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Overview of this lecture

Tableaux and Hilbert Systems are proof calculi, just as Natural Deduction (seen in
Ba logic course), and resolution (also in the book but not part of this course).
There are many proof calculi, each describing formally how proofs are structured
and what operations are permitted on them. Whereas before we have focused on
the meta-theoretical aspects (soundness, completeness, interpolation etc.) of the
calculi, this week and next week we will focus more on the structural and
representational aspects of proofs themselves, in particular for Hilbert Systems
(this week) and Natural Deduction (next week).
In mathematics proofs are stated at an informal level. When implementing proofs
appropriate formal representations and operations on these representations must be
chosen. For instance, tableaux could be formalised as trees whose nodes are
formulas and whose leaves can be expanded, and Hilbert System proofs can be
represented as lists whose elements (its lines) are either instances of Axiom
Schemes or inferences of (2) previous lines (by Modus Ponens) and we may add
such lines at the end of the list. Today we will introduce combinatory logic as a
term representation of the proofs of propositional logic, more precisely, of proofs in
Hilbert Systems restricted to only Axiom Schemes 1 and 2 and where implication is
the only connective.
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Overview of this lecture

Combinatory logic (CL) terms are constructed from two constants, K and S , and
one operation application which is left implicit (denoted by juxtaposition). For
instance, (SK )K is a CL-term comprising two applications. Representing Hilbert
System proofs as CL-terms goes in two steps:

• From lists to trees (the correspondence between `ph and `H on slide 15):
Hilbert System proofs were represented above as lists where lines may refer to
(2) previous lines (in case of Modus Ponens). Viewing elements as nodes, this
turns the list into a (directed acyclic) graph, and if lines were not reused even
into a tree. Observe that by copying lines reuse can always be avoided (at the
expense of making the proof longer) so that Hilbert System proof lists can
always be represented as Hilbert System proof trees.

• From trees to terms (slides 19–26): Hilbert Systems proof trees have nodes of
two types: leaves that are instances of Axioms Schemes and internal
Modus-Ponens-nodes with two edges to other nodes. Observe that we may
assume the edges of the latter to be in a fixed order (since X ⊃ Y is larger,
as formula, than X ). That is, we may assume the tree to be an ordered
binary tree. From such a tree a CL-term is obtained by representing Axiom
Schemes 1 and 2 (when restricted to that fragment) by constants K and S
and Modus Ponens by a binary function symbol called application.
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Overview of this lecture

For instance, the inference that the term SKK of (simply typed) combinatory logic
is of type α→ α as inferred on slide 24, is a term representation of the proof in
Hilbert Systems on page 80 of Fitting’s book that P ⊃ P. Each application
(denoted by juxtaposition) in the former corresponds to a usage of modus ponens
in the latter, and each K and S in the former correspond to usage of Axiom
Schemes 1 respectively 2 in the latter. (Both the CL-term and the HS-proof have
size 5: the former comprises 2 applications, 2 K s and 1 S , whereas the latter
comprises 2 modus ponens, 1 instance of Axiom Scheme 1 and 2 instances of
Axiom Scheme 2.
That is, we can view proofs as terms. This correspondence is half of the
Curry–Howard isomorphism, the other half being propositions as types, e.g. that
the proposition X ⊃ Y can be viewed as the type X → Y (of functions from X to
Y ). Curry–Howard expresses a correspondence between the proof system for
propositional logic and type inference systems. For instance, Modus Ponens
expressing that from X ⊃ Y and X we may infer Y can be viewed as (in functional
programming) inferring that applying a function of type X → Y to an argument of
type X yields a result of type Y . Weak reduction →w on CL-terms is similar to
cut-elimination on proofs in that it ‘eliminates cuts’ (but for K ,S) possibly at the
expense of lengthening terms/proofs.
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Overview of this lecture

