.org/wiki/Jacques_Herbrand
https://en.wikipedia.org/wiki/David_Hilbert
https://en.wikipedia.org/wiki/Jaakko_Hintikka
https://en.wikipedia.org/wiki/William_Alvin_Howard
https://en.wikipedia.org/wiki/Saul_Kripke
https://en.wikipedia.org/wiki/Leopold_Loewenheim
https://en.wikipedia.org/wiki/Thoralf_Skolem
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Notation

Outline

Overviews

First-Order Logic

Herbrand Models

Uniform Notation

Hintikka’s Lemma

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 4 37/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Notation

Definition

universal existential

γ

γ(t)

δ

δ(t)

(∀x)Φ

Φ{x/t}

(∃x)Φ

Φ{x/t}

¬(∃x)Φ

¬Φ{x/t}

¬(∀x)Φ

¬Φ{x/t}

Lemma

γ ≡ (∀y)γ(y) and δ ≡ (∃y)δ(y) are valid, provided y is variable new to γ and δ

Lemma

set S of sentences, sentences γ and δ

1 if S ∪ {γ} is satisfiable then S ∪ {γ, γ(t)} is satisfiable for any closed term t

2 if S ∪ {δ} is satisfiable then S ∪ {δ, δ(p)} is satisfiable for any constant
symbol p that is new to S and δ

AM/VvO (CS @ UIBK) lecture 4 38/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Notation

Definition

universal existential

γ γ(t) δ δ(t)

(∀x)Φ Φ{x/t} (∃x)Φ Φ{x/t}
¬(∃x)Φ ¬Φ{x/t} ¬(∀x)Φ ¬Φ{x/t}

Lemma

γ ≡ (∀y)γ(y) and δ ≡ (∃y)δ(y) are valid, provided y is variable new to γ and δ

Lemma

set S of sentences, sentences γ and δ

1 if S ∪ {γ} is satisfiable then S ∪ {γ, γ(t)} is satisfiable for any closed term t

2 if S ∪ {δ} is satisfiable then S ∪ {δ, δ(p)} is satisfiable for any constant
symbol p that is new to S and δ

AM/VvO (CS @ UIBK) lecture 4 38/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Notation

Definition

universal existential

γ γ(t) δ δ(t)

(∀x)Φ Φ{x/t} (∃x)Φ Φ{x/t}
¬(∃x)Φ ¬Φ{x/t} ¬(∀x)Φ ¬Φ{x/t}

Lemma

γ ≡ (∀y)γ(y) and δ ≡ (∃y)δ(y) are valid, provided y is variable new to γ and δ

Lemma

set S of sentences, sentences γ and δ

1 if S ∪ {γ} is satisfiable then S ∪ {γ, γ(t)} is satisfiable for any closed term t

2 if S ∪ {δ} is satisfiable then S ∪ {δ, δ(p)} is satisfiable for any constant
symbol p that is new to S and δ

AM/VvO (CS @ UIBK) lecture 4 38/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Notation

Definition

universal existential

γ γ(t) δ δ(t)

(∀x)Φ Φ{x/t} (∃x)Φ Φ{x/t}
¬(∃x)Φ ¬Φ{x/t} ¬(∀x)Φ ¬Φ{x/t}

Lemma

γ ≡ (∀y)γ(y) and δ ≡ (∃y)δ(y) are valid, provided y is variable new to γ and δ

Lemma

set S of sentences, sentences γ and δ

1 if S ∪ {γ} is satisfiable then S ∪ {γ, γ(t)} is satisfiable for any closed term t

2 if S ∪ {δ} is satisfiable then S ∪ {δ, δ(p)} is satisfiable for any constant
symbol p that is new to S and δ

AM/VvO (CS @ UIBK) lecture 4 38/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Notation

Definition

universal existential

γ γ(t) δ δ(t)

(∀x)Φ Φ{x/t} (∃x)Φ Φ{x/t}
¬(∃x)Φ ¬Φ{x/t} ¬(∀x)Φ ¬Φ{x/t}

Lemma

γ ≡ (∀y)γ(y) and δ ≡ (∃y)δ(y) are valid, provided y is variable new to γ and δ

Lemma

set S of sentences, sentences γ and δ

1 if S ∪ {γ} is satisfiable then S ∪ {γ, γ(t)} is satisfiable for any closed term t

2 if S ∪ {δ} is satisfiable then S ∪ {δ, δ(p)} is satisfiable for any constant
symbol p that is new to S and δ

AM/VvO (CS @ UIBK) lecture 4 38/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Notation

Proof

1 suppose S ∪ {γ} is satisfiable in model M = 〈D, I〉

(∀x)γ(x) is true in M (with x new to γ)

[γ(x)]I,A is true for every assignment A

let A be any assignment such that xA = t I

[γ(t)]I,A = [γ{x/t}]I,A

= [γ(x)]I,A = t (using Lemma on slide 43)

2 suppose S ∪ {δ} is satisfiable in model M = 〈D, I〉

(∃x)δ(x) is true in M (with x new to δ)

[δ(x)]I,A is true for some assignment A

construct new model M∗ = 〈D, J〉 with J identical to I except pJ = xA

S ∪ {δ} is satisfiable in M∗ and [δ(x)]J,A is true

[δ(p)]J,A = [δ{x/p}]J,A = [δ(x)]J,A = t (using Lemma on slide 43)

S ∪ {δ, δ(p)} is satisfiable (in M∗)

AM/VvO (CS @ UIBK) lecture 4 39/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Notation

Proof

1 suppose S ∪ {γ} is satisfiable in model M = 〈D, I〉

(∀x)γ(x) is true in M (with x new to γ)

[γ(x)]I,A is true for every assignment A

let A be any assignment such that xA = t I

[γ(t)]I,A = [γ{x/t}]I,A

= [γ(x)]I,A = t (using Lemma on slide 43)

2 suppose S ∪ {δ} is satisfiable in model M = 〈D, I〉

(∃x)δ(x) is true in M (with x new to δ)

[δ(x)]I,A is true for some assignment A

construct new model M∗ = 〈D, J〉 with J identical to I except pJ = xA

S ∪ {δ} is satisfiable in M∗ and [δ(x)]J,A is true

[δ(p)]J,A = [δ{x/p}]J,A = [δ(x)]J,A = t (using Lemma on slide 43)

S ∪ {δ, δ(p)} is satisfiable (in M∗)

AM/VvO (CS @ UIBK) lecture 4 39/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Notation

Proof

1 suppose S ∪ {γ} is satisfiable in model M = 〈D, I〉

(∀x)γ(x) is true in M (with x new to γ)

[γ(x)]I,A is true for every assignment A

let A be any assignment such that xA = t I

[γ(t)]I,A = [γ{x/t}]I,A

= [γ(x)]I,A = t (using Lemma on slide 43)

2 suppose S ∪ {δ} is satisfiable in model M = 〈D, I〉

(∃x)δ(x) is true in M (with x new to δ)

[δ(x)]I,A is true for some assignment A

construct new model M∗ = 〈D, J〉 with J identical to I except pJ = xA

S ∪ {δ} is satisfiable in M∗ and [δ(x)]J,A is true

[δ(p)]J,A = [δ{x/p}]J,A = [δ(x)]J,A = t (using Lemma on slide 43)

S ∪ {δ, δ(p)} is satisfiable (in M∗)

AM/VvO (CS @ UIBK) lecture 4 39/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Notation

Proof

1 suppose S ∪ {γ} is satisfiable in model M = 〈D, I〉

(∀x)γ(x) is true in M (with x new to γ)

[γ(x)]I,A is true for every assignment A

let A be any assignment such that xA = t I

[γ(t)]I,A = [γ{x/t}]I,A

= [γ(x)]I,A = t (using Lemma on slide 43)

2 suppose S ∪ {δ} is satisfiable in model M = 〈D, I〉

(∃x)δ(x) is true in M (with x new to δ)

[δ(x)]I,A is true for some assignment A

construct new model M∗ = 〈D, J〉 with J identical to I except pJ = xA

S ∪ {δ} is satisfiable in M∗ and [δ(x)]J,A is true

[δ(p)]J,A = [δ{x/p}]J,A = [δ(x)]J,A = t (using Lemma on slide 43)

S ∪ {δ, δ(p)} is satisfiable (in M∗)

AM/VvO (CS @ UIBK) lecture 4 39/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Notation

Proof

1 suppose S ∪ {γ} is satisfiable in model M = 〈D, I〉

(∀x)γ(x) is true in M (with x new to γ)

[γ(x)]I,A is true for every assignment A

let A be any assignment such that xA = t I

[γ(t)]I,A = [γ{x/t}]I,A

= [γ(x)]I,A = t (using Lemma on slide 43)

2 suppose S ∪ {δ} is satisfiable in model M = 〈D, I〉

(∃x)δ(x) is true in M (with x new to δ)

[δ(x)]I,A is true for some assignment A

construct new model M∗ = 〈D, J〉 with J identical to I except pJ = xA

S ∪ {δ} is satisfiable in M∗ and [δ(x)]J,A is true

[δ(p)]J,A = [δ{x/p}]J,A = [δ(x)]J,A = t (using Lemma on slide 43)

S ∪ {δ, δ(p)} is satisfiable (in M∗)

AM/VvO (CS @ UIBK) lecture 4 39/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Notation

Proof

1 suppose S ∪ {γ} is satisfiable in model M = 〈D, I〉

(∀x)γ(x) is true in M (with x new to γ)

[γ(x)]I,A is true for every assignment A

let A be any assignment such that xA = t I

[γ(t)]I,A = [γ{x/t}]I,A = [γ(x)]I,A

= t

(using Lemma on slide 43)

2 suppose S ∪ {δ} is satisfiable in model M = 〈D, I〉

(∃x)δ(x) is true in M (with x new to δ)

[δ(x)]I,A is true for some assignment A

construct new model M∗ = 〈D, J〉 with J identical to I except pJ = xA

S ∪ {δ} is satisfiable in M∗ and [δ(x)]J,A is true

[δ(p)]J,A = [δ{x/p}]J,A = [δ(x)]J,A = t (using Lemma on slide 43)

S ∪ {δ, δ(p)} is satisfiable (in M∗)

AM/VvO (CS @ UIBK) lecture 4 39/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Notation

Proof

1 suppose S ∪ {γ} is satisfiable in model M = 〈D, I〉

(∀x)γ(x) is true in M (with x new to γ)

[γ(x)]I,A is true for every assignment A

let A be any assignment such that xA = t I

[γ(t)]I,A = [γ{x/t}]I,A = [γ(x)]I,A = t (using Lemma on slide 43)

2 suppose S ∪ {δ} is satisfiable in model M = 〈D, I〉

(∃x)δ(x) is true in M (with x new to δ)

[δ(x)]I,A is true for some assignment A

construct new model M∗ = 〈D, J〉 with J identical to I except pJ = xA

S ∪ {δ} is satisfiable in M∗ and [δ(x)]J,A is true

[δ(p)]J,A = [δ{x/p}]J,A = [δ(x)]J,A = t (using Lemma on slide 43)

S ∪ {δ, δ(p)} is satisfiable (in M∗)

