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Overview of this Lecture

Having set up the basic meta-theory for 1st-order logic, by generalising that for
propositional logic, in particular Model Existence, we now focus on doing the same
for their proof systems, tableaux and Hilbert Systems.

• The idea to generalize the tableau expansion rules from propositional to
1st-order logic, is that γ-formulas (∀) generalise α-formulas (conjunction),
and δ-formulas (∃) generalise β-formulas (disjunction).

Starting with the latter, since we need to keep our tableaux finite thinking of
δ-formulas as infinite disjunctions will not do. What is done instead, is to
have only one branch but with a new parameter for the variable bound by the
∃. The parameter being new guarantees that when closing that branch,
entails the branch is closed for each of the infinitely many possible branches
obtained by instantiating the bound variable, uniformly.

Also for the latter we need to keep our tableaux finite, so thinking of
γ-formulas as infinite conjunctions will not do either. What is done instead, is
to judiciously choose an instance of the variable bound by the ∀. For
choosing an instance, we use elements of the Herbrand model, i.e. closed
terms. Although different choices for instantiating a γ-formula may be
necessary along a branch, only finitely many such will be necessary.
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Overview of this Lecture

• To generalise Hilbert Systems from propositional to 1st-order logic, we adjoin
the Universal Generalization inference rule to deal with the ∀-quantifier, with
the idea that if we can infer that a formula is a consequence for an arbitrary
instance of the variable bound by the ∀, then also the ∀-formula is a
consequence. Again, arbitrary instances are modelled by means of a
sufficiently new parameter.

Next we consider the effect of syntactical transformations on the semantics.

• as for propositional logic, subformulas may be replaced by equivalent ones,
without changing the meaning of the whole formula (replacement);

• occurrences of subformulas can be classified as being negative or positive,
with the idea that if we make a positive occurrence of a subformula ‘more
true’ then the formula as a whole becomes ‘more true’, whereas for negative
subformulas it’s the opposite (implicational replacement). An occurrence is
positive if it is reached from the root by passing an even number of negations
and negative otherwise; in X ⊃ Y , X occurs negative, Y positive. A
subformula (∀x)Φ occurring negatively ‘is essentially an ∃’ (it would be one
after transformation into negation normal form). Similarly, a negative
occurrence of an ∃ ‘is essentially a ∀’.
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Overview of this Lecture

• The idea of Skolemisation is to do away with existentially quantified variables,
at the expense of introducing new function symbols. For instance,
(∀x)(∃y)(x < y) being true in, say, the natural numbers means there exists a
function f such that (∀x)(x < f (x)); we may take for f e.g. the +1 or +17
functions. Note that f must be a function having as arguments the variables
that have been universally quantified ‘before the ∃’, in order to capture that
the choice made to make the ∃ true may depend on these variables. An
occurrence of a quantifier can be Skolemised, i.e. replaced by a function as
sketched above, if it is an exists (∃) and is positive, or a for all (∀) and is
negative (so ‘essentially an ∃), preserving satisfiability.

• Whereas Skolemisation allows to get rid of (essentially) existential quantifiers,
at the expense of introducing function symbols, Herbrand’s theorem allows us
to get rid of (essentially) universal quantifiers, at the expense of expanding
them for a given (finite) set of closed terms, substituting each element of the
set for the bound variable and taking the conjunction of all these choices.
Roughly speaking, the combined effect of both is that we have gotten rid of
quantifiers so can proceed ‘as if we were in propositional logic’.
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systems, Hintikka’s lemma, Löwenheim-Skolem, logical consequence, model
existence theorem, prenex form, skolemization, soundness

Part III: Limitations and Extensions of First-Order Logic

Curry-Howard isomorphism, intuitionistic logic, Kripke models, second-order logic,
simply-typed λ-calculus

AM/VvO (CS @ UIBK) lecture 5 6/55

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Contents

Part I: Propositional Logic

compactness, completeness, Hilbert systems, Hintikka’s lemma, interpolation,
logical consequence, model existence theorem, propositional semantic tableaux,
soundness

Part II: First-Order Logic

compactness, completeness, Craig’s interpolation theorem, cut elimination,
first-order semantic tableaux, Herbrand models, Herbrand’s theorem, Hilbert
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First-Order Semantic Tableaux

Remark

first-order tableaux use sentences of Lpar to prove sentences of L

Tableau Expansion Rules

¬¬Z
Z

¬⊥
>

¬>
⊥

α

α1

α2

β

β1 | β2

γ

γ(t)

δ

δ(p)

for any closed term t of Lpar and new parameter p

Definitions

• S-introduction rule for tableaux: any member of S can be added to end of
any tableau branch

• S `ft X is there exists closed first-order tableau for {¬X}, allowing
S-introduction rule
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First-Order Semantic Tableaux

Example

tableau proof of (∀x)[P(x) ∨ Q(x)] ⊃ [(∃x)P(x) ∨ (∀x)Q(x)]:

¬
(
(∀x)[P(x) ∨ Q(x)] ⊃ [(∃x)P(x) ∨ (∀x)Q(x)]

)
(∀x)[P(x) ∨ Q(x)]

¬
[
(∃x)P(x) ∨ (∀x)Q(x)

]
¬(∃x)P(x)

¬(∀x)Q(x)

¬Q(c)

¬P(c)

P(c) ∨ Q(c)

Q(c)P(c)
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First-Order Semantic Tableaux Soundness

Definitions

• tableau branch θ is S-satisfiable if union of S and set of first-order sentences
on θ is satisfiable

• tableau is S-satisfiable if some branch is S-satisfiable

Lemmata

• any application of Tableau Expansion Rule as well as S-introduction rule to
S-satisfiable tableau yields another S-satisfiable tableau

• there are no closed S-satisfiable tableaux

Theorem (Strong Soundness)

if S `ft X then S �f X
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First-Order Semantic Tableaux Completeness
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First-Order Semantic Tableaux Completeness

Definition

finite set S of sentences of Lpar is tableau consistent if S has no closed tableau

Lemma

collection of all tableau consistent sets is first-order consistency property

Proof

let S be finite set of sentences of Lpar

• properties 1, 2, 3, 4: as in proof for propositional case

• · · ·
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First-Order Semantic Tableaux Completeness

Proof (cont’d)

let S be finite set of sentences of Lpar

• property 5: let β ∈ S

suppose neither S ∪ {β1} nor S ∪ {β2} is tableau consistent

there exist closed tableaux T1 for S ∪ {β1} and T2 for S ∪ {β2}

without loss of generality: T1 and T2 do not share parameters

tableau for S = {β,X1, . . . ,Xn}: β

X1
...

