
Computational Logic

Vincent van Oostrom
Course/slides by Aart Middeldorp

Department of Computer Science
University of Innsbruck

SS 2020

Outline

Overview of this lecture

Transforming Hilbert Style proof into tableau proof with cut

Gentzen’s Hauptsatz: Cut Elimination

Craig’s Interpolation Theorem

Prenex Form

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 6 2/49

Overview of this lecture

Last week we have seen Herbrand’s theorem connects semantics to syntax by
relating validity (being true in all models) of a first-order sentence X to an
Herbrand expansion of X (a syntactic expansion yielding a sentence that is
essentially propositional, obtained by instantiating quantified variables by closed
terms from a finite Herbrand domain D) being a tautology. We gave two proofs,
the first one based on Model Existence merely showing the existence of D, and the
second one showing how to construct a suitable D (from certain closed terms
appearing in a parameter-free tableau proof of X) and suitable Herbrand expansion.
Herbrand’s theorem allows to split proof search into two parts: searching for a
suitable expansion and proving that indeed that is suitable, a tautology. In that
way, Herbrand’s theorem gives a handle on automated theorem proving. Such
aspects are left to the follow-up course.

• Using the above we show a suitable Herbrand expansion can be constructed
from Hilbert System proofs as well, in two steps:

1 Hilbert System proofs can easily be transformed into tableau proofs,
when extended with a new tableau expansion rule called cut.

2 The cut expansion rule can be eliminated from tableau proofs
(Gentzen’s Hauptsatz), yielding a cut-free, i.e. ordinary, tableau proof.

AM/VvO (CS @ UIBK) lecture 6 3/49

Overview of this lecture

• A cut can be thought of as using a lemma in a proof, so cut-elimination
expresses that using lemmas can be avoided in principle. Its proof is based on
the idea that each time a lemma is used it could be replaced by (an instance
of) its proof. (The cut-elimination procedure will be inside–out, from the
leaves toward the root.) However, this will be infeasible in practice, since
copy-pasting of proofs will immediately lead to an exponential blow up of
proof sizes when lemmas depend on other lemmas which depend on further
lemmas etc.. . . .

• Craig’s interpolation theorem is shown to hold for 1st order logic. Like for
Herbrand’s theorem we give both a non-constructive proof, based on Model
Existence as in the propositional case, and a construction of an interpolant Z
of X ⊃ Y from a tableau proof of X ⊃ Y by means of an inference system.
The idea is to first construct interpolants for each of the branches, and then
work our way upward from the leaves toward the root of the tableau, guided
by the applied tableau expansion rules. To enable construction of interpolants,
formulas inferred from X and Y in the tableau are labelled with L and R
respectively (e.g. closing using formulas both inferred from X should yield a
different interpolant, than when one was inferred from, say, X and the other
from Y). The construction allows for a refinement due to Lyndon, stating
that positive/negative predicates in Z occur positive/negatively in X ,Y .

AM/VvO (CS @ UIBK) lecture 6 4/49

http://cl-informatik.uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss20/cl/
http://cl-informatik.uibk.ac.at/
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Overview of this lecture

• We conclude with two transformations of 1st-order formulas, first into prenex
form (a list of quantifiers followed by quantifier-free formula, its matrix)
preserving equivalence, and next, by Skolemisation, into prenex form having
only universal quantifiers preserving satisfiability.

Just like in propositional logic one often preprocesses formulas (say into
conjunctive or disjunctive or negation normal form) before applying a proof
procedure (e.g. SAT solvers working on CNFs), in 1st order logic proof
procedures may be (e.g. resolution) based on one or both of these
transformations into (universal) prenex form. E.g. Skolemisation is often (but
not here) presented for prenex forms only.

Even if prenex forms simplify (the presentation of) such proof procedures, as
it naturally brings about a decomposition into a propositional part (its
matrix) and a 1st order part (its quantifiers), such transformations into some
kind of normal form may, as in the propositional case, incur additional costs
in actually proving. Such aspects are left to the follow-up course.

AM/VvO (CS @ UIBK) lecture 6 5/49

Contents

Part I: Propositional Logic

compactness, completeness, Hilbert systems, Hintikka’s lemma, interpolation,
logical consequence, model existence theorem, propositional semantic tableaux,
soundness

Part II: First-Order Logic

compactness, completeness, Craig’s interpolation theorem, cut elimination,
first-order semantic tableaux, Herbrand models, Herbrand’s theorem, Hilbert
systems, Hintikka’s lemma, Löwenheim–Skolem, logical consequence, model
existence theorem, prenex form, skolemization, soundness

Part III: Limitations and Extensions of First-Order Logic

Curry-Howard isomorphism, intuitionistic logic, Kripke models, second-order logic,
simply-typed λ-calculus, (simply-typed) combinatory logic

AM/VvO (CS @ UIBK) lecture 6 6/49

Transforming Hilbert Style proof into tableau proof with cut

Outline

Overview of this lecture

Transforming Hilbert Style proof into tableau proof with cut

Gentzen’s Hauptsatz: Cut Elimination

Craig’s Interpolation Theorem

Prenex Form

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 6 7/49

Transforming Hilbert Style proof into tableau proof with cut

Question

How to obtain tautologous Herbrand expansion from proof in Hilbert system?

