Computational Logic

Vincent van Oostrom
Course/slides by Aart Middeldorp

Department of Computer Science
University of Innsbruck

SS 2020

Outline

- Overview of this lecture
- Intuitionistic Propositional Logic
- Combinatory Logic
- Curry-Howard Isomorphism
- Exercises
- Further Reading

Tableaux and Hilbert Systems are proof calculi, just as Natural Deduction (seen in Ba logic course), and resolution (also in the book but not part of this course). There are many proof calculi, each describing formally how proofs are structured and what operations are permitted on them. Whereas before we have focused on the meta-theoretical aspects (soundness, completeness, interpolation etc.) of the calculi, this week and next week we will focus more on the structural and representational aspects of proofs themselves, in particular for Hilbert Systems (this week) and Natural Deduction (next week).
In mathematics proofs are stated at an informal level. When implementing proofs appropriate formal representations and operations on these representations must be chosen. For instance, tableaux could be formalised as trees whose nodes are formulas and whose leaves can be expanded, and Hilbert System proofs can be represented as lists whose elements (its lines) are either instances of Axiom Schemes or inferences of (2) previous lines (by Modus Ponens) and we may add such lines at the end of the list. Today we will introduce combinatory logic as a term representation of the proofs of propositional logic, more precisely, of proofs in Hilbert Systems restricted to only Axiom Schemes 1 and 2 and where implication is the only connective.

Combinatory logic (CL) terms are constructed from two constants, K and S, and one operation application which is left implicit (denoted by juxtaposition). For instance, $(S K) K$ is a CL-term comprising two applications. Representing Hilbert System proofs as CL-terms goes in two steps:

- From lists to trees (the correspondence between \vdash_{ph} and \vdash_{H} on slide 15): Hilbert System proofs were represented above as lists where lines may refer to (2) previous lines (in case of Modus Ponens). Viewing elements as nodes, this turns the list into a (directed acyclic) graph, and if lines were not reused even into a tree. Observe that by copying lines reuse can always be avoided (at the expense of making the proof longer) so that Hilbert System proof lists can always be represented as Hilbert System proof trees.
- From trees to terms (slides 19-26): Hilbert Systems proof trees have nodes of two types: leaves that are instances of Axioms Schemes and internal Modus-Ponens-nodes with two edges to other nodes. Observe that we may assume the edges of the latter to be in a fixed order (since $X \supset Y$ is larger, as formula, than X). That is, we may assume the tree to be an ordered binary tree. From such a tree a CL-term is obtained by representing Axiom Schemes 1 and 2 (when restricted to that fragment) by constants K and S and Modus Ponens by a binary function symbol called application.

For instance, the inference that the term SKK of (simply typed) combinatory logic is of type $\alpha \rightarrow \alpha$ as inferred on slide 24, is a term representation of the proof in Hilbert Systems on page 80 of Fitting's book that $P \supset P$. Each application (denoted by juxtaposition) in the former corresponds to a usage of modus ponens in the latter, and each K and S in the former correspond to usage of Axiom Schemes 1 respectively 2 in the latter. (Both the CL-term and the HS-proof have size 5: the former comprises 2 applications, 2 Ks and 1 S , whereas the latter comprises 2 modus ponens, 1 instance of Axiom Scheme 1 and 2 instances of Axiom Scheme 2.
That is, we can view proofs as terms. This correspondence is half of the Curry-Howard isomorphism, the other half being propositions as types, e.g. that the proposition $X \supset Y$ can be viewed as the type $X \rightarrow Y$ (of functions from X to Y). Curry-Howard expresses a correspondence between the proof system for propositional logic and type inference systems. For instance, Modus Ponens expressing that from $X \supset Y$ and X we may infer Y can be viewed as (in functional programming) inferring that applying a function of type $X \rightarrow Y$ to an argument of type X yields a result of type Y. Weak reduction \rightarrow_{w} on CL-terms is similar to cut-elimination on proofs in that it 'eliminates cuts' (but for K, S) possibly at the expense of lengthening terms/proofs.

As it turns out, restricting to Axiom Schemes 1 and 2 makes the proof calculus incomplete for propositional logic, even when restricted to just implicational formulas. That is, there are propositional tautologies that are not provable (in the restricted system), with Peirce's law $((P \supset Q) \supset P) \supset P$ being an example. Looking at it from the other end, one may ask whether there is a semantic characterisation of the formulas provable in the restricted system, i.e. a logic for which the restricted inference system is complete. Such a logic does indeed exist and is known as intuitionistic logic. Trying to prove Peirce's law in the unrestricted system, one notices that the law of the excluded middle $X \vee \neg X$ (LEM; or any one of its equivalent formulations such as double-negation-elimination) is used. Intuitionistic logic arises by removing/not accepting LEM.
Instead of the usual truth-table semantics of classical propositional logic, intuitionistic propositional logic has (must have!) different semantics. We present Kripke semantics (slides 8-16). Whereas truth-table semantics can be thought of as based on giving truth-values to all propositional letters in one state, Kripke semantics allows truth-values to evolve (as captured by the order \leqslant on states \mathcal{C}), e.g. although P is not known in this state it may evolve to become true in the next state (in particular the interpretation of \supset on slide 10 is based on this). We show the Hilbert System restricted to Axiom Schemes 1 and 2 is both sound and complete with respect to Kripke semantics.

Part I: Propositional Logic

compactness, completeness, Hilbert systems, Hintikka's lemma, interpolation, logical consequence, model existence theorem, propositional semantic tableaux, soundness

Part II: First-Order Logic

compactness, completeness, Craig's interpolation theorem, cut elimination, first-order semantic tableaux, Herbrand models, Herbrand's theorem, Hilbert systems, Hintikka's lemma, Löwenheim-Skolem, logical consequence, model existence theorem, prenex form, skolemization, soundness

Part III: Limitations and Extensions of First-Order Logic

Curry-Howard isomorphism, intuitionistic logic, Kripke models, second-order logic, simply-typed λ-calculus, (simply-typed) combinatory logic

Part I: Propositional Logic

compactness, completeness, Hilbert systems, Hintikka's lemma, interpolation, logical consequence, model existence theorem, propositional semantic tableaux, soundness

Part II: First-Order Logic

compactness, completeness, Craig's interpolation theorem, cut elimination, first-order semantic tableaux, Herbrand models, Herbrand's theorem, Hilbert systems, Hintikka's lemma, Löwenheim-Skolem, logical consequence, model existence theorem, prenex form, skolemization, soundness

Part III: Limitations and Extensions of First-Order Logic

Curry-Howard isomorphism, intuitionistic logic, Kripke models, second-order logic, simply-typed λ-calculus, (simply-typed) combinatory logic

Outline

- Overview of this lecture
- Intuitionistic Propositional Logic
- Combinatory Logic
- Curry-Howard Isomorphism
- Exercises
- Further Reading

Syntax

- basic connectives $\supset \wedge \vee \perp$

Syntax

- basic connectives $\supset \wedge \vee \perp$
- derived connectives
- $\neg \varphi \quad$ abbreviates $\varphi \supset \perp$

Syntax

- basic connectives $\supset \wedge \vee \perp$
- derived connectives
- $\neg \varphi \quad$ abbreviates $\varphi \supset \perp$
- $\top \quad$ abbreviates $\perp \supset \perp$

Syntax

- basic connectives $\supset \wedge \vee \perp$
- derived connectives
- $\neg \varphi \quad$ abbreviates $\varphi \supset \perp$
- $T \quad$ abbreviates $\perp \supset \perp$
- $\varphi \equiv \psi \quad$ abbreviates $\quad(\varphi \supset \psi) \wedge(\psi \supset \varphi)$

Syntax

- basic connectives \supset
- derived connectives
- $\neg \varphi \quad$ abbreviates $\varphi \supset \perp$
- $\top \quad$ abbreviates $\perp \supset \perp$
- $\varphi \equiv \psi \quad$ abbreviates $\quad(\varphi \supset \psi) \wedge(\psi \supset \varphi)$
- implicational fragment contains only \supset

Syntax

- basic connectives $\supset \wedge \vee \perp$
- derived connectives
- $\neg \varphi \quad$ abbreviates $\varphi \supset \perp$
- \top abbreviates $\perp \supset \perp$
- $\varphi \equiv \psi \quad$ abbreviates $\quad(\varphi \supset \psi) \wedge(\psi \supset \varphi)$
- implicational fragment contains only \supset

Brouwer-Heyting-Kolmogorov Interpretaton

Syntax

- basic connectives $\supset \wedge \vee \perp$
- derived connectives
- $\neg \varphi \quad$ abbreviates $\varphi \supset \perp$
- $\top \quad$ abbreviates $\perp \supset \perp$
- $\varphi \equiv \psi \quad$ abbreviates $\quad(\varphi \supset \psi) \wedge(\psi \supset \varphi)$
- implicational fragment contains only \supset

Brouwer-Heyting-Kolmogorov Interpretaton

- construction of $\varphi_{1} \wedge \varphi_{2}$ consists of construction of φ_{1} and construction of φ_{2}

Syntax

- basic connectives $\supset \wedge \vee \perp$
- derived connectives
- $\neg \varphi \quad$ abbreviates $\varphi \supset \perp$
- T abbreviates $\perp \supset \perp$
- $\varphi \equiv \psi \quad$ abbreviates $\quad(\varphi \supset \psi) \wedge(\psi \supset \varphi)$
- implicational fragment contains only \supset

Brouwer-Heyting-Kolmogorov Interpretaton

- construction of $\varphi_{1} \wedge \varphi_{2}$ consists of construction of φ_{1} and construction of φ_{2}
- construction of $\varphi_{1} \vee \varphi_{2}$ consists of indicator $i \in\{1,2\}$ and construction of φ_{i}

Syntax

- basic connectives $\supset \wedge \vee \perp$
- derived connectives
- $\neg \varphi \quad$ abbreviates $\varphi \supset \perp$
- $T \quad$ abbreviates $\perp \supset \perp$
- $\varphi \equiv \psi \quad$ abbreviates $\quad(\varphi \supset \psi) \wedge(\psi \supset \varphi)$
- implicational fragment contains only \supset

Brouwer-Heyting-Kolmogorov Interpretaton

- construction of $\varphi_{1} \wedge \varphi_{2}$ consists of construction of φ_{1} and construction of φ_{2}
- construction of $\varphi_{1} \vee \varphi_{2}$ consists of indicator $i \in\{1,2\}$ and construction of φ_{i}
- construction of $\varphi_{1} \supset \varphi_{2}$ is function transforming every construction of φ_{1} into construction of φ_{2}

Syntax

- basic connectives $\supset \wedge \vee \perp$
- derived connectives
- $\neg \varphi \quad$ abbreviates $\varphi \supset \perp$
- $T \quad$ abbreviates $\perp \supset \perp$
- $\varphi \equiv \psi \quad$ abbreviates $\quad(\varphi \supset \psi) \wedge(\psi \supset \varphi)$
- implicational fragment contains only \supset

Brouwer-Heyting-Kolmogorov Interpretaton

- construction of $\varphi_{1} \wedge \varphi_{2}$ consists of construction of φ_{1} and construction of φ_{2}
- construction of $\varphi_{1} \vee \varphi_{2}$ consists of indicator $i \in\{1,2\}$ and construction of φ_{i}
- construction of $\varphi_{1} \supset \varphi_{2}$ is function transforming every construction of φ_{1} into construction of φ_{2}
- \perp has no construction

Syntax

- basic connectives $\supset \wedge \vee \perp$
- derived connectives
- $\neg \varphi \quad$ abbreviates $\varphi \supset \perp$
- T abbreviates $\perp \supset \perp$
- $\varphi \equiv \psi \quad$ abbreviates $\quad(\varphi \supset \psi) \wedge(\psi \supset \varphi)$
- implicational fragment contains only \supset

Formal Semantics

- Heyting algebras
- Kripke models

Syntax

- basic connectives $\supset \wedge \vee \perp$
- derived connectives
- $\neg \varphi \quad$ abbreviates $\varphi \supset \perp$
- \top abbreviates $\perp \supset \perp$
- $\varphi \equiv \psi \quad$ abbreviates $\quad(\varphi \supset \psi) \wedge(\psi \supset \varphi)$
- implicational fragment contains only \supset

Formal Semantics

- Heyting algebras
- Kripke models

Definition

Kripke model is triple $\mathcal{C}=\langle C, \leqslant, \Vdash\rangle$

Definition

Kripke model is triple $\mathcal{C}=\langle C, \leqslant, \Vdash\rangle$ with

- nonempty set C of states

Definition

Kripke model is triple $\mathcal{C}=\langle C, \leqslant, \Vdash\rangle$ with

- nonempty set C of states
- partial order \leqslant on C

Definition

Kripke model is triple $\mathcal{C}=\langle C, \leqslant, \Vdash\rangle$ with

- nonempty set C of states
- partial order \leqslant on C
- binary relation \Vdash between elements of C and propositional letters

Definition

Kripke model is triple $\mathcal{C}=\langle C, \leqslant, \Vdash\rangle$ with

- nonempty set C of states
- partial order \leqslant on C
- binary relation \Vdash between elements of C and propositional letters such that $c^{\prime} \Vdash p$ whenever $c \Vdash p$ and $c \leqslant c^{\prime}$

Definition

Kripke model is triple $\mathcal{C}=\langle C, \leqslant, \Vdash\rangle$ with

- nonempty set C of states
- partial order \leqslant on C
- binary relation \Vdash between elements of C and propositional letters such that $c^{\prime} \Vdash p$ whenever $c \Vdash p$ and $c \leqslant c^{\prime}$

Definition

Kripke model $\mathcal{C}=\langle C, \leqslant, \Vdash\rangle, c \in C$

- $c \Vdash \varphi \wedge \psi$ if and only if $c \Vdash \varphi$ and $c \Vdash \psi$

Definition

Kripke model is triple $\mathcal{C}=\langle C, \leqslant, \Vdash\rangle$ with

- nonempty set C of states
- partial order \leqslant on C
- binary relation \Vdash between elements of C and propositional letters such that $c^{\prime} \Vdash p$ whenever $c \Vdash p$ and $c \leqslant c^{\prime}$

Definition

Kripke model $\mathcal{C}=\langle C, \leqslant, \Vdash\rangle, c \in C$

- $c \Vdash \varphi \wedge \psi$ if and only if $c \Vdash \varphi$ and $c \Vdash \psi$
- c $\Vdash \varphi \vee \psi$ if and only if $c \Vdash \varphi$ or $c \Vdash \psi$

Definition

Kripke model is triple $\mathcal{C}=\langle C, \leqslant, \Vdash\rangle$ with

- nonempty set C of states
- partial order \leqslant on C
- binary relation \Vdash between elements of C and propositional letters such that $c^{\prime} \Vdash p$ whenever $c \Vdash p$ and $c \leqslant c^{\prime}$

Definition

Kripke model $\mathcal{C}=\langle C, \leqslant, \Vdash\rangle, c \in C$

- $c \Vdash \varphi \wedge \psi$ if and only if $c \Vdash \varphi$ and $c \Vdash \psi$
- c $\quad \Vdash \varphi \vee \psi$ if and only if $c \Vdash \varphi$ or $c \Vdash \psi$
- $c \Vdash \varphi \supset \psi$ if and only if $c^{\prime} \Vdash \psi$ for all $c^{\prime} \geqslant c$ with $c^{\prime} \Vdash \varphi$

Definition

Kripke model is triple $\mathcal{C}=\langle C, \leqslant, \Vdash\rangle$ with

- nonempty set C of states
- partial order \leqslant on C
- binary relation \Vdash between elements of C and propositional letters such that $c^{\prime} \Vdash p$ whenever $c \Vdash p$ and $c \leqslant c^{\prime}$

Definition

Kripke model $\mathcal{C}=\langle C, \leqslant, \Vdash\rangle, c \in C$

- $c \Vdash \varphi \wedge \psi$ if and only if $c \Vdash \varphi$ and $c \Vdash \psi$
- c $\quad \Vdash \varphi \vee \psi$ if and only if $c \Vdash \varphi$ or $c \Vdash \psi$
- $c \Vdash \varphi \supset \psi$ if and only if $c^{\prime} \Vdash \psi$ for all $c^{\prime} \geqslant c$ with $c^{\prime} \Vdash \varphi$
-c $\boldsymbol{H} \perp$

Terminology

c forces p if $c \Vdash p$

Terminology

c forces p if $c \Vdash p$

Example

Kripke model $\mathcal{C}=\langle C, \leqslant, \Vdash\rangle$ with $C=\{a, b, c\}, a \leqslant b, a \leqslant c, b \Vdash p, c \Vdash q$

Terminology

c forces p if $c \Vdash p$

Example

Kripke model $\mathcal{C}=\langle C, \leqslant, \Vdash\rangle$ with $C=\{a, b, c\}, a \leqslant b, a \leqslant c, b \Vdash p, c \Vdash q$