AM/VvO (CS @ UIBK) lecture 4 39/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Notation

Proof

1 suppose S ∪ {γ} is satisfiable in model M = 〈D, I〉

(∀x)γ(x) is true in M (with x new to γ)

[γ(x)]I,A is true for every assignment A

let A be any assignment such that xA = t I

[γ(t)]I,A = [γ{x/t}]I,A = [γ(x)]I,A = t (using Lemma on slide 43)

2 suppose S ∪ {δ} is satisfiable in model M = 〈D, I〉

(∃x)δ(x) is true in M (with x new to δ)

[δ(x)]I,A is true for some assignment A

construct new model M∗ = 〈D, J〉 with J identical to I except pJ = xA

S ∪ {δ} is satisfiable in M∗ and [δ(x)]J,A is true

[δ(p)]J,A = [δ{x/p}]J,A = [δ(x)]J,A = t (using Lemma on slide 43)

S ∪ {δ, δ(p)} is satisfiable (in M∗)

AM/VvO (CS @ UIBK) lecture 4 39/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Notation

Proof

1 suppose S ∪ {γ} is satisfiable in model M = 〈D, I〉

(∀x)γ(x) is true in M (with x new to γ)

[γ(x)]I,A is true for every assignment A

let A be any assignment such that xA = t I

[γ(t)]I,A = [γ{x/t}]I,A = [γ(x)]I,A = t (using Lemma on slide 43)

2 suppose S ∪ {δ} is satisfiable in model M = 〈D, I〉

(∃x)δ(x) is true in M (with x new to δ)

[δ(x)]I,A is true for some assignment A

construct new model M∗ = 〈D, J〉 with J identical to I except pJ = xA

S ∪ {δ} is satisfiable in M∗ and [δ(x)]J,A is true

[δ(p)]J,A = [δ{x/p}]J,A = [δ(x)]J,A = t (using Lemma on slide 43)

S ∪ {δ, δ(p)} is satisfiable (in M∗)

AM/VvO (CS @ UIBK) lecture 4 39/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Notation

Proof

1 suppose S ∪ {γ} is satisfiable in model M = 〈D, I〉

(∀x)γ(x) is true in M (with x new to γ)

[γ(x)]I,A is true for every assignment A

let A be any assignment such that xA = t I

[γ(t)]I,A = [γ{x/t}]I,A = [γ(x)]I,A = t (using Lemma on slide 43)

2 suppose S ∪ {δ} is satisfiable in model M = 〈D, I〉

(∃x)δ(x) is true in M (with x new to δ)

[δ(x)]I,A is true for some assignment A

construct new model M∗ = 〈D, J〉 with J identical to I except pJ = xA

S ∪ {δ} is satisfiable in M∗ and [δ(x)]J,A is true

[δ(p)]J,A = [δ{x/p}]J,A = [δ(x)]J,A = t (using Lemma on slide 43)

S ∪ {δ, δ(p)} is satisfiable (in M∗)

AM/VvO (CS @ UIBK) lecture 4 39/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Notation

Proof

1 suppose S ∪ {γ} is satisfiable in model M = 〈D, I〉

(∀x)γ(x) is true in M (with x new to γ)

[γ(x)]I,A is true for every assignment A

let A be any assignment such that xA = t I

[γ(t)]I,A = [γ{x/t}]I,A = [γ(x)]I,A = t (using Lemma on slide 43)

2 suppose S ∪ {δ} is satisfiable in model M = 〈D, I〉

(∃x)δ(x) is true in M (with x new to δ)

[δ(x)]I,A is true for some assignment A

construct new model M∗ = 〈D, J〉 with J identical to I except pJ = xA

S ∪ {δ} is satisfiable in M∗ and [δ(x)]J,A is true

[δ(p)]J,A = [δ{x/p}]J,A = [δ(x)]J,A = t (using Lemma on slide 43)

S ∪ {δ, δ(p)} is satisfiable (in M∗)

AM/VvO (CS @ UIBK) lecture 4 39/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Notation

Proof

1 suppose S ∪ {γ} is satisfiable in model M = 〈D, I〉

(∀x)γ(x) is true in M (with x new to γ)

[γ(x)]I,A is true for every assignment A

let A be any assignment such that xA = t I

[γ(t)]I,A = [γ{x/t}]I,A = [γ(x)]I,A = t (using Lemma on slide 43)

2 suppose S ∪ {δ} is satisfiable in model M = 〈D, I〉

(∃x)δ(x) is true in M (with x new to δ)

[δ(x)]I,A is true for some assignment A

construct new model M∗ = 〈D, J〉 with J identical to I except pJ = xA

S ∪ {δ} is satisfiable in M∗ and [δ(x)]J,A is true

[δ(p)]J,A = [δ{x/p}]J,A

= [δ(x)]J,A = t (using Lemma on slide 43)

S ∪ {δ, δ(p)} is satisfiable (in M∗)

AM/VvO (CS @ UIBK) lecture 4 39/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Notation

Proof

1 suppose S ∪ {γ} is satisfiable in model M = 〈D, I〉

(∀x)γ(x) is true in M (with x new to γ)

[γ(x)]I,A is true for every assignment A

let A be any assignment such that xA = t I

[γ(t)]I,A = [γ{x/t}]I,A = [γ(x)]I,A = t (using Lemma on slide 43)

2 suppose S ∪ {δ} is satisfiable in model M = 〈D, I〉

(∃x)δ(x) is true in M (with x new to δ)

[δ(x)]I,A is true for some assignment A

construct new model M∗ = 〈D, J〉 with J identical to I except pJ = xA

S ∪ {δ} is satisfiable in M∗ and [δ(x)]J,A is true

[δ(p)]J,A = [δ{x/p}]J,A = [δ(x)]J,A = t (using Lemma on slide 43)

S ∪ {δ, δ(p)} is satisfiable (in M∗)

AM/VvO (CS @ UIBK) lecture 4 39/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Notation

Proof

1 suppose S ∪ {γ} is satisfiable in model M = 〈D, I〉

(∀x)γ(x) is true in M (with x new to γ)

[γ(x)]I,A is true for every assignment A

let A be any assignment such that xA = t I

[γ(t)]I,A = [γ{x/t}]I,A = [γ(x)]I,A = t (using Lemma on slide 43)

2 suppose S ∪ {δ} is satisfiable in model M = 〈D, I〉

(∃x)δ(x) is true in M (with x new to δ)

[δ(x)]I,A is true for some assignment A

construct new model M∗ = 〈D, J〉 with J identical to I except pJ = xA

S ∪ {δ} is satisfiable in M∗ and [δ(x)]J,A is true

[δ(p)]J,A = [δ{x/p}]J,A = [δ(x)]J,A = t (using Lemma on slide 43)

S ∪ {δ, δ(p)} is satisfiable (in M∗)

AM/VvO (CS @ UIBK) lecture 4 39/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Notation

Definition

rank r(X) of first-order formula: r(A) = r(¬A) = r(>) = r(⊥) = 0

r(¬>) = r(¬⊥) = 1 r(¬¬Z) = r(Z) + 1 r(α) = r(α1) + r(α2) + 1

r(β) = r(β1) + r(β2) + 1 r(γ) = r(γ(x)) + 1 r(δ) = r(δ(x)) + 1

Theorem (First-Order Structural Induction)

every formula of first-order language L has property Q provided

• basis step

every atomic formula and its negation has property Q

• induction steps

if X has property Q then ¬¬X has property Q

if α1 and α2 have property Q then α has property Q

if β1 and β2 have property Q then β has property Q

if γ(t) has property Q for each term t then γ has property Q

if δ(t) has property Q for each term t then δ has property Q

AM/VvO (CS @ UIBK) lecture 4 40/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Notation

Definition

rank r(X) of first-order formula: r(A) = r(¬A) = r(>) = r(⊥) = 0

r(¬>) = r(¬⊥) = 1 r(¬¬Z) = r(Z) + 1 r(α) = r(α1) + r(α2) + 1

r(β) = r(β1) + r(β2) + 1 r(γ) = r(γ(x)) + 1 r(δ) = r(δ(x)) + 1

Theorem (First-Order Structural Induction)

every formula of first-order language L has property Q provided

• basis step

every atomic formula and its negation has property Q

• induction steps

if X has property Q then ¬¬X has property Q

if α1 and α2 have property Q then α has property Q

if β1 and β2 have property Q then β has property Q

if γ(t) has property Q for each term t then γ has property Q

if δ(t) has property Q for each term t then δ has property Q

AM/VvO (CS @ UIBK) lecture 4 40/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Notation

Definition

rank r(X) of first-order formula: r(A) = r(¬A) = r(>) = r(⊥) = 0

r(¬>) = r(¬⊥) = 1 r(¬¬Z) = r(Z) + 1 r(α) = r(α1) + r(α2) + 1

r(β) = r(β1) + r(β2) + 1 r(γ) = r(γ(x)) + 1 r(δ) = r(δ(x)) + 1

Theorem (First-Order Structural Induction)

every formula of first-order language L has property Q provided

• basis step

every atomic formula and its negation has property Q

• induction steps

if X has property Q then ¬¬X has property Q

if α1 and α2 have property Q then α has property Q

if β1 and β2 have property Q then β has property Q

if γ(t) has property Q for each term t then γ has property Q

if δ(t) has property Q for each term t then δ has property Q

AM/VvO (CS @ UIBK) lecture 4 40/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Notation

Definition

rank r(X) of first-order formula: r(A) = r(¬A) = r(>) = r(⊥) = 0

r(¬>) = r(¬⊥) = 1 r(¬¬Z) = r(Z) + 1 r(α) = r(α1) + r(α2) + 1

r(β) = r(β1) + r(β2) + 1 r(γ) = r(γ(x)) + 1 r(δ) = r(δ(x)) + 1

Theorem (First-Order Structural Induction)

every formula of first-order language L has property Q provided

• basis step

every atomic formula and its negation has property Q

• induction steps

if X has property Q then ¬¬X has property Q

if α1 and α2 have property Q then α has property Q

if β1 and β2 have property Q then β has property Q

if γ(t) has property Q for each term t then γ has property Q

if δ(t) has property Q for each term t then δ has property Q

AM/VvO (CS @ UIBK) lecture 4 40/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Notation

Definition

rank r(X) of first-order formula: r(A) = r(¬A) = r(>) = r(⊥) = 0

r(¬>) = r(¬⊥) = 1 r(¬¬Z) = r(Z) + 1 r(α) = r(α1) + r(α2) + 1

r(β) = r(β1) + r(β2) + 1 r(γ) = r(γ(x)) + 1 r(δ) = r(δ(x)) + 1

Theorem (First-Order Structural Induction)

every formula of first-order language L has property Q provided

• basis step

every atomic formula and its negation has property Q

• induction steps

if X has property Q then ¬¬X has property Q

if α1 and α2 have property Q then α has property Q

if β1 and β2 have property Q then β has property Q

if γ(t) has property Q for each term t then γ has property Q

if δ(t) has property Q for each term t then δ has property Q

AM/VvO (CS @ UIBK) lecture 4 40/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Notation