Xn

β2

T2

β1

T1

S is not tableau consistent
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First-Order Semantic Tableaux Completeness

Proof (cont’d)

let S be finite set of sentences of Lpar

• property 6: let γ ∈ S

= {γ,X1, . . . ,Xn}

suppose S ∪ {γ(t)} for some closed term t of Lpar is not tableau consistent

there exists closed tableau T for S ∪ {γ(t)} and hence also for S :

γ

X1

...

Xn

γ(t) apply γ-rule

rest of T

S is not tableau consistent

• property 7: similar
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First-Order Semantic Tableaux Completeness

Theorem (Completeness for First-Order Tableaux)

every valid sentence X of L has tableau proof

Proof

• suppose X does not have tableau proof

• there is no closed tableau for {¬X}
• {¬X} is tableau consistent

• {¬X} is satisfiable by First-Order Model Existence Theorem

• X cannot be valid
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First-Order Hilbert Systems

Outline

Overview of this Lecture

First-Order Semantic Tableaux

First-Order Hilbert Systems

Replacement Theorem

Skolemization

Herbrand’s Theorem

Exercises

Further Reading
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First-Order Hilbert Systems

Definition (Axiom Scheme 10)

γ ⊃ γ(t)

for any closed term t of Lpar

Definition (Universal Generalization)

Φ ⊃ γ(p)

Φ ⊃ γ
provided p is parameter that does not occur in sentence Φ ⊃ γ

and not in S in
case of derivation from S

Definitions

• S `fh X if there exists derivation of X from set S in first-order Hilbert systems

• if ∅ `fh X then X is theorem (and derivation is called proof)
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First-Order Hilbert Systems

Lemma

γ(p)

γ
provided parameter p does not occur in sentence γ

is derived rule in Hilbert system

Proof

suppose `fh γ(p)

1. γ(p) assumption

2. γ(p) ⊃ (> ⊃ γ(p)) Axiom Scheme 1

3. > ⊃ γ(p) Modus Ponens

4. > ⊃ γ Universal Generalization

5. (> ⊃ >) ⊃ > Axiom Scheme 4

6. > ⊃ > Axiom Scheme 4

7. > Modus Ponens

8. γ Modus Ponens
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First-Order Hilbert Systems

Example

(∀x)(P(x) ∧ Q(x)) ⊃ (∀x)P(x) is theorem:

1. (∀x)(P(x) ∧ Q(x)) ⊃ (P(p) ∧ Q(p)) Axiom Scheme 10

2. (P(p) ∧ Q(p)) ⊃ P(p) Axiom Scheme 7

3. (∀x)(P(x) ∧ Q(x)) ⊃ P(p) propositional logic

4. (∀x)(P(x) ∧ Q(x)) ⊃ (∀x)P(x) Universal Generalization

Theorem (Deduction Theorem)

in any first-order Hilbert System h with Modus Ponens and Universal
Generalization as only rules of inference and at least Axiom Schemes 1 and 2:

S ∪ {X} `fh Y ⇐⇒ S `fh X ⊃ Y
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First-Order Hilbert Systems

Proof (if direction)

• suppose S ∪ {X} `fh Y

• let Π1 : Z1, . . . ,Zn be derivation of Y from S ∪ {X}, so Zn = Y

• consider new sequence Π2 : X ⊃ Z1, . . . ,X ⊃ Zn

• insert extra lines into Π2 as follows:

1 · · ·
2 · · ·
3 · · ·
4 if Zi is derived with Universal Generalization from Zj with j < i

then Zj = (Φ ⊃ γ(p)) and Zi = (Φ ⊃ γ)

insert steps of (propositional) proof of (X ∧ Φ) ⊃ γ(p) from X ⊃ Zj

insert (X ∧ Φ) ⊃ γ (UG; p cannot occur in (X ∧ Φ) ⊃ γ)

insert steps of (propositional) proof of X ⊃ Zi

before X ⊃ Zi
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First-Order Hilbert Systems

Example

{(∀x)(P(x) ⊃ Q(x)), (∀x)P(x)} `fh (∀x)Q(x):

1. (∀x)P(x)

2. (∀x)P(x) ⊃ P(p) Axiom Scheme 10

3. P(p) Modus Ponens

4. (∀x)(P(x) ⊃ Q(x))

5. (∀x)(P(x) ⊃ Q(x)) ⊃ (P(p) ⊃ Q(p)) Axiom Scheme 10

6. P(p) ⊃ Q(p) Modus Ponens

7. Q(p) Modus Ponens

8. (∀x)Q(x) Universal Generalization

Theorem (Strong Hilbert Soundness and Completeness)

for set S of sentences of L and sentence X of L:

S `fh X ⇐⇒ S �f X

AM/VvO (CS @ UIBK) lecture 5 22/55

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


First-Order Hilbert Systems

Example

{(∀x)(P(x) ⊃ Q(x)), (∀x)P(x)} `fh (∀x)Q(x):

1. (∀x)P(x)

2. (∀x)P(x) ⊃ P(p) Axiom Scheme 10

3. P(p) Modus Ponens

4. (∀x)(P(x) ⊃ Q(x))

5. (∀x)(P(x) ⊃ Q(x)) ⊃ (P(p) ⊃ Q(p)) Axiom Scheme 10

6. P(p) ⊃ Q(p) Modus Ponens

7. Q(p) Modus Ponens

8. (∀x)Q(x) Universal Generalization

Theorem (Strong Hilbert Soundness and Completeness)

for set S of sentences of L and sentence X of L:

S `fh X ⇐⇒ S �f X

AM/VvO (CS @ UIBK) lecture 5 22/55

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


First-Order Hilbert Systems

Example

{(∀x)(P(x) ⊃ Q(x)), (∀x)P(x)} `fh (∀x)Q(x):

1. (∀x)P(x)

2. (∀x)P(x) ⊃ P(p) Axiom Scheme 10

3. P(p) Modus Ponens

4. (∀x)(P(x) ⊃ Q(x))

5. (∀x)(P(x) ⊃ Q(x)) ⊃ (P(p) ⊃ Q(p)) Axiom Scheme 10

6. P(p) ⊃ Q(p) Modus Ponens

7. Q(p) Modus Ponens

8. (∀x)Q(x) Universal Generalization

Theorem (Strong Hilbert Soundness and Completeness)

for set S of sentences of L and sentence X of L:

S `fh X ⇐⇒ S �f X

AM/VvO (CS @ UIBK) lecture 5 22/55

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


First-Order Hilbert Systems

Example

{(∀x)(P(x) ⊃ Q(x)), (∀x)P(x)} `fh (∀x)Q(x):

1. (∀x)P(x)

2. (∀x)P(x) ⊃ P(p) Axiom Scheme 10

3. P(p) Modus Ponens

4. (∀x)(P(x) ⊃ Q(x))

5. (∀x)(P(x) ⊃ Q(x)) ⊃ (P(p) ⊃ Q(p)) Axiom Scheme 10

6. P(p) ⊃ Q(p) Modus Ponens

7. Q(p) Modus Ponens

8. (∀x)Q(x) Universal Generalization

Theorem (Strong Hilbert Soundness and Completeness)

for set S of sentences of L and sentence X of L:

S `fh X ⇐⇒ S �f X

AM/VvO (CS @ UIBK) lecture 5 22/55

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


First-Order Hilbert Systems

Example

{(∀x)(P(x) ⊃ Q(x)), (∀x)P(x)} `fh (∀x)Q(x):

1. (∀x)P(x)

2. (∀x)P(x) ⊃ P(p) Axiom Scheme 10

3. P(p) Modus Ponens

4. (∀x)(P(x) ⊃ Q(x))

5. (∀x)(P(x) ⊃ Q(x)) ⊃ (P(p) ⊃ Q(p)) Axiom Scheme 10

6. P(p) ⊃ Q(p) Modus Ponens

7. Q(p) Modus Ponens

8. (∀x)Q(x) Universal Generalization

Theorem (Strong Hilbert Soundness and Completeness)

for set S of sentences of L and sentence X of L:

S `fh X ⇐⇒ S �f X

AM/VvO (CS @ UIBK) lecture 5 22/55

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


First-Order Hilbert Systems

Example

{(∀x)(P(x) ⊃ Q(x)), (∀x)P(x)} `fh (∀x)Q(x):

1. (∀x)P(x)

2. (∀x)P(x) ⊃ P(p) Axiom Scheme 10

3. P(p) Modus Ponens

4. (∀x)(P(x) ⊃ Q(x))

5. (∀x)(P(x) ⊃ Q(x)) ⊃ (P(p) ⊃ Q(p)) Axiom Scheme 10

6. P(p) ⊃ Q(p) Modus Ponens

7. Q(p) Modus Ponens

8. (∀x)Q(x) Universal Generalization

Theorem (Strong Hilbert Soundness and Completeness)

for set S of sentences of L and sentence X of L:

S `fh X ⇐⇒ S �f X

AM/VvO (CS @ UIBK) lecture 5 22/55

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


First-Order Hilbert Systems

Example

{(∀x)(P(x) ⊃ Q(x)), (∀x)P(x)} `fh (∀x)Q(x):

1. (∀x)P(x)

2. (∀x)P(x) ⊃ P(p) Axiom Scheme 10

3. P(p) Modus Ponens

4. (∀x)(P(x) ⊃ Q(x))

5. (∀x)(P(x) ⊃ Q(x)) ⊃ (P(p) ⊃ Q(p)) Axiom Scheme 10

6. P(p) ⊃ Q(p) Modus Ponens

7. Q(p) Modus Ponens

8. (∀x)Q(x) Universal Generalization

Theorem (Strong Hilbert Soundness and Completeness)

for set S of sentences of L and sentence X of L:

S `fh X ⇐⇒ S �f X

AM/VvO (CS @ UIBK) lecture 5 22/55

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


First-Order Hilbert Systems

Example

{(∀x)(P(x) ⊃ Q(x)), (∀x)P(x)} `fh (∀x)Q(x):

1. (∀x)P(x)

2. (∀x)P(x) ⊃ P(p) Axiom Scheme 10

3. P(p) Modus Ponens

4. (∀x)(P(x) ⊃ Q(x))

5. (∀x)(P(x) ⊃ Q(x)) ⊃ (P(p) ⊃ Q(p)) Axiom Scheme 10

6. P(p) ⊃ Q(p) Modus Ponens

7. Q(p) Modus Ponens

8. (∀x)Q(x) Universal Generalization

Theorem (Strong Hilbert Soundness and Completeness)

for set S of sentences of L and sentence X of L:

S `fh X ⇐⇒ S �f X

AM/VvO (CS @ UIBK) lecture 5 22/55

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


First-Order Hilbert Systems

Example

{(∀x)(P(x) ⊃ Q(x)), (∀x)P(x)} `fh (∀x)Q(x):

1. (∀x)P(x)

2. (∀x)P(x) ⊃ P(p) Axiom Scheme 10

3. P(p) Modus Ponens

4. (∀x)(P(x) ⊃ Q(x))

5. (∀x)(P(x) ⊃ Q(x)) ⊃ (P(p) ⊃ Q(p)) Axiom Scheme 10

6. P(p) ⊃ Q(p) Modus Ponens

7. Q(p) Modus Ponens

8. (∀x)Q(x) Universal Generalization

Theorem (Strong Hilbert Soundness and Completeness)

for set S of sentences of L and sentence X of L:

S `fh X ⇐⇒ S �f X

AM/VvO (CS @ UIBK) lecture 5 22/55

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


First-Order Hilbert Systems

Lemma

δ(p) ⊃ Φ

δ ⊃ Φ
provided parameter p does not occur in sentence δ ⊃ Φ

is derived rule in Hilbert system

Proof

suppose `fh δ(p) ⊃ Φ

1. δ(p) ⊃ Φ assumption

2. (δ(p) ⊃ Φ) ⊃ (¬Φ ⊃ ¬δ(p)) propositional logic

3. ¬Φ ⊃ ¬δ(p) Modus Ponens

4. ¬Φ ⊃ ¬δ Universal Generalization

5. (¬Φ ⊃ ¬δ) ⊃ (δ ⊃ Φ) propositional logic

6. δ ⊃ Φ Modus Ponens
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Replacement Theorem

Theorem (Replacement Theorem)

given first-order formulas Φ(A), X , Y of language L and model M = 〈D, I〉 for L

if X ≡ Y is true in M then Φ(X ) ≡ Φ(Y ) is true in M

Proof

• X I,A = Y I,A for every assignment A

• [Φ(X )]I,A = [Φ(Y )]I,A by structural induction on Φ(A)

:

• atomic and propositional cases are straightforward

• Φ(A) = (∀y)Ψ(A)

[Ψ(X )]I,A = [Ψ(Y )]I,A for every assignment A (induction hypothesis)

· · ·
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• Φ(A) = (∀y)Ψ(A)

[Ψ(X )]I,A = [Ψ(Y )]I,A for every assignment A (induction hypothesis)

· · ·
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Replacement Theorem

Proof (cont’d)

• [Φ(X )]I,A = [Φ(Y )]I,A by structural induction on Φ(A):

• Φ(A) = (∀y)Ψ(A)

[Ψ(X )]I,A = [Ψ(Y )]I,A for every assignment A (induction hypothesis)

let B be arbitrary assignment

[Φ(X )]I,B = t ⇐⇒ [Ψ(X )]I,A = t for every y -variant A of B

⇐⇒ [Ψ(Y )]I,A = t for every y -variant A of B

⇐⇒ [Φ(Y )]I,B = t

• Φ(A) = (∃y)Ψ(A) similar

Corollary

if X ≡ Y is valid then Φ(X ) ≡ Φ(Y ) is valid
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Replacement Theorem

Definition

all occurrences of atomic formula A in Φ(A) are positive provided

1 Φ(A) = A

2 Φ(A) = ¬¬Ψ(A) and all occurrences of A in Ψ(A) are positive

3 Φ(A) is α-formula and all occurrences of A in α1 and in α2 are positive

4 Φ(A) is β-formula and all occurrences of A in β1 and in β2 are positive

5 Φ(A) is γ-formula with quantified variable x and all occurrences of A
in γ(x) are positive

6 Φ(A) is δ-formula with quantified variable x and all occurrences of A
in δ(x) are positive

Example

R(x , y) occurs positively in (∀x)[P(x , y) ⊃ ¬(∃y)¬R(x , y)]

:

R(x , y) occurs positively in R(x , y)
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Replacement Theorem

Theorem (Implicational Replacement Theorem)

given first-order formulas Φ(A), X , Y of language L and model M = 〈D, I〉 for L

if all occurrences of A in Φ(A) are positive and X ⊃ Y is true in M then
Φ(X ) ⊃ Φ(Y ) is true in M

Definition

A has only negative occurrences in Φ(A) provided A has only positive occurrences
in ¬Φ(A)

Corollary

if all occurrences of A in Φ(A) are negative and Y ⊃ X is true in M then
Φ(X ) ⊃ Φ(Y ) is true in M
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Replacement Theorem

Definition

• quantified subformula of formula Φ is essentially universal if it is positive
subformula (∀x)ϕ or negative subformula (∃x)ϕ

• quantified subformula of formula Φ is essentially existential if it is positive
subformula (∃x)ϕ or negative subformula (∀x)ϕ
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Skolemization
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Skolemization

Lemma

given formula Ψ with free variables among x , y1, . . . , yn and n-place function
symbol f that does not occur in Ψ

, for any model M = 〈D, I〉 there exist models
N1 = 〈D, J1〉 and N2 = 〈D, J2〉 such that I, J1, J2 differ only on interpretation of f

• (∃x)Ψ ⊃ Ψ{x/f (y1, . . . , yn)} is true in N1

• Ψ{x/f (y1, . . . , yn)} ⊃ (∀x)Ψ is true in N2

Proof

given d1, . . . , dn ∈ D, we define f J1(d1, . . . , dn) as follows:

• let A be assignment such that yA
1 = d1, . . . , yA

n = dn

• if (∃x)ΨI,A = f then

f J1(d1, . . . , dn) = d with d arbitrary member of D

• if (∃x)ΨI,A = t then ΨI,B = t for some x-variant B of A and
f J1(d1, . . . , dn) = xB for one such B

(∃x)Ψ ⊃ Ψ{x/f (y1, . . . , yn)} is true in N1 = 〈D, J1〉 by construction
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• (∃x)Ψ ⊃ Ψ{x/f (y1, . . . , yn)} is true in N1

• Ψ{x/f (y1, . . . , yn)} ⊃ (∀x)Ψ is true in N2

Proof

given d1, . . . , dn ∈ D, we define f J1(d1, . . . , dn) as follows:

• let A be assignment such that yA
1 = d1, . . . , yA

n = dn

• if (∃x)ΨI,A = f then

f J1(d1, . . . , dn) = d with d arbitrary member of D

• if (∃x)ΨI,A = t then

ΨI,B = t for some x-variant B of A and
f J1(d1, . . . , dn) = xB for one such B

(∃x)Ψ ⊃ Ψ{x/f (y1, . . . , yn)} is true in N1 = 〈D, J1〉 by construction
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Skolemization