- $a \Vdash(p \supset q) \supset q$

Terminology

c forces p if $c \Vdash p$

Example

Kripke model $\mathcal{C}=\langle C, \leqslant, \Vdash\rangle$ with $C=\{a, b, c\}, a \leqslant b, a \leqslant c, b \Vdash p, c \Vdash q$

- $a \Vdash(p \supset q) \supset q$
- $a \Vdash \neg \neg(p \vee q)$

Terminology

c forces p if $c \Vdash p$

Example

Kripke model $\mathcal{C}=\langle C, \leqslant, \Vdash\rangle$ with $C=\{a, b, c\}, a \leqslant b, a \leqslant c, b \Vdash p, c \Vdash q$

- $a \Vdash(p \supset q) \supset q$
- $a \Vdash \neg \neg(p \vee q)$
- $a \| p \vee \neg p$

Terminology

c forces p if $c \Vdash p$

Example

Kripke model $\mathcal{C}=\langle C, \leqslant, \Vdash\rangle$ with $C=\{a, b, c\}, a \leqslant b, a \leqslant c, b \Vdash p, c \Vdash q$

- $a \Vdash(p \supset q) \supset q$
- $a \Vdash \neg \neg(p \vee q)$
- $a \Vdash p \vee \neg p$

Definition

Kripke model $\mathcal{C}=\langle C, \leqslant, \Vdash\rangle, c \in C$

- $c \Vdash \Gamma$ if $c \Vdash \varphi$ for all $\varphi \in \Gamma$

Terminology

c forces p if $c \Vdash p$

Example

Kripke model $\mathcal{C}=\langle C, \leqslant, \Vdash\rangle$ with $C=\{a, b, c\}, a \leqslant b, a \leqslant c, b \Vdash p, c \Vdash q$

- $a \Vdash(p \supset q) \supset q$
- $a \Vdash \neg \neg(p \vee q)$
- $a \Vdash p \vee \neg p$

Definition

Kripke model $\mathcal{C}=\langle C, \leqslant, \Vdash\rangle, c \in C$

- $c \Vdash \Gamma$ if $c \Vdash \varphi$ for all $\varphi \in \Gamma$
- $\mathcal{C} \Vdash \varphi$ if $c \Vdash \varphi$ for all $c \in \mathcal{C}$

Definition

$\Gamma \Vdash \varphi$ if $c \Vdash \varphi$ whenever $c \Vdash \Gamma$ for all Kripke models $\mathcal{C}=\langle C, \leqslant, \Vdash\rangle$ and $c \in C$

Definition

$\Gamma \Vdash \varphi$ if $c \Vdash \varphi$ whenever $c \Vdash \Gamma$ for all Kripke models $\mathcal{C}=\langle C, \leqslant, \Vdash\rangle$ and $c \in C$

Lemma (Monotonicity)

if $c \leqslant c^{\prime}$ and $c \Vdash \varphi$ then $c^{\prime} \Vdash \varphi$

Definition

$\Gamma \Vdash \varphi$ if $c \Vdash \varphi$ whenever $c \Vdash \Gamma$ for all Kripke models $\mathcal{C}=\langle C, \leqslant, \Vdash\rangle$ and $c \in C$

Lemma (Monotonicity)

if $c \leqslant c^{\prime}$ and $c \Vdash \varphi$ then $c^{\prime} \Vdash \varphi$

Lemma

if $\Vdash \varphi \vee \psi$ then $\Vdash \varphi$ or $\Vdash \psi$

Definition

$\Gamma \Vdash \varphi$ if $c \Vdash \varphi$ whenever $c \Vdash \Gamma$ for all Kripke models $\mathcal{C}=\langle C, \leqslant, \Vdash\rangle$ and $c \in C$

Lemma (Monotonicity)

if $c \leqslant c^{\prime}$ and $c \Vdash \varphi$ then $c^{\prime} \Vdash \varphi$

Lemma

if $\Vdash \varphi \vee \psi$ then $\Vdash \varphi$ or $\Vdash \psi$

Theorem

Hilbert system with Modus Ponens and Axiom Schemes 1 and 2 is sound and complete with respect to Kripke models for implicational fragment:

$$
\Gamma \vdash_{p h} \varphi \quad \Longleftrightarrow \Gamma \Vdash \varphi
$$

Proof (\Rightarrow)

suppose $\Gamma \vdash_{p h} \varphi$

Proof (\Rightarrow)

suppose $\Gamma \vdash_{p h} \varphi$
we prove $\Gamma \Vdash \varphi$ by induction on length of derivation of $\Gamma \vdash_{p h} \varphi$

Proof (\Rightarrow)

suppose $\Gamma \vdash_{p h} \varphi$

we prove $\Gamma \Vdash \varphi$ by induction on length of derivation of $\Gamma \vdash_{p h} \varphi$:

- $\varphi \in \Gamma$
- $\varphi=\left(\psi_{1} \supset\left(\psi_{2} \supset \psi_{1}\right)\right)$
- $\varphi=\left(\left(\psi_{1} \supset\left(\psi_{2} \supset \psi_{3}\right)\right) \supset\left(\left(\psi_{1} \supset \psi_{2}\right) \supset\left(\psi_{1} \supset \psi_{3}\right)\right)\right)$
- φ is obtained by Modus Ponens

Proof (\Rightarrow)

suppose $\Gamma \vdash_{p h} \varphi$

we prove $\Gamma \Vdash \varphi$ by induction on length of derivation of $\Gamma \vdash_{p h} \varphi$:

- $\varphi \in \Gamma$
$\Gamma \Vdash \varphi$ holds trivially
- $\varphi=\left(\psi_{1} \supset\left(\psi_{2} \supset \psi_{1}\right)\right)$
- $\varphi=\left(\left(\psi_{1} \supset\left(\psi_{2} \supset \psi_{3}\right)\right) \supset\left(\left(\psi_{1} \supset \psi_{2}\right) \supset\left(\psi_{1} \supset \psi_{3}\right)\right)\right)$
- φ is obtained by Modus Ponens

Proof (\Rightarrow)

suppose $\Gamma \vdash_{p h} \varphi$

we prove $\Gamma \Vdash \varphi$ by induction on length of derivation of $\Gamma \vdash_{p h} \varphi$:

- $\varphi \in \Gamma$
$\Gamma \Vdash \varphi$ holds trivially
- $\varphi=\left(\psi_{1} \supset\left(\psi_{2} \supset \psi_{1}\right)\right)$
$\Vdash \varphi$ by definition of \Vdash
- $\varphi=\left(\left(\psi_{1} \supset\left(\psi_{2} \supset \psi_{3}\right)\right) \supset\left(\left(\psi_{1} \supset \psi_{2}\right) \supset\left(\psi_{1} \supset \psi_{3}\right)\right)\right)$
- φ is obtained by Modus Ponens

Proof (\Rightarrow)

suppose $\Gamma \vdash_{p h} \varphi$

we prove $\Gamma \Vdash \varphi$ by induction on length of derivation of $\Gamma \vdash_{p h} \varphi$:

- $\varphi \in \Gamma$
$\Gamma \Vdash \varphi$ holds trivially
- $\varphi=\left(\psi_{1} \supset\left(\psi_{2} \supset \psi_{1}\right)\right)$
$\Vdash \varphi$ by definition of \Vdash and thus also $\Gamma \Vdash \varphi$
- $\varphi=\left(\left(\psi_{1} \supset\left(\psi_{2} \supset \psi_{3}\right)\right) \supset\left(\left(\psi_{1} \supset \psi_{2}\right) \supset\left(\psi_{1} \supset \psi_{3}\right)\right)\right)$
- φ is obtained by Modus Ponens

Proof (\Rightarrow)

suppose $\Gamma \vdash_{p h} \varphi$

we prove $\Gamma \Vdash \varphi$ by induction on length of derivation of $\Gamma \vdash_{p h} \varphi$:

- $\varphi \in \Gamma$
$\Gamma \Vdash \varphi$ holds trivially
- $\varphi=\left(\psi_{1} \supset\left(\psi_{2} \supset \psi_{1}\right)\right)$
$\Vdash \varphi$ by definition of \Vdash and thus also $\Gamma \Vdash \varphi$
- $\varphi=\left(\left(\psi_{1} \supset\left(\psi_{2} \supset \psi_{3}\right)\right) \supset\left(\left(\psi_{1} \supset \psi_{2}\right) \supset\left(\psi_{1} \supset \psi_{3}\right)\right)\right)$
$\Vdash \varphi$ by definition of \Vdash and thus also $\Gamma \Vdash \varphi$
- φ is obtained by Modus Ponens

Proof (\Rightarrow)

suppose $\Gamma \vdash_{p h} \varphi$

we prove $\Gamma \Vdash \varphi$ by induction on length of derivation of $\Gamma \vdash_{p h} \varphi$:

- $\varphi \in \Gamma$
$\Gamma \Vdash \varphi$ holds trivially
- $\varphi=\left(\psi_{1} \supset\left(\psi_{2} \supset \psi_{1}\right)\right)$
$\Vdash \varphi$ by definition of \Vdash and thus also $\Gamma \Vdash \varphi$
- $\varphi=\left(\left(\psi_{1} \supset\left(\psi_{2} \supset \psi_{3}\right)\right) \supset\left(\left(\psi_{1} \supset \psi_{2}\right) \supset\left(\psi_{1} \supset \psi_{3}\right)\right)\right)$
$\Vdash \varphi$ by definition of \Vdash and thus also $\Gamma \Vdash \varphi$
- φ is obtained by Modus Ponens
$\Gamma \vdash \psi$ and $\Gamma \vdash \psi \supset \varphi$

Proof (\Rightarrow)

suppose $\Gamma \vdash_{p h} \varphi$
we prove $\Gamma \Vdash \varphi$ by induction on length of derivation of $\Gamma \vdash_{p h} \varphi$:

- $\varphi \in \Gamma$
$\Gamma \Vdash \varphi$ holds trivially
- $\varphi=\left(\psi_{1} \supset\left(\psi_{2} \supset \psi_{1}\right)\right)$
$\Vdash \varphi$ by definition of \Vdash and thus also $\Gamma \Vdash \varphi$
- $\varphi=\left(\left(\psi_{1} \supset\left(\psi_{2} \supset \psi_{3}\right)\right) \supset\left(\left(\psi_{1} \supset \psi_{2}\right) \supset\left(\psi_{1} \supset \psi_{3}\right)\right)\right)$
$\Vdash \varphi$ by definition of \Vdash and thus also $\Gamma \Vdash \varphi$
- φ is obtained by Modus Ponens
$\Gamma \vdash \psi$ and $\Gamma \vdash \psi \supset \varphi$ are shorter derivations

Proof (\Rightarrow)

suppose $\Gamma \vdash_{p h} \varphi$
we prove $\Gamma \Vdash \varphi$ by induction on length of derivation of $\Gamma \vdash_{p h} \varphi$:

- $\varphi \in \Gamma$
$\Gamma \Vdash \varphi$ holds trivially
- $\varphi=\left(\psi_{1} \supset\left(\psi_{2} \supset \psi_{1}\right)\right)$
$\Vdash \varphi$ by definition of \Vdash and thus also $\Gamma \Vdash \varphi$
- $\varphi=\left(\left(\psi_{1} \supset\left(\psi_{2} \supset \psi_{3}\right)\right) \supset\left(\left(\psi_{1} \supset \psi_{2}\right) \supset\left(\psi_{1} \supset \psi_{3}\right)\right)\right)$
$\Vdash \varphi$ by definition of \Vdash and thus also $\Gamma \Vdash \varphi$
- φ is obtained by Modus Ponens
$\Gamma \vdash \psi$ and $\Gamma \vdash \psi \supset \varphi$ are shorter derivations
$\Gamma \Vdash \psi$ and $\Gamma \Vdash \psi \supset \varphi$ by induction hypothesis

Proof (\Rightarrow)

suppose $\Gamma \vdash_{p h} \varphi$
we prove $\Gamma \Vdash \varphi$ by induction on length of derivation of $\Gamma \vdash_{p h} \varphi$:

- $\varphi \in \Gamma$
$\Gamma \Vdash \varphi$ holds trivially
- $\varphi=\left(\psi_{1} \supset\left(\psi_{2} \supset \psi_{1}\right)\right)$
$\Vdash \varphi$ by definition of \Vdash and thus also $\Gamma \Vdash \varphi$
- $\varphi=\left(\left(\psi_{1} \supset\left(\psi_{2} \supset \psi_{3}\right)\right) \supset\left(\left(\psi_{1} \supset \psi_{2}\right) \supset\left(\psi_{1} \supset \psi_{3}\right)\right)\right)$
$\Vdash \varphi$ by definition of \Vdash and thus also $\Gamma \Vdash \varphi$
- φ is obtained by Modus Ponens
$\Gamma \vdash \psi$ and $\Gamma \vdash \psi \supset \varphi$ are shorter derivations
$\Gamma \Vdash \psi$ and $\Gamma \Vdash \psi \supset \varphi$ by induction hypothesis
$\Gamma \Vdash \varphi$ by definition of \Vdash

Proof (\Leftarrow)

suppose $\Gamma \vdash_{p h} \varphi$ does not hold

Proof (\Leftarrow)

suppose $\Gamma \vdash_{p h} \varphi$ does not hold define Kripke model $\mathcal{C}=\langle C, \subseteq, \Vdash\rangle$

Proof (\Leftarrow)

suppose $\Gamma \vdash_{p h} \varphi$ does not hold
define Kripke model $\mathcal{C}=\langle C, \subseteq, \Vdash\rangle$ with

- $C=\left\{\Delta \mid \Gamma \subseteq \Delta\right.$ and $\left.\Delta=\left\{\psi \mid \Delta \vdash_{p h} \psi\right\}\right\}$

Proof (\Leftarrow)

suppose $\Gamma \vdash_{p h} \varphi$ does not hold
define Kripke model $\mathcal{C}=\langle C, \subseteq, \Vdash\rangle$ with

- $C=\left\{\Delta \mid \Gamma \subseteq \Delta\right.$ and $\left.\Delta=\left\{\psi \mid \Delta \vdash_{p h} \psi\right\}\right\}$
- $\Delta \Vdash p$ if $p \in \Delta$ for propositional letters p

Proof (\Leftarrow)

suppose $\Gamma \vdash_{p h} \varphi$ does not hold
define Kripke model $\mathcal{C}=\langle C, \subseteq, \Vdash\rangle$ with

- $C=\left\{\Delta \mid \Gamma \subseteq \Delta\right.$ and $\left.\Delta=\left\{\psi \mid \Delta \vdash_{p h} \psi\right\}\right\}$
- $\Delta \Vdash p$ if $p \in \Delta$ for propositional letters p
claim: $\quad \Delta \Vdash \psi \Longleftrightarrow \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ

Proof (\Leftarrow)

suppose $\Gamma \vdash_{p h} \varphi$ does not hold
define Kripke model $\mathcal{C}=\langle C, \subseteq, \Vdash\rangle$ with

- $C=\left\{\Delta \mid \Gamma \subseteq \Delta\right.$ and $\left.\Delta=\left\{\psi \mid \Delta \vdash_{p h} \psi\right\}\right\}$
- $\Delta \Vdash p$ if $p \in \Delta$ for propositional letters p
claim: $\quad \Delta \Vdash \psi \Longleftrightarrow \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ proof of claim (induction on ψ): consider $\psi=\left(\psi_{1} \supset \psi_{2}\right)$

Proof (\Leftarrow)

suppose $\Gamma \vdash_{p h} \varphi$ does not hold
define Kripke model $\mathcal{C}=\langle C, \subseteq, \Vdash\rangle$ with

- $C=\left\{\Delta \mid \Gamma \subseteq \Delta\right.$ and $\left.\Delta=\left\{\psi \mid \Delta \vdash_{p h} \psi\right\}\right\}$
- $\Delta \Vdash p$ if $p \in \Delta$ for propositional letters p
claim: $\quad \Delta \Vdash \psi \Longleftrightarrow \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ proof of claim (induction on ψ): consider $\psi=\left(\psi_{1} \supset \psi_{2}\right)$
\Rightarrow let $\Delta \Vdash \psi$

Proof (\Leftarrow)

suppose $\Gamma \vdash_{p h} \varphi$ does not hold
define Kripke model $\mathcal{C}=\langle C, \subseteq, \Vdash\rangle$ with

- $C=\left\{\Delta \mid \Gamma \subseteq \Delta\right.$ and $\left.\Delta=\left\{\psi \mid \Delta \vdash_{p h} \psi\right\}\right\}$
- $\Delta \Vdash p$ if $p \in \Delta$ for propositional letters p
claim: $\quad \Delta \Vdash \psi \Longleftrightarrow \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ proof of claim (induction on ψ): consider $\psi=\left(\psi_{1} \supset \psi_{2}\right)$
\Rightarrow let $\Delta \Vdash \psi$ and define $\Delta^{\prime}=\left\{\chi \mid \Delta, \psi_{1} \vdash_{p h} \chi\right\}$