Definition

rank r(X) of first-order formula: r(A) = r(¬A) = r(>) = r(⊥) = 0

r(¬>) = r(¬⊥) = 1 r(¬¬Z) = r(Z) + 1 r(α) = r(α1) + r(α2) + 1

r(β) = r(β1) + r(β2) + 1 r(γ) = r(γ(x)) + 1 r(δ) = r(δ(x)) + 1

Theorem (First-Order Structural Induction)

every formula of first-order language L has property Q provided

• basis step

every atomic formula and its negation has property Q

• induction steps

if X has property Q then ¬¬X has property Q

if α1 and α2 have property Q then α has property Q

if β1 and β2 have property Q then β has property Q

if γ(t) has property Q for each term t then γ has property Q

if δ(t) has property Q for each term t then δ has property Q

AM/VvO (CS @ UIBK) lecture 4 40/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Notation

Definition

rank r(X) of first-order formula: r(A) = r(¬A) = r(>) = r(⊥) = 0

r(¬>) = r(¬⊥) = 1 r(¬¬Z) = r(Z) + 1 r(α) = r(α1) + r(α2) + 1

r(β) = r(β1) + r(β2) + 1 r(γ) = r(γ(x)) + 1 r(δ) = r(δ(x)) + 1

Theorem (First-Order Structural Induction)

every formula of first-order language L has property Q provided

• basis step

every atomic formula and its negation has property Q

• induction steps

if X has property Q then ¬¬X has property Q

if α1 and α2 have property Q then α has property Q

if β1 and β2 have property Q then β has property Q

if γ(t) has property Q for each term t then γ has property Q

if δ(t) has property Q for each term t then δ has property Q

AM/VvO (CS @ UIBK) lecture 4 40/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Notation

Lemma

if M = 〈D, I〉 is Herbrand model for L then

• formula γ of L is true in M ⇐⇒ γ(d) is true in M for every d ∈ D

• formula δ of L is true in M ⇐⇒ γ(d) is true in M for some d ∈ D

Proof

. . . exercise . . .

AM/VvO (CS @ UIBK) lecture 4 41/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Notation

Lemma

if M = 〈D, I〉 is Herbrand model for L then

• formula γ of L is true in M ⇐⇒ γ(d) is true in M for every d ∈ D

• formula δ of L is true in M ⇐⇒ γ(d) is true in M for some d ∈ D

Proof

. . . exercise . . .

AM/VvO (CS @ UIBK) lecture 4 41/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Uniform Notation

Lemma

if M = 〈D, I〉 is Herbrand model for L then

• formula γ of L is true in M ⇐⇒ γ(d) is true in M for every d ∈ D

• formula δ of L is true in M ⇐⇒ γ(d) is true in M for some d ∈ D

Proof

. . . exercise . . .

AM/VvO (CS @ UIBK) lecture 4 41/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma

Outline

Overviews

First-Order Logic

Herbrand Models

Uniform Notation

Hintikka’s Lemma
Model Existence Theorem
Compactness
Löwenheim-Skolem
Logical Consequence

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 4 42/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma

Definition

set H of sentences of first-order language L is first-order Hintikka set, provided

1 for any propositional letter A, not both A ∈ H and ¬A ∈ H

2 ⊥ /∈ H, ¬> /∈ H

3 if ¬¬Z ∈ H then Z ∈ H

4 if α ∈ H then α1 ∈ H and α2 ∈ H

5 if β ∈ H then β1 ∈ H or β2 ∈ H

6 if γ ∈ H then γ(t) ∈ H for every closed term t of L

7 if δ ∈ H then δ(t) ∈ H for some closed term t of L

Lemma (Hintikka’s Lemma)

if H is first-order Hintikka set with respect to language L with nonempty set of
closed terms then H is satisfiable in Herbrand model

AM/VvO (CS @ UIBK) lecture 4 43/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma

Definition

set H of sentences of first-order language L is first-order Hintikka set, provided

1 for any propositional letter A, not both A ∈ H and ¬A ∈ H

2 ⊥ /∈ H, ¬> /∈ H

3 if ¬¬Z ∈ H then Z ∈ H

4 if α ∈ H then α1 ∈ H and α2 ∈ H

5 if β ∈ H then β1 ∈ H or β2 ∈ H

6 if γ ∈ H then γ(t) ∈ H for every closed term t of L

7 if δ ∈ H then δ(t) ∈ H for some closed term t of L

Lemma (Hintikka’s Lemma)

if H is first-order Hintikka set with respect to language L with nonempty set of
closed terms then H is satisfiable in Herbrand model

AM/VvO (CS @ UIBK) lecture 4 43/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma

Definition

set H of sentences of first-order language L is first-order Hintikka set, provided

1 for any propositional letter A, not both A ∈ H and ¬A ∈ H

2 ⊥ /∈ H, ¬> /∈ H

3 if ¬¬Z ∈ H then Z ∈ H

4 if α ∈ H then α1 ∈ H and α2 ∈ H

5 if β ∈ H then β1 ∈ H or β2 ∈ H

6 if γ ∈ H then γ(t) ∈ H for every closed term t of L

7 if δ ∈ H then δ(t) ∈ H for some closed term t of L

Lemma (Hintikka’s Lemma)

if H is first-order Hintikka set with respect to language L with nonempty set of
closed terms then H is satisfiable in Herbrand model

AM/VvO (CS @ UIBK) lecture 4 43/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma

Definition

set H of sentences of first-order language L is first-order Hintikka set, provided

1 for any propositional letter A, not both A ∈ H and ¬A ∈ H

2 ⊥ /∈ H, ¬> /∈ H

3 if ¬¬Z ∈ H then Z ∈ H

4 if α ∈ H then α1 ∈ H and α2 ∈ H

5 if β ∈ H then β1 ∈ H or β2 ∈ H

6 if γ ∈ H then γ(t) ∈ H for every closed term t of L

7 if δ ∈ H then δ(t) ∈ H for some closed term t of L

Lemma (Hintikka’s Lemma)

if H is first-order Hintikka set with respect to language L with nonempty set of
closed terms then H is satisfiable in Herbrand model

AM/VvO (CS @ UIBK) lecture 4 43/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma

Proof

• H is first-order Hintikka set with respect to L

• construct model M = 〈D, I〉

• D is collection of closed terms of L

• c I = c for constant symbols c of L

• f I(t1, . . . , tn) = f (t1, . . . , tn) for n-place function symbols f of L
and t1, . . . , tn ∈ D

• 〈t1, . . . , tn〉 belongs to R I for n-place relation symbols R of L
if R(t1, . . . , tn) ∈ H

• t I = t for each closed term t

• claim: if X ∈ H then X is true in M, for every sentence X of L

AM/VvO (CS @ UIBK) lecture 4 44/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma

Proof

• H is first-order Hintikka set with respect to L

• construct model M = 〈D, I〉

• D is collection of closed terms of L

• c I = c for constant symbols c of L

• f I(t1, . . . , tn) = f (t1, . . . , tn) for n-place function symbols f of L
and t1, . . . , tn ∈ D

• 〈t1, . . . , tn〉 belongs to R I for n-place relation symbols R of L
if R(t1, . . . , tn) ∈ H

• t I = t for each closed term t

• claim: if X ∈ H then X is true in M, for every sentence X of L

AM/VvO (CS @ UIBK) lecture 4 44/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma

Proof

• H is first-order Hintikka set with respect to L

• construct model M = 〈D, I〉
• D is collection of closed terms of L

• c I = c for constant symbols c of L

• f I(t1, . . . , tn) = f (t1, . . . , tn) for n-place function symbols f of L
and t1, . . . , tn ∈ D

• 〈t1, . . . , tn〉 belongs to R I for n-place relation symbols R of L
if R(t1, . . . , tn) ∈ H

• t I = t for each closed term t

• claim: if X ∈ H then X is true in M, for every sentence X of L

AM/VvO (CS @ UIBK) lecture 4 44/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma

Proof

• H is first-order Hintikka set with respect to L

• construct model M = 〈D, I〉
• D is collection of closed terms of L

• c I = c for constant symbols c of L

• f I(t1, . . . , tn) = f (t1, . . . , tn) for n-place function symbols f of L
and t1, . . . , tn ∈ D

• 〈t1, . . . , tn〉 belongs to R I for n-place relation symbols R of L
if R(t1, . . . , tn) ∈ H

• t I = t for each closed term t

• claim: if X ∈ H then X is true in M, for every sentence X of L

AM/VvO (CS @ UIBK) lecture 4 44/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma

Proof

• H is first-order Hintikka set with respect to L

• construct model M = 〈D, I〉
• D is collection of closed terms of L

• c I = c for constant symbols c of L

• f I(t1, . . . , tn) = f (t1, . . . , tn) for n-place function symbols f of L
and t1, . . . , tn ∈ D

• 〈t1, . . . , tn〉 belongs to R I for n-place relation symbols R of L
if R(t1, . . . , tn) ∈ H

• t I = t for each closed term t

• claim: if X ∈ H then X is true in M, for every sentence X of L

AM/VvO (CS @ UIBK) lecture 4 44/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma

Proof

• H is first-order Hintikka set with respect to L

• construct model M = 〈D, I〉
• D is collection of closed terms of L

• c I = c for constant symbols c of L

• f I(t1, . . . , tn) = f (t1, . . . , tn) for n-place function symbols f of L
and t1, . . . , tn ∈ D

• 〈t1, . . . , tn〉 belongs to R I for n-place relation symbols R of L
if R(t1, . . . , tn) ∈ H

• t I = t for each closed term t

• claim: if X ∈ H then X is true in M, for every sentence X of L

AM/VvO (CS @ UIBK) lecture 4 44/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma

Proof

• H is first-order Hintikka set with respect to L

• construct model M = 〈D, I〉
• D is collection of closed terms of L

• c I = c for constant symbols c of L

• f I(t1, . . . , tn) = f (t1, . . . , tn) for n-place function symbols f of L
and t1, . . . , tn ∈ D

• 〈t1, . . . , tn〉 belongs to R I for n-place relation symbols R of L
if R(t1, . . . , tn) ∈ H

• t I = t for each closed term t

• claim: if X ∈ H then X is true in M, for every sentence X of L

AM/VvO (CS @ UIBK) lecture 4 44/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma

Proof

• H is first-order Hintikka set with respect to L

• construct model M = 〈D, I〉
• D is collection of closed terms of L

• c I = c for constant symbols c of L

• f I(t1, . . . , tn) = f (t1, . . . , tn) for n-place function symbols f of L
and t1, . . . , tn ∈ D

• 〈t1, . . . , tn〉 belongs to R I for n-place relation symbols R of L
if R(t1, . . . , tn) ∈ H

• t I = t for each closed term t

• claim: if X ∈ H then X is true in M, for every sentence X of L

AM/VvO (CS @ UIBK) lecture 4 44/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma

Proof (cont’d)

claim: if X ∈ H then X is true in M, for each sentence X of L

induction on X

• >, ⊥: trivial

• suppose R(t1, . . . , tn) ∈ H

[R(t1, . . . , tn)]I,A = t because 〈t I,A1 , . . . , t I,An 〉 = 〈t1, . . . , tn〉 ∈ R I

• negation of atomic formula is straightforward

• α and β are treated as in propositional case

• suppose γ ∈ H

γ(t) ∈ H for every closed term t

γ(t) is true in M for every t ∈ D according to induction hypothesis

γ is true in M using Lemma on slide 55

• δ . . . exercise . . .