As it turns out, restricting to Axiom Schemes 1 and 2 makes the proof calculus
incomplete for propositional logic, even when restricted to just implicational
formulas. That is, there are propositional tautologies that are not provable (in the
restricted system), with Peirce’s law ((P ⊃ Q) ⊃ P) ⊃ P being an example.
Looking at it from the other end, one may ask whether there is a semantic
characterisation of the formulas provable in the restricted system, i.e. a logic for
which the restricted inference system is complete. Such a logic does indeed exist
and is known as intuitionistic logic. Trying to prove Peirce’s law in the unrestricted
system, one notices that the law of the excluded middle X ∨ ¬X (LEM; or any one
of its equivalent formulations such as double-negation-elimination) is used.
Intuitionistic logic arises by removing/not accepting LEM.
Instead of the usual truth-table semantics of classical propositional logic,
intuitionistic propositional logic has (must have!) different semantics. We present
Kripke semantics (slides 8–16). Whereas truth-table semantics can be thought of
as based on giving truth-values to all propositional letters in one state, Kripke
semantics allows truth-values to evolve (as captured by the order 6 on states C),
e.g. although P is not known in this state it may evolve to become true in the next
state (in particular the interpretation of ⊃ on slide 10 is based on this). We show
the Hilbert System restricted to Axiom Schemes 1 and 2 is both sound and
complete with respect to Kripke semantics.
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Contents

Part I: Propositional Logic

compactness, completeness, Hilbert systems, Hintikka’s lemma, interpolation,
logical consequence, model existence theorem, propositional semantic tableaux,
soundness

Part II: First-Order Logic

compactness, completeness, Craig’s interpolation theorem, cut elimination,
first-order semantic tableaux, Herbrand models, Herbrand’s theorem, Hilbert
systems, Hintikka’s lemma, Löwenheim–Skolem, logical consequence, model
existence theorem, prenex form, skolemization, soundness

Part III: Limitations and Extensions of First-Order Logic

Curry–Howard isomorphism, intuitionistic logic, Kripke models, second-order logic,
simply-typed λ-calculus, (simply-typed) combinatory logic
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Intuitionistic Propositional Logic

Syntax

• basic connectives ⊃ ∧ ∨ ⊥
• derived connectives

• ¬ϕ abbreviates ϕ ⊃ ⊥
• > abbreviates ⊥ ⊃ ⊥
• ϕ ≡ ψ abbreviates (ϕ ⊃ ψ) ∧ (ψ ⊃ ϕ)

• implicational fragment contains only ⊃

Formal Semantics

• Heyting algebras

• Kripke models
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Intuitionistic Propositional Logic Kripke models

Definition

Kripke model is triple C = 〈C ,6,
〉 with

• nonempty set C of states

• partial order 6 on C

• binary relation 
 between elements of C and propositional letters

such that c ′ 
 p whenever c 
 p and c 6 c ′

Definition

Kripke model C = 〈C ,6,
〉, c ∈ C

• c 
 ϕ ∧ ψ if and only if c 
 ϕ and c 
 ψ

• c 
 ϕ ∨ ψ if and only if c 
 ϕ or c 
 ψ

• c 
 ϕ ⊃ ψ if and only if c ′ 
 ψ for all c ′ > c with c ′ 
 ϕ

• c 6
 ⊥
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Intuitionistic Propositional Logic Kripke models

Terminology

c forces p if c 
 p

Example

Kripke model C = 〈C ,6,
〉 with C = {a, b, c}, a 6 b, a 6 c , b 
 p, c 
 q

• a 
 (p ⊃ q) ⊃ q

• a 
 ¬¬(p ∨ q)

• a 6
 p ∨ ¬p

Definition

Kripke model C = 〈C ,6,
〉, c ∈ C

• c 
 Γ if c 
 ϕ for all ϕ ∈ Γ

• C 
 ϕ if c 
 ϕ for all c ∈ C

AM/VvO (CS @ UIBK) lecture 7 11/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Intuitionistic Propositional Logic Kripke models

Definition

Γ 
 ϕ if c 
 ϕ whenever c 
 Γ for all Kripke models C = 〈C ,6,
〉 and c ∈ C

Lemma (Monotonicity)

if c 6 c ′ and c 
 ϕ then c ′ 
 ϕ

Lemma

if 
 ϕ ∨ ψ then 
 ϕ or 
 ψ

Theorem

Hilbert system with Modus Ponens and Axiom Schemes 1 and 2 is sound and
complete with respect to Kripke models for implicational fragment:

Γ `ph ϕ ⇐⇒ Γ 
 ϕ
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Intuitionistic Propositional Logic Kripke models

Proof (⇒)

suppose Γ `ph ϕ
we prove Γ 
 ϕ by induction on length of derivation of Γ `ph ϕ:

• ϕ ∈ Γ

Γ 
 ϕ holds trivially

• ϕ = (ψ1 ⊃ (ψ2 ⊃ ψ1))


 ϕ by definition of 
 and thus also Γ 
 ϕ

• ϕ = ((ψ1 ⊃ (ψ2 ⊃ ψ3)) ⊃ ((ψ1 ⊃ ψ2) ⊃ (ψ1 ⊃ ψ3)))