Proof (\Leftarrow)

suppose $\Gamma \vdash_{p h} \varphi$ does not hold
define Kripke model $\mathcal{C}=\langle C, \subseteq, \Vdash\rangle$ with

- $C=\left\{\Delta \mid \Gamma \subseteq \Delta\right.$ and $\left.\Delta=\left\{\psi \mid \Delta \vdash_{p h} \psi\right\}\right\}$
- $\Delta \Vdash p$ if $p \in \Delta$ for propositional letters p
claim: $\quad \Delta \Vdash \psi \Longleftrightarrow \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ proof of claim (induction on ψ): consider $\psi=\left(\psi_{1} \supset \psi_{2}\right)$
\Rightarrow let $\Delta \Vdash \psi$ and define $\Delta^{\prime}=\left\{\chi \mid \Delta, \psi_{1} \vdash_{p h} \chi\right\}$

$$
\psi_{1} \in \Delta^{\prime}
$$

Proof (\Leftarrow)

suppose $\Gamma \vdash_{p h} \varphi$ does not hold
define Kripke model $\mathcal{C}=\langle C, \subseteq, \Vdash\rangle$ with

- $C=\left\{\Delta \mid \Gamma \subseteq \Delta\right.$ and $\left.\Delta=\left\{\psi \mid \Delta \vdash_{p h} \psi\right\}\right\}$
- $\Delta \Vdash p$ if $p \in \Delta$ for propositional letters p
claim: $\quad \Delta \Vdash \psi \Longleftrightarrow \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ proof of claim (induction on ψ): consider $\psi=\left(\psi_{1} \supset \psi_{2}\right)$
\Rightarrow let $\Delta \Vdash \psi$ and define $\Delta^{\prime}=\left\{\chi \mid \Delta, \psi_{1} \vdash_{p h} \chi\right\}$

$$
\psi_{1} \in \Delta^{\prime} \in C
$$

Proof (\Leftarrow)

suppose $\Gamma \vdash_{p h} \varphi$ does not hold
define Kripke model $\mathcal{C}=\langle C, \subseteq, \Vdash\rangle$ with

- $C=\left\{\Delta \mid \Gamma \subseteq \Delta\right.$ and $\left.\Delta=\left\{\psi \mid \Delta \vdash_{p h} \psi\right\}\right\}$
- $\Delta \Vdash p$ if $p \in \Delta$ for propositional letters p
claim: $\quad \Delta \Vdash \psi \Longleftrightarrow \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ proof of claim (induction on ψ): consider $\psi=\left(\psi_{1} \supset \psi_{2}\right)$
\Rightarrow let $\Delta \Vdash \psi$ and define $\Delta^{\prime}=\left\{\chi \mid \Delta, \psi_{1} \vdash_{p h} \chi\right\}$
$\psi_{1} \in \Delta^{\prime} \in C$ and thus $\Delta^{\prime} \Vdash \psi_{1}$ by induction hypothesis

Proof (\Leftarrow)

suppose $\Gamma \vdash_{p h} \varphi$ does not hold
define Kripke model $\mathcal{C}=\langle C, \subseteq, \Vdash\rangle$ with

- $C=\left\{\Delta \mid \Gamma \subseteq \Delta\right.$ and $\left.\Delta=\left\{\psi \mid \Delta \vdash_{p h} \psi\right\}\right\}$
- $\Delta \Vdash p$ if $p \in \Delta$ for propositional letters p
claim: $\quad \Delta \Vdash \psi \Longleftrightarrow \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ proof of claim (induction on ψ): consider $\psi=\left(\psi_{1} \supset \psi_{2}\right)$
\Rightarrow let $\Delta \Vdash \psi$ and define $\Delta^{\prime}=\left\{\chi \mid \Delta, \psi_{1} \vdash_{p h} \chi\right\}$
$\psi_{1} \in \Delta^{\prime} \in C$ and thus $\Delta^{\prime} \Vdash \psi_{1}$ by induction hypothesis
$\Delta^{\prime} \Vdash \psi_{2}$ because $\Delta \subseteq \Delta^{\prime}$

Proof (\Leftarrow)

suppose $\Gamma \vdash_{p h} \varphi$ does not hold
define Kripke model $\mathcal{C}=\langle C, \subseteq, \Vdash\rangle$ with

- $C=\left\{\Delta \mid \Gamma \subseteq \Delta\right.$ and $\left.\Delta=\left\{\psi \mid \Delta \vdash_{p h} \psi\right\}\right\}$
- $\Delta \Vdash p$ if $p \in \Delta$ for propositional letters p
claim: $\quad \Delta \Vdash \psi \Longleftrightarrow \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ proof of claim (induction on ψ): consider $\psi=\left(\psi_{1} \supset \psi_{2}\right)$
\Rightarrow let $\Delta \Vdash \psi$ and define $\Delta^{\prime}=\left\{\chi \mid \Delta, \psi_{1} \vdash_{p h} \chi\right\}$
$\psi_{1} \in \Delta^{\prime} \in C$ and thus $\Delta^{\prime} \Vdash \psi_{1}$ by induction hypothesis
$\Delta^{\prime} \Vdash \psi_{2}$ because $\Delta \subseteq \Delta^{\prime}$ and thus $\psi_{2} \in \Delta^{\prime}$ by induction hypothesis

Proof (\Leftarrow)

suppose $\Gamma \vdash_{p h} \varphi$ does not hold
define Kripke model $\mathcal{C}=\langle C, \subseteq, \Vdash\rangle$ with

- $C=\left\{\Delta \mid \Gamma \subseteq \Delta\right.$ and $\left.\Delta=\left\{\psi \mid \Delta \vdash_{p h} \psi\right\}\right\}$
- $\Delta \Vdash p$ if $p \in \Delta$ for propositional letters p
claim: $\quad \Delta \Vdash \psi \Longleftrightarrow \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ proof of claim (induction on ψ): consider $\psi=\left(\psi_{1} \supset \psi_{2}\right)$
\Rightarrow let $\Delta \Vdash \psi$ and define $\Delta^{\prime}=\left\{\chi \mid \Delta, \psi_{1} \vdash_{p h} \chi\right\}$
$\psi_{1} \in \Delta^{\prime} \in C$ and thus $\Delta^{\prime} \Vdash \psi_{1}$ by induction hypothesis
$\Delta^{\prime} \Vdash \psi_{2}$ because $\Delta \subseteq \Delta^{\prime}$ and thus $\psi_{2} \in \Delta^{\prime}$ by induction hypothesis $\Delta, \psi_{1} \vdash_{p h} \psi_{2}$

Proof (\Leftarrow)

suppose $\Gamma \vdash_{p h} \varphi$ does not hold
define Kripke model $\mathcal{C}=\langle C, \subseteq, \Vdash\rangle$ with

- $C=\left\{\Delta \mid \Gamma \subseteq \Delta\right.$ and $\left.\Delta=\left\{\psi \mid \Delta \vdash_{p h} \psi\right\}\right\}$
- $\Delta \Vdash p$ if $p \in \Delta$ for propositional letters p
claim: $\quad \Delta \Vdash \psi \Longleftrightarrow \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ proof of claim (induction on ψ): consider $\psi=\left(\psi_{1} \supset \psi_{2}\right)$
\Rightarrow let $\Delta \Vdash \psi$ and define $\Delta^{\prime}=\left\{\chi \mid \Delta, \psi_{1} \vdash_{p h} \chi\right\}$
$\psi_{1} \in \Delta^{\prime} \in C$ and thus $\Delta^{\prime} \Vdash \psi_{1}$ by induction hypothesis
$\Delta^{\prime} \Vdash \psi_{2}$ because $\Delta \subseteq \Delta^{\prime}$ and thus $\psi_{2} \in \Delta^{\prime}$ by induction hypothesis
$\Delta, \psi_{1} \vdash_{p h} \psi_{2}$
$\Delta \vdash_{p h} \psi$ by deduction theorem

Proof (\Leftarrow)

suppose $\Gamma \vdash_{p h} \varphi$ does not hold
define Kripke model $\mathcal{C}=\langle C, \subseteq, \Vdash\rangle$ with

- $C=\left\{\Delta \mid \Gamma \subseteq \Delta\right.$ and $\left.\Delta=\left\{\psi \mid \Delta \vdash_{p h} \psi\right\}\right\}$
- $\Delta \Vdash p$ if $p \in \Delta$ for propositional letters p
claim: $\quad \Delta \Vdash \psi \Longleftrightarrow \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ proof of claim: consider $\psi=\left(\psi_{1} \supset \psi_{2}\right)$

$$
\Leftarrow \text { let } \psi \in \Delta
$$

Proof (\Leftarrow)

suppose $\Gamma \vdash_{p h} \varphi$ does not hold
define Kripke model $\mathcal{C}=\langle C, \subseteq, \Vdash\rangle$ with

- $C=\left\{\Delta \mid \Gamma \subseteq \Delta\right.$ and $\left.\Delta=\left\{\psi \mid \Delta \vdash_{p h} \psi\right\}\right\}$
- $\Delta \Vdash p$ if $p \in \Delta$ for propositional letters p
claim: $\quad \Delta \Vdash \psi \Longleftrightarrow \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ proof of claim: consider $\psi=\left(\psi_{1} \supset \psi_{2}\right)$
\Leftarrow let $\psi \in \Delta$ and consider state $\Delta^{\prime} \supseteq \Delta$ with $\Delta^{\prime} \Vdash \psi_{1}$

Proof (\Leftarrow)

suppose $\Gamma \vdash_{p h} \varphi$ does not hold
define Kripke model $\mathcal{C}=\langle C, \subseteq, \Vdash\rangle$ with

- $C=\left\{\Delta \mid \Gamma \subseteq \Delta\right.$ and $\left.\Delta=\left\{\psi \mid \Delta \vdash_{p h} \psi\right\}\right\}$
- $\Delta \Vdash p$ if $p \in \Delta$ for propositional letters p
claim: $\quad \Delta \Vdash \psi \Longleftrightarrow \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ proof of claim: consider $\psi=\left(\psi_{1} \supset \psi_{2}\right)$
\Leftarrow let $\psi \in \Delta$ and consider state $\Delta^{\prime} \supseteq \Delta$ with $\Delta^{\prime} \Vdash \psi_{1}$
$\psi_{1} \in \Delta^{\prime}$ by induction hypothesis

Proof (\Leftarrow)

suppose $\Gamma \vdash_{p h} \varphi$ does not hold
define Kripke model $\mathcal{C}=\langle C, \subseteq, \Vdash\rangle$ with

- $C=\left\{\Delta \mid \Gamma \subseteq \Delta\right.$ and $\left.\Delta=\left\{\psi \mid \Delta \vdash_{p h} \psi\right\}\right\}$
- $\Delta \Vdash p$ if $p \in \Delta$ for propositional letters p
claim: $\quad \Delta \Vdash \psi \Longleftrightarrow \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ proof of claim: consider $\psi=\left(\psi_{1} \supset \psi_{2}\right)$
\Leftarrow let $\psi \in \Delta$ and consider state $\Delta^{\prime} \supseteq \Delta$ with $\Delta^{\prime} \Vdash \psi_{1}$ $\psi_{1} \in \Delta^{\prime}$ by induction hypothesis and thus $\Delta^{\prime} \vdash_{p h} \psi_{1}$

Proof (\Leftarrow)

suppose $\Gamma \vdash_{p h} \varphi$ does not hold
define Kripke model $\mathcal{C}=\langle C, \subseteq, \Vdash\rangle$ with

- $C=\left\{\Delta \mid \Gamma \subseteq \Delta\right.$ and $\left.\Delta=\left\{\psi \mid \Delta \vdash_{p h} \psi\right\}\right\}$
- $\Delta \Vdash p$ if $p \in \Delta$ for propositional letters p
claim: $\quad \Delta \Vdash \psi \Longleftrightarrow \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ proof of claim: consider $\psi=\left(\psi_{1} \supset \psi_{2}\right)$
\Leftarrow let $\psi \in \Delta$ and consider state $\Delta^{\prime} \supseteq \Delta$ with $\Delta^{\prime} \Vdash \psi_{1}$ $\psi_{1} \in \Delta^{\prime}$ by induction hypothesis and thus $\Delta^{\prime} \vdash_{p h} \psi_{1}$ $\Delta^{\prime} \vdash_{\rho h} \psi$ because $\Delta \subseteq \Delta^{\prime}$

Proof (\Leftarrow)

suppose $\Gamma \vdash_{p h} \varphi$ does not hold
define Kripke model $\mathcal{C}=\langle C, \subseteq, \Vdash\rangle$ with

- $C=\left\{\Delta \mid \Gamma \subseteq \Delta\right.$ and $\left.\Delta=\left\{\psi \mid \Delta \vdash_{p h} \psi\right\}\right\}$
- $\Delta \Vdash p$ if $p \in \Delta$ for propositional letters p
claim: $\quad \Delta \Vdash \psi \Longleftrightarrow \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ proof of claim: consider $\psi=\left(\psi_{1} \supset \psi_{2}\right)$
\Leftarrow let $\psi \in \Delta$ and consider state $\Delta^{\prime} \supseteq \Delta$ with $\Delta^{\prime} \Vdash \psi_{1}$
$\psi_{1} \in \Delta^{\prime}$ by induction hypothesis and thus $\Delta^{\prime} \vdash_{p h} \psi_{1}$
$\Delta^{\prime} \vdash^{\rho h} \psi$ because $\Delta \subseteq \Delta^{\prime}$
$\Delta^{\prime} \vdash_{p h} \psi_{2}$ by Modus Ponens

Proof (\Leftarrow)

suppose $\Gamma \vdash_{p h} \varphi$ does not hold
define Kripke model $\mathcal{C}=\langle C, \subseteq, \Vdash\rangle$ with

- $C=\left\{\Delta \mid \Gamma \subseteq \Delta\right.$ and $\left.\Delta=\left\{\psi \mid \Delta \vdash_{p h} \psi\right\}\right\}$
- $\Delta \Vdash p$ if $p \in \Delta$ for propositional letters p
claim: $\quad \Delta \Vdash \psi \Longleftrightarrow \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ proof of claim: consider $\psi=\left(\psi_{1} \supset \psi_{2}\right)$
\Leftarrow let $\psi \in \Delta$ and consider state $\Delta^{\prime} \supseteq \Delta$ with $\Delta^{\prime} \Vdash \psi_{1}$
$\psi_{1} \in \Delta^{\prime}$ by induction hypothesis and thus $\Delta^{\prime} \vdash_{p h} \psi_{1}$
$\Delta^{\prime} \vdash_{\rho h} \psi$ because $\Delta \subseteq \Delta^{\prime}$
$\Delta^{\prime} \vdash_{p h} \psi_{2}$ by Modus Ponens
$\Delta^{\prime} \Vdash \psi_{2}$ by induction hypothesis

Proof (\Leftarrow)

suppose $\Gamma \vdash_{p h} \varphi$ does not hold
define Kripke model $\mathcal{C}=\langle C, \subseteq, \Vdash\rangle$ with

- $C=\left\{\Delta \mid \Gamma \subseteq \Delta\right.$ and $\left.\Delta=\left\{\psi \mid \Delta \vdash_{p h} \psi\right\}\right\}$
- $\Delta \Vdash p$ if $p \in \Delta$ for propositional letters p
claim: $\quad \Delta \Vdash \psi \Longleftrightarrow \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ define $\Delta=\left\{\psi \mid \Gamma \vdash_{p h} \psi\right\}$

Proof (\Leftarrow)

suppose $\Gamma \vdash_{p h} \varphi$ does not hold
define Kripke model $\mathcal{C}=\langle C, \subseteq, \Vdash\rangle$ with

- $C=\left\{\Delta \mid \Gamma \subseteq \Delta\right.$ and $\left.\Delta=\left\{\psi \mid \Delta \vdash_{p h} \psi\right\}\right\}$
- $\Delta \Vdash p$ if $p \in \Delta$ for propositional letters p
claim: $\quad \Delta \Vdash \psi \Longleftrightarrow \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ define $\Delta=\left\{\psi \mid \Gamma \vdash_{p h} \psi\right\}$
$\Delta \in C$

Proof (\Leftarrow)

suppose $\Gamma \vdash_{p h} \varphi$ does not hold
define Kripke model $\mathcal{C}=\langle C, \subseteq, \Vdash\rangle$ with

- $C=\left\{\Delta \mid \Gamma \subseteq \Delta\right.$ and $\left.\Delta=\left\{\psi \mid \Delta \vdash_{p h} \psi\right\}\right\}$
- $\Delta \Vdash p$ if $p \in \Delta$ for propositional letters p
claim: $\quad \Delta \Vdash \psi \Longleftrightarrow \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ
define $\Delta=\left\{\psi \mid \Gamma \vdash_{p h} \psi\right\}$
$\Delta \in C$ and $\Delta \Vdash \psi$ for all $\psi \in \Gamma$