AM/VvO (CS @ UIBK) lecture 4 45/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma

Proof (cont’d)

claim: if X ∈ H then X is true in M, for each sentence X of L

induction on X

• >, ⊥: trivial

• suppose R(t1, . . . , tn) ∈ H

[R(t1, . . . , tn)]I,A = t because 〈t I,A1 , . . . , t I,An 〉 = 〈t1, . . . , tn〉 ∈ R I

• negation of atomic formula is straightforward

• α and β are treated as in propositional case

• suppose γ ∈ H

γ(t) ∈ H for every closed term t

γ(t) is true in M for every t ∈ D according to induction hypothesis

γ is true in M using Lemma on slide 55

• δ . . . exercise . . .

AM/VvO (CS @ UIBK) lecture 4 45/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma

Proof (cont’d)

claim: if X ∈ H then X is true in M, for each sentence X of L

induction on X

• >, ⊥: trivial

• suppose R(t1, . . . , tn) ∈ H

[R(t1, . . . , tn)]I,A = t because 〈t I,A1 , . . . , t I,An 〉 = 〈t1, . . . , tn〉 ∈ R I

• negation of atomic formula is straightforward

• α and β are treated as in propositional case

• suppose γ ∈ H

γ(t) ∈ H for every closed term t

γ(t) is true in M for every t ∈ D according to induction hypothesis

γ is true in M using Lemma on slide 55

• δ . . . exercise . . .

AM/VvO (CS @ UIBK) lecture 4 45/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma

Proof (cont’d)

claim: if X ∈ H then X is true in M, for each sentence X of L

induction on X

• >, ⊥: trivial

• suppose R(t1, . . . , tn) ∈ H

[R(t1, . . . , tn)]I,A = t because 〈t I,A1 , . . . , t I,An 〉 = 〈t1, . . . , tn〉 ∈ R I

• negation of atomic formula is straightforward

• α and β are treated as in propositional case

• suppose γ ∈ H

γ(t) ∈ H for every closed term t

γ(t) is true in M for every t ∈ D according to induction hypothesis

γ is true in M using Lemma on slide 55

• δ . . . exercise . . .

AM/VvO (CS @ UIBK) lecture 4 45/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma

Proof (cont’d)

claim: if X ∈ H then X is true in M, for each sentence X of L

induction on X

• >, ⊥: trivial

• suppose R(t1, . . . , tn) ∈ H

[R(t1, . . . , tn)]I,A = t because 〈t I,A1 , . . . , t I,An 〉 = 〈t1, . . . , tn〉 ∈ R I

• negation of atomic formula is straightforward

• α and β are treated as in propositional case

• suppose γ ∈ H

γ(t) ∈ H for every closed term t

γ(t) is true in M for every t ∈ D according to induction hypothesis

γ is true in M using Lemma on slide 55

• δ . . . exercise . . .

AM/VvO (CS @ UIBK) lecture 4 45/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma

Proof (cont’d)

claim: if X ∈ H then X is true in M, for each sentence X of L

induction on X

• >, ⊥: trivial

• suppose R(t1, . . . , tn) ∈ H

[R(t1, . . . , tn)]I,A = t because 〈t I,A1 , . . . , t I,An 〉 = 〈t1, . . . , tn〉 ∈ R I

• negation of atomic formula is straightforward

• α and β are treated as in propositional case

• suppose γ ∈ H

γ(t) ∈ H for every closed term t

γ(t) is true in M for every t ∈ D according to induction hypothesis

γ is true in M using Lemma on slide 55

• δ . . . exercise . . .

AM/VvO (CS @ UIBK) lecture 4 45/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma

Proof (cont’d)

claim: if X ∈ H then X is true in M, for each sentence X of L

induction on X

• >, ⊥: trivial

• suppose R(t1, . . . , tn) ∈ H

[R(t1, . . . , tn)]I,A = t because 〈t I,A1 , . . . , t I,An 〉 = 〈t1, . . . , tn〉 ∈ R I

• negation of atomic formula is straightforward

• α and β are treated as in propositional case

• suppose γ ∈ H

γ(t) ∈ H for every closed term t

γ(t) is true in M for every t ∈ D according to induction hypothesis

γ is true in M using Lemma on slide 55

• δ . . . exercise . . .

AM/VvO (CS @ UIBK) lecture 4 45/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma

Proof (cont’d)

claim: if X ∈ H then X is true in M, for each sentence X of L

induction on X

• >, ⊥: trivial

• suppose R(t1, . . . , tn) ∈ H

[R(t1, . . . , tn)]I,A = t because 〈t I,A1 , . . . , t I,An 〉 = 〈t1, . . . , tn〉 ∈ R I

• negation of atomic formula is straightforward

• α and β are treated as in propositional case

• suppose γ ∈ H

γ(t) ∈ H for every closed term t

γ(t) is true in M for every t ∈ D according to induction hypothesis

γ is true in M using Lemma on slide 55

• δ . . . exercise . . .

AM/VvO (CS @ UIBK) lecture 4 45/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma

Proof (cont’d)

claim: if X ∈ H then X is true in M, for each sentence X of L

induction on X

• >, ⊥: trivial

• suppose R(t1, . . . , tn) ∈ H

[R(t1, . . . , tn)]I,A = t because 〈t I,A1 , . . . , t I,An 〉 = 〈t1, . . . , tn〉 ∈ R I

• negation of atomic formula is straightforward

• α and β are treated as in propositional case

• suppose γ ∈ H

γ(t) ∈ H for every closed term t

γ(t) is true in M for every t ∈ D according to induction hypothesis

γ is true in M using Lemma on slide 55

• δ . . . exercise . . .

AM/VvO (CS @ UIBK) lecture 4 45/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma

Proof (cont’d)

claim: if X ∈ H then X is true in M, for each sentence X of L

induction on X

• >, ⊥: trivial

• suppose R(t1, . . . , tn) ∈ H

[R(t1, . . . , tn)]I,A = t because 〈t I,A1 , . . . , t I,An 〉 = 〈t1, . . . , tn〉 ∈ R I

• negation of atomic formula is straightforward

• α and β are treated as in propositional case

• suppose γ ∈ H

γ(t) ∈ H for every closed term t

γ(t) is true in M for every t ∈ D according to induction hypothesis

γ is true in M using Lemma on slide 55

• δ . . . exercise . . .

AM/VvO (CS @ UIBK) lecture 4 45/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma

Proof (cont’d)

claim: if X ∈ H then X is true in M, for each sentence X of L

induction on X

• >, ⊥: trivial

• suppose R(t1, . . . , tn) ∈ H

[R(t1, . . . , tn)]I,A = t because 〈t I,A1 , . . . , t I,An 〉 = 〈t1, . . . , tn〉 ∈ R I

• negation of atomic formula is straightforward

• α and β are treated as in propositional case

• suppose γ ∈ H

γ(t) ∈ H for every closed term t

γ(t) is true in M for every t ∈ D according to induction hypothesis

γ is true in M using Lemma on slide 55

• δ . . . exercise . . .

AM/VvO (CS @ UIBK) lecture 4 45/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Outline

Overviews

First-Order Logic

Herbrand Models

Uniform Notation

Hintikka’s Lemma
Model Existence Theorem
Compactness
Löwenheim-Skolem
Logical Consequence

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 4 46/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Definition

given first-order language L = L(R,F,C)

• par is countably infinite set of constant symbols disjoint from C

• elements of par are called parameters

• Lpar = L(R,F,C ∪ par)

Definition

collection C of sets of sentences of Lpar is first-order consistency property if C is
propositional consistency property

and for each S ∈ C:

6 if γ ∈ S then S ∪ {γ(t)} ∈ C for every closed term t of Lpar

7 if δ ∈ S then S ∪ {δ(p)} ∈ C for some parameter p of Lpar

AM/VvO (CS @ UIBK) lecture 4 47/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Definition

given first-order language L = L(R,F,C)

• par is countably infinite set of constant symbols disjoint from C

• elements of par are called parameters

• Lpar = L(R,F,C ∪ par)

Definition

collection C of sets of sentences of Lpar is first-order consistency property if C is
propositional consistency property

and for each S ∈ C:

6 if γ ∈ S then S ∪ {γ(t)} ∈ C for every closed term t of Lpar

7 if δ ∈ S then S ∪ {δ(p)} ∈ C for some parameter p of Lpar

AM/VvO (CS @ UIBK) lecture 4 47/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Definition

given first-order language L = L(R,F,C)

• par is countably infinite set of constant symbols disjoint from C

• elements of par are called parameters

• Lpar = L(R,F,C ∪ par)

Definition

collection C of sets of sentences of Lpar is first-order consistency property if C is
propositional consistency property

and for each S ∈ C:

6 if γ ∈ S then S ∪ {γ(t)} ∈ C for every closed term t of Lpar

7 if δ ∈ S then S ∪ {δ(p)} ∈ C for some parameter p of Lpar

AM/VvO (CS @ UIBK) lecture 4 47/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Definition

given first-order language L = L(R,F,C)

• par is countably infinite set of constant symbols disjoint from C

• elements of par are called parameters

• Lpar = L(R,F,C ∪ par)

Definition

collection C of sets of sentences of Lpar is first-order consistency property if C is
propositional consistency property

and for each S ∈ C:

6 if γ ∈ S then S ∪ {γ(t)} ∈ C for every closed term t of Lpar

7 if δ ∈ S then S ∪ {δ(p)} ∈ C for some parameter p of Lpar

AM/VvO (CS @ UIBK) lecture 4 47/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Definition

given first-order language L = L(R,F,C)

• par is countably infinite set of constant symbols disjoint from C

• elements of par are called parameters

• Lpar = L(R,F,C ∪ par)

Definition

collection C of sets of sentences of Lpar is first-order consistency property if C is
propositional consistency property and for each S ∈ C:

6 if γ ∈ S then S ∪ {γ(t)} ∈ C for every closed term t of Lpar

7 if δ ∈ S then S ∪ {δ(p)} ∈ C for some parameter p of Lpar

AM/VvO (CS @ UIBK) lecture 4 47/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Definition

given first-order language L = L(R,F,C)

• par is countably infinite set of constant symbols disjoint from C

• elements of par are called parameters

• Lpar = L(R,F,C ∪ par)

Definition

collection C of sets of sentences of Lpar is first-order consistency property if C is
propositional consistency property and for each S ∈ C:

6 if γ ∈ S then S ∪ {γ(t)} ∈ C for every closed term t of Lpar

7 if δ ∈ S then S ∪ {δ(p)} ∈ C for some parameter p of Lpar

AM/VvO (CS @ UIBK) lecture 4 47/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Theorem (First-Order Model Existence)

if C is first-order consistency property with respect to L and S ∈ C is set of
sentences over L then S is satisfiable

in Herbrand model with respect to Lpar

Lemma

every first-order consistency property can be extended to one that is subset closed