Answer

transform Hilbert system proof into tableau proof with cut, and then use earlier
result for tableau

Proof (cont’d)

• Hilbert system axioms are easy

• Universal Generalization Rule

Φ ⊃ γ(p)

Φ ⊃ γ

where p is parameter that does not occur in sentence Φ ⊃ γ

assume γ = (∀x)ϕ(x) and consider tableau proof of Φ ⊃ γ(p):

¬(Φ ⊃ (∀x)ϕ(x))

¬(Φ ⊃ γ(p)) Φ

Φ ¬(∀x)ϕ(x)

¬γ(p) ¬γ(p)

T T

we may assume that formula ¬(Φ ⊃ γ(p)) on first line is not used again

tableau proof of Φ ⊃ γ

AM/VvO (CS @ UIBK) lecture 6 8/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Transforming Hilbert Style proof into tableau proof with cut

Proof (cont’d)

• Modus Ponens
X X ⊃ Y

Y

complicated; introduce Tableau Cut Rule

X | ¬X

assume T1 is tableau proof of X and T2 is tableau proof of X ⊃ Y

tableau proof of Y :

¬Y

¬(X ⊃ Y)

T2

X ⊃ Y

Y¬X

T1

AM/VvO (CS @ UIBK) lecture 6 9/49

Gentzen’s Hauptsatz: Cut Elimination

Outline

Overview of this lecture

Transforming Hilbert Style proof into tableau proof with cut

Gentzen’s Hauptsatz: Cut Elimination

Craig’s Interpolation Theorem

Prenex Form

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 6 10/49

Gentzen’s Hauptsatz: Cut Elimination

Theorem (Cut Elimination)

any closed tableau with applications of Cut Rule can be converted into closed
tableau without

Fact 1

if X = (A ◦ B) with primary connective ◦ then

• {X ,¬X} consists of α-formula and β-formula

• one of α1 and β1 is negation of other

• one of α2 and β2 is negation of other

Fact 2

if X = (Qx)ϕ(x) with Q ∈ {∀,∃} then

• {X ,¬X} consists of γ-formula and δ-formula

• one of γ(t) and δ(t) is negation of other

AM/VvO (CS @ UIBK) lecture 6 11/49

Gentzen’s Hauptsatz: Cut Elimination

Definitions

given cut to sentences X and ¬X in tableau T

• cut is at branch end if there are no sentences below X or no below ¬X
• rank of cut is rank of X

• weight of cut is number of sentences below X and ¬X
• cut is minimal if there are no cuts below it in T

Lemma

closed tableau T with cut at branch end can be transformed into closed tableau in
which cut is eliminated

AM/VvO (CS @ UIBK) lecture 6 12/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Gentzen’s Hauptsatz: Cut Elimination

Proof

consider cut at branch end

...

...

¬X

T

X

Θ =⇒

...

...

T

Θ

two cases

1 X plays no role in closure of left branch then Θ must be closed

2 X plays role in closure of left branch

• if X = ⊥ then ¬X = ¬⊥ plays no role in closure of right branch

• if X = (A ◦ B) or X = (∀x)ϕ or X = (∃x)ϕ or X is atomic
then ¬X occurs in Θ

• X = ¬Y for some sentence Y

AM/VvO (CS @ UIBK) lecture 6 13/49

Gentzen’s Hauptsatz: Cut Elimination

Proof (cont’d)

consider cut at branch end

...

...

¬X = ¬¬Y

T

X

Θ =⇒

...

...

T

Θ

two cases

2 X = ¬Y plays role in closure of left branch

Y or ¬¬Y occurs in Θ

¬¬Y is used in right fork (for otherwise cut can be eliminated)

• applications of double negation rule applied to ¬¬Y can be dropped

• if ¬¬Y is directly involved in closure of branch in right fork
then ¬Y or ¬¬¬Y must occur in that branch (. . .)