Proof (\Leftarrow)

suppose $\Gamma \vdash_{p h} \varphi$ does not hold
define Kripke model $\mathcal{C}=\langle C, \subseteq, \Vdash\rangle$ with

- $C=\left\{\Delta \mid \Gamma \subseteq \Delta\right.$ and $\left.\Delta=\left\{\psi \mid \Delta \vdash_{p h} \psi\right\}\right\}$
- $\Delta \Vdash p$ if $p \in \Delta$ for propositional letters p
claim: $\quad \Delta \Vdash \psi \Longleftrightarrow \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ
define $\Delta=\left\{\psi \mid \Gamma \vdash_{p h} \psi\right\}$
$\Delta \in C$ and $\Delta \Vdash \psi$ for all $\psi \in \Gamma$ and $\Delta \Vdash \varphi$

Proof (\Leftarrow)

suppose $\Gamma \vdash_{p h} \varphi$ does not hold
define Kripke model $\mathcal{C}=\langle C, \subseteq, \Vdash\rangle$ with

- $C=\left\{\Delta \mid \Gamma \subseteq \Delta\right.$ and $\left.\Delta=\left\{\psi \mid \Delta \vdash_{p h} \psi\right\}\right\}$
- $\Delta \Vdash p$ if $p \in \Delta$ for propositional letters p
claim: $\quad \Delta \Vdash \psi \Longleftrightarrow \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ
define $\Delta=\left\{\psi \mid \Gamma \vdash_{p h} \psi\right\}$
$\Delta \in C$ and $\Delta \Vdash \psi$ for all $\psi \in \Gamma$ and $\Delta \Vdash \varphi$
$\Gamma \Vdash \varphi$ by definition of \Vdash

Proof (\Leftarrow)

suppose $\Gamma \vdash_{p h} \varphi$ does not hold
define Kripke model $\mathcal{C}=\langle C, \subseteq, \Vdash\rangle$ with

- $C=\left\{\Delta \mid \Gamma \subseteq \Delta\right.$ and $\left.\Delta=\left\{\psi \mid \Delta \vdash_{p h} \psi\right\}\right\}$
- $\Delta \Vdash p$ if $p \in \Delta$ for propositional letters p
claim: $\Delta \Vdash \psi \Longleftrightarrow \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ
define $\Delta=\left\{\psi \mid \Gamma \vdash_{p h} \psi\right\}$
$\Delta \in C$ and $\Delta \Vdash \psi$ for all $\psi \in \Gamma$ and $\Delta \Vdash \varphi$
$\Gamma \Vdash \varphi$ by definition of \Vdash

Example (Peirce's Law)

$\Vdash((p \supset q) \supset p) \supset p \quad$ because of Kripke model \square

Definition (Hilbert Systems, Tree Variant)

- Assumption

$$
\ulcorner, \varphi \vdash \varphi
$$

Definition (Hilbert Systems, Tree Variant)

- Assumption

$$
\ulcorner, \varphi \vdash \varphi
$$

- Axiom Scheme $1 \quad$ 「ト $\varphi \supset(\psi \supset \varphi)$

Definition (Hilbert Systems, Tree Variant)

- Assumption

$$
\ulcorner, \varphi \vdash \varphi
$$

- Axiom Scheme $1 \quad$ 「ト $\varphi \supset(\psi \supset \varphi)$
- Axiom Scheme $2 \quad \Gamma \vdash(\varphi \supset(\psi \supset \chi)) \supset((\varphi \supset \psi) \supset(\varphi \supset \chi))$

Definition (Hilbert Systems, Tree Variant)

- Assumption

$$
\ulcorner, \varphi \vdash \varphi
$$

- Axiom Scheme $1 \quad$ 「ト $\varphi \supset(\psi \supset \varphi)$
- Axiom Scheme $2 \quad \Gamma \vdash(\varphi \supset(\psi \supset \chi)) \supset((\varphi \supset \psi) \supset(\varphi \supset \chi))$
- Modus Ponens

$$
\frac{\Gamma \vdash \varphi \supset \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi}
$$

Definition (Hilbert Systems, Tree Variant)

- Assumption

$$
\ulcorner, \varphi \vdash \varphi
$$

- Axiom Scheme $1 \quad$ 「ト $\varphi \supset(\psi \supset \varphi)$
- Axiom Scheme $2 \quad \Gamma \vdash(\varphi \supset(\psi \supset \chi)) \supset((\varphi \supset \psi) \supset(\varphi \supset \chi))$
- Modus Ponens $\frac{\Gamma \vdash \varphi \supset \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi}$
$\Gamma \vdash_{H} \varphi$ if $\Gamma \vdash \varphi$ is derivable

Definition (Hilbert Systems, Tree Variant)

- Assumption

$$
\ulcorner, \varphi \vdash \varphi
$$

- Axiom Scheme $1 \quad \Gamma \vdash \varphi \supset(\psi \supset \varphi)$
- Axiom Scheme $2 \quad \Gamma \vdash(\varphi \supset(\psi \supset \chi)) \supset((\varphi \supset \psi) \supset(\varphi \supset \chi))$
- Modus Ponens

$$
\frac{\Gamma \vdash \varphi \supset \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi}
$$

$\Gamma \vdash_{H} \varphi$ if $\Gamma \vdash \varphi$ is derivable

Lemma
$\Gamma \vdash_{\text {ph } \varphi} \Longleftrightarrow \Gamma \vdash_{H} \varphi$

David Hilbert (1862-1943)

Jaakko Hintikka (1929-2015)

Leopold Löwenheim
(1878-1957)

Thoralf Skolem (1887-1963)

David Hilbert (1862-1943)

Jaakko Hintikka (1929-2015)

Leopold Löwenheim (1878-1957)

Thoralf Skolem (1887-1963)

Combinatory Logic

Outline

- Overview of this lecture
- Intuitionistic Propositional Logic
- Combinatory Logic
- Curry-Howard Isomorphism
- Exercises
- Further Reading

Combinatory Logic

Definition

set \mathcal{C} of (combinatory) terms is built from

- variables x, y, z, \ldots

Definition

set \mathcal{C} of (combinatory) terms is built from

- variables x, y, z, \ldots
- constants K S

Definition

set \mathcal{C} of (combinatory) terms is built from

- variables x, y, z, \ldots
- constants K S
- application (MN) for combinatory terms M and N

Definition

set \mathcal{C} of (combinatory) terms is built from

- variables $\quad x, y, z, \ldots$
- constants K S
- application (MN) for combinatory terms M and N

Notational Convention

left association to reduce number of parentheses

Definition

set \mathcal{C} of (combinatory) terms is built from

- variables x, y, z, \ldots
- constants K S
- application (MN) for combinatory terms M and N

Notational Convention

left association to reduce number of parentheses

Definition

(weak) reduction is smallest relation \rightarrow_{w} on terms such that

$$
\overline{\mathrm{K} M N \rightarrow_{w} M}
$$

for all terms M, N

Definition

set \mathcal{C} of (combinatory) terms is built from

- variables x, y, z, \ldots
- constants K S
- application (MN) for combinatory terms M and N

Notational Convention

left association to reduce number of parentheses

Definition

(weak) reduction is smallest relation \rightarrow_{w} on terms such that
$\overline{\mathrm{K} M N \rightarrow_{w} M} \quad \overline{\mathrm{~S} M N P \rightarrow_{w} M P(N P)}$
for all terms M, N, P

Definition

set \mathcal{C} of (combinatory) terms is built from

- variables x, y, z, \ldots
- constants K S
- application (MN) for combinatory terms M and N

Notational Convention

left association to reduce number of parentheses

Definition

(weak) reduction is smallest relation \rightarrow_{w} on terms such that
$\overline{\mathrm{K} M N \rightarrow_{w} M} \quad \overline{\mathrm{~S} M N P \rightarrow_{w} M P(N P)} \quad \frac{M \rightarrow_{w} N}{M P \rightarrow_{w} N P} \quad \frac{M \rightarrow_{w} N}{P M \rightarrow_{w} P N}$
for all terms M, N, P

Definitions

- \rightarrow_{w}^{*} is transitive and reflexive closure of \rightarrow_{w}

Definitions

- \rightarrow_{w}^{*} is transitive and reflexive closure of \rightarrow_{w}
- $\mathrm{I}=\mathrm{SKK} \quad \mathrm{W}=\mathrm{SS}(\mathrm{KI}) \quad \mathrm{B}=\mathrm{S}(\mathrm{KS}) \mathrm{K} \quad \mathrm{C}=\mathrm{S}(\mathrm{BBS})(\mathrm{KK})$

Definitions

- \rightarrow_{w}^{*} is transitive and reflexive closure of \rightarrow_{w}
- $\mathrm{I}=\mathrm{SKK} \quad \mathrm{W}=\mathrm{SS}(\mathrm{KI}) \quad \mathrm{B}=\mathrm{S}(\mathrm{KS}) \mathrm{K} \quad \mathrm{C}=\mathrm{S}(\mathrm{BBS})(\mathrm{KK})$

Lemma

$$
\mathrm{I} x \rightarrow_{w}^{*} x \quad \mathrm{~W} x y \rightarrow_{w}^{*} x y y \quad \mathrm{~B} x y z \rightarrow_{w}^{*} x(y z) \quad \mathrm{C} x y z \rightarrow_{w}^{*} x z y
$$

Definitions

- \rightarrow_{w}^{*} is transitive and reflexive closure of \rightarrow_{w}
- $\mathrm{I}=\mathrm{SKK} \quad \mathrm{W}=\mathrm{SS}(\mathrm{KI}) \quad \mathrm{B}=\mathrm{S}(\mathrm{KS}) \mathrm{K} \quad \mathrm{C}=\mathrm{S}(\mathrm{BBS})(\mathrm{KK})$

Lemma

$$
\mathrm{I} x \rightarrow_{w}^{*} x \quad \mathrm{~W} x y \rightarrow_{w}^{*} x y y \quad \mathrm{~B} x y z \rightarrow_{w}^{*} x(y z) \quad \mathrm{C} x y z \rightarrow_{w}^{*} x z y
$$

Proof

$$
\mathrm{I} x \rightarrow_{w} \mathrm{~K} x(\mathrm{~K} x)
$$

Definitions

- \rightarrow_{w}^{*} is transitive and reflexive closure of \rightarrow_{w}
- $\mathrm{I}=\mathrm{SKK} \quad \mathrm{W}=\mathrm{SS}(\mathrm{KI}) \quad \mathrm{B}=\mathrm{S}(\mathrm{KS}) \mathrm{K} \quad \mathrm{C}=\mathrm{S}(\mathrm{BBS})(\mathrm{KK})$

Lemma

$$
\mathrm{I} x \rightarrow_{w}^{*} x \quad \mathrm{~W} x y \rightarrow_{w}^{*} x y y \quad \mathrm{~B} x y z \rightarrow_{w}^{*} x(y z) \quad \mathrm{C} x y z \rightarrow_{w}^{*} x z y
$$

Proof

$$
\mathrm{I} x \rightarrow_{w} \mathrm{~K} x(\mathrm{~K} x) \rightarrow_{w} x
$$

Definitions

- \rightarrow_{w}^{*} is transitive and reflexive closure of \rightarrow_{w}
- $\mathrm{I}=\mathrm{SKK} \quad \mathrm{W}=\mathrm{SS}(\mathrm{KI}) \quad \mathrm{B}=\mathrm{S}(\mathrm{KS}) \mathrm{K} \quad \mathrm{C}=\mathrm{S}(\mathrm{BBS})(\mathrm{KK})$

Lemma

$$
\mathrm{I} x \rightarrow_{w}^{*} x \quad \mathrm{~W} x y \rightarrow_{w}^{*} x y y \quad \mathrm{~B} x y z \rightarrow_{w}^{*} x(y z) \quad \mathrm{C} x y z \rightarrow_{w}^{*} x z y
$$

Proof

$$
\begin{aligned}
\mathrm{I} x & \rightarrow_{w} \mathrm{~K} x(\mathrm{~K} x) \rightarrow_{w} x \\
\mathrm{~W} x y & \rightarrow_{w} \mathrm{~S} x(\mathrm{KI} x) y
\end{aligned}
$$

Definitions

- \rightarrow_{w}^{*} is transitive and reflexive closure of \rightarrow_{w}
- $\mathrm{I}=\mathrm{SKK} \quad \mathrm{W}=\mathrm{SS}(\mathrm{KI}) \quad \mathrm{B}=\mathrm{S}(\mathrm{KS}) \mathrm{K} \quad \mathrm{C}=\mathrm{S}(\mathrm{BBS})(\mathrm{KK})$

Lemma

$$
\mathrm{I} x \rightarrow_{w}^{*} x \quad \mathrm{~W} x y \rightarrow_{w}^{*} x y y \quad \mathrm{~B} x y z \rightarrow_{w}^{*} x(y z) \quad \mathrm{C} x y z \rightarrow_{w}^{*} x z y
$$

Proof

$$
\begin{gathered}
\mathrm{I} x \rightarrow_{w} \mathrm{~K} x(\mathrm{~K} x) \rightarrow_{w} x \\
\mathrm{~W} x y \rightarrow_{w} \mathrm{~S} x(\mathrm{KI} x) y \rightarrow_{w} x y(\mathrm{KI} x y)
\end{gathered}
$$

Definitions

- \rightarrow_{w}^{*} is transitive and reflexive closure of \rightarrow_{w}
- $\mathrm{I}=\mathrm{SKK} \quad \mathrm{W}=\mathrm{SS}(\mathrm{KI}) \quad \mathrm{B}=\mathrm{S}(\mathrm{KS}) \mathrm{K} \quad \mathrm{C}=\mathrm{S}(\mathrm{BBS})(\mathrm{KK})$

Lemma

$$
\mathrm{I} x \rightarrow_{w}^{*} x \quad \mathrm{~W} x y \rightarrow_{w}^{*} x y y \quad \mathrm{~B} x y z \rightarrow_{w}^{*} x(y z) \quad \mathrm{C} x y z \rightarrow_{w}^{*} x z y
$$

Proof

$$
\begin{aligned}
\mathrm{I} x & \rightarrow_{w} \mathrm{~K} x(\mathrm{~K} x) \rightarrow_{w} x \\
\mathrm{~W} x y & \rightarrow_{w} \mathrm{~S} x(\mathrm{KI} x) y \rightarrow_{w} x y(\mathrm{KI} x y) \rightarrow_{w} x y(\mathrm{I} y)
\end{aligned}
$$

Definitions

- \rightarrow_{w}^{*} is transitive and reflexive closure of \rightarrow_{w}
- $\mathrm{I}=\mathrm{SKK} \quad \mathrm{W}=\mathrm{SS}(\mathrm{KI}) \quad \mathrm{B}=\mathrm{S}(\mathrm{KS}) \mathrm{K} \quad \mathrm{C}=\mathrm{S}(\mathrm{BBS})(\mathrm{KK})$

Lemma

$$
\mathrm{I} x \rightarrow_{w}^{*} x \quad \mathrm{~W} x y \rightarrow_{w}^{*} x y y \quad \mathrm{~B} x y z \rightarrow_{w}^{*} x(y z) \quad \mathrm{C} x y z \rightarrow_{w}^{*} x z y
$$

Proof

$$
\begin{aligned}
\mathrm{I} x & \rightarrow_{w} \mathrm{~K} x(\mathrm{~K} x) \rightarrow_{w} x \\
\mathrm{~W} x y & \rightarrow_{w} \mathrm{~S} x(\mathrm{KI} x) y \rightarrow_{w} x y(\mathrm{KI} x y) \rightarrow_{w} x y(\mathrm{I} y) \rightarrow_{w}^{*} x y y
\end{aligned}
$$

Definitions

- \rightarrow_{w}^{*} is transitive and reflexive closure of \rightarrow_{w}
- $\mathrm{I}=\mathrm{SKK} \quad \mathrm{W}=\mathrm{SS}(\mathrm{KI}) \quad \mathrm{B}=\mathrm{S}(\mathrm{KS}) \mathrm{K} \quad \mathrm{C}=\mathrm{S}(\mathrm{BBS})(\mathrm{KK})$

Lemma

$$
\mathrm{I} x \rightarrow_{w}^{*} x \quad \mathrm{~W} x y \rightarrow_{w}^{*} x y y \quad \mathrm{~B} x y z \rightarrow_{w}^{*} x(y z) \quad \mathrm{C} x y z \rightarrow_{w}^{*} x z y
$$

Proof

$$
\begin{aligned}
\mathrm{I} x & \rightarrow_{w} \mathrm{~K} x(\mathrm{~K} x) \rightarrow_{w} x \\
\mathrm{~W} x y & \rightarrow_{w} \mathrm{~S} x(\mathrm{KI} x) y \rightarrow_{w} x y(\mathrm{KI} x y) \rightarrow_{w} x y(\mathrm{I} y) \rightarrow_{w}^{*} x y y \\
\mathrm{~B} x y z & \rightarrow_{w} \mathrm{KS} x(\mathrm{~K} x) y z
\end{aligned}
$$