Definition

alternate first-order consistency property is collection C meeting conditions for
first-order consistency property, except that condition 7 is replaced by

7’ if δ ∈ S then S ∪ {δ(p)} ∈ C for every parameter p that is new to S

AM/VvO (CS @ UIBK) lecture 4 48/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Theorem (First-Order Model Existence)

if C is first-order consistency property with respect to L and S ∈ C is set of
sentences over L then S is satisfiable in Herbrand model with respect to Lpar

Lemma

every first-order consistency property can be extended to one that is subset closed

Definition

alternate first-order consistency property is collection C meeting conditions for
first-order consistency property, except that condition 7 is replaced by

7’ if δ ∈ S then S ∪ {δ(p)} ∈ C for every parameter p that is new to S

AM/VvO (CS @ UIBK) lecture 4 48/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Theorem (First-Order Model Existence)

if C is first-order consistency property with respect to L and S ∈ C is set of
sentences over L then S is satisfiable in Herbrand model with respect to Lpar

Lemma

every first-order consistency property can be extended to one that is subset closed

Definition

alternate first-order consistency property is collection C meeting conditions for
first-order consistency property, except that condition 7 is replaced by

7’ if δ ∈ S then S ∪ {δ(p)} ∈ C for every parameter p that is new to S

AM/VvO (CS @ UIBK) lecture 4 48/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Theorem (First-Order Model Existence)

if C is first-order consistency property with respect to L and S ∈ C is set of
sentences over L then S is satisfiable in Herbrand model with respect to Lpar

Lemma

every first-order consistency property can be extended to one that is subset closed

Definition

alternate first-order consistency property is collection C meeting conditions for
first-order consistency property, except that condition 7 is replaced by

7’ if δ ∈ S then S ∪ {δ(p)} ∈ C for every parameter p that is new to S

AM/VvO (CS @ UIBK) lecture 4 48/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Definition

• parameter substitution is mapping π from set of parameters to itself

• π is extended to (sets of) formulas of Lpar in the obvious way

Lemma

let C be first-order consistency property that is closed under subsets and
let C+ = {S | Sπ ∈ C for some parameter substitution π}

• C+ extends C
• C+ is closed under subsets

• C+ is alternate first-order consistency property

Lemma

every subset closed alternate first-order consistency property can be extended to
one of finite character

AM/VvO (CS @ UIBK) lecture 4 49/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Definition

• parameter substitution is mapping π from set of parameters to itself

• π is extended to (sets of) formulas of Lpar in the obvious way

Lemma

let C be first-order consistency property that is closed under subsets and
let C+ = {S | Sπ ∈ C for some parameter substitution π}

• C+ extends C
• C+ is closed under subsets

• C+ is alternate first-order consistency property

Lemma

every subset closed alternate first-order consistency property can be extended to
one of finite character

AM/VvO (CS @ UIBK) lecture 4 49/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Definition

• parameter substitution is mapping π from set of parameters to itself

• π is extended to (sets of) formulas of Lpar in the obvious way

Lemma

let C be first-order consistency property that is closed under subsets and
let C+ = {S | Sπ ∈ C for some parameter substitution π}

• C+ extends C
• C+ is closed under subsets

• C+ is alternate first-order consistency property

Lemma

every subset closed alternate first-order consistency property can be extended to
one of finite character

AM/VvO (CS @ UIBK) lecture 4 49/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Definition

• parameter substitution is mapping π from set of parameters to itself

• π is extended to (sets of) formulas of Lpar in the obvious way

Lemma

let C be first-order consistency property that is closed under subsets and
let C+ = {S | Sπ ∈ C for some parameter substitution π}
• C+ extends C

• C+ is closed under subsets

• C+ is alternate first-order consistency property

Lemma

every subset closed alternate first-order consistency property can be extended to
one of finite character

AM/VvO (CS @ UIBK) lecture 4 49/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Definition

• parameter substitution is mapping π from set of parameters to itself

• π is extended to (sets of) formulas of Lpar in the obvious way

Lemma

let C be first-order consistency property that is closed under subsets and
let C+ = {S | Sπ ∈ C for some parameter substitution π}
• C+ extends C
• C+ is closed under subsets

• C+ is alternate first-order consistency property

Lemma

every subset closed alternate first-order consistency property can be extended to
one of finite character

AM/VvO (CS @ UIBK) lecture 4 49/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Definition

• parameter substitution is mapping π from set of parameters to itself

• π is extended to (sets of) formulas of Lpar in the obvious way

Lemma

let C be first-order consistency property that is closed under subsets and
let C+ = {S | Sπ ∈ C for some parameter substitution π}
• C+ extends C
• C+ is closed under subsets

• C+ is alternate first-order consistency property

Lemma

every subset closed alternate first-order consistency property can be extended to
one of finite character

AM/VvO (CS @ UIBK) lecture 4 49/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Definition

• parameter substitution is mapping π from set of parameters to itself

• π is extended to (sets of) formulas of Lpar in the obvious way

Lemma

let C be first-order consistency property that is closed under subsets and
let C+ = {S | Sπ ∈ C for some parameter substitution π}
• C+ extends C
• C+ is closed under subsets

• C+ is alternate first-order consistency property

Lemma

every subset closed alternate first-order consistency property can be extended to
one of finite character

AM/VvO (CS @ UIBK) lecture 4 49/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Proof of First-Order Model Existence

• extend C to alternate first-order consistency property C∗ of finite character

• let X1,X2,X3, . . . be enumeration of all sentences of Lpar

• define sequence S1,S2,S3, . . . of members of C∗:

S1 = S

Sn+1 =

Sn ∪ {Xn} if Sn ∪ {Xn} ∈ C∗ and Xn 6= δ

Sn ∪ {Xn, δ(p)} if Sn ∪ {Xn} ∈ C∗ and Xn = δ

Sn otherwise

with fixed parameter p which is new to Sn ∪ {Xn}

• S1 ⊆ S2 ⊆ S3 ⊆ · · ·

and hence H =
⋃

i Si extends S

• H ∈ C∗ (because C∗ is of finite character) and H is maximal in C∗

• H is first-order Hintikka set with respect to Lpar

• H is satisfiable by Hintikka’s Lemma in Herbrand model with respect to Lpar

• S ⊆ H is satisfiable in Herbrand model with respect to Lpar

AM/VvO (CS @ UIBK) lecture 4 50/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Proof of First-Order Model Existence

• extend C to alternate first-order consistency property C∗ of finite character

• let X1,X2,X3, . . . be enumeration of all sentences of Lpar

• define sequence S1,S2,S3, . . . of members of C∗:

S1 = S

Sn+1 =

Sn ∪ {Xn} if Sn ∪ {Xn} ∈ C∗ and Xn 6= δ

Sn ∪ {Xn, δ(p)} if Sn ∪ {Xn} ∈ C∗ and Xn = δ

Sn otherwise

with fixed parameter p which is new to Sn ∪ {Xn}

• S1 ⊆ S2 ⊆ S3 ⊆ · · ·

and hence H =
⋃

i Si extends S

• H ∈ C∗ (because C∗ is of finite character) and H is maximal in C∗

• H is first-order Hintikka set with respect to Lpar

• H is satisfiable by Hintikka’s Lemma in Herbrand model with respect to Lpar

• S ⊆ H is satisfiable in Herbrand model with respect to Lpar

AM/VvO (CS @ UIBK) lecture 4 50/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Proof of First-Order Model Existence

• extend C to alternate first-order consistency property C∗ of finite character

• let X1,X2,X3, . . . be enumeration of all sentences of Lpar

• define sequence S1,S2,S3, . . . of members of C∗:

S1 = S

Sn+1 =

Sn ∪ {Xn} if Sn ∪ {Xn} ∈ C∗ and Xn 6= δ

Sn ∪ {Xn, δ(p)} if Sn ∪ {Xn} ∈ C∗ and Xn = δ

Sn otherwise

with fixed parameter p which is new to Sn ∪ {Xn}
• S1 ⊆ S2 ⊆ S3 ⊆ · · ·

and hence H =
⋃

i Si extends S

• H ∈ C∗ (because C∗ is of finite character) and H is maximal in C∗

• H is first-order Hintikka set with respect to Lpar

• H is satisfiable by Hintikka’s Lemma in Herbrand model with respect to Lpar

• S ⊆ H is satisfiable in Herbrand model with respect to Lpar

AM/VvO (CS @ UIBK) lecture 4 50/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Proof of First-Order Model Existence

• extend C to alternate first-order consistency property C∗ of finite character

• let X1,X2,X3, . . . be enumeration of all sentences of Lpar

• define sequence S1,S2,S3, . . . of members of C∗:

S1 = S Sn+1 =

Sn ∪ {Xn} if Sn ∪ {Xn} ∈ C∗ and Xn 6= δ

Sn ∪ {Xn, δ(p)} if Sn ∪ {Xn} ∈ C∗ and Xn = δ

Sn otherwise

with fixed parameter p which is new to Sn ∪ {Xn}
• S1 ⊆ S2 ⊆ S3 ⊆ · · ·

and hence H =
⋃

i Si extends S

• H ∈ C∗ (because C∗ is of finite character) and H is maximal in C∗

• H is first-order Hintikka set with respect to Lpar

• H is satisfiable by Hintikka’s Lemma in Herbrand model with respect to Lpar

• S ⊆ H is satisfiable in Herbrand model with respect to Lpar

AM/VvO (CS @ UIBK) lecture 4 50/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Proof of First-Order Model Existence

• extend C to alternate first-order consistency property C∗ of finite character

• let X1,X2,X3, . . . be enumeration of all sentences of Lpar

• define sequence S1,S2,S3, . . . of members of C∗:

S1 = S Sn+1 =

Sn ∪ {Xn} if Sn ∪ {Xn} ∈ C∗ and Xn 6= δ

Sn ∪ {Xn, δ(p)} if Sn ∪ {Xn} ∈ C∗ and Xn = δ

Sn otherwise

with fixed parameter p which is new to Sn ∪ {Xn}
• S1 ⊆ S2 ⊆ S3 ⊆ · · ·

and hence H =
⋃

i Si extends S

• H ∈ C∗ (because C∗ is of finite character) and H is maximal in C∗

• H is first-order Hintikka set with respect to Lpar

• H is satisfiable by Hintikka’s Lemma in Herbrand model with respect to Lpar

• S ⊆ H is satisfiable in Herbrand model with respect to Lpar

AM/VvO (CS @ UIBK) lecture 4 50/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Proof of First-Order Model Existence

• extend C to alternate first-order consistency property C∗ of finite character

• let X1,X2,X3, . . . be enumeration of all sentences of Lpar

• define sequence S1,S2,S3, . . . of members of C∗:

S1 = S Sn+1 =

Sn ∪ {Xn} if Sn ∪ {Xn} ∈ C∗ and Xn 6= δ

Sn ∪ {Xn, δ(p)} if Sn ∪ {Xn} ∈ C∗ and Xn = δ

Sn otherwise

with fixed parameter p which is new to Sn ∪ {Xn}

• S1 ⊆ S2 ⊆ S3 ⊆ · · ·

and hence H =
⋃

i Si extends S

• H ∈ C∗ (because C∗ is of finite character) and H is maximal in C∗

• H is first-order Hintikka set with respect to Lpar

• H is satisfiable by Hintikka’s Lemma in Herbrand model with respect to Lpar

• S ⊆ H is satisfiable in Herbrand model with respect to Lpar

AM/VvO (CS @ UIBK) lecture 4 50/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Proof of First-Order Model Existence

• extend C to alternate first-order consistency property C∗ of finite character

• let X1,X2,X3, . . . be enumeration of all sentences of Lpar

• define sequence S1,S2,S3, . . . of members of C∗:

S1 = S Sn+1 =

Sn ∪ {Xn} if Sn ∪ {Xn} ∈ C∗ and Xn 6= δ

Sn ∪ {Xn, δ(p)} if Sn ∪ {Xn} ∈ C∗ and Xn = δ

Sn otherwise

with fixed parameter p which is new to Sn ∪ {Xn}

• S1 ⊆ S2 ⊆ S3 ⊆ · · ·

and hence H =
⋃

i Si extends S

• H ∈ C∗ (because C∗ is of finite character) and H is maximal in C∗

• H is first-order Hintikka set with respect to Lpar

• H is satisfiable by Hintikka’s Lemma in Herbrand model with respect to Lpar

• S ⊆ H is satisfiable in Herbrand model with respect to Lpar

AM/VvO (CS @ UIBK) lecture 4 50/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Proof of First-Order Model Existence

• extend C to alternate first-order consistency property C∗ of finite character

• let X1,X2,X3, . . . be enumeration of all sentences of Lpar

• define sequence S1,S2,S3, . . . of members of C∗:

S1 = S Sn+1 =

Sn ∪ {Xn} if Sn ∪ {Xn} ∈ C∗ and Xn 6= δ

Sn ∪ {Xn, δ(p)} if Sn ∪ {Xn} ∈ C∗ and Xn = δ

Sn otherwise

with fixed parameter p which is new to Sn ∪ {Xn}
• S1 ⊆ S2 ⊆ S3 ⊆ · · ·

and hence H =
⋃

i Si extends S

• H ∈ C∗ (because C∗ is of finite character) and H is maximal in C∗

• H is first-order Hintikka set with respect to Lpar

• H is satisfiable by Hintikka’s Lemma in Herbrand model with respect to Lpar

• S ⊆ H is satisfiable in Herbrand model with respect to Lpar

AM/VvO (CS @ UIBK) lecture 4 50/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Proof of First-Order Model Existence

• extend C to alternate first-order consistency property C∗ of finite character

• let X1,X2,X3, . . . be enumeration of all sentences of Lpar

• define sequence S1,S2,S3, . . . of members of C∗:

S1 = S Sn+1 =

Sn ∪ {Xn} if Sn ∪ {Xn} ∈ C∗ and Xn 6= δ

Sn ∪ {Xn, δ(p)} if Sn ∪ {Xn} ∈ C∗ and Xn = δ

Sn otherwise

with fixed parameter p which is new to Sn ∪ {Xn}
• S1 ⊆ S2 ⊆ S3 ⊆ · · · and hence H =

⋃
i Si extends S

• H ∈ C∗ (because C∗ is of finite character)

and H is maximal in C∗

• H is first-order Hintikka set with respect to Lpar

• H is satisfiable by Hintikka’s Lemma in Herbrand model with respect to Lpar

• S ⊆ H is satisfiable in Herbrand model with respect to Lpar

AM/VvO (CS @ UIBK) lecture 4 50/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Proof of First-Order Model Existence

• extend C to alternate first-order consistency property C∗ of finite character

• let X1,X2,X3, . . . be enumeration of all sentences of Lpar

• define sequence S1,S2,S3, . . . of members of C∗:

S1 = S Sn+1 =

Sn ∪ {Xn} if Sn ∪ {Xn} ∈ C∗ and Xn 6= δ

Sn ∪ {Xn, δ(p)} if Sn ∪ {Xn} ∈ C∗ and Xn = δ

Sn otherwise

with fixed parameter p which is new to Sn ∪ {Xn}
• S1 ⊆ S2 ⊆ S3 ⊆ · · · and hence H =

⋃
i Si extends S

• H ∈ C∗ (because C∗ is of finite character)

and H is maximal in C∗

• H is first-order Hintikka set with respect to Lpar

• H is satisfiable by Hintikka’s Lemma in Herbrand model with respect to Lpar

• S ⊆ H is satisfiable in Herbrand model with respect to Lpar

AM/VvO (CS @ UIBK) lecture 4 50/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Proof of First-Order Model Existence

• extend C to alternate first-order consistency property C∗ of finite character

• let X1,X2,X3, . . . be enumeration of all sentences of Lpar

• define sequence S1,S2,S3, . . . of members of C∗:

S1 = S Sn+1 =

Sn ∪ {Xn} if Sn ∪ {Xn} ∈ C∗ and Xn 6= δ

Sn ∪ {Xn, δ(p)} if Sn ∪ {Xn} ∈ C∗ and Xn = δ

Sn otherwise

with fixed parameter p which is new to Sn ∪ {Xn}
• S1 ⊆ S2 ⊆ S3 ⊆ · · · and hence H =

⋃
i Si extends S

• H ∈ C∗ (because C∗ is of finite character) and H is maximal in C∗

• H is first-order Hintikka set with respect to Lpar

• H is satisfiable by Hintikka’s Lemma in Herbrand model with respect to Lpar

• S ⊆ H is satisfiable in Herbrand model with respect to Lpar

AM/VvO (CS @ UIBK) lecture 4 50/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Proof of First-Order Model Existence

• extend C to alternate first-order consistency property C∗ of finite character

• let X1,X2,X3, . . . be enumeration of all sentences of Lpar

• define sequence S1,S2,S3, . . . of members of C∗:

S1 = S Sn+1 =

Sn ∪ {Xn} if Sn ∪ {Xn} ∈ C∗ and Xn 6= δ

Sn ∪ {Xn, δ(p)} if Sn ∪ {Xn} ∈ C∗ and Xn = δ

Sn otherwise

with fixed parameter p which is new to Sn ∪ {Xn}
• S1 ⊆ S2 ⊆ S3 ⊆ · · · and hence H =

⋃
i Si extends S

• H ∈ C∗ (because C∗ is of finite character) and H is maximal in C∗

• H is first-order Hintikka set with respect to Lpar

• H is satisfiable by Hintikka’s Lemma in Herbrand model with respect to Lpar

• S ⊆ H is satisfiable in Herbrand model with respect to Lpar

AM/VvO (CS @ UIBK) lecture 4 50/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Proof of First-Order Model Existence

• extend C to alternate first-order consistency property C∗ of finite character

• let X1,X2,X3, . . . be enumeration of all sentences of Lpar

• define sequence S1,S2,S3, . . . of members of C∗:

S1 = S Sn+1 =

Sn ∪ {Xn} if Sn ∪ {Xn} ∈ C∗ and Xn 6= δ

Sn ∪ {Xn, δ(p)} if Sn ∪ {Xn} ∈ C∗ and Xn = δ

Sn otherwise

with fixed parameter p which is new to Sn ∪ {Xn}
• S1 ⊆ S2 ⊆ S3 ⊆ · · · and hence H =

⋃
i Si extends S

• H ∈ C∗ (because C∗ is of finite character) and H is maximal in C∗

• H is first-order Hintikka set with respect to Lpar

• H is satisfiable by Hintikka’s Lemma in Herbrand model with respect to Lpar

• S ⊆ H is satisfiable in Herbrand model with respect to Lpar

AM/VvO (CS @ UIBK) lecture 4 50/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Model Existence Theorem

Proof of First-Order Model Existence

• extend C to alternate first-order consistency property C∗ of finite character

• let X1,X2,X3, . . . be enumeration of all sentences of Lpar

• define sequence S1,S2,S3, . . . of members of C∗:

S1 = S Sn+1 =

Sn ∪ {Xn} if Sn ∪ {Xn} ∈ C∗ and Xn 6= δ

Sn ∪ {Xn, δ(p)} if Sn ∪ {Xn} ∈ C∗ and Xn = δ

Sn otherwise

with fixed parameter p which is new to Sn ∪ {Xn}
• S1 ⊆ S2 ⊆ S3 ⊆ · · · and hence H =

⋃
i Si extends S

• H ∈ C∗ (because C∗ is of finite character) and H is maximal in C∗

• H is first-order Hintikka set with respect to Lpar

• H is satisfiable by Hintikka’s Lemma in Herbrand model with respect to Lpar

• S ⊆ H is satisfiable in Herbrand model with respect to Lpar

AM/VvO (CS @ UIBK) lecture 4 50/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Compactness

Outline

Overviews

First-Order Logic

Herbrand Models

Uniform Notation

Hintikka’s Lemma
Model Existence Theorem
Compactness
Löwenheim-Skolem
Logical Consequence

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 4 51/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Compactness

Theorem (First-Order Compactness)

if every finite subset of a set S of sentences of first-order language L is satisfiable
then S is satisfiable

Proof

• define collection C of sets of sentences of Lpar as follows: W ∈ C if

1 infinitely many parameters are new to W

2 every finite subset of W is satisfiable

• S ∈ C
• C is first-order consistency property

• S is satisfiable according to First-Order Model Existence Theorem

AM/VvO (CS @ UIBK) lecture 4 52/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Compactness

Theorem (First-Order Compactness)

if every finite subset of a set S of sentences of first-order language L is satisfiable
then S is satisfiable

Proof

• define collection C of sets of sentences of Lpar as follows: W ∈ C if

1 infinitely many parameters are new to W

2 every finite subset of W is satisfiable

• S ∈ C
• C is first-order consistency property

• S is satisfiable according to First-Order Model Existence Theorem

AM/VvO (CS @ UIBK) lecture 4 52/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Compactness

Theorem (First-Order Compactness)

if every finite subset of a set S of sentences of first-order language L is satisfiable
then S is satisfiable

Proof

• define collection C of sets of sentences of Lpar as follows: W ∈ C if

1 infinitely many parameters are new to W

2 every finite subset of W is satisfiable

• S ∈ C
• C is first-order consistency property

• S is satisfiable according to First-Order Model Existence Theorem

AM/VvO (CS @ UIBK) lecture 4 52/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Compactness

Theorem (First-Order Compactness)

if every finite subset of a set S of sentences of first-order language L is satisfiable
then S is satisfiable

Proof

• define collection C of sets of sentences of Lpar as follows: W ∈ C if

1 infinitely many parameters are new to W

2 every finite subset of W is satisfiable

• S ∈ C

• C is first-order consistency property

• S is satisfiable according to First-Order Model Existence Theorem

AM/VvO (CS @ UIBK) lecture 4 52/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Compactness

Theorem (First-Order Compactness)

if every finite subset of a set S of sentences of first-order language L is satisfiable
then S is satisfiable