Notation

Ψ(x) for Ψ and Ψ(f (y1, . . . , yn)) for Ψ{x/f (y1, . . . , yn)}

Theorem (Skolemization)

given

• formula Ψ(x) with free variables x , y1, . . . , yn

• formula Φ(A) such that Φ((∃x)Ψ(x)) is sentence

• n-place function symbol f that does not occur in Φ((∃x)Ψ(x))

if all occurrences of A in Φ(A) are

1 positive then {Φ((∃x)Ψ(x))} is satisfiable

if and only if {Φ(Ψ(f (y1, . . . , yn)))} is satisfiable

2 negative then {Φ((∀x)Ψ(x))} is satisfiable

if and only if {Φ(Ψ(f (y1, . . . , yn)))} is satisfiable
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Skolemization

Proof

⇐ suppose {Φ(Ψ(f (y1, . . . , yn)))} is satisfiable

Ψ(f (y1, . . . , yn)) ⊃ (∃x)Ψ(x) is valid

Φ(Ψ(f (y1, . . . , yn))) ⊃ Φ((∃x)Ψ(x)) is true in every model
by Implicational Replacement Theorem

{Φ((∃x)Ψ(x))} is satisfiable

⇒ suppose Φ((∃x)Ψ(x)) is true in model M = 〈D, I〉

there exists model N = 〈D, J〉 in which (∃x)Ψ(x) ⊃ Ψ(f (y1, . . . , yn)) is true

Φ((∃x)Ψ(x)) ⊃ Φ(Ψ(f (y1, . . . , yn))) is true in N
by Implicational Replacement Theorem

Φ((∃x)Ψ(x)) is true in N (since it is true in M and M and N differ only on f )

Φ(Ψ(f (y1, . . . , yn))) is true in N
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{Φ((∃x)Ψ(x))} is satisfiable

⇒ suppose Φ((∃x)Ψ(x)) is true in model M = 〈D, I〉

there exists model N = 〈D, J〉 in which (∃x)Ψ(x) ⊃ Ψ(f (y1, . . . , yn)) is true

Φ((∃x)Ψ(x)) ⊃ Φ(Ψ(f (y1, . . . , yn))) is true in N
by Implicational Replacement Theorem

Φ((∃x)Ψ(x)) is true in N (since it is true in M and M and N differ only on f )

Φ(Ψ(f (y1, . . . , yn))) is true in N
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Skolemization

Skolemization

repeatedly replace

• positively occurring existentially quantified subformulas

• negatively occurring universally quantified subformulas

Example

• X1 = (∀x)(∃y)[(∃z)(∀w)R(x , y , z ,w) ⊃ (∃w)P(w)]

occurs positively

• X2 = (∀x)[(∃z)(∀w)R(x , f (x), z ,w) ⊃ (∃w)P(w)]

occurs negatively

• X3 = (∀x)[(∃z)R(x , f (x), z , g(x , z)) ⊃ (∃w)P(w)]

occurs positively

• X4 = (∀x)[(∃z)R(x , f (x), z , g(x , z)) ⊃ P(h(x))]

• X1 is satisfiable if and only if X4 is satisfiable
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Skolemization

Skolemization

repeatedly replace

• positively occurring existentially quantified subformulas

• negatively occurring universally quantified subformulas

Lemma

if ¬X ′ is Skolemized version of sentence ¬X then
X is valid if and only if X ′ is valid

Proof

X is valid ⇐⇒ {¬X} is not satisfiable

⇐⇒ {¬X ′} is not satisfiable

⇐⇒ X ′ is valid
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Herbrand’s Theorem

Outline

Overview of this Lecture

First-Order Semantic Tableaux

First-Order Hilbert Systems

Replacement Theorem

Skolemization

Herbrand’s Theorem

Exercises

Further Reading
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Herbrand’s Theorem

Definition

sentence X ′ is validity functional form of X if ¬X ′ is Skolemized version of ¬X

Lemma

validity functional form of sentence contains only essentially existential quantifiers

Definition

Herbrand universe of sentence X is set of all closed terms constructed from
constant and function symbols of X

Example

• Herbrand universe of (∀x)[(∃y)R(x , y) ⊃ R(b, f (x))] is set
{b, f (b), f (f (b)), . . . }

• Herbrand universe of (∀x)(∃y)R(x , y) is set {c0} (where c0 is arbitrary new
constant symbol)
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Herbrand’s Theorem

Definitions

• Herbrand domain for sentence X is any finite non-empty subset of Herbrand
universe of X

• given non-empty set D = {t1, . . . , tn} of closed terms and sentence X
Herbrand expansion E(X ,D) of X over D is defined recursively

:

1 if L is literal then E(L,D) = L

2 E(¬¬Z ,D) = E(Z ,D)

3 E(α,D) = E(α1,D) ∧ E(α2,D)

4 E(β,D) = E(β1,D) ∨ E(β2,D)

5 E(γ,D) = E(γ(t1),D) ∧ · · · ∧ E(γ(tn),D)

6 E(δ,D) = E(δ(t1),D) ∨ · · · ∨ E(δ(tn),D)

• Herbrand expansion of X is Herbrand expansion of Y over D, where Y is
validity functional form of X and D is any Herbrand domain for Y

AM/VvO (CS @ UIBK) lecture 5 37/55

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Herbrand’s Theorem

Definitions

• Herbrand domain for sentence X is any finite non-empty subset of Herbrand
universe of X

• given non-empty set D = {t1, . . . , tn} of closed terms and sentence X
Herbrand expansion E(X ,D) of X over D is defined recursively

:

1 if L is literal then E(L,D) = L

2 E(¬¬Z ,D) = E(Z ,D)

3 E(α,D) = E(α1,D) ∧ E(α2,D)

4 E(β,D) = E(β1,D) ∨ E(β2,D)

5 E(γ,D) = E(γ(t1),D) ∧ · · · ∧ E(γ(tn),D)

6 E(δ,D) = E(δ(t1),D) ∨ · · · ∨ E(δ(tn),D)

• Herbrand expansion of X is Herbrand expansion of Y over D, where Y is
validity functional form of X and D is any Herbrand domain for Y