AM/VvO (CS @ UIBK) lecture 6 14/49

Gentzen’s Hauptsatz: Cut Elimination

Example

propositional tableau

(minimal) cut

rank 1

weight 9

¬((P ⊃ ¬¬Q) ∨ (Q ⊃ R))

¬(P ⊃ ¬¬Q)

¬(Q ⊃ R)

¬(P ⊃ Q)

Q

¬R

P

¬Q

P ⊃ Q

P

¬¬¬Q

¬Q

Q¬P

Lemma (Key Lemma)

closed tableau T with minimal cut not at branch end of rank n and weight k can
be transformed into closed tableau in which cut is replaced by cuts of lower rank or
same rank but lower weight

AM/VvO (CS @ UIBK) lecture 6 15/49

Gentzen’s Hauptsatz: Cut Elimination

Fact 3

if T is closed tableau for finite set S of sentences and S ⊆ S ′ then there exists
closed tableau for S ′ with same number of steps as T

Fact 4

if T is closed tableau for finite set S ∪ {δ(c)} of sentences with parameter c that
does not occur in S or δ then there exists closed tableau for S ∪ {δ(t)} with same
number of steps as T , for every closed term t

Proof of Key Lemma

consider minimal cut in tableau T ...
...

¬X

T2

X

T1

Θ

AM/VvO (CS @ UIBK) lecture 6 16/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Gentzen’s Hauptsatz: Cut Elimination

Proof of Key Lemma

consider minimal cut in tableau T

...

...

¬X

T2

X

T1

Θ

...

β
...

¬X

T2

X

β2

TR
1

β1

T L
1

two cases

1 uppermost sentence in T1 or T2 was obtained by applying tableau rule
to sentence from Θ

β-case

weight of cut is |T L
1 |+ |TR

1 |+ |T2|+ 2

AM/VvO (CS @ UIBK) lecture 6 17/49

Gentzen’s Hauptsatz: Cut Elimination

Proof of Key Lemma (cont’d)

modify T as follows:

...

β
...

¬X

T2

X

β2

TR
1

β1

T L
1

=⇒

...

β
...

β2

¬X

T ′′2

(fact 3)

X

TR
1

β1

¬X

T ′2

(fact 3)

X

T L
1

new cuts have weights

|T L
1 |+ |T ′2| = |T L

1 |+ |T2| < |T L
1 |+ |TR

1 |+ |T2|+ 2

|TR
1 |+ |T ′′2 | = |TR

1 |+ |T2| < |T L
1 |+ |TR

1 |+ |T2|+ 2

AM/VvO (CS @ UIBK) lecture 6 18/49

Gentzen’s Hauptsatz: Cut Elimination

Proof of Key Lemma (cont’d)

consider minimal cut in tableau T

...

δ
...

¬X

T2

X

δ(c)

T1

=⇒

...

δ
...

δ(c)

¬X

T ′2

(fact 3)

X

T1

two cases

1 uppermost sentence in T1 or T2 was obtained by applying tableau rule
to sentence from Θ

δ-case

weight of cut is |T1|+ |T2|+ 1

weight of new cut is |T1|+ |T ′2| = |T1|+ |T2| < |T1|+ |T2|+ 1

AM/VvO (CS @ UIBK) lecture 6 19/49

Gentzen’s Hauptsatz: Cut Elimination

Proof of Key Lemma (cont’d)

consider minimal cut in tableau T

...

...

¬X

T2

X

T1

Θ

...

...

¬X = β

β2

T3

β1

T2

X = α

α1

α2

T1

two cases

2 uppermost sentences in T1 and T2 were obtained by applying tableau rules
to X and ¬X

primary connective case: X = A ◦ B

suppose X is α-formula so ¬X is β-formula (fact 1)

one of {α2, β2} is negation of other (fact 1)

AM/VvO (CS @ UIBK) lecture 6 20/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Gentzen’s Hauptsatz: Cut Elimination

Proof of Key Lemma (cont’d)

consider minimal cut in tableau T

...

...

¬X = β

β2

T3

β1

T2

X = α

α1

α2

T1

...

...

β1

¬X

T2

X

α1

α2

α1

β2

¬X

T ′3

(fact 3)

X

α1

α2

α2

¬X

β2β1

X

T1

primary connective case: X = α and ¬X = β

weight of cut is |T1|+ |T2|+ |T3|+ 4

rank of cuts {α1, β1} and {α2, β2} is smaller than rank of original cut {X ,¬X}

weight of new cuts {X ,¬X} is smaller than |T1|+ |T2|+ |T3|+ 4

AM/VvO (CS @ UIBK) lecture 6 21/49

Gentzen’s Hauptsatz: Cut Elimination

Proof of Key Lemma (cont’d)

consider minimal cut in tableau T
...
...

¬X

T2

X

T1

Θ

...

...