Definitions

- \rightarrow_{w}^{*} is transitive and reflexive closure of \rightarrow_{w}
- $\mathrm{I}=\mathrm{SKK} \quad \mathrm{W}=\mathrm{SS}(\mathrm{KI}) \quad \mathrm{B}=\mathrm{S}(\mathrm{KS}) \mathrm{K} \quad \mathrm{C}=\mathrm{S}(\mathrm{BBS})(\mathrm{KK})$

Lemma

$$
\mathrm{I} x \rightarrow_{w}^{*} x \quad \mathrm{~W} x y \rightarrow_{w}^{*} x y y \quad \mathrm{~B} x y z \rightarrow_{w}^{*} x(y z) \quad \mathrm{C} x y z \rightarrow_{w}^{*} x z y
$$

Proof

$$
\begin{aligned}
\mathrm{I} x & \rightarrow_{w} \mathrm{~K} x(\mathrm{~K} x) \rightarrow_{w} x \\
\mathrm{~W} x y & \rightarrow_{w} \mathrm{~S} x(\mathrm{KI} x) y \rightarrow_{w} x y(\mathrm{KI} x y) \rightarrow_{w} x y(\mathrm{I} y) \rightarrow_{w}^{*} x y y \\
\mathrm{~B} x y z & \rightarrow_{w} \mathrm{KS} x(\mathrm{~K} x) y z \rightarrow_{w} \mathrm{~S}(\mathrm{~K} x) y z
\end{aligned}
$$

Definitions

- \rightarrow_{w}^{*} is transitive and reflexive closure of \rightarrow_{w}
- $\mathrm{I}=\mathrm{SKK} \quad \mathrm{W}=\mathrm{SS}(\mathrm{KI}) \quad \mathrm{B}=\mathrm{S}(\mathrm{KS}) \mathrm{K} \quad \mathrm{C}=\mathrm{S}(\mathrm{BBS})(\mathrm{KK})$

Lemma

$$
\mathrm{I} x \rightarrow_{w}^{*} x \quad \mathrm{~W} x y \rightarrow_{w}^{*} x y y \quad \mathrm{~B} x y z \rightarrow_{w}^{*} x(y z) \quad \mathrm{C} x y z \rightarrow_{w}^{*} x z y
$$

Proof

$$
\begin{aligned}
\mathrm{I} x & \rightarrow_{w} \mathrm{~K} x(\mathrm{~K} x) \rightarrow_{w} x \\
\mathrm{~W} x y & \rightarrow_{w} \mathrm{~S} x(\mathrm{KI} x) y \rightarrow_{w} x y(\mathrm{KI} x y) \rightarrow_{w} x y(\mathrm{I} y) \rightarrow_{w}^{*} x y y \\
\mathrm{~B} x y z & \rightarrow_{w} \mathrm{KS} x(\mathrm{~K} x) y z \rightarrow_{w} \mathrm{~S}(\mathrm{~K} x) y z \rightarrow_{w} \mathrm{~K} x z(y z)
\end{aligned}
$$

Definitions

- \rightarrow_{w}^{*} is transitive and reflexive closure of \rightarrow_{w}
- $\mathrm{I}=\mathrm{SKK} \quad \mathrm{W}=\mathrm{SS}(\mathrm{KI}) \quad \mathrm{B}=\mathrm{S}(\mathrm{KS}) \mathrm{K} \quad \mathrm{C}=\mathrm{S}(\mathrm{BBS})(\mathrm{KK})$

Lemma

$$
\mathrm{I} x \rightarrow_{w}^{*} x \quad \mathrm{~W} x y \rightarrow_{w}^{*} x y y \quad \mathrm{~B} x y z \rightarrow_{w}^{*} x(y z) \quad \mathrm{C} x y z \rightarrow_{w}^{*} x z y
$$

Proof

$$
\begin{aligned}
\mathrm{I} x & \rightarrow_{w} \mathrm{~K} x(\mathrm{~K} x) \rightarrow_{w} x \\
\mathrm{~W} x y & \rightarrow_{w} \mathrm{~S} x(\mathrm{KI} x) y \rightarrow_{w} x y(\mathrm{KI} x y) \rightarrow_{w} x y(\mathrm{I} y) \rightarrow_{w}^{*} x y y \\
\mathrm{~B} x y z & \rightarrow_{w} \mathrm{KS} x(\mathrm{~K} x) y z \rightarrow_{w} \mathrm{~S}(\mathrm{~K} x) y z \rightarrow_{w} \mathrm{~K} x z(y z) \rightarrow_{w} x(y z)
\end{aligned}
$$

Definitions

- \rightarrow_{w}^{*} is transitive and reflexive closure of \rightarrow_{w}
- $\mathrm{I}=\mathrm{SKK} \quad \mathrm{W}=\mathrm{SS}(\mathrm{KI}) \quad \mathrm{B}=\mathrm{S}(\mathrm{KS}) \mathrm{K} \quad \mathrm{C}=\mathrm{S}(\mathrm{BBS})(\mathrm{KK})$

Lemma

$$
\mathrm{I} x \rightarrow_{w}^{*} x \quad \mathrm{~W} x y \rightarrow_{w}^{*} x y y \quad \mathrm{~B} x y z \rightarrow_{w}^{*} x(y z) \quad \mathrm{C} x y z \rightarrow_{w}^{*} x z y
$$

Proof

$$
\begin{aligned}
\mathrm{I} x & \rightarrow_{w} \mathrm{~K} x(\mathrm{~K} x) \rightarrow_{w} x \\
\mathrm{~W} x y & \rightarrow_{w} \mathrm{~S} x(\mathrm{KI} x) y \rightarrow_{w} x y(\mathrm{KI} x y) \rightarrow_{w} x y(\mathrm{I} y) \rightarrow_{w}^{*} x y y \\
\mathrm{~B} x y z & \rightarrow_{w} \mathrm{KS} x(\mathrm{~K} x) y z \rightarrow_{w} \mathrm{~S}(\mathrm{~K} x) y z \rightarrow_{w} \mathrm{~K} x z(y z) \rightarrow_{w} x(y z) \\
\mathrm{C} x y z & \rightarrow_{w} \mathrm{BBS} x(\mathrm{KK} x) y z
\end{aligned}
$$

Definitions

- \rightarrow_{w}^{*} is transitive and reflexive closure of \rightarrow_{w}
- $\mathrm{I}=\mathrm{SKK} \quad \mathrm{W}=\mathrm{SS}(\mathrm{KI}) \quad \mathrm{B}=\mathrm{S}(\mathrm{KS}) \mathrm{K} \quad \mathrm{C}=\mathrm{S}(\mathrm{BBS})(\mathrm{KK})$

Lemma

$$
\mathrm{I} x \rightarrow_{w}^{*} x \quad \mathrm{~W} x y \rightarrow_{w}^{*} x y y \quad \mathrm{~B} x y z \rightarrow_{w}^{*} x(y z) \quad \mathrm{C} x y z \rightarrow_{w}^{*} x z y
$$

Proof

$$
\begin{aligned}
\mathrm{I} x & \rightarrow_{w} \mathrm{~K} x(\mathrm{~K} x) \rightarrow_{w} x \\
\mathrm{~W} x y & \rightarrow_{w} \mathrm{~S} x(\mathrm{KI} x) y \rightarrow_{w} x y(\mathrm{KI} x y) \rightarrow_{w} x y(\mathrm{I} y) \rightarrow_{w}^{*} x y y \\
\mathrm{~B} x y z & \rightarrow_{w} \mathrm{KS} x(\mathrm{~K} x) y z \rightarrow_{w} \mathrm{~S}(\mathrm{~K} x) y z \rightarrow_{w} \mathrm{~K} x z(y z) \rightarrow_{w} x(y z) \\
\mathrm{C} x y z & \rightarrow_{w} \mathrm{BBS} x(\mathrm{KK} x) y z \rightarrow_{w} \mathrm{BBS} x \mathrm{~K} y z
\end{aligned}
$$

Definitions

- \rightarrow_{w}^{*} is transitive and reflexive closure of \rightarrow_{w}
- $\mathrm{I}=\mathrm{SKK} \quad \mathrm{W}=\mathrm{SS}(\mathrm{KI}) \quad \mathrm{B}=\mathrm{S}(\mathrm{KS}) \mathrm{K} \quad \mathrm{C}=\mathrm{S}(\mathrm{BBS})(\mathrm{KK})$

Lemma

$$
\mathrm{I} x \rightarrow_{w}^{*} x \quad \mathrm{~W} x y \rightarrow_{w}^{*} x y y \quad \mathrm{~B} x y z \rightarrow_{w}^{*} x(y z) \quad \mathrm{C} x y z \rightarrow_{w}^{*} x z y
$$

Proof

$$
\begin{aligned}
\mathrm{I} x & \rightarrow_{w} \mathrm{~K} x(\mathrm{~K} x) \rightarrow_{w} x \\
\mathrm{~W} x y & \rightarrow_{w} \mathrm{~S} x(\mathrm{KI} x) y \rightarrow_{w} x y(\mathrm{KI} x y) \rightarrow_{w} x y(\mathrm{I} y) \rightarrow_{w}^{*} x y y \\
\mathrm{~B} x y z & \rightarrow_{w} \mathrm{KS} x(\mathrm{~K} x) y z \rightarrow_{w} \mathrm{~S}(\mathrm{~K} x) y z \rightarrow_{w} \mathrm{~K} x z(y z) \rightarrow_{w} x(y z) \\
\mathrm{C} x y z & \rightarrow_{w} \mathrm{BBS} x(\mathrm{KK} x) y z \rightarrow_{w} \mathrm{BBS} x \mathrm{~K} y z \rightarrow_{w}^{*} \mathrm{~B}(\mathrm{~S} x) \mathrm{K} y z
\end{aligned}
$$

Definitions

- \rightarrow_{w}^{*} is transitive and reflexive closure of \rightarrow_{w}
- $\mathrm{I}=\mathrm{SKK} \quad \mathrm{W}=\mathrm{SS}(\mathrm{KI}) \quad \mathrm{B}=\mathrm{S}(\mathrm{KS}) \mathrm{K} \quad \mathrm{C}=\mathrm{S}(\mathrm{BBS})(\mathrm{KK})$

Lemma

$$
\mathrm{I} x \rightarrow_{w}^{*} x \quad \mathrm{~W} x y \rightarrow_{w}^{*} x y y \quad \mathrm{~B} x y z \rightarrow_{w}^{*} x(y z) \quad \mathrm{C} x y z \rightarrow_{w}^{*} x z y
$$

Proof

$$
\begin{aligned}
\mathrm{I} x & \rightarrow_{w} \mathrm{~K} x(\mathrm{~K} x) \rightarrow_{w} x \\
\mathrm{~W} x y & \rightarrow_{w} \mathrm{~S} x(\mathrm{KI} x) y \rightarrow_{w} x y(\mathrm{KI} x y) \rightarrow_{w} x y(\mathrm{I} y) \rightarrow_{w}^{*} x y y \\
\mathrm{~B} x y z & \rightarrow_{w} \mathrm{KS} x(\mathrm{~K} x) y z \rightarrow_{w} \mathrm{~S}(\mathrm{~K} x) y z \rightarrow_{w} \mathrm{~K} x z(y z) \rightarrow_{w} x(y z) \\
\mathrm{C} x y z & \rightarrow_{w} \mathrm{BBS} x(\mathrm{KK} x) y z \rightarrow_{w} \mathrm{BBS} x \mathrm{~K} y z \rightarrow_{w}^{*} \mathrm{~B}(\mathrm{~S} x) \mathrm{K} y z \\
& \rightarrow_{w}^{*} \mathrm{~S} x(\mathrm{~K} y) z
\end{aligned}
$$

Definitions

- \rightarrow_{w}^{*} is transitive and reflexive closure of \rightarrow_{w}
- $\mathrm{I}=\mathrm{SKK} \quad \mathrm{W}=\mathrm{SS}(\mathrm{KI}) \quad \mathrm{B}=\mathrm{S}(\mathrm{KS}) \mathrm{K} \quad \mathrm{C}=\mathrm{S}(\mathrm{BBS})(\mathrm{KK})$

Lemma

$$
\mathrm{I} x \rightarrow_{w}^{*} x \quad \mathrm{~W} x y \rightarrow_{w}^{*} x y y \quad \mathrm{~B} x y z \rightarrow_{w}^{*} x(y z) \quad \mathrm{C} x y z \rightarrow_{w}^{*} x z y
$$

Proof

$$
\begin{aligned}
\mathrm{I} x & \rightarrow_{w} \mathrm{~K} x(\mathrm{~K} x) \rightarrow_{w} x \\
\mathrm{~W} x y & \rightarrow_{w} \mathrm{~S} x(\mathrm{KI} x) y \rightarrow_{w} x y(\mathrm{KI} x y) \rightarrow_{w} x y(\mathrm{I} y) \rightarrow_{w}^{*} x y y \\
\mathrm{~B} x y z & \rightarrow_{w} \mathrm{KS} x(\mathrm{~K} x) y z \rightarrow_{w} \mathrm{~S}(\mathrm{~K} x) y z \rightarrow_{w} \mathrm{~K} x z(y z) \rightarrow_{w} x(y z) \\
\mathrm{C} x y z & \rightarrow_{w} \mathrm{BBS} x(\mathrm{KK} x) y z \rightarrow_{w} \mathrm{BBS} x \mathrm{~K} y z \rightarrow_{w}^{*} \mathrm{~B}(\mathrm{~S} x) \mathrm{K} y z \\
& \rightarrow_{w}^{*} \mathrm{~S} x(\mathrm{~K} y) z \rightarrow_{w} x z(\mathrm{~K} y z)
\end{aligned}
$$

Definitions

- \rightarrow_{w}^{*} is transitive and reflexive closure of \rightarrow_{w}
- $\mathrm{I}=\mathrm{SKK} \quad \mathrm{W}=\mathrm{SS}(\mathrm{KI}) \quad \mathrm{B}=\mathrm{S}(\mathrm{KS}) \mathrm{K} \quad \mathrm{C}=\mathrm{S}(\mathrm{BBS})(\mathrm{KK})$

Lemma

$$
\mathrm{I} x \rightarrow_{w}^{*} x \quad \mathrm{~W} x y \rightarrow_{w}^{*} x y y \quad \mathrm{~B} x y z \rightarrow_{w}^{*} x(y z) \quad \mathrm{C} x y z \rightarrow_{w}^{*} x z y
$$

Proof

$$
\begin{aligned}
\mathrm{I} x & \rightarrow_{w} \mathrm{~K} x(\mathrm{~K} x) \rightarrow_{w} x \\
\mathrm{~W} x y & \rightarrow_{w} \mathrm{~S} x(\mathrm{KI} x) y \rightarrow_{w} x y(\mathrm{KI} x y) \rightarrow_{w} x y(\mathrm{I} y) \rightarrow_{w}^{*} x y y \\
\mathrm{~B} x y z & \rightarrow_{w} \mathrm{KS} x(\mathrm{~K} x) y z \rightarrow_{w} \mathrm{~S}(\mathrm{~K} x) y z \rightarrow_{w} \mathrm{~K} x z(y z) \rightarrow_{w} x(y z) \\
\mathrm{C} x y z & \rightarrow_{w} \mathrm{BBS} x(\mathrm{KK} x) y z \rightarrow_{w} \mathrm{BBS} x \mathrm{~K} y z \rightarrow_{w}^{*} \mathrm{~B}(\mathrm{~S} x) \mathrm{K} y z \\
& \rightarrow_{w}^{*} \mathrm{~S} x(\mathrm{~K} y) z \rightarrow_{w} x z(\mathrm{~K} y z) \rightarrow_{w} x z y
\end{aligned}
$$

Definitions

- normal form is term M such that $M \rightarrow_{w} N$ for no term N

Definitions

- normal form is term M such that $M \rightarrow_{w} N$ for no term N
- $={ }_{w}$ is transitive, reflexive, and symmetric closure of \rightarrow_{w}

Definitions

- normal form is term M such that $M \rightarrow_{w} N$ for no term N
- $={ }_{w}$ is transitive, reflexive, and symmetric closure of \rightarrow_{w}
- term M is normalizing if $M \rightarrow_{w}^{*} N$ for some normal form N

Definitions

- normal form is term M such that $M \rightarrow_{w} N$ for no term N
- $={ }_{w}$ is transitive, reflexive, and symmetric closure of \rightarrow_{w}
- term M is normalizing if $M \rightarrow_{w}^{*} N$ for some normal form N
- infinite reduction is sequence $\left(M_{i}\right)_{i \geqslant 0}$ such that $M_{i} \rightarrow_{w} M_{i+1}$ for all $i \geqslant 0$