AM/VvO (CS @ UIBK) lecture 5 37/55

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Herbrand’s Theorem

Definitions

• Herbrand domain for sentence X is any finite non-empty subset of Herbrand
universe of X

• given non-empty set D = {t1, . . . , tn} of closed terms and sentence X
Herbrand expansion E(X ,D) of X over D is defined recursively:

1 if L is literal then E(L,D) = L

2 E(¬¬Z ,D) = E(Z ,D)

3 E(α,D) = E(α1,D) ∧ E(α2,D)

4 E(β,D) = E(β1,D) ∨ E(β2,D)

5 E(γ,D) = E(γ(t1),D) ∧ · · · ∧ E(γ(tn),D)

6 E(δ,D) = E(δ(t1),D) ∨ · · · ∨ E(δ(tn),D)

• Herbrand expansion of X is Herbrand expansion of Y over D, where Y is
validity functional form of X and D is any Herbrand domain for Y

AM/VvO (CS @ UIBK) lecture 5 37/55

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Herbrand’s Theorem

Definitions

• Herbrand domain for sentence X is any finite non-empty subset of Herbrand
universe of X

• given non-empty set D = {t1, . . . , tn} of closed terms and sentence X
Herbrand expansion E(X ,D) of X over D is defined recursively:

1 if L is literal then E(L,D) = L

2 E(¬¬Z ,D) = E(Z ,D)

3 E(α,D) = E(α1,D) ∧ E(α2,D)

4 E(β,D) = E(β1,D) ∨ E(β2,D)

5 E(γ,D) = E(γ(t1),D) ∧ · · · ∧ E(γ(tn),D)

6 E(δ,D) = E(δ(t1),D) ∨ · · · ∨ E(δ(tn),D)

• Herbrand expansion of X is Herbrand expansion of Y over D, where Y is
validity functional form of X and D is any Herbrand domain for Y

AM/VvO (CS @ UIBK) lecture 5 37/55

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Herbrand’s Theorem

Definitions

• Herbrand domain for sentence X is any finite non-empty subset of Herbrand
universe of X

• given non-empty set D = {t1, . . . , tn} of closed terms and sentence X
Herbrand expansion E(X ,D) of X over D is defined recursively:

1 if L is literal then E(L,D) = L

2 E(¬¬Z ,D) = E(Z ,D)

3 E(α,D) = E(α1,D) ∧ E(α2,D)

4 E(β,D) = E(β1,D) ∨ E(β2,D)

5 E(γ,D) = E(γ(t1),D) ∧ · · · ∧ E(γ(tn),D)

6 E(δ,D) = E(δ(t1),D) ∨ · · · ∨ E(δ(tn),D)

• Herbrand expansion of X is Herbrand expansion of Y over D, where Y is
validity functional form of X and D is any Herbrand domain for Y

AM/VvO (CS @ UIBK) lecture 5 37/55

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Herbrand’s Theorem

Definitions

• Herbrand domain for sentence X is any finite non-empty subset of Herbrand
universe of X

• given non-empty set D = {t1, . . . , tn} of closed terms and sentence X
Herbrand expansion E(X ,D) of X over D is defined recursively:

1 if L is literal then E(L,D) = L

2 E(¬¬Z ,D) = E(Z ,D)

3 E(α,D) = E(α1,D) ∧ E(α2,D)

4 E(β,D) = E(β1,D) ∨ E(β2,D)

5 E(γ,D) = E(γ(t1),D) ∧ · · · ∧ E(γ(tn),D)

6 E(δ,D) = E(δ(t1),D) ∨ · · · ∨ E(δ(tn),D)

• Herbrand expansion of X is Herbrand expansion of Y over D, where Y is
validity functional form of X and D is any Herbrand domain for Y

AM/VvO (CS @ UIBK) lecture 5 37/55

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Herbrand’s Theorem

Definitions

• Herbrand domain for sentence X is any finite non-empty subset of Herbrand
universe of X

• given non-empty set D = {t1, . . . , tn} of closed terms and sentence X
Herbrand expansion E(X ,D) of X over D is defined recursively:

1 if L is literal then E(L,D) = L

2 E(¬¬Z ,D) = E(Z ,D)

3 E(α,D) = E(α1,D) ∧ E(α2,D)

4 E(β,D) = E(β1,D) ∨ E(β2,D)

5 E(γ,D) = E(γ(t1),D) ∧ · · · ∧ E(γ(tn),D)

6 E(δ,D) = E(δ(t1),D) ∨ · · · ∨ E(δ(tn),D)

• Herbrand expansion of X is Herbrand expansion of Y over D, where Y is
validity functional form of X and D is any Herbrand domain for Y

AM/VvO (CS @ UIBK) lecture 5 37/55

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Herbrand’s Theorem

Definitions

• Herbrand domain for sentence X is any finite non-empty subset of Herbrand
universe of X

• given non-empty set D = {t1, . . . , tn} of closed terms and sentence X
Herbrand expansion E(X ,D) of X over D is defined recursively:

1 if L is literal then E(L,D) = L

2 E(¬¬Z ,D) = E(Z ,D)

3 E(α,D) = E(α1,D) ∧ E(α2,D)

4 E(β,D) = E(β1,D) ∨ E(β2,D)

5 E(γ,D) = E(γ(t1),D) ∧ · · · ∧ E(γ(tn),D)

6 E(δ,D) = E(δ(t1),D) ∨ · · · ∨ E(δ(tn),D)

• Herbrand expansion of X is Herbrand expansion of Y over D, where Y is
validity functional form of X and D is any Herbrand domain for Y

AM/VvO (CS @ UIBK) lecture 5 37/55

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Herbrand’s Theorem

Definitions

• Herbrand domain for sentence X is any finite non-empty subset of Herbrand
universe of X

• given non-empty set D = {t1, . . . , tn} of closed terms and sentence X
Herbrand expansion E(X ,D) of X over D is defined recursively:

1 if L is literal then E(L,D) = L

2 E(¬¬Z ,D) = E(Z ,D)

3 E(α,D) = E(α1,D) ∧ E(α2,D)

4 E(β,D) = E(β1,D) ∨ E(β2,D)

5 E(γ,D) = E(γ(t1),D) ∧ · · · ∧ E(γ(tn),D)

6 E(δ,D) = E(δ(t1),D) ∨ · · · ∨ E(δ(tn),D)

• Herbrand expansion of X is Herbrand expansion of Y over D, where Y is
validity functional form of X and D is any Herbrand domain for Y

AM/VvO (CS @ UIBK) lecture 5 37/55

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Herbrand’s Theorem

Theorem (Herbrand’s Theorem)

sentence X is valid if and only if some Herbrand expansion of X is tautology

Example

• sentence (∀z)(∃w)(∀x)[(∀y)R(x , y) ⊃ R(w , z)] is valid

• validity functional form (∃w)[(∀y)R(f (w), y) ⊃ R(w , c)]

with Herbrand domain D = {c , f (c)}

• Herbrand expansion over D

E((∃w)[(∀y)R(f (w), y) ⊃ R(w , c)],D)

= ¬R(f (c), c) ∨ ¬R(f (c), f (c)) ∨ R(c , c) ∨
¬R(f (f (c)), c) ∨ ¬R(f (f (c)), f (c)) ∨ R(f (c), c)

is tautology
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Herbrand’s Theorem

Lemmata

given non-empty sets D and D ′ of closed terms such that D ⊆ D ′

1 for arbitrary sentence X , ¬E(X ,D) ≡ E(¬X ,D) is tautology

2 if X is sentence all of whose quantifiers are essentially existential then
E(X ,D) ⊃ E(X ,D ′) is tautology

3 if X is sentence all of whose quantifiers are essentially universal then
E(X ,D ′) ⊃ E(X ,D) is tautology
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Herbrand’s Theorem

Lemma

if all quantifiers in sentence X are essentially existential then E(X ,D) ⊃ X is valid
for any finite set D of closed terms

Proof

• suppose D = {t1, . . . , tn}

• induction on X

, interesting case: X is δ-formula

• induction hypothesis: E(δ(ti ),D) ⊃ δ(ti ) is valid for all 1 6 i 6 n

• E(δ,D) = E(δ(t1),D) ∨ · · · ∨ E(δ(tn),D)

• E(δ,D) ⊃ δ(t1) ∨ · · · ∨ δ(tn) is valid

• E(δ,D) ⊃ δ is valid

Herbrand’s Theorem (Soundness)

sentence X is valid if some Herbrand expansion of X is tautology
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Herbrand’s Theorem

Definition

given first-order language L, set S of sentences of Lpar is Herbrand consistent if

1 S is finite

2 all members of S are essentially universal

3 ¬E(
∧

S ,D) is no tautology, for any finite subset D of collection of all
closed terms built from constant and function symbols of Lpar

Lemma

collection of all Herbrand-consistent sets is first-order consistency property

Proof

let H be collection of all closed terms built from constant and function symbols of
Lpar and let C be collection of all Herbrand-consistent sets

5 S ∈ C, β ∈ S

. . .
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Herbrand’s Theorem

Proof (cont’d)

5 S ∈ C, β ∈ S

suppose S ∪ {β1} /∈ C and S ∪ {β2} /∈ C

¬E(
∧
S ∧ β1,D1) is tautology for some finite subset D1 of H

¬E(
∧
S ∧ β2,D2) is tautology for some finite subset D2 of H

¬E(
∧
S ∧ β1,D) and ¬E(

∧
S ∧ β2,D) are tautologies for D = D1 ∪ D2

E(
∧
S ∧ β,D) = E(

∧
S ,D) ∧ E(β,D)

= E(
∧

S ,D) ∧ [E(β1,D) ∨ E(β2,D)]

≡ [E(
∧
S ,D) ∧ E(β1,D)] ∨ [E(

∧
S ,D) ∧ E(β2,D)]

= E(
∧

S ∧ β1,D) ∨ E(
∧
S ∧ β2,D)

¬E(
∧
S ∧ β,D) ≡ ¬E(

∧
S ∧ β1,D) ∧ ¬E(

∧
S ∧ β2,D) is tautology

hence β /∈ S �
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Herbrand’s Theorem

Proof (cont’d)

6 S ∈ C, γ ∈ S

suppose S ∪ {γ(t)} /∈ C for some closed term t

¬E(
∧
S ∧ γ(t),D) is tautology for some finite subset D of H∧

S ∧ γ(t) is essentially universal and D ⊆ D ∪ {t}

¬E(
∧
S ∧ γ(t),D ∪ {t}) is tautology

E(γ,D ∪ {t}) is conjunction with E(γ(t),D ∪ {t}) as one of its conjuncts

E(
∧
S ∧ γ,D ∪ {t}) = E(

∧
S ,D ∪ {t}) ∧ E(γ,D ∪ {t})

⊃ E(
∧
S ,D ∪ {t}) ∧ E(γ(t),D ∪ {t})

= E(
∧
S ∧ γ(t),D ∪ {t})

¬E(
∧
S ∧ γ,D ∪ {t}) is tautology

hence γ /∈ S �
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Herbrand’s Theorem

Herbrand’s Theorem (Completeness)

if sentence X whose quantifiers are all essentially existential is valid then E(X ,D)
is tautology for some Herbrand domain D for X

Proof

• let L be smallest first-order language in which X is sentence

• claim: E(X ,D) is tautology for some finite set D of closed terms of Lpar

let D be arbitrary finite set of closed terms of Lpar

if E(X ,D) is no tautology then {¬X} is Herbrand consistent:

• {¬X} is finite

• all quantifiers in ¬X are essentially universal

• ¬E(¬X ,D) ≡ ¬¬E(X ,D) ≡ E(X ,D) is no tautology

{¬X} is satisfiable in first-order model by Model Existence Theorem

X is not valid �
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Herbrand’s Theorem

Herbrand’s Theorem (Completeness)

if sentence X whose quantifiers are all essentially existential is valid then E(X ,D)
is tautology for some Herbrand domain D for X

Proof (cont’d)