¬X = δ

δ(c)

T2

X = γ

γ(t)

T1two cases

2 uppermost sentences in T1 and T2 were obtained by applying tableau rules
to X and ¬X

quantifier case

suppose X is γ-formula so ¬X is δ-formula (fact 2)

one of {γ(t), δ(t)} is negation of other (fact 2)

rank of cut is |T1|+ |T2|+ 2

AM/VvO (CS @ UIBK) lecture 6 22/49

Gentzen’s Hauptsatz: Cut Elimination

Proof of Key Lemma (cont’d)

consider minimal cut in tableau T

...

...

¬X = δ

δ(c)

T2

X = γ

γ(t)

T1

...

...

δ(t)

¬X

T ′′2

(fact 4)

X

γ(t)

γ(t)

¬X

δ(c)

T ′2

(fact 3)

X

T1

quantifier case: X = γ and ¬X = δ

weight of cut is |T1|+ |T2|+ 2

rank of cut {γ(t), δ(t)} is smaller than rank of original cut {X ,¬X}

weight of new cuts {X ,¬X} is |T1|+ |T2|+ 1 < |T1|+ |T2|+ 2

AM/VvO (CS @ UIBK) lecture 6 23/49

Craig’s Interpolation Theorem

Outline

Overview of this lecture

Transforming Hilbert Style proof into tableau proof with cut

Gentzen’s Hauptsatz: Cut Elimination

Craig’s Interpolation Theorem

Prenex Form

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 6 24/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Craig’s Interpolation Theorem

Definition

sentence Z is interpolant for pair (S1,S2) of sets of sentences if all constant,
function and relation symbols of Z occur in formulas of both S1 and S2,
and neither S1 ∪ {Z} nor S2 ∪ {¬Z} is satisfiable

Definition

finite set S of sentences is Craig consistent if there exists partition (S1,S2) of S
that lacks interpolant

Lemma

collection of all Craig consistent sets is first-order consistency property

Proof (two cases)

γ-case and δ-case (. . .)

AM/VvO (CS @ UIBK) lecture 6 25/49

Craig’s Interpolation Theorem

Proof (γ-case)

• suppose γ ∈ S but S ∪ {γ(t)} is not Craig consistent for some closed term t

• let (S1,S2) be partition of S and assume γ ∈ S1 (case γ ∈ S2 is similar)

• (S1 ∪ {γ(t)},S2) is partition of S ∪ {γ(t)} and hence it has interpolant Z

• S2 ∪ {¬Z} and S1 ∪ {γ(t),Z} are not satisfiable

• all constant, function and relation symbols of Z occur in S1 ∪ {γ(t)} and S2
and if they all occur in S1 then Z is interpolant for (S1,S2) and thus S is not
Craig consistent

• suppose Z contains symbol not occurring in S1

• any such symbol must be constant or function symbol in t

• for simplicity suppose Z just contains one subterm f (u1, . . . , un) with f
occurring in t but not in S1

• let Z∗ be obtained from Z by replacing f (u1, . . . , un) with new free variable x

AM/VvO (CS @ UIBK) lecture 6 26/49

Craig’s Interpolation Theorem

Proof (γ-case, cont’d)

(∃x)Z∗ is interpolant for (S1,S2):

• all constant, function and relation symbols of (∃x)Z∗ occur in S1 and in S2

• S2 ∪ {¬(∃x)Z∗} is unsatisfiable because S2 ∪ {¬Z} is unsatisfiable and
Z = Z∗{x/f (u1, . . . , un)} ⊃ (∃x)Z∗ is valid

• suppose S1 ∪ {(∃x)Z∗} is satisfiable in model 〈D, I〉

(Z∗)I,A is true for some assignment A

modify interpretation I to J by changing f I to f J such that

f J(d1, . . . , dn) =

{
xA if di = uI,Ai for 1 6 i 6 n

f I(d1, . . . , dn) otherwise

all sentences in S1 are true in 〈D, J〉 because f does not occur in S1

Z J,A = [Z∗{x/f (u1, . . . , un)}]J,A = (Z∗)J,A = (Z∗)I,A = t

S1 ∪ {Z} is satisfiable �

AM/VvO (CS @ UIBK) lecture 6 27/49

Craig’s Interpolation Theorem

Proof (δ-case)

• suppose δ ∈ S but, for each parameter p, S ∪ {δ(p)} is not Craig consistent

• let (S1,S2) be partition of S and assume δ ∈ S1

• let p be parameter that does not occur in S

• (S1 ∪ {δ(p)},S2) is partition of S ∪ {δ(p)} and hence it has interpolant Z

• Z is interpolant for (S1,S2):

• all constant, function and relation symbols of Z occur in S1 and in S2

• S2 ∪ {¬Z} is unsatisfiable

• S1 ∪ {δ(p),Z} is unsatisfiable and hence S1 ∪ {Z} is unsatisfiable by
reasoning like in γ-case