Definitions

- normal form is term M such that $M \rightarrow_{w} N$ for no term N
- $={ }_{w}$ is transitive, reflexive, and symmetric closure of \rightarrow_{w}
- term M is normalizing if $M \rightarrow_{w}^{*} N$ for some normal form N
- infinite reduction is sequence $\left(M_{i}\right)_{i \geqslant 0}$ such that $M_{i} \rightarrow_{w} M_{i+1}$ for all $i \geqslant 0$
- term M is strongly normalizing if there are no infinite reductions starting at M

Definitions

- normal form is term M such that $M \rightarrow_{w} N$ for no term N
- $={ }_{w}$ is transitive, reflexive, and symmetric closure of \rightarrow_{w}
- term M is normalizing if $M \rightarrow_{w}^{*} N$ for some normal form N
- infinite reduction is sequence $\left(M_{i}\right)_{i \geqslant 0}$ such that $M_{i} \rightarrow_{w} M_{i+1}$ for all $i \geqslant 0$
- term M is strongly normalizing if there are no infinite reductions starting at M

Example

term SII(SII) is not strongly normalizing:

$$
\mathrm{SII}(\mathrm{SII}) \rightarrow_{w} \mathrm{I}(\mathrm{SII})(\mathrm{I}(\mathrm{SII})) \rightarrow_{w}^{*} \mathrm{SII}(\mathrm{I}(\mathrm{SII})) \rightarrow_{w}^{*} \mathrm{SII}(\mathrm{SII})
$$

Definitions

- normal form is term M such that $M \rightarrow_{w} N$ for no term N
- $={ }_{w}$ is transitive, reflexive, and symmetric closure of \rightarrow_{w}
- term M is normalizing if $M \rightarrow_{w}^{*} N$ for some normal form N
- infinite reduction is sequence $\left(M_{i}\right)_{i \geqslant 0}$ such that $M_{i} \rightarrow_{w} M_{i+1}$ for all $i \geqslant 0$
- term M is strongly normalizing if there are no infinite reductions starting at M

Example

term SII(SII) is not strongly normalizing:

$$
\mathrm{SII}(\mathrm{SII}) \rightarrow_{w} \mathrm{I}(\mathrm{SII})(\mathrm{I}(\mathrm{SII})) \rightarrow_{w}^{*} \mathrm{SII}(\mathrm{I}(\mathrm{SII})) \rightarrow_{w}^{*} \mathrm{SII}(\mathrm{SII})
$$

Theorem (Confluence)

if $M \rightarrow{ }_{w}^{*} N_{1}$ and $M \rightarrow_{w}^{*} N_{2}$ then $N_{1} \rightarrow_{w}^{*} N_{3}$ and $N_{2} \rightarrow_{w}^{*} N_{3}$ for some term N_{3}

Definitions

- simple type is implicational propositional formula

Definitions

- simple type is implicational propositional formula
- environment is finite set of pairs $\Gamma=\left\{x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right\}$ with pairwise distinct variables x_{1}, \ldots, x_{n} and simple types $\tau_{1}, \ldots, \tau_{n}$

Definitions

- simple type is implicational propositional formula
- environment is finite set of pairs $\Gamma=\left\{x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right\}$ with pairwise distinct variables x_{1}, \ldots, x_{n} and simple types $\tau_{1}, \ldots, \tau_{n}$
- $\operatorname{dom}(\Gamma)=\{x \mid(x: \tau) \in \Gamma\}$ and $\operatorname{ran}(\Gamma)=\{\tau \mid(x: \tau) \in \Gamma\}$

Definitions

- simple type is implicational propositional formula
- environment is finite set of pairs $\Gamma=\left\{x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right\}$ with pairwise distinct variables x_{1}, \ldots, x_{n} and simple types $\tau_{1}, \ldots, \tau_{n}$
- $\operatorname{dom}(\Gamma)=\{x \mid(x: \tau) \in \Gamma\}$ and $\operatorname{ran}(\Gamma)=\{\tau \mid(x: \tau) \in \Gamma\}$
- judgement $\Gamma \vdash M: \tau$ (term M has type τ in environment Γ)

Definitions

- simple type is implicational propositional formula
- environment is finite set of pairs $\Gamma=\left\{x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right\}$ with pairwise distinct variables x_{1}, \ldots, x_{n} and simple types $\tau_{1}, \ldots, \tau_{n}$
- $\operatorname{dom}(\Gamma)=\{x \mid(x: \tau) \in \Gamma\}$ and $\operatorname{ran}(\Gamma)=\{\tau \mid(x: \tau) \in \Gamma\}$
- judgement $\Gamma \vdash M: \tau$ (term M has type τ in environment Γ) is defined by type assignment rules
- variable 「, $x: \tau \vdash x: \tau$

Definitions

- simple type is implicational propositional formula
- environment is finite set of pairs $\Gamma=\left\{x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right\}$ with pairwise distinct variables x_{1}, \ldots, x_{n} and simple types $\tau_{1}, \ldots, \tau_{n}$
- $\operatorname{dom}(\Gamma)=\{x \mid(x: \tau) \in \Gamma\}$ and $\operatorname{ran}(\Gamma)=\{\tau \mid(x: \tau) \in \Gamma\}$
- judgement $\Gamma \vdash M: \tau$ (term M has type τ in environment Γ) is defined by type assignment rules
- variable \quad, $x: \tau \vdash x: \tau$
- K

$$
\ulcorner\vdash \mathrm{K}: \sigma \rightarrow \tau \rightarrow \sigma
$$

Definitions

- simple type is implicational propositional formula
- environment is finite set of pairs $\Gamma=\left\{x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right\}$ with pairwise distinct variables x_{1}, \ldots, x_{n} and simple types $\tau_{1}, \ldots, \tau_{n}$
- $\operatorname{dom}(\Gamma)=\{x \mid(x: \tau) \in \Gamma\}$ and $\operatorname{ran}(\Gamma)=\{\tau \mid(x: \tau) \in \Gamma\}$
- judgement $\Gamma \vdash M: \tau$ (term M has type τ in environment Γ) is defined by type assignment rules
- variable \quad, $x: \tau \vdash x: \tau$
- K
$\Gamma \vdash \mathrm{K}: \sigma \rightarrow \tau \rightarrow \sigma$
- S

$$
\ulcorner\vdash \mathrm{S}:(\sigma \rightarrow \tau \rightarrow \rho) \rightarrow(\sigma \rightarrow \tau) \rightarrow \sigma \rightarrow \rho
$$

Definitions

- simple type is implicational propositional formula
- environment is finite set of pairs $\Gamma=\left\{x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right\}$ with pairwise distinct variables x_{1}, \ldots, x_{n} and simple types $\tau_{1}, \ldots, \tau_{n}$
- $\operatorname{dom}(\Gamma)=\{x \mid(x: \tau) \in \Gamma\}$ and $\operatorname{ran}(\Gamma)=\{\tau \mid(x: \tau) \in \Gamma\}$
- judgement $\Gamma \vdash M: \tau$ (term M has type τ in environment Γ) is defined by type assignment rules
- variable \quad, $x: \tau \vdash x: \tau$
- K
$\Gamma \vdash \mathrm{K}: \sigma \rightarrow \tau \rightarrow \sigma$
- S

$$
\ulcorner\vdash \mathrm{S}:(\sigma \rightarrow \tau \rightarrow \rho) \rightarrow(\sigma \rightarrow \tau) \rightarrow \sigma \rightarrow \rho
$$

- application $\frac{\Gamma \vdash M: \sigma \rightarrow \tau \quad \Gamma \vdash N: \sigma}{\Gamma \vdash(M N): \tau}$

Examples

- \vdash SKK : $\alpha \rightarrow \alpha$ for all simple types α

Examples

- \vdash SKK : $\alpha \rightarrow \alpha$ for all simple types α

$$
\begin{array}{rr}
\mathrm{S}:(\alpha \rightarrow(\alpha \rightarrow \alpha) \rightarrow \alpha) \rightarrow(\alpha \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha & \mathrm{K}: \alpha \rightarrow(\alpha \rightarrow \alpha) \rightarrow \alpha \\
\hline \mathrm{SK}:(\alpha \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha & \mathrm{K}: \alpha \rightarrow \alpha \rightarrow \alpha
\end{array}
$$

$$
\text { SKK : } \alpha \rightarrow \alpha
$$

Examples

- \vdash SKK : $\alpha \rightarrow \alpha$ for all simple types α

$$
\begin{array}{rr}
\mathrm{S}:(\alpha \rightarrow(\alpha \rightarrow \alpha) \rightarrow \alpha) \rightarrow(\alpha \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha & \mathrm{K}: \alpha \rightarrow(\alpha \rightarrow \alpha) \rightarrow \alpha \\
\hline \mathrm{SK}:(\alpha \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha & \mathrm{K}: \alpha \rightarrow \alpha \rightarrow \alpha
\end{array}
$$

$$
\text { SKK : } \alpha \rightarrow \alpha
$$

- $\vdash \mathrm{B}:(\alpha \rightarrow \beta) \rightarrow(\gamma \rightarrow \alpha) \rightarrow \gamma \rightarrow \beta$

Examples

- \vdash SKK : $\alpha \rightarrow \alpha$ for all simple types α

$$
\begin{array}{rr}
\mathrm{S}:(\alpha \rightarrow(\alpha \rightarrow \alpha) \rightarrow \alpha) \rightarrow(\alpha \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha & \mathrm{K}: \alpha \rightarrow(\alpha \rightarrow \alpha) \rightarrow \alpha \\
\hline \mathrm{SK}:(\alpha \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha & \mathrm{K}: \alpha \rightarrow \alpha \rightarrow \alpha
\end{array}
$$

$$
\text { SKK : } \alpha \rightarrow \alpha
$$

- $\vdash \mathrm{B}:(\alpha \rightarrow \beta) \rightarrow(\gamma \rightarrow \alpha) \rightarrow \gamma \rightarrow \beta$

$$
\mathrm{K}:(\theta \rightarrow \mu \rightarrow \theta) \quad \mathrm{S}: \theta
$$

$$
\begin{array}{cc}
\mathrm{S}:(\mu \rightarrow \nu \rightarrow \pi) \rightarrow(\mu \rightarrow \nu) \rightarrow(\mu \rightarrow \pi) & \mathrm{KS}: \mu \rightarrow \theta \\
\hline \mathrm{S}(\mathrm{KS}):(\mu \rightarrow \nu) \rightarrow \mu \rightarrow \pi & \mathrm{K}:(\mu \rightarrow \nu)
\end{array}
$$

S(KS)K : $\mu \rightarrow \pi$
with $\theta=(\gamma \rightarrow \alpha \rightarrow \beta) \rightarrow(\gamma \rightarrow \alpha) \rightarrow \gamma \rightarrow \beta, \mu=\alpha \rightarrow \beta, \nu=\gamma \rightarrow \alpha \rightarrow \beta$, $\pi=(\gamma \rightarrow \alpha) \rightarrow \gamma \rightarrow \beta$

Definitions

- set $\mathrm{FV}(M)$ of (free) variables of term M :

$$
\mathrm{FV}(M)= \begin{cases}\{M\} & \text { if } M \text { is variable } \\ \varnothing & \text { if } M \in\{\mathrm{~K}, \mathrm{~S}\} \\ \mathrm{FV}\left(M_{1}\right) \cup \mathrm{FV}\left(M_{2}\right) & \text { if } M=M_{1} M_{2}\end{cases}
$$

Definitions

- set $\mathrm{FV}(M)$ of (free) variables of term M :

$$
\mathrm{FV}(M)= \begin{cases}\{M\} & \text { if } M \text { is variable } \\ \varnothing & \text { if } M \in\{\mathrm{~K}, \mathrm{~S}\} \\ \mathrm{FV}\left(M_{1}\right) \cup \mathrm{FV}\left(M_{2}\right) & \text { if } M=M_{1} M_{2}\end{cases}
$$

- term M is typable if $\Gamma \vdash M: \tau$ for some environment Γ with $\operatorname{dom}(\Gamma)=\mathrm{FV}(M)$ and simple type τ

Definitions

- set $\mathrm{FV}(M)$ of (free) variables of term M :

$$
\mathrm{FV}(M)= \begin{cases}\{M\} & \text { if } M \text { is variable } \\ \varnothing & \text { if } M \in\{\mathrm{~K}, \mathrm{~S}\} \\ \mathrm{FV}\left(M_{1}\right) \cup \mathrm{FV}\left(M_{2}\right) & \text { if } M=M_{1} M_{2}\end{cases}
$$

- term M is typable if $\Gamma \vdash M: \tau$ for some environment Γ with $\operatorname{dom}(\Gamma)=\mathrm{FV}(M)$ and simple type τ

Lemma (Subject Reduction)

if $\Gamma \vdash M: \tau$ and $M \rightarrow_{w}^{*} N$ then $\Gamma \vdash N: \tau$

Definitions

- set $\mathrm{FV}(M)$ of (free) variables of term M :

$$
\mathrm{FV}(M)= \begin{cases}\{M\} & \text { if } M \text { is variable } \\ \varnothing & \text { if } M \in\{\mathrm{~K}, \mathrm{~S}\} \\ \mathrm{FV}\left(M_{1}\right) \cup \mathrm{FV}\left(M_{2}\right) & \text { if } M=M_{1} M_{2}\end{cases}
$$

- term M is typable if $\Gamma \vdash M: \tau$ for some environment Γ with $\operatorname{dom}(\Gamma)=\mathrm{FV}(M)$ and simple type τ

Lemma (Subject Reduction)

if $\Gamma \vdash M: \tau$ and $M \rightarrow_{w}^{*} N$ then $\Gamma \vdash N: \tau$

Theorem (Strong Normalization)

typable terms are strongly normalizing

Decision Problems

- type checking
instance: term M, environment Γ, simple type τ question: $\quad \Gamma \vdash M: \tau$?

Decision Problems

- type checking
instance: term M, environment Γ, simple type τ
question: $\quad \Gamma \vdash M: \tau$?
- type inference
instance: term M
question: $\quad \Gamma \vdash M: \tau$ for some environment Γ and simple type τ ?

Decision Problems

- type checking
instance: term M, environment Γ, simple type τ
question: $\quad\ulcorner\vdash M: \tau$?
- type inference
instance: term M
question: $\quad \Gamma \vdash M: \tau$ for some environment Γ and simple type τ ?
- type inhabitation
instance: type τ, environment Γ
question: $\quad \Gamma \vdash M: \tau$ for some term M ?

Decision Problems

- type checking
instance: term M, environment Γ, simple type τ
question: $\ulcorner\vdash M: \tau$?
- type inference
instance: term M
question: $\quad\lceil\vdash M: \tau$ for some environment \lceil and simple type τ ?
- type inhabitation
instance: type τ, environment 「
question: $\quad \Gamma \vdash M: \tau$ for some term M ?