• let L be smallest first-order language in which X is sentence

• E(X ,D) is tautology for some finite set D of closed terms of Lpar

• eliminate parameters from D by mapping each parameter p to some closed
term τ(p) of L

• τ(E(X ,D)) = E(X , τ(D))

≡ E(X ,D)

• E(X , τ(D)) is tautology and τ(D) is Herbrand domain for X
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Herbrand’s Theorem

Theorem (Herbrand’s Theorem, Constructively)

there exists algorithm that extracts from tableau proof of first-order sentence X
Herbrand expansion of X that is tautology

Proof (Herbrand’s Theorem)

• without loss of generality: X is sentence in validity functional form

• let L be smallest language in which X is sentence

• let T be closed tableau for ¬X
• all quantifiers in ¬X are essentially universal

• · · ·

Definition

tableau is parameter-free if it contains no parameter occurrences
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Herbrand’s Theorem

Lemma

if all quantifiers of X are essentially existential then tableau proof of X can be
converted into parameter-free tableau proof

Lemma

given

• finite set S of sentences all of whose quantifiers are essentially universal

• closed parameter-free tableau T for S

if D is set of closed terms that are used in applications of γ-rule in T then

¬E(
∧

S ,D)

is tautology
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Herbrand’s Theorem

Proof

• induction on number B(T ,S) of nodes in T below initial nodes labeled with
formulas in S

• base case: B(T ,S) = 0

S contains contradiction and thus ¬
∧
S is tautology

• induction step: B(T ,S) > 0

case analysis on first rule application in T

¬¬Z
Z

¬⊥
>

¬>
⊥

α

α1

α2

β

β1 | β2
γ

γ(t)

δ

δ(p)

for any closed term t of Lpar and new parameter p
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Herbrand’s Theorem

Proof (cont’d)

• induction step: B(T ,S) > 0

case analysis on first rule application in T : β-rule

Z1
...

β
...

Zk

β2

T2

β1

T1

S = {Z1, . . . , β, . . . ,Zk}

T1 is subtableau consisting of left half of T

T2 is subtableau consisting of right half of T

D1 is set of closed terms introduced by γ-rule in T1

D2 is set of closed terms introduced by γ-rule in T2

B(T ,S) = B(T1,S ∪ {β1}) + B(T1,S ∪ {β1}) + 2

¬E(
∧
S ∧ β1,D1) and ¬E(

∧
S ∧ β2,D2) are tautologies (by IH)

¬E(
∧
S ∧ β1,D) and ¬E(

∧
S ∧ β2,D) are tautologies

¬E(
∧
S ∧ β,D) ≡ ¬E(

∧
S ∧ β1,D) ∧ ¬E(

∧
S ∧ β2,D) is tautology

¬E(
∧
S ,D) is tautology
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Z1
...

β
...

Zk

β2

T2

β1

T1

S = {Z1, . . . , β, . . . ,Zk}

T1 is subtableau consisting of left half of T

T2 is subtableau consisting of right half of T

D1 is set of closed terms introduced by γ-rule in T1

D2 is set of closed terms introduced by γ-rule in T2

B(T ,S) = B(T1,S ∪ {β1}) + B(T1,S ∪ {β1}) + 2

¬E(
∧
S ∧ β1,D1) and ¬E(

∧
S ∧ β2,D2) are tautologies (by IH)

¬E(
∧
S ∧ β1,D) and ¬E(

∧
S ∧ β2,D) are tautologies

¬E(
∧
S ∧ β,D) ≡ ¬E(

∧
S ∧ β1,D) ∧ ¬E(

∧
S ∧ β2,D) is tautology

¬E(
∧
S ,D) is tautology
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Herbrand’s Theorem

Proof (cont’d)

• induction step: B(T ,S) > 0

case analysis on first rule application in T : γ-rule

Z1
...

γ
...

Zk

γ(t)

T

S = {Z1, . . . , γ, . . . ,Zk}

B(T ,S) = B(T ,S ∪ {γ(t)}) + 1

D is set of closed terms introduced by γ-rule in T
considered as tableau for S

D0 is set of closed terms introduced by γ-rule in T
considered as tableau for S ∪ {γ(t)}

D = D0 ∪ {t}

¬E(
∧
S ∧ γ(t),D0) is tautology by induction hypothesis

¬E(
∧
S ∧ γ(t),D) is tautology

¬E(
∧
S ∧ γ,D) ≡ ¬E(

∧
S ,D) is tautology
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Herbrand’s Theorem

Proof (cont’d)
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Herbrand’s Theorem

Proof (Herbrand’s Theorem, cont’d)

• without loss of generality: X is sentence in validity functional form

• let L be smallest language in which X is sentence

• let T be closed tableau for ¬X
• all quantifiers in ¬X are essentially universal

• previous lemma (with S = {¬X}): ¬E(¬X ,D) is tautology for set D of
closed terms that are used in applications of γ-rule in T

• ¬E(¬X ,D) ≡ E(X ,D)
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Exercises

Outline

Overview of this Lecture

First-Order Semantic Tableaux

First-Order Hilbert Systems

Replacement Theorem

Skolemization

Herbrand’s Theorem

Exercises

Further Reading
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Exercises

Fitting

• Exercise 6.1.1 (you need to do half (5) of them; your choice) !

• Exercise 6.1.2

• Bonus Exercise 6.1.3

• Exercise 6.3.2

• Bonus Exercise 6.4.2

• Exercise 6.5.1 (for the same choice as in 6.1.1)

• Exercise 6.5.2

• Bonus Exercise 6.5.4 or Exercise 6.5.5

• Exercise 8.3.1

• Exercise 8.6.2 !

• Bonus Exercise 8.6.4

• Exercise 8.7.1 !
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Further Reading

Outline

Overview of this Lecture

First-Order Semantic Tableaux

First-Order Hilbert Systems

Replacement Theorem

Skolemization

Herbrand’s Theorem

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 5 54/55

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Further Reading

Fitting

• Section 6.1 !

• Section 6.3 !

• Section 6.4 !

• Section 6.5 !

• Section 8.2

• Section 8.3 !

• Section 8.6 !

• Section 8.7 !
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