AM/VvO (CS @ UIBK) lecture 6 28/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Craig’s Interpolation Theorem

Definition

sentence Z is interpolant for sentence X ⊃ Y if all constant, function and relation
symbols of Z are common to X and Y , and both X ⊃ Z and Z ⊃ Y are valid

Theorem (First-Order Craig Interpolation)

every valid sentence X ⊃ Y has interpolant

Proof

• suppose X ⊃ Y lacks interpolant

• S = {X ,¬Y } with partition S1 = {¬Y } and S2 = {X}
• if (S1,S2) has interpolant Z then Z is interpolant for X ⊃ Y

• S is Craig consistent and hence S is satisfiable by Model Existence Theorem

• X ⊃ Y is not valid

AM/VvO (CS @ UIBK) lecture 6 29/49

Craig’s Interpolation Theorem

Definition

biased sentence is expression L(Z) or R(Z) where Z is sentence

tableau proof of X ⊃ Y

¬(X ⊃ Y)

L(X)

R(¬Y)

T ′

L(α)

L(α1)

L(α2)

R(α)

R(α1)

R(α2)

L(β)

L(β1) | L(β2)

R(β)

R(β1) | R(β2)
. . .

can be transformed into closed biased tableau for {L(X),R(¬Y)}

AM/VvO (CS @ UIBK) lecture 6 30/49

Craig’s Interpolation Theorem

Definition

sentence Z is interpolant for finite set {L(A1), . . . , L(An),R(B1), . . . ,R(Bk)}
provided Z is interpolant for sentence (A1 ∧ · · · ∧ An) ⊃ (¬B1 ∨ · · · ∨ ¬Bk)

Notation

S
int−→ Z denotes that Z is interpolant for finite set S of biased sentences

Calculation Rules for Interpolants

S ∪ {L(⊥)} int−→ ⊥

S ∪ {R(⊥)} int−→ >

S ∪ {L(A), L(¬A)} int−→ ⊥ S ∪ {R(A),R(¬A)} int−→ >

S ∪ {L(A),R(¬A)} int−→ A S ∪ {R(A), L(¬A)} int−→ ¬A

AM/VvO (CS @ UIBK) lecture 6 31/49

Craig’s Interpolation Theorem

Calculation Rules for Interpolants (cont’d)

S ∪ {L(>)} int−→ A

S ∪ {L(¬⊥)} int−→ A

S ∪ {L(⊥)} int−→ A

S ∪ {L(¬>)} int−→ A

S ∪ {R(>)} int−→ A

S ∪ {R(¬⊥)} int−→ A

S ∪ {R(⊥)} int−→ A

S ∪ {R(¬>)} int−→ A

S ∪ {L(Z)} int−→ A

S ∪ {L(¬¬Z)} int−→ A

S ∪ {R(Z)} int−→ A

S ∪ {R(¬¬Z)} int−→ A

S ∪ {L(α1), L(α2)} int−→ A

S ∪ {L(α)} int−→ A

S ∪ {R(α1),R(α2)} int−→ A

S ∪ {R(α)} int−→ A

AM/VvO (CS @ UIBK) lecture 6 32/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Craig’s Interpolation Theorem

Calculation Rules for Interpolants (cont’d)

S ∪ {L(β1)} int−→ A S ∪ {L(β2)} int−→ B

S ∪ {L(β)} int−→ A ∨ B

S ∪ {R(β1)} int−→ A S ∪ {R(β2)} int−→ B

S ∪ {R(β)} int−→ A ∧ B

Verification

suppose S = {L(X1), . . . , L(Xn),R(Y1), . . . ,R(Yk)}
• A is interpolant for (X1 ∧ · · · ∧ Xn) ⊃ (¬Y1 ∨ · · · ∨ ¬Yk ∨ ¬β1)

• all relation, function, and constant symbols of A appear in both X1 ∧ · · · ∧ Xn

and ¬Y1 ∨ · · · ∨ ¬Yk ∨ ¬β1 and hence also in ¬Y1 ∨ · · · ∨ ¬Yk ∨ ¬β
• X1 ∧ · · · ∧ Xn ⊃ A and A ⊃ (¬Y1 ∨ · · · ∨ ¬Yk ∨ ¬β1) are valid

AM/VvO (CS @ UIBK) lecture 6 33/49

Craig’s Interpolation Theorem

Calculation Rules for Interpolants (cont’d)

S ∪ {L(β1)} int−→ A S ∪ {L(β2)} int−→ B

S ∪ {L(β)} int−→ A ∨ B

S ∪ {R(β1)} int−→ A S ∪ {R(β2)} int−→ B

S ∪ {R(β)} int−→ A ∧ B

Verification (cont’d)

suppose S = {L(X1), . . . , L(Xn),R(Y1), . . . ,R(Yk)}
• B is interpolant for (X1 ∧ · · · ∧ Xn) ⊃ (¬Y1 ∨ · · · ∨ ¬Yk ∨ ¬β2)