Theorem

type checking, inference, and inhabitation are decidable problems

Outline

- Overview of this lecture
- Intuitionistic Propositional Logic
- Combinatory Logic
- Curry-Howard Isomorphism
- Exercises
- Further Reading
type assignment

$$
\begin{aligned}
& \Gamma, x: \tau \vdash x: \tau \\
& \Gamma \vdash \mathrm{K}: \sigma \rightarrow \tau \rightarrow \sigma \\
& \Gamma \vdash \mathrm{S}:(\sigma \rightarrow \tau \rightarrow \rho) \rightarrow(\sigma \rightarrow \tau) \rightarrow \sigma \rightarrow \rho \\
& \frac{\Gamma \vdash M: \sigma \rightarrow \tau \quad \Gamma \vdash N: \sigma}{\Gamma \vdash(M N): \tau}
\end{aligned}
$$

type assignment
Hilbert system

$$
\begin{array}{l|l}
\Gamma, x: \tau \vdash x: \tau & \Gamma, \varphi \vdash \varphi \\
\Gamma \vdash \mathrm{K}: \sigma \rightarrow \tau \rightarrow \sigma & \Gamma \vdash \varphi \supset(\psi \supset \varphi) \\
\Gamma \vdash \mathrm{S}:(\sigma \rightarrow \tau \rightarrow \rho) \rightarrow(\sigma \rightarrow \tau) \rightarrow \sigma \rightarrow \rho & \Gamma \vdash(\varphi \supset(\psi \supset \chi)) \supset((\varphi \supset \psi) \supset(\varphi \supset \chi)) \\
\Gamma \vdash M: \sigma \rightarrow \tau \quad \Gamma \vdash N: \sigma \\
\Gamma \vdash(M N): \tau & \frac{\Gamma \vdash \varphi \supset \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi}
\end{array}
$$

type assignment
Hilbert system

$$
\begin{array}{ll|l}
\Gamma, & \tau \vdash \quad \tau & \Gamma, \varphi \vdash \varphi \\
\Gamma \vdash & \sigma \rightarrow \tau \rightarrow \sigma & \Gamma \vdash \varphi \supset(\psi \supset \varphi) \\
\Gamma \vdash & (\sigma \rightarrow \tau \rightarrow \rho) \rightarrow(\sigma \rightarrow \tau) \rightarrow \sigma \rightarrow \rho & \Gamma \vdash(\varphi \supset(\psi \supset \chi)) \supset((\varphi \supset \psi) \supset(\varphi \supset \chi)) \\
\Gamma \vdash & \sigma \rightarrow \tau \quad \Gamma \vdash \quad \sigma \\
\hline & \Gamma \vdash & \frac{\Gamma \vdash \varphi \supset \psi \psi}{\Gamma \vdash \psi}
\end{array}
$$

type assignment
Г, $\quad \tau \vdash \quad \tau$
Г $\vdash \quad \sigma \rightarrow \tau \rightarrow \sigma$
$\Gamma \vdash \quad(\sigma \rightarrow \tau \rightarrow \rho) \rightarrow(\sigma \rightarrow \tau) \rightarrow \sigma \rightarrow \rho$

$\Gamma \vdash$	$\sigma \rightarrow \tau$	$\Gamma \vdash$	σ
	$\Gamma \vdash$	τ	

Hilbert system

$$
\begin{aligned}
& \Gamma, \varphi \vdash \varphi \\
& \Gamma \vdash \varphi \supset(\psi \supset \varphi) \\
& \Gamma \vdash(\varphi \supset(\psi \supset \chi)) \supset((\varphi \supset \psi) \supset(\varphi \supset \chi)) \\
& \frac{\Gamma \vdash \varphi \supset \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi}
\end{aligned}
$$

\rightarrow and \supset are identified
type assignment
Hilbert system

$$
\begin{aligned}
& \Gamma, x: \tau \vdash x: \tau \\
& \Gamma \vdash \mathrm{K}: \sigma \rightarrow \tau \rightarrow \sigma \\
& \Gamma \vdash \mathrm{S}:(\sigma \rightarrow \tau \rightarrow \rho) \rightarrow(\sigma \rightarrow \tau) \rightarrow \sigma \rightarrow \rho \\
& \frac{\Gamma \vdash M: \sigma \rightarrow \tau \quad \Gamma \vdash N: \sigma}{\Gamma \vdash(M N): \tau}
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma, \varphi \vdash \varphi \\
& \Gamma \vdash \varphi \supset(\psi \supset \varphi) \\
& \Gamma \vdash(\varphi \supset(\psi \supset \chi)) \supset((\varphi \supset \psi) \supset(\varphi \supset \chi)) \\
& \frac{\Gamma \vdash \varphi \supset \psi \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi}
\end{aligned}
$$

\rightarrow and \supset are identified

Theorem (Curry-Howard)

1 if $\Gamma \vdash M: \tau$ then $\operatorname{ran}(\Gamma) \vdash_{H} \tau$
type assignment
Hilbert system

$$
\begin{aligned}
& \Gamma, x: \tau \vdash x: \tau \\
& \Gamma \vdash \mathrm{K}: \sigma \rightarrow \tau \rightarrow \sigma \\
& \Gamma \vdash \mathrm{S}:(\sigma \rightarrow \tau \rightarrow \rho) \rightarrow(\sigma \rightarrow \tau) \rightarrow \sigma \rightarrow \rho \\
& \frac{\Gamma \vdash M: \sigma \rightarrow \tau \quad \Gamma \vdash N: \sigma}{\Gamma \vdash(M N): \tau}
\end{aligned}
$$

\rightarrow and \supset are identified

Theorem (Curry-Howard)

1 if $\Gamma \vdash M: \tau$ then $\operatorname{ran}(\Gamma) \vdash_{H} \tau$
2 if $\Gamma \vdash_{H} \varphi$ then $\Delta \vdash M: \varphi$ for some M and Δ with $\operatorname{ran}(\Delta)=\Gamma$

Theorem (Curry-Howard)

1 if $\Gamma \vdash M: \tau$ then $\operatorname{ran}(\Gamma) \vdash_{H} \tau$

Proof

induction on derivation of judgement $\Gamma \vdash M: \tau$

Theorem (Curry-Howard)

1 if $\Gamma \vdash M: \tau$ then $\operatorname{ran}(\Gamma) \vdash_{H} \tau$

Proof

induction on derivation of judgement $\Gamma \vdash M: \tau$

- $M=x$ and $\Gamma=\Gamma^{\prime}, x: \tau$

Theorem (Curry-Howard)

1 if $\Gamma \vdash M: \tau$ then $\operatorname{ran}(\Gamma) \vdash_{H} \tau$

Proof

induction on derivation of judgement $\Gamma \vdash M: \tau$

- $M=x$ and $\Gamma=\Gamma^{\prime}, x: \tau$

$$
\operatorname{ran}(\Gamma)=\operatorname{ran}\left(\Gamma^{\prime}\right), \tau
$$

Theorem (Curry-Howard)

1 if $\Gamma \vdash M: \tau$ then $\operatorname{ran}(\Gamma) \vdash_{H} \tau$

Proof

induction on derivation of judgement $\Gamma \vdash M: \tau$

- $M=x$ and $\Gamma=\Gamma^{\prime}, x: \tau$
$\operatorname{ran}(\Gamma)=\operatorname{ran}\left(\Gamma^{\prime}\right), \tau$ and thus $\operatorname{ran}(\Gamma) \vdash_{H} \tau$ by Assumption

Theorem (Curry-Howard)

1 if $\Gamma \vdash M: \tau$ then $\operatorname{ran}(\Gamma) \vdash_{H} \tau$

Proof

induction on derivation of judgement $\Gamma \vdash M: \tau$

- $M=x$ and $\Gamma=\Gamma^{\prime}, x: \tau$
$\operatorname{ran}(\Gamma)=\operatorname{ran}\left(\Gamma^{\prime}\right), \tau$ and thus $\operatorname{ran}(\Gamma) \vdash_{H} \tau$ by Assumption
- $M=\mathrm{K}$ and $\tau=(\sigma \rightarrow \rho \rightarrow \sigma)$

Theorem (Curry-Howard)

1 if $\Gamma \vdash M: \tau$ then $\operatorname{ran}(\Gamma) \vdash_{H} \tau$

Proof

induction on derivation of judgement $\Gamma \vdash M: \tau$

- $M=x$ and $\Gamma=\Gamma^{\prime}, x: \tau$
$\operatorname{ran}(\Gamma)=\operatorname{ran}\left(\Gamma^{\prime}\right), \tau$ and thus $\operatorname{ran}(\Gamma) \vdash_{H} \tau$ by Assumption
- $M=\mathrm{K}$ and $\tau=(\sigma \rightarrow \rho \rightarrow \sigma)$
$\operatorname{ran}(\Gamma) \vdash_{H} \tau$ by Axiom Scheme 1

Theorem (Curry-Howard)

1 if $\Gamma \vdash M: \tau$ then $\operatorname{ran}(\Gamma) \vdash_{H} \tau$

Proof

induction on derivation of judgement $\Gamma \vdash M: \tau$

- $M=x$ and $\Gamma=\Gamma^{\prime}, x: \tau$
$\operatorname{ran}(\Gamma)=\operatorname{ran}\left(\Gamma^{\prime}\right), \tau$ and thus $\operatorname{ran}(\Gamma) \vdash_{H} \tau$ by Assumption
- $M=\mathrm{K}$ and $\tau=(\sigma \rightarrow \rho \rightarrow \sigma)$
$\operatorname{ran}(\Gamma) \vdash_{H} \tau$ by Axiom Scheme 1
- $M=\mathrm{S}$ and $\tau=((\sigma \rightarrow \rho \rightarrow \chi) \rightarrow(\sigma \rightarrow \rho) \rightarrow \sigma \rightarrow \chi$

Theorem (Curry-Howard)

1 if $\Gamma \vdash M: \tau$ then $\operatorname{ran}(\Gamma) \vdash_{H} \tau$

Proof

induction on derivation of judgement $\Gamma \vdash M: \tau$

- $M=x$ and $\Gamma=\Gamma^{\prime}, x: \tau$
$\operatorname{ran}(\Gamma)=\operatorname{ran}\left(\Gamma^{\prime}\right), \tau$ and thus $\operatorname{ran}(\Gamma) \vdash_{H} \tau$ by Assumption
- $M=\mathrm{K}$ and $\tau=(\sigma \rightarrow \rho \rightarrow \sigma)$
$\operatorname{ran}(\Gamma) \vdash_{H} \tau$ by Axiom Scheme 1
- $M=\mathrm{S}$ and $\tau=((\sigma \rightarrow \rho \rightarrow \chi) \rightarrow(\sigma \rightarrow \rho) \rightarrow \sigma \rightarrow \chi$ $\operatorname{ran}(\Gamma) \vdash_{H} \tau$ by Axiom Scheme 2

Theorem (Curry-Howard)

1 if $\Gamma \vdash M: \tau$ then $\operatorname{ran}(\Gamma) \vdash_{H} \tau$

Proof

induction on derivation of judgement $\Gamma \vdash M: \tau$

- $M=x$ and $\Gamma=\Gamma^{\prime}, x: \tau$
$\operatorname{ran}(\Gamma)=\operatorname{ran}\left(\Gamma^{\prime}\right), \tau$ and thus $\operatorname{ran}(\Gamma) \vdash_{H} \tau$ by Assumption
- $M=\mathrm{K}$ and $\tau=(\sigma \rightarrow \rho \rightarrow \sigma)$
$\operatorname{ran}(\Gamma) \vdash_{H} \tau$ by Axiom Scheme 1
- $M=\mathrm{S}$ and $\tau=((\sigma \rightarrow \rho \rightarrow \chi) \rightarrow(\sigma \rightarrow \rho) \rightarrow \sigma \rightarrow \chi$
$\operatorname{ran}(\Gamma) \vdash_{H} \tau$ by Axiom Scheme 2
- $M=(N P)$ and $\Gamma \vdash N: \sigma \rightarrow \tau$ and $\Gamma \vdash P: \sigma$

Theorem (Curry-Howard)

1 if $\Gamma \vdash M: \tau$ then $\operatorname{ran}(\Gamma) \vdash_{H} \tau$

Proof

induction on derivation of judgement $\Gamma \vdash M: \tau$

- $M=x$ and $\Gamma=\Gamma^{\prime}, x: \tau$
$\operatorname{ran}(\Gamma)=\operatorname{ran}\left(\Gamma^{\prime}\right), \tau$ and thus $\operatorname{ran}(\Gamma) \vdash_{H} \tau$ by Assumption
- $M=\mathrm{K}$ and $\tau=(\sigma \rightarrow \rho \rightarrow \sigma)$
$\operatorname{ran}(\Gamma) \vdash_{H} \tau$ by Axiom Scheme 1
- $M=\mathrm{S}$ and $\tau=((\sigma \rightarrow \rho \rightarrow \chi) \rightarrow(\sigma \rightarrow \rho) \rightarrow \sigma \rightarrow \chi$
$\operatorname{ran}(\Gamma) \vdash_{H} \tau$ by Axiom Scheme 2
- $M=(N P)$ and $\Gamma \vdash N: \sigma \rightarrow \tau$ and $\Gamma \vdash P: \sigma$
$\operatorname{ran}(\Gamma) \vdash_{H} \sigma \rightarrow \tau$ and $\operatorname{ran}(\Gamma) \vdash_{H} \sigma$ by induction hypothesis

Theorem (Curry-Howard)

1 if $\Gamma \vdash M: \tau$ then $\operatorname{ran}(\Gamma) \vdash_{H} \tau$

Proof

induction on derivation of judgement $\Gamma \vdash M: \tau$

- $M=x$ and $\Gamma=\Gamma^{\prime}, x: \tau$
$\operatorname{ran}(\Gamma)=\operatorname{ran}\left(\Gamma^{\prime}\right), \tau$ and thus $\operatorname{ran}(\Gamma) \vdash_{H} \tau$ by Assumption
- $M=\mathrm{K}$ and $\tau=(\sigma \rightarrow \rho \rightarrow \sigma)$
$\operatorname{ran}(\Gamma) \vdash_{H} \tau$ by Axiom Scheme 1
- $M=\mathrm{S}$ and $\tau=((\sigma \rightarrow \rho \rightarrow \chi) \rightarrow(\sigma \rightarrow \rho) \rightarrow \sigma \rightarrow \chi$ $\operatorname{ran}(\Gamma) \vdash_{H} \tau$ by Axiom Scheme 2
- $M=(N P)$ and $\Gamma \vdash N: \sigma \rightarrow \tau$ and $\Gamma \vdash P: \sigma$
$\operatorname{ran}(\Gamma) \vdash_{H} \sigma \rightarrow \tau$ and $\operatorname{ran}(\Gamma) \vdash_{H} \sigma$ by induction hypothesis $\operatorname{ran}(\Gamma) \vdash_{H} \tau$ by Modus Ponens

Theorem (Curry-Howard)

2 if $\Gamma \vdash_{H} \varphi$ then $\Delta \vdash M: \varphi$ for some M and Δ with $\operatorname{ran}(\Delta)=\Gamma$

Proof

induction on derivation of $\Gamma \vdash_{H} \varphi$

Theorem (Curry-Howard)

2 if $\Gamma \vdash_{\boldsymbol{H}} \varphi$ then $\Delta \vdash M: \varphi$ for some M and Δ with $\operatorname{ran}(\Delta)=\Gamma$

Proof

induction on derivation of $\Gamma \vdash_{H} \varphi$
interesting case: φ is obtained by Modus Ponens

Theorem (Curry-Howard)

2 if $\Gamma \vdash_{H} \varphi$ then $\Delta \vdash M: \varphi$ for some M and Δ with $\operatorname{ran}(\Delta)=\Gamma$

Proof

induction on derivation of $\Gamma \vdash_{H} \varphi$
interesting case: φ is obtained by Modus Ponens
$\Gamma \vdash_{H} \psi \rightarrow \varphi$ and $\Gamma \vdash_{H} \psi$

Theorem (Curry-Howard)

2 if $\Gamma \vdash_{\boldsymbol{H}} \varphi$ then $\Delta \vdash M: \varphi$ for some M and Δ with $\operatorname{ran}(\Delta)=\Gamma$

Proof

induction on derivation of $\Gamma \vdash_{H} \varphi$
interesting case: φ is obtained by Modus Ponens
$\Gamma \vdash_{H} \psi \rightarrow \varphi$ and $\Gamma \vdash_{H} \psi$
induction hypothesis: $\Delta_{1} \vdash M_{1}: \psi \rightarrow \varphi$ and $\Delta_{2} \vdash M_{2}: \psi$ for some $M_{1}, \Delta_{1}, M_{2}, \Delta_{2}$ with $\operatorname{ran}\left(\Delta_{1}\right)=\operatorname{ran}\left(\Delta_{2}\right)=\Gamma$

Theorem (Curry-Howard)

2 if $\Gamma \vdash_{\boldsymbol{H}} \varphi$ then $\Delta \vdash M: \varphi$ for some M and Δ with $\operatorname{ran}(\Delta)=\Gamma$

Proof

induction on derivation of $\Gamma \vdash_{H} \varphi$
interesting case: φ is obtained by Modus Ponens
$\Gamma \vdash_{H} \psi \rightarrow \varphi$ and $\Gamma \vdash_{H} \psi$
induction hypothesis: $\Delta_{1} \vdash M_{1}: \psi \rightarrow \varphi$ and $\Delta_{2} \vdash M_{2}: \psi$ for some $M_{1}, \Delta_{1}, M_{2}, \Delta_{2}$ with $\operatorname{ran}\left(\Delta_{1}\right)=\operatorname{ran}\left(\Delta_{2}\right)=\Gamma$
suppose $\Gamma=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$

Theorem (Curry-Howard)

2 if $\Gamma \vdash_{\boldsymbol{H}} \varphi$ then $\Delta \vdash M: \varphi$ for some M and Δ with $\operatorname{ran}(\Delta)=\Gamma$

Proof

induction on derivation of $\Gamma \vdash_{H} \varphi$
interesting case: φ is obtained by Modus Ponens
$\Gamma \vdash_{H} \psi \rightarrow \varphi$ and $\Gamma \vdash_{H} \psi$
induction hypothesis: $\Delta_{1} \vdash M_{1}: \psi \rightarrow \varphi$ and $\Delta_{2} \vdash M_{2}: \psi$ for some $M_{1}, \Delta_{1}, M_{2}, \Delta_{2}$ with $\operatorname{ran}\left(\Delta_{1}\right)=\operatorname{ran}\left(\Delta_{2}\right)=\Gamma$
suppose $\Gamma=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$
$\Delta_{1}=\left\{x_{1}: \phi_{1}, \ldots, x_{n}: \phi_{n}\right\}$
$\Delta_{2}=\left\{y_{1}: \phi_{1}, \ldots, y_{n}: \phi_{n}\right\}$

Theorem (Curry-Howard)

2 if $\Gamma \vdash_{\boldsymbol{H}} \varphi$ then $\Delta \vdash M: \varphi$ for some M and Δ with $\operatorname{ran}(\Delta)=\Gamma$