Proof

• define collection C of sets of sentences of Lpar as follows: W ∈ C if

1 infinitely many parameters are new to W

2 every finite subset of W is satisfiable

• S ∈ C
• C is first-order consistency property

• S is satisfiable according to First-Order Model Existence Theorem

AM/VvO (CS @ UIBK) lecture 4 52/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Compactness

Theorem (First-Order Compactness)

if every finite subset of a set S of sentences of first-order language L is satisfiable
then S is satisfiable

Proof

• define collection C of sets of sentences of Lpar as follows: W ∈ C if

1 infinitely many parameters are new to W

2 every finite subset of W is satisfiable

• S ∈ C
• C is first-order consistency property

• S is satisfiable according to First-Order Model Existence Theorem

AM/VvO (CS @ UIBK) lecture 4 52/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Compactness

Corollary

any set S of sentences of first-order language L that is satisfiable in arbitrarily large
finite models is satisfiable in some infinite model

Proof

• suppose S is satisfiable in arbitrary large finite models

• let R be two-place relation symbol not in L

and let L′ be L extended with R

• there exist sentences A2,A3, . . . involving R such that Ai is not true in any
model with less than i elements but can be made true in any domain with at
least i elements

• consider S∗ = S ∪ {A2,A3, . . . }
• every finite subset of S∗ is satisfiable

• S∗ is satisfiable by First-Order Compactness Theorem

• any model in which S∗ is satisfiable must be infinite

AM/VvO (CS @ UIBK) lecture 4 53/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Compactness

Corollary

any set S of sentences of first-order language L that is satisfiable in arbitrarily large
finite models is satisfiable in some infinite model

Proof

• suppose S is satisfiable in arbitrary large finite models

• let R be two-place relation symbol not in L

and let L′ be L extended with R

• there exist sentences A2,A3, . . . involving R such that Ai is not true in any
model with less than i elements but can be made true in any domain with at
least i elements

• consider S∗ = S ∪ {A2,A3, . . . }
• every finite subset of S∗ is satisfiable

• S∗ is satisfiable by First-Order Compactness Theorem

• any model in which S∗ is satisfiable must be infinite

AM/VvO (CS @ UIBK) lecture 4 53/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Compactness

Corollary

any set S of sentences of first-order language L that is satisfiable in arbitrarily large
finite models is satisfiable in some infinite model

Proof

• suppose S is satisfiable in arbitrary large finite models

• let R be two-place relation symbol not in L

and let L′ be L extended with R

• there exist sentences A2,A3, . . . involving R such that Ai is not true in any
model with less than i elements but can be made true in any domain with at
least i elements

• consider S∗ = S ∪ {A2,A3, . . . }
• every finite subset of S∗ is satisfiable

• S∗ is satisfiable by First-Order Compactness Theorem

• any model in which S∗ is satisfiable must be infinite

AM/VvO (CS @ UIBK) lecture 4 53/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Compactness

Corollary

any set S of sentences of first-order language L that is satisfiable in arbitrarily large
finite models is satisfiable in some infinite model

Proof

• suppose S is satisfiable in arbitrary large finite models

• let R be two-place relation symbol not in L and let L′ be L extended with R

• there exist sentences A2,A3, . . . involving R such that Ai is not true in any
model with less than i elements but can be made true in any domain with at
least i elements

• consider S∗ = S ∪ {A2,A3, . . . }
• every finite subset of S∗ is satisfiable

• S∗ is satisfiable by First-Order Compactness Theorem

• any model in which S∗ is satisfiable must be infinite

AM/VvO (CS @ UIBK) lecture 4 53/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Compactness

Corollary

any set S of sentences of first-order language L that is satisfiable in arbitrarily large
finite models is satisfiable in some infinite model

Proof

• suppose S is satisfiable in arbitrary large finite models

• let R be two-place relation symbol not in L and let L′ be L extended with R

• there exist sentences A2,A3, . . . involving R such that Ai is not true in any
model with less than i elements but can be made true in any domain with at
least i elements

• consider S∗ = S ∪ {A2,A3, . . . }
• every finite subset of S∗ is satisfiable

• S∗ is satisfiable by First-Order Compactness Theorem

• any model in which S∗ is satisfiable must be infinite

AM/VvO (CS @ UIBK) lecture 4 53/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Compactness

Corollary

any set S of sentences of first-order language L that is satisfiable in arbitrarily large
finite models is satisfiable in some infinite model

Proof

• suppose S is satisfiable in arbitrary large finite models

• let R be two-place relation symbol not in L and let L′ be L extended with R

• there exist sentences A2,A3, . . . involving R such that Ai is not true in any
model with less than i elements but can be made true in any domain with at
least i elements

• consider S∗ = S ∪ {A2,A3, . . . }

• every finite subset of S∗ is satisfiable

• S∗ is satisfiable by First-Order Compactness Theorem

• any model in which S∗ is satisfiable must be infinite

AM/VvO (CS @ UIBK) lecture 4 53/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Compactness

Corollary

any set S of sentences of first-order language L that is satisfiable in arbitrarily large
finite models is satisfiable in some infinite model

Proof

• suppose S is satisfiable in arbitrary large finite models

• let R be two-place relation symbol not in L and let L′ be L extended with R

• there exist sentences A2,A3, . . . involving R such that Ai is not true in any
model with less than i elements but can be made true in any domain with at
least i elements

• consider S∗ = S ∪ {A2,A3, . . . }
• every finite subset of S∗ is satisfiable

• S∗ is satisfiable by First-Order Compactness Theorem

• any model in which S∗ is satisfiable must be infinite

AM/VvO (CS @ UIBK) lecture 4 53/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Compactness

Corollary

any set S of sentences of first-order language L that is satisfiable in arbitrarily large
finite models is satisfiable in some infinite model

Proof

• suppose S is satisfiable in arbitrary large finite models

• let R be two-place relation symbol not in L and let L′ be L extended with R

• there exist sentences A2,A3, . . . involving R such that Ai is not true in any
model with less than i elements but can be made true in any domain with at
least i elements

• consider S∗ = S ∪ {A2,A3, . . . }
• every finite subset of S∗ is satisfiable

• S∗ is satisfiable by First-Order Compactness Theorem

• any model in which S∗ is satisfiable must be infinite

AM/VvO (CS @ UIBK) lecture 4 53/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Compactness

Corollary

any set S of sentences of first-order language L that is satisfiable in arbitrarily large
finite models is satisfiable in some infinite model

Proof

• suppose S is satisfiable in arbitrary large finite models

• let R be two-place relation symbol not in L and let L′ be L extended with R

• there exist sentences A2,A3, . . . involving R such that Ai is not true in any
model with less than i elements but can be made true in any domain with at
least i elements

• consider S∗ = S ∪ {A2,A3, . . . }
• every finite subset of S∗ is satisfiable

• S∗ is satisfiable by First-Order Compactness Theorem

• any model in which S∗ is satisfiable must be infinite

AM/VvO (CS @ UIBK) lecture 4 53/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Compactness

Corollary

any set S of sentences of first-order language L that is satisfiable in arbitrarily large
finite models is satisfiable in some infinite model

Proof

• suppose S is satisfiable in arbitrary large finite models

• let R be two-place relation symbol not in L and let L′ be L extended with R

• there exist sentences A2,A3, . . . involving R such that Ai is not true in any
model with less than i elements but can be made true in any domain with at
least i elements

• consider S∗ = S ∪ {A2,A3, . . . }
• every finite subset of S∗ is satisfiable

• S∗ is satisfiable by First-Order Compactness Theorem

• any model in which S∗ is satisfiable must be infinite

AM/VvO (CS @ UIBK) lecture 4 53/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Compactness

Example

sentence

An = (∃x1)(∃x2) · · · (∃xn)

[n∧
i=1

R(xi , xi) ∧
∧

16i<j6n

¬R(xi , xj)

]

• is not true in any model with less than n elements

• can be made true in any domain with at least n elements

Remark

notion of finiteness cannot be captured using machinery of classical first-order logic

AM/VvO (CS @ UIBK) lecture 4 54/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Compactness

Example

sentence

An = (∃x1)(∃x2) · · · (∃xn)

[n∧
i=1

R(xi , xi) ∧
∧

16i<j6n

¬R(xi , xj)

]

• is not true in any model with less than n elements

• can be made true in any domain with at least n elements

Remark

notion of finiteness cannot be captured using machinery of classical first-order logic

AM/VvO (CS @ UIBK) lecture 4 54/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Compactness

Example

sentence

An = (∃x1)(∃x2) · · · (∃xn)

[n∧
i=1

R(xi , xi) ∧
∧

16i<j6n

¬R(xi , xj)

]

• is not true in any model with less than n elements

• can be made true in any domain with at least n elements

Remark

notion of finiteness cannot be captured using machinery of classical first-order logic

AM/VvO (CS @ UIBK) lecture 4 54/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Compactness

Example

sentence

An = (∃x1)(∃x2) · · · (∃xn)

[n∧
i=1

R(xi , xi) ∧
∧

16i<j6n

¬R(xi , xj)

]

• is not true in any model with less than n elements

• can be made true in any domain with at least n elements

Remark

notion of finiteness cannot be captured using machinery of classical first-order logic

AM/VvO (CS @ UIBK) lecture 4 54/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Löwenheim-Skolem

Outline

Overviews

First-Order Logic

Herbrand Models

Uniform Notation

Hintikka’s Lemma
Model Existence Theorem
Compactness
Löwenheim-Skolem
Logical Consequence

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 4 55/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Löwenheim-Skolem

Theorem (Löwenheim-Skolem)

if set S of sentences of first-order language L is satisfiable then S is satisfiable in
countable model

Proof

• suppose S is satisfiable

• define collection C of sets of sentences of Lpar as follows: W ∈ C if

1 infinitely many parameters are new to W

2 W is satisfiable

• S ∈ C
• C is first-order consistency property

• Model Existence Theorem:
S is satisfiable in Herbrand model with respect to Lpar

• Lpar has countable alphabet and hence countably many closed terms

AM/VvO (CS @ UIBK) lecture 4 56/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Löwenheim-Skolem

Theorem (Löwenheim-Skolem)

if set S of sentences of first-order language L is satisfiable then S is satisfiable in
countable model

Proof

• suppose S is satisfiable

• define collection C of sets of sentences of Lpar as follows: W ∈ C if

1 infinitely many parameters are new to W

2 W is satisfiable

• S ∈ C
• C is first-order consistency property

• Model Existence Theorem:
S is satisfiable in Herbrand model with respect to Lpar

• Lpar has countable alphabet and hence countably many closed terms

AM/VvO (CS @ UIBK) lecture 4 56/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Löwenheim-Skolem

Theorem (Löwenheim-Skolem)

if set S of sentences of first-order language L is satisfiable then S is satisfiable in
countable model

Proof

• suppose S is satisfiable

• define collection C of sets of sentences of Lpar as follows: W ∈ C if

1 infinitely many parameters are new to W

2 W is satisfiable

• S ∈ C
• C is first-order consistency property

• Model Existence Theorem:
S is satisfiable in Herbrand model with respect to Lpar

• Lpar has countable alphabet and hence countably many closed terms

AM/VvO (CS @ UIBK) lecture 4 56/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Löwenheim-Skolem