• all relation, function and constant symbols of B appear in both X1 ∧ · · · ∧ Xn

and ¬Y1 ∨ · · · ∨ ¬Yk ∨ ¬β2 and hence also in ¬Y1 ∨ · · · ∨ ¬Yk ∨ ¬β
• X1 ∧ · · · ∧ Xn ⊃ B and B ⊃ (¬Y1 ∨ · · · ∨ ¬Yk ∨ ¬β2) are valid

AM/VvO (CS @ UIBK) lecture 6 34/49

Craig’s Interpolation Theorem

Verification (cont’d)

suppose S = {L(X1), . . . , L(Xn),R(Y1), . . . ,R(Yk)}
• X1 ∧ · · · ∧ Xn ⊃ A and A ⊃ (¬Y1 ∨ · · · ∨ ¬Yk ∨ ¬β1) are valid

• X1 ∧ · · · ∧ Xn ⊃ B and B ⊃ (¬Y1 ∨ · · · ∨ ¬Yk ∨ ¬β2) are valid

• X1 ∧ · · · ∧ Xn ⊃ A ∧ B is valid

• A ∧ B ⊃ (¬Y1 ∨ · · · ∨ ¬Yk ∨ ¬β) is valid:

A ∧ B ⊃ (¬Y1 ∨ · · · ∨ ¬Yk ∨ ¬β1) ∧ (¬Y1 ∨ · · · ∨ ¬Yk ∨ ¬β2)

≡ (¬Y1 ∨ · · · ∨ ¬Yk ∨ (¬β1 ∧ ¬β2))

≡ (¬Y1 ∨ · · · ∨ ¬Yk ∨ ¬(β1 ∨ β2))

≡ (¬Y1 ∨ · · · ∨ ¬Yk ∨ ¬β)

• A ∧ B is interpolant for (X1 ∧ · · · ∧ Xn) ⊃ (¬Y1 ∨ · · · ∨ ¬Yk ∨ ¬β)

• S ∪ {R(β)} int−→ A ∧ B

AM/VvO (CS @ UIBK) lecture 6 35/49

Craig’s Interpolation Theorem

Example

interpolant for tautology [A ∧ ((B ∧ D) ∨ C] ⊃ ¬[(A ∨ E) ⊃ ¬(¬B ⊃ C)]

L(A ∧ ((B ∧ D) ∨ C))

R(¬¬[(A ∨ E) ⊃ ¬(¬B ⊃ C)])

[A ∧ (B ∨ C)]

[A ∧ (B ∨ C)]

L((B ∧ D) ∨ C)

R(¬(¬B ⊃ C))

[B ∨ C]

R(¬C)

L(C)

[C]

[B ∨ C]L(B ∧ D)

[B]

L(D)

[B]

[A ∧ (B ∨ C)]R(¬(A ∨ E))

[A]

R(¬E)

[A]

AM/VvO (CS @ UIBK) lecture 6 36/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Craig’s Interpolation Theorem

no function symbols

Calculation Rules for Interpolants (cont’d)

S ∪ {L(δ(p))} int−→ A

S ∪ {L(δ)} int−→ A

S ∪ {R(δ(p))} int−→ A

S ∪ {R(δ)} int−→ A

provided parameter p does not occur in S or δ

S = {L(X1), . . . , L(Xn),R(Y1), . . . ,R(Yk)}

Calculation Rules for Interpolants (cont’d)

S ∪ {L(γ(c))} int−→ A

S ∪ {L(γ)} int−→ A

S ∪ {R(γ(c))} int−→ A

S ∪ {R(γ)} int−→ A

provided constant c occurs in {X1, . . . ,Xn} / {Y1, . . . ,Yk}

AM/VvO (CS @ UIBK) lecture 6 37/49

Craig’s Interpolation Theorem

S = {L(X1), . . . , L(Xn),R(Y1), . . . ,R(Yk)} fresh variable x

Calculation Rules for Interpolants (cont’d)

S ∪ {L(γ(c))} int−→ A

S ∪ {L(γ)} int−→ (∀x)A{c/x}

S ∪ {R(γ(c))} int−→ A

S ∪ {R(γ)} int−→ (∃x)A{c/x}

provided constant c does not occur in {X1, . . . ,Xn} / {Y1, . . . ,Yk}

Verification (cont’d)

suppose S ∪ {R(γ(c))} int−→ A and c occurs in {Y1, . . . ,Yk}
• (X1 ∧ · · · ∧ Xn) ⊃ A and A ⊃ (¬Y1 ∨ · · · ∨ ¬Yk ∨ ¬γ(c)) are valid