Proof

induction on derivation of $\Gamma \vdash_{H} \varphi$
interesting case: φ is obtained by Modus Ponens
$\Gamma \vdash_{H} \psi \rightarrow \varphi$ and $\Gamma \vdash_{H} \psi$
induction hypothesis: $\Delta_{1} \vdash M_{1}: \psi \rightarrow \varphi$ and $\Delta_{2} \vdash M_{2}: \psi$ for some $M_{1}, \Delta_{1}, M_{2}, \Delta_{2}$ with $\operatorname{ran}\left(\Delta_{1}\right)=\operatorname{ran}\left(\Delta_{2}\right)=\Gamma$
suppose $\Gamma=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$
$\Delta_{1}=\left\{x_{1}: \phi_{1}, \ldots, x_{n}: \phi_{n}\right\}$
$\Delta_{2}=\left\{y_{1}: \phi_{1}, \ldots, y_{n}: \phi_{n}\right\}$
let M_{2}^{\prime} be obtained from M_{2} by replacing every y_{i} with x_{i}

Theorem (Curry-Howard)

2 if $\Gamma \vdash_{\boldsymbol{H}} \varphi$ then $\Delta \vdash M: \varphi$ for some M and Δ with $\operatorname{ran}(\Delta)=\Gamma$

Proof

induction on derivation of $\Gamma \vdash_{H} \varphi$
interesting case: φ is obtained by Modus Ponens
$\Gamma \vdash_{H} \psi \rightarrow \varphi$ and $\Gamma \vdash_{H} \psi$
induction hypothesis: $\Delta_{1} \vdash M_{1}: \psi \rightarrow \varphi$ and $\Delta_{2} \vdash M_{2}: \psi$ for some $M_{1}, \Delta_{1}, M_{2}, \Delta_{2}$ with $\operatorname{ran}\left(\Delta_{1}\right)=\operatorname{ran}\left(\Delta_{2}\right)=\Gamma$
suppose $\Gamma=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$
$\Delta_{1}=\left\{x_{1}: \phi_{1}, \ldots, x_{n}: \phi_{n}\right\}$
$\Delta_{2}=\left\{y_{1}: \phi_{1}, \ldots, y_{n}: \phi_{n}\right\}$
let M_{2}^{\prime} be obtained from M_{2} by replacing every y_{i} with x_{i}
$\Delta_{1} \vdash M_{2}^{\prime}: \psi$

Theorem (Curry-Howard)

2 if $\Gamma \vdash_{H} \varphi$ then $\Delta \vdash M: \varphi$ for some M and Δ with $\operatorname{ran}(\Delta)=\Gamma$

Proof

induction on derivation of $\Gamma \vdash_{H} \varphi$
interesting case: φ is obtained by Modus Ponens
$\Gamma \vdash_{H} \psi \rightarrow \varphi$ and $\Gamma \vdash_{H} \psi$
induction hypothesis: $\Delta_{1} \vdash M_{1}: \psi \rightarrow \varphi$ and $\Delta_{2} \vdash M_{2}: \psi$
for some $M_{1}, \Delta_{1}, M_{2}, \Delta_{2}$ with $\operatorname{ran}\left(\Delta_{1}\right)=\operatorname{ran}\left(\Delta_{2}\right)=\Gamma$
suppose $\Gamma=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$
$\Delta_{1}=\left\{x_{1}: \phi_{1}, \ldots, x_{n}: \phi_{n}\right\}$
$\Delta_{2}=\left\{y_{1}: \phi_{1}, \ldots, y_{n}: \phi_{n}\right\}$
let M_{2}^{\prime} be obtained from M_{2} by replacing every y_{i} with x_{i}
$\Delta_{1} \vdash M_{2}^{\prime}: \psi$ and thus $\Delta_{1} \vdash\left(M_{1} M_{2}^{\prime}\right): \varphi$

Corollary

if $\Gamma, x: \sigma \vdash M: \tau$ then $\Gamma \vdash N: \sigma \rightarrow \tau$ for some term N

Corollary

if $\Gamma, x: \sigma \vdash M: \tau$ then $\Gamma \vdash N: \sigma \rightarrow \tau$ for some term N

Proof

Curry-Howard in combination with deduction theorem

Corollary

if $\Gamma, x: \sigma \vdash M: \tau$ then $\Gamma \vdash N: \sigma \rightarrow \tau$ for some term N

Proof

Curry-Howard in combination with deduction theorem

Remark

term N can be computed from M and x by bracket abstraction

Corollary

if $\Gamma, x: \sigma \vdash M: \tau$ then $\Gamma \vdash N: \sigma \rightarrow \tau$ for some term N

Proof

Curry-Howard in combination with deduction theorem

Remark

term N can be computed from M and x by bracket abstraction

Definition (Bracket Abstraction)

term $[x] M$ is defined for all terms M and variables x :

$$
[x] M= \begin{cases}\mathrm{l} & \text { if } M=x \\ \mathrm{~K} M & \text { if } x \notin \mathrm{FV}(M) \\ \mathrm{S}\left([x] M_{1}\right)\left([x] M_{2}\right) & \text { if } M=M_{1} M_{2} \text { and } x \in \mathrm{FV}(M)\end{cases}
$$

Definition (Bracket Abstraction)

term $[x] M$ is defined for all terms M and variables x :

$$
[x] M= \begin{cases}1 & \text { if } M=x \\ \mathrm{~K} M & \text { if } x \notin \mathrm{FV}(M) \\ \mathrm{S}\left([x] M_{1}\right)\left([x] M_{2}\right) & \text { if } M=M_{1} M_{2} \text { and } x \in \mathrm{FV}(M)\end{cases}
$$

Example

$[x][y][z](x z y)$

Definition (Bracket Abstraction)

term $[x] M$ is defined for all terms M and variables x :

$$
[x] M= \begin{cases}1 & \text { if } M=x \\ \mathrm{~K} M & \text { if } x \notin \mathrm{FV}(M) \\ \mathrm{S}\left([x] M_{1}\right)\left([x] M_{2}\right) & \text { if } M=M_{1} M_{2} \text { and } x \in \mathrm{FV}(M)\end{cases}
$$

Example

$$
[x][y][z](x z y)=[x][y](\mathrm{S}([z](x z))([z] y))
$$

Definition (Bracket Abstraction)

term $[x] M$ is defined for all terms M and variables x :

$$
[x] M= \begin{cases}1 & \text { if } M=x \\ \mathrm{~K} M & \text { if } x \notin \mathrm{FV}(M) \\ \mathrm{S}\left([x] M_{1}\right)\left([x] M_{2}\right) & \text { if } M=M_{1} M_{2} \text { and } x \in \mathrm{FV}(M)\end{cases}
$$

Example

$$
[x][y][z](x z y)=[x][y](\mathrm{S}([z](x z))([z] y))=[x][y](\mathrm{S}(\mathrm{~S}([z] x)([z] z))(\mathrm{K} y))
$$

Definition (Bracket Abstraction)

term $[x] M$ is defined for all terms M and variables x :

$$
[x] M= \begin{cases}1 & \text { if } M=x \\ \mathrm{~K} M & \text { if } x \notin \mathrm{FV}(M) \\ \mathrm{S}\left([x] M_{1}\right)\left([x] M_{2}\right) & \text { if } M=M_{1} M_{2} \text { and } x \in \mathrm{FV}(M)\end{cases}
$$

Example

$$
\begin{aligned}
{[x][y][z](x z y) } & =[x][y](\mathrm{S}([z](x z))([z] y))=[x][y](\mathrm{S}(\mathrm{~S}([z] x)([z] z))(\mathrm{K} y)) \\
& =[x][y](\mathrm{S}(\mathrm{~S}(\mathrm{~K} x) \mathrm{I})(\mathrm{K} y))
\end{aligned}
$$

Definition (Bracket Abstraction)

term $[x] M$ is defined for all terms M and variables x :

$$
[x] M= \begin{cases}1 & \text { if } M=x \\ \mathrm{~K} M & \text { if } x \notin \mathrm{FV}(M) \\ \mathrm{S}\left([x] M_{1}\right)\left([x] M_{2}\right) & \text { if } M=M_{1} M_{2} \text { and } x \in \mathrm{FV}(M)\end{cases}
$$

Example

$$
\begin{aligned}
{[x][y][z](x z y) } & =[x][y](\mathrm{S}([z](x z))([z] y))=[x][y](\mathrm{S}(\mathrm{~S}([z] x)([z] z))(\mathrm{K} y)) \\
& =[x][y](\mathrm{S}(\mathrm{~S}(\mathrm{~K} x) \mathrm{I})(\mathrm{K} y))=[x](\mathrm{S}([y](\mathrm{S}(\mathrm{~S}(\mathrm{~K} x) \mathrm{I})))([y](\mathrm{K} y)))
\end{aligned}
$$

Definition (Bracket Abstraction)

term $[x] M$ is defined for all terms M and variables x :

$$
[x] M= \begin{cases}1 & \text { if } M=x \\ \mathrm{~K} M & \text { if } x \notin \mathrm{FV}(M) \\ \mathrm{S}\left([x] M_{1}\right)\left([x] M_{2}\right) & \text { if } M=M_{1} M_{2} \text { and } x \in \mathrm{FV}(M)\end{cases}
$$

Example

$$
\begin{aligned}
{[x][y][z](x z y) } & =[x][y](\mathrm{S}([z](x z))([z] y))=[x][y](\mathrm{S}(\mathrm{~S}([z] x)([z] z))(\mathrm{K} y)) \\
& =[x][y](\mathrm{S}(\mathrm{~S}(\mathrm{~K} x) \mathrm{I})(\mathrm{K} y))=[x](\mathrm{S}([y](\mathrm{S}(\mathrm{~S}(\mathrm{~K} x) \mathrm{I})))([y](\mathrm{Ky}))) \\
& =[x](\mathrm{S}(\mathrm{~K}(\mathrm{~S}(\mathrm{~S}(\mathrm{~K} x) \mathrm{I})))(\mathrm{S}([y] \mathrm{K})([y] y)))
\end{aligned}
$$

Definition (Bracket Abstraction)

term $[x] M$ is defined for all terms M and variables x :

$$
[x] M= \begin{cases}1 & \text { if } M=x \\ \mathrm{~K} M & \text { if } x \notin \mathrm{FV}(M) \\ \mathrm{S}\left([x] M_{1}\right)\left([x] M_{2}\right) & \text { if } M=M_{1} M_{2} \text { and } x \in \mathrm{FV}(M)\end{cases}
$$

Example

$$
\begin{aligned}
{[x][y][z](x z y) } & =[x][y](\mathrm{S}([z](x z))([z] y))=[x][y](\mathrm{S}(\mathrm{~S}([z] x)([z] z))(\mathrm{K} y)) \\
& =[x][y](\mathrm{S}(\mathrm{~S}(\mathrm{~K} x) \mathrm{I})(\mathrm{K} y))=[x](\mathrm{S}([y](\mathrm{S}(\mathrm{~S}(\mathrm{~K} x) \mathrm{l})))([y](\mathrm{K} y))) \\
& =[x](\mathrm{S}(\mathrm{~K}(\mathrm{~S}(\mathrm{~S}(\mathrm{~K} x) \mathrm{l})))(\mathrm{S}([y] \mathrm{K})([y] y))) \\
& =[x](\mathrm{S}(\mathrm{~K}(\mathrm{~S}(\mathrm{~S}(\mathrm{~K} x) \mathrm{l})))(\mathrm{S}(\mathrm{KK}) \mathrm{I}))
\end{aligned}
$$

Definition (Bracket Abstraction)

term $[x] M$ is defined for all terms M and variables x :

$$
[x] M= \begin{cases}1 & \text { if } M=x \\ \mathrm{~K} M & \text { if } x \notin \mathrm{FV}(M) \\ \mathrm{S}\left([x] M_{1}\right)\left([x] M_{2}\right) & \text { if } M=M_{1} M_{2} \text { and } x \in \mathrm{FV}(M)\end{cases}
$$

Example

$$
\begin{aligned}
{[x][y][z](x z y) } & =[x][y](\mathrm{S}([z](x z))([z] y))=[x][y](\mathrm{S}(\mathrm{~S}([z] x)([z] z))(\mathrm{K} y)) \\
& =[x][y](\mathrm{S}(\mathrm{~S}(\mathrm{~K} x) \mathrm{I})(\mathrm{K} y))=[x](\mathrm{S}([y](\mathrm{S}(\mathrm{~S}(\mathrm{~K} x) \mathrm{I})))([y](\mathrm{K} y))) \\
& =[x](\mathrm{S}(\mathrm{~K}(\mathrm{~S}(\mathrm{~S}(\mathrm{~K} x) \mathrm{I})))(\mathrm{S}([y] \mathrm{K})([y] y))) \\
& =[x](\mathrm{S}(\mathrm{~K}(\mathrm{~S}(\mathrm{~S}(\mathrm{~K} x) \mathrm{l})))(\mathrm{S}(\mathrm{KK}) \mathrm{I})) \\
& =\cdots \\
& =\mathrm{S}(\mathrm{~S}(\mathrm{KS})(\mathrm{S}(\mathrm{KK})(\mathrm{S}(\mathrm{KS})(\mathrm{S}(\mathrm{~S}(\mathrm{KS})(\mathrm{S}(\mathrm{KK}) \mathrm{I}))(\mathrm{KI})))))(\mathrm{K}(\mathrm{~S}(\mathrm{KK}) \mathrm{I}))
\end{aligned}
$$

Lemma

$([x] M) N \rightarrow{ }_{w}^{*} M\{x / N\}$ for all terms M and N

Lemma

$([x] M) N \rightarrow{ }_{w}^{*} M\{x / N\}$ for all terms M and N

Lemma

$$
\text { if } \Gamma, x: \sigma \vdash M: \tau \text { then } \Gamma \vdash[x] M: \sigma \rightarrow \tau
$$

Saul Kripke (1940-)

Jaakko Hintikka (1929-2015)

Leopold Löwenheim (1878-1957)

Jacques Herbrand (1908-1931)

Thoralf Skolem (1887-1963)

Haskell Curry (1900-1982)

David Hilbert (1862-1943)

Saul Kripke (1940-)

William Craig (1918-2016)

Jaakko Hintikka (1929-2015)

Leopold Löwenheim (1878-1957)

Jacques Herbrand (1908-1931)

William Howard (1926-)

Thoralf Skolem (1887-1963)

Outline

- Overview of this lecture
- Intuitionistic Propositional Logic
- Combinatory Logic
- Curry-Howard Isomorphism
- Exercises
- Further Reading

Earlier Exam

- Exercise 2 of the exam of March 4, 2016.

Intuitionistic Logic

- $\Vdash \varphi \supset \neg \neg \varphi$?
- $\Vdash \neg \neg \varphi \supset \varphi$?
- $\Vdash(\varphi \supset \neg \psi) \supset(\neg \neg \varphi \supset \neg \psi)$?
- Prove that φ is a propositional tautology if and only if $\Vdash \neg \neg \varphi$.

Fitting

- Argue that the Example on slide 32 illustrating the abstraction algorithm gives, via the Curry-Howard correspondence, a solution to Exercise 4.1.1. That is, first show that $x: P \supset(Q \supset R), y: Q, z: P \vdash(x z) y: R$ can be inferred in the type inference system (we identify \supset with \rightarrow). Next, show that performing the abstraction algorithm three times to compute $[x][y][z](x z) y$ yields a (closed) term of type $(P \supset(Q \supset R)) \supset(Q \supset(P \subset R))$. Conclude this gives rise to a Hilbert System proof of $(P \supset(Q \supset R)) \supset(Q \supset(P \subset R))$.
- In the solution to Exercise 4.1.1 I had made use of the following extra rule (having priority over the others) for the abstraction algorithm:

$$
[x](M x)=M \quad \text { if } x \notin \mathrm{FV}(M)
$$

Show this optimisation to be correct (in the sense of the lemmata on slide 33), and check whether or not I made a mistake in my solution,. Is the extra rule to be preferred or not? Argue why (not).

- Bonus Implement both above versions of the abstraction algorithm and check whether or not slide 32 and the earlier solution to Exercise 4.1.1 are correct.
- Bonus Exercise 4.1.8 (again ...)

Outline

- Overview of this lecture
- Intuitionistic Propositional Logic
- Combinatory Logic
- Curry-Howard Isomorphism
- Exercises
- Further Reading

Fitting

- Section 4.1 (revisit from earlier this course, from new C-H-perspective)
- Section 4.2 (revisit from Ba logic course as preparation for next week)
- Section 4.3 (idem)

Additional Literature

- Philip Wadler, Propositions as Types, Communications of the ACM 58(12), pp. 75-84, 2015
- Morten Heine Sørensen and Pawel Urzyczyn, Lectures on the Curry-Howard Isomorphism, Studies in Logic and the Foundations of Mathematics, volume 149, Elsevier, 2006 (cached PDF of preliminary version on citeseer)