Theorem (Löwenheim-Skolem)

if set S of sentences of first-order language L is satisfiable then S is satisfiable in
countable model

Proof

• suppose S is satisfiable

• define collection C of sets of sentences of Lpar as follows: W ∈ C if

1 infinitely many parameters are new to W

2 W is satisfiable

• S ∈ C
• C is first-order consistency property

• Model Existence Theorem:
S is satisfiable in Herbrand model with respect to Lpar

• Lpar has countable alphabet and hence countably many closed terms

AM/VvO (CS @ UIBK) lecture 4 56/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Löwenheim-Skolem

Theorem (Löwenheim-Skolem)

if set S of sentences of first-order language L is satisfiable then S is satisfiable in
countable model

Proof

• suppose S is satisfiable

• define collection C of sets of sentences of Lpar as follows: W ∈ C if

1 infinitely many parameters are new to W

2 W is satisfiable

• S ∈ C

• C is first-order consistency property

• Model Existence Theorem:
S is satisfiable in Herbrand model with respect to Lpar

• Lpar has countable alphabet and hence countably many closed terms

AM/VvO (CS @ UIBK) lecture 4 56/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Löwenheim-Skolem

Theorem (Löwenheim-Skolem)

if set S of sentences of first-order language L is satisfiable then S is satisfiable in
countable model

Proof

• suppose S is satisfiable

• define collection C of sets of sentences of Lpar as follows: W ∈ C if

1 infinitely many parameters are new to W

2 W is satisfiable

• S ∈ C
• C is first-order consistency property

• Model Existence Theorem:
S is satisfiable in Herbrand model with respect to Lpar

• Lpar has countable alphabet and hence countably many closed terms

AM/VvO (CS @ UIBK) lecture 4 56/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Löwenheim-Skolem

Theorem (Löwenheim-Skolem)

if set S of sentences of first-order language L is satisfiable then S is satisfiable in
countable model

Proof

• suppose S is satisfiable

• define collection C of sets of sentences of Lpar as follows: W ∈ C if

1 infinitely many parameters are new to W

2 W is satisfiable

• S ∈ C
• C is first-order consistency property

• Model Existence Theorem:
S is satisfiable in Herbrand model with respect to Lpar

• Lpar has countable alphabet and hence countably many closed terms

AM/VvO (CS @ UIBK) lecture 4 56/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Löwenheim-Skolem

Theorem (Löwenheim-Skolem)

if set S of sentences of first-order language L is satisfiable then S is satisfiable in
countable model

Proof

• suppose S is satisfiable

• define collection C of sets of sentences of Lpar as follows: W ∈ C if

1 infinitely many parameters are new to W

2 W is satisfiable

• S ∈ C
• C is first-order consistency property

• Model Existence Theorem:
S is satisfiable in Herbrand model with respect to Lpar

• Lpar has countable alphabet and hence countably many closed terms

AM/VvO (CS @ UIBK) lecture 4 56/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Löwenheim-Skolem

Haskell Curry
(1900 – 1982)

William Craig
(1918 – 2016)

Jacques Herbrand
(1908 – 1931)

David Hilbert
(1862 – 1943)

Jaakko Hintikka
(1929 – 2015)

William Howard
(1926 –)

Saul Kripke
(1940 –)

Leopold Löwenheim
(1878 – 1957)

Thoralf Skolem
(1887 – 1963)

AM/VvO (CS @ UIBK) lecture 4 57/63

https://en.wikipedia.org/wiki/Haskell_Curry
https://en.wikipedia.org/wiki/William_Craig_(philosopher)
https://en.wikipedia.org/wiki/Jacques_Herbrand
https://en.wikipedia.org/wiki/David_Hilbert
https://en.wikipedia.org/wiki/Jaakko_Hintikka
https://en.wikipedia.org/wiki/William_Alvin_Howard
https://en.wikipedia.org/wiki/Saul_Kripke
https://en.wikipedia.org/wiki/Leopold_Loewenheim
https://en.wikipedia.org/wiki/Thoralf_Skolem
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Löwenheim-Skolem

Haskell Curry
(1900 – 1982)

William Craig
(1918 – 2016)

Jacques Herbrand
(1908 – 1931)

David Hilbert
(1862 – 1943)

Jaakko Hintikka
(1929 – 2015)

William Howard
(1926 –)

Saul Kripke
(1940 –)

Leopold Löwenheim
(1878 – 1957)

Thoralf Skolem
(1887 – 1963)

AM/VvO (CS @ UIBK) lecture 4 57/63

https://en.wikipedia.org/wiki/Haskell_Curry
https://en.wikipedia.org/wiki/William_Craig_(philosopher)
https://en.wikipedia.org/wiki/Jacques_Herbrand
https://en.wikipedia.org/wiki/David_Hilbert
https://en.wikipedia.org/wiki/Jaakko_Hintikka
https://en.wikipedia.org/wiki/William_Alvin_Howard
https://en.wikipedia.org/wiki/Saul_Kripke
https://en.wikipedia.org/wiki/Leopold_Loewenheim
https://en.wikipedia.org/wiki/Thoralf_Skolem
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Logical Consequence

Outline

Overviews

First-Order Logic

Herbrand Models

Uniform Notation

Hintikka’s Lemma
Model Existence Theorem
Compactness
Löwenheim-Skolem
Logical Consequence

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 4 58/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Logical Consequence

Definition

sentence X is logical consequence of set S of sentences, S �f X , if X is true in
every model in which all members of S are true

Theorem

S �f X if and only if S0 �f X for some finite subset S0 of S

Proof

⇒ if S �f X then S ∪ {¬X} is not satisfiable

some finite subset S ′ of S ∪ {¬X} is not satisfiable by compactness

we may assume that S ′ = S0 ∪ {¬X} for finite subset S0 of S

S0 �f X

⇐ easy

AM/VvO (CS @ UIBK) lecture 4 59/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Logical Consequence

Definition

sentence X is logical consequence of set S of sentences, S �f X , if X is true in
every model in which all members of S are true

Theorem

S �f X if and only if S0 �f X for some finite subset S0 of S

Proof

⇒ if S �f X then S ∪ {¬X} is not satisfiable

some finite subset S ′ of S ∪ {¬X} is not satisfiable by compactness

we may assume that S ′ = S0 ∪ {¬X} for finite subset S0 of S

S0 �f X

⇐ easy

AM/VvO (CS @ UIBK) lecture 4 59/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Logical Consequence

Definition

sentence X is logical consequence of set S of sentences, S �f X , if X is true in
every model in which all members of S are true

Theorem

S �f X if and only if S0 �f X for some finite subset S0 of S

Proof

⇒ if S �f X then S ∪ {¬X} is not satisfiable

some finite subset S ′ of S ∪ {¬X} is not satisfiable by compactness

we may assume that S ′ = S0 ∪ {¬X} for finite subset S0 of S

S0 �f X

⇐ easy

AM/VvO (CS @ UIBK) lecture 4 59/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Logical Consequence

Definition

sentence X is logical consequence of set S of sentences, S �f X , if X is true in
every model in which all members of S are true

Theorem

S �f X if and only if S0 �f X for some finite subset S0 of S

Proof

⇒ if S �f X then S ∪ {¬X} is not satisfiable

some finite subset S ′ of S ∪ {¬X} is not satisfiable by compactness

we may assume that S ′ = S0 ∪ {¬X} for finite subset S0 of S

S0 �f X

⇐ easy

AM/VvO (CS @ UIBK) lecture 4 59/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Logical Consequence

Definition

sentence X is logical consequence of set S of sentences, S �f X , if X is true in
every model in which all members of S are true

Theorem

S �f X if and only if S0 �f X for some finite subset S0 of S

Proof

⇒ if S �f X then S ∪ {¬X} is not satisfiable

some finite subset S ′ of S ∪ {¬X} is not satisfiable by compactness

we may assume that S ′ = S0 ∪ {¬X} for finite subset S0 of S

S0 �f X

⇐ easy

AM/VvO (CS @ UIBK) lecture 4 59/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Logical Consequence

Definition

sentence X is logical consequence of set S of sentences, S �f X , if X is true in
every model in which all members of S are true

Theorem

S �f X if and only if S0 �f X for some finite subset S0 of S

Proof

⇒ if S �f X then S ∪ {¬X} is not satisfiable

some finite subset S ′ of S ∪ {¬X} is not satisfiable by compactness

we may assume that S ′ = S0 ∪ {¬X} for finite subset S0 of S

S0 �f X

⇐ easy

AM/VvO (CS @ UIBK) lecture 4 59/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Logical Consequence

Definition

sentence X is logical consequence of set S of sentences, S �f X , if X is true in
every model in which all members of S are true

Theorem

S �f X if and only if S0 �f X for some finite subset S0 of S

Proof

⇒ if S �f X then S ∪ {¬X} is not satisfiable

some finite subset S ′ of S ∪ {¬X} is not satisfiable by compactness

we may assume that S ′ = S0 ∪ {¬X} for finite subset S0 of S

S0 �f X

⇐ easy

AM/VvO (CS @ UIBK) lecture 4 59/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hintikka’s Lemma Logical Consequence

Definition

sentence X is logical consequence of set S of sentences, S �f X , if X is true in
every model in which all members of S are true

Theorem

S �f X if and only if S0 �f X for some finite subset S0 of S

Proof

⇒ if S �f X then S ∪ {¬X} is not satisfiable

some finite subset S ′ of S ∪ {¬X} is not satisfiable by compactness

we may assume that S ′ = S0 ∪ {¬X} for finite subset S0 of S

S0 �f X

⇐ easy

AM/VvO (CS @ UIBK) lecture 4 59/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Exercises

Outline

Overviews

First-Order Logic

Herbrand Models

Uniform Notation

Hintikka’s Lemma

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 4 60/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Exercises

Fitting

• Give a translation from propositional logic into first-order logic that is natural
in the sense that properties carry over, e.g. that a formula is
satisfiable/valid/a contradiction iff so is its translation.

• Exercise 5.2.2

• Bonus Exercise 5.2.4

• Exercise 5.3.2

• Exercise 5.3.9 !

• Exercise 5.4.1 or Exercise 5.4.2

• Bonus Exercise 5.5.2 or Exercise 5.6.3

• Exercise 5.9.2

• Bonus Exercise 5.9.3

• Exercise 5.10.1 or 5.10.3(1,2)

AM/VvO (CS @ UIBK) lecture 4 61/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Further Reading

Outline

Overviews

First-Order Logic

Herbrand Models

Uniform Notation

Hintikka’s Lemma

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 4 62/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Further Reading

Fitting

• Section 5.7

• Section 5.8 !

• Section 5.9 !

• Section 5.10

• Section 6.1 !

• Section 6.3 !

• Section 6.4 !

• Section 6.5 !

• Section 8.2

AM/VvO (CS @ UIBK) lecture 4 63/63

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	lecture 4
	Overviews
	Contents
	First-Order Logic
	Syntax
	Substitutions
	Semantics

	Herbrand Models
	Uniform Notation
	Hintikka's Lemma
	Model Existence Theorem
	Compactness
	Löwenheim-Skolem
	Logical Consequence

	Exercises
	Further Reading