• γ ⊃ γ(c) is valid and hence ¬γ(c) ⊃ ¬γ is valid

• A ⊃ (¬Y1 ∨ · · · ∨ ¬Yk ∨ ¬γ) is valid

AM/VvO (CS @ UIBK) lecture 6 38/49

Craig’s Interpolation Theorem

S = {L(X1), . . . , L(Xn),R(Y1), . . . ,R(Yk)} fresh variable x

Calculation Rules for Interpolants (cont’d)

S ∪ {L(γ(c))} int−→ A

S ∪ {L(γ)} int−→ (∀x)A{c/x}

S ∪ {R(γ(c))} int−→ A

S ∪ {R(γ)} int−→ (∃x)A{c/x}

provided constant c does not occur in {X1, . . . ,Xn} / {Y1, . . . ,Yk}

Verification (cont’d)

suppose S ∪ {R(γ(c))} int−→ A and c occurs in {Y1, . . . ,Yk}
• (X1 ∧ · · · ∧ Xn) ⊃ A and A ⊃ (¬Y1 ∨ · · · ∨ ¬Yk ∨ ¬γ) are valid

• all relation and constant symbols of A occur both in {X1, . . . ,Xn} and
{Y1, . . . ,Yk , γ} because c occurs in {Y1, . . . ,Yk}

• A is interpolant for S ∪ {R(γ)}

AM/VvO (CS @ UIBK) lecture 6 39/49

Craig’s Interpolation Theorem

S = {L(X1), . . . , L(Xn),R(Y1), . . . ,R(Yk)} fresh variable x

Calculation Rules for Interpolants (cont’d)

S ∪ {L(γ(c))} int−→ A

S ∪ {L(γ)} int−→ (∀x)A{c/x}

S ∪ {R(γ(c))} int−→ A

S ∪ {R(γ)} int−→ (∃x)A{c/x}

provided constant c does not occur in {X1, . . . ,Xn} / {Y1, . . . ,Yk}

Verification (cont’d)

suppose S ∪ {R(γ(c))} int−→ A and c does not occur in {Y1, . . . ,Yk}
• (X1 ∧ · · · ∧ Xn) ⊃ A and A ⊃ (¬Y1 ∨ · · · ∨ ¬Yk ∨ ¬γ(c)) are valid

• A ⊃ (∃x)A{c/x} is valid and hence (X1 ∧ · · · ∧ Xn) ⊃ (∃x)A{c/x} is valid

• (Y1 ∧ · · · ∧ Yk ∧ γ(c)) ⊃ ¬A is valid

AM/VvO (CS @ UIBK) lecture 6 40/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Craig’s Interpolation Theorem

Verification (cont’d)

suppose S ∪ {R(γ(c))} int−→ A and c does not occur in {Y1, . . . ,Yk}
• (X1 ∧ · · · ∧ Xn) ⊃ (∃x)A{c/x} and (Y1 ∧ · · · ∧ Yk ∧ γ(c)) ⊃ ¬A are valid

• (∀x)[Y1 ∧ · · · ∧ Yk ∧ γ(c)]{c/x} ⊃ (∀x)¬A{c/x} is valid

(∀x)[Y1 ∧ · · · ∧ Yk ∧ γ(c)]{c/x} ≡ Y1 ∧ · · · ∧ Yk ∧ (∀x)γ(c){c/x}
≡ Y1 ∧ · · · ∧ Yk ∧ γ

• ¬(∀x)¬A{c/x} ⊃ ¬(Y1 ∧ · · · ∧ Yk ∧ γ) is valid

• (∃x)A{c/x} ⊃ (¬Y1 ∨ · · · ∨ ¬Yk ∨ ¬γ) is valid

• all relation and constant symbols of A occur both in {X1, . . . ,Xn} and
{Y1, . . . ,Yk , γ(c)}

• all relation and constant symbols of (∃x)A{c/x} occur both in {X1, . . . ,Xn}
and {Y1, . . . ,Yk , γ}

• (∃x)A{c/x} is interpolant for S ∪ {R(γ)}

AM/VvO (CS @ UIBK) lecture 6 41/49

Prenex Form

Outline

Overview of this lecture

Transforming Hilbert Style proof into tableau proof with cut

Gentzen’s Hauptsatz: Cut Elimination

Craig’s Interpolation Theorem

Prenex Form

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 6 42/49

Prenex Form

Definition

formula Φ has its variables named apart if no two quantifiers in Φ bind same
variable and no bound variable is also free

Quantifier Rewrite Rules

¬(∃x)A ≡ (∀x)¬A ¬(∀x)A ≡ (∃x)¬A
[(∀x)A ∧ B] ≡ (∀x)[A ∧ B] [(∀x)A ⊃ B] ≡ (∃x)[A ⊃ B]

[A ∧ (∀x)B] ≡ (∀x)[A ∧ B] [A ⊃ (∀x)B] ≡ (∀x)[A ⊃ B]

[(∃x)A ∧ B] ≡ (∃x)[A ∧ B] [(∃x)A ⊃ B] ≡ (∀x)[A ⊃ B]

[A ∧ (∃x)B] ≡ (∃x)[A ∧ B] [A ⊃ (∃x)B] ≡ (∃x)[A ⊃ B]

· · · · · ·

AM/VvO (CS @ UIBK) lecture 6 43/49

Prenex Form

Example

(∃x)(∀y)R(x , y) ⊃ (∀y)(∃x)R(x , y)

≡ (∃x)(∀y)R(x , y) ⊃ (∀z)(∃w)R(z ,w)

≡ (∀x)[(∀y)R(x , y) ⊃ (∀z)(∃w)R(z ,w)]

≡ (∀x)(∃y)[R(x , y) ⊃ (∀z)(∃w)R(z ,w)]

≡ (∀x)(∃y)(∀z)[R(x , y) ⊃ (∃w)R(z ,w)]

≡ (∀x)(∃y)(∀z)(∃w)[R(x , y) ⊃ R(z ,w)]

(∃x)(∀y)R(x , y) ⊃ (∀z)(∃w)R(z ,w)

≡ (∀z)[(∃x)(∀y)R(x , y) ⊃ (∃w)R(z ,w)]

≡ (∀z)(∃w)[(∃x)(∀y)R(x , y) ⊃ R(z ,w)]

≡ (∀z)(∃w)(∀x)[(∀y)R(x , y) ⊃ R(z ,w)]

≡ (∀z)(∃w)(∀x)(∃y)[R(x , y) ⊃ R(z ,w)]

AM/VvO (CS @ UIBK) lecture 6 44/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Prenex Form

Definition

prenex form is formula (Q1x1) . . . (Qnxn)Φ with Qi ∈ {∀,∃ } for all 1 6 i 6 n and
Φ quantifier-free, its matrix

Lemma

for every quantified formula X there exists equivalent prenex form X ′

Proof

1 rename all bound variables such that every quantifier binds unique variable

2 Quantifier Rewrite Rules push propositional connectives through quantifiers

Corollary

there exists algorithm for converting sentence Φ into sentence Φ∗ in prenex form
with only universal quantifiers such that {Φ} is satisfiable if and only if {Φ∗} is
satisfiable

AM/VvO (CS @ UIBK) lecture 6 45/49

Exercises

Outline

Overview of this lecture

Transforming Hilbert Style proof into tableau proof with cut

Gentzen’s Hauptsatz: Cut Elimination

Craig’s Interpolation Theorem

Prenex Form

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 6 46/49

Exercises

Fitting

• Exercise 8.4.2

• Exercise 8.9.1

• Exercise 8.11.1

• Complete the example on page 260, indicate the steps taken.

• Exercise 8.12.1

• Exercise 8.12.2

• Bonus. Solving some of above exercises by means of an implementation:

• Exercise 8.4.2 with solution: 1 additional cross
• Exercise 8.9.1 with solution: 3 additional crosses for propositional case;

4 more for first-order case
• Exercise 8.12.1: 3 additional crosses for propositional case (starting from

some tableau proof); 4 more for first-order case with solution

At most one of the last two bonus items may be chosen.

AM/VvO (CS @ UIBK) lecture 6 47/49

Further Reading

Outline

Overview of this lecture

Transforming Hilbert Style proof into tableau proof with cut

Gentzen’s Hauptsatz: Cut Elimination

Craig’s Interpolation Theorem

Prenex Form

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 6 48/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Further Reading

Fitting

• Section 8.4

• Section 8.8

• Section 8.9

• Section 8.10 (only page 243, as background information)

• Section 8.11

• Section 8.12

Additional material

For more background and motivation on first order model theory (compactness,
Löwenheim–Skolem, interpolation) or proof theory (Gentzen’s cut-elimination), see
e.g. the Stanford Encyclopedia of Philosophy.

AM/VvO (CS @ UIBK) lecture 6 49/49

https://plato.stanford.edu/entries/modeltheory-fo/
https://plato.stanford.edu/entries/proof-theory/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	lecture 5
	Overview of this lecture
	Contents
	Transforming Hilbert Style proof into tableau proof with cut
	Gentzen's Hauptsatz: Cut Elimination
	Craig's Interpolation Theorem
	Prenex Form
	Exercises
	Further Reading