 ϕ by definition of 
 and thus also Γ 
 ϕ

• ϕ is obtained by Modus Ponens

Γ ` ψ and Γ ` ψ ⊃ ϕ are shorter derivations

Γ 
 ψ and Γ 
 ψ ⊃ ϕ by induction hypothesis

Γ 
 ϕ by definition of 
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Intuitionistic Propositional Logic Kripke models

Proof (⇐)

suppose Γ `ph ϕ does not hold

define Kripke model C = 〈C ,⊆,
〉 with

• C = {∆ | Γ ⊆ ∆ and ∆ = {ψ | ∆ `ph ψ}}

• ∆ 
 p if p ∈ ∆ for propositional letters p

claim: ∆ 
 ψ ⇐⇒ ψ ∈ ∆ for all ∆ ∈ C and implicational formulas ψ

proof of claim (induction on ψ): consider ψ = (ψ1 ⊃ ψ2)

⇒ let ∆ 
 ψ and define ∆′ = {χ | ∆, ψ1 `ph χ}

ψ1 ∈ ∆′ ∈ C and thus ∆′ 
 ψ1 by induction hypothesis

∆′ 
 ψ2 because ∆ ⊆ ∆′ and thus ψ2 ∈ ∆′ by induction hypothesis

∆, ψ1 `ph ψ2

∆ `ph ψ by deduction theorem
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Intuitionistic Propositional Logic Kripke models

Proof (⇐)

suppose Γ `ph ϕ does not hold

define Kripke model C = 〈C ,⊆,
〉 with

• C = {∆ | Γ ⊆ ∆ and ∆ = {ψ | ∆ `ph ψ}}

• ∆ 
 p if p ∈ ∆ for propositional letters p

claim: ∆ 
 ψ ⇐⇒ ψ ∈ ∆ for all ∆ ∈ C and implicational formulas ψ

proof of claim: consider ψ = (ψ1 ⊃ ψ2)

⇐ let ψ ∈ ∆ and consider state ∆′ ⊇ ∆ with ∆′ 
 ψ1

ψ1 ∈ ∆′ by induction hypothesis and thus ∆′ `ph ψ1

∆′ `ph ψ because ∆ ⊆ ∆′

∆′ `ph ψ2 by Modus Ponens

∆′ 
 ψ2 by induction hypothesis
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Intuitionistic Propositional Logic Kripke models

Proof (⇐)

suppose Γ `ph ϕ does not hold

define Kripke model C = 〈C ,⊆,
〉 with

• C = {∆ | Γ ⊆ ∆ and ∆ = {ψ | ∆ `ph ψ}}

• ∆ 
 p if p ∈ ∆ for propositional letters p

claim: ∆ 
 ψ ⇐⇒ ψ ∈ ∆ for all ∆ ∈ C and implicational formulas ψ

define ∆ = {ψ | Γ `ph ψ}

∆ ∈ C and ∆ 
 ψ for all ψ ∈ Γ and ∆ 6
 ϕ

Γ 6
 ϕ by definition of 


Example (Peirce’s Law)

6
 ((p ⊃ q) ⊃ p) ⊃ p because of Kripke model p
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Intuitionistic Propositional Logic Kripke models

Definition (Hilbert Systems, Tree Variant)

• Assumption Γ, ϕ ` ϕ

• Axiom Scheme 1 Γ ` ϕ ⊃ (ψ ⊃ ϕ)

• Axiom Scheme 2 Γ ` (ϕ ⊃ (ψ ⊃ χ)) ⊃ ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ χ))

• Modus Ponens
Γ ` ϕ ⊃ ψ Γ ` ϕ

Γ ` ψ

Γ `H ϕ if Γ ` ϕ is derivable

Lemma

Γ `ph ϕ ⇐⇒ Γ `H ϕ
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Intuitionistic Propositional Logic Kripke models

Haskell Curry
(1900 – 1982)

William Craig
(1918 – 2016)

Jacques Herbrand
(1908 – 1931)

David Hilbert
(1862 – 1943)

Jaakko Hintikka
(1929 – 2015)

William Howard
(1926 – )

Saul Kripke
(1940 – )

Leopold Löwenheim
(1878 – 1957)

Thoralf Skolem
(1887 – 1963)
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Combinatory Logic

Definition

set C of (combinatory) terms is built from

• variables x , y , z , . . .

• constants K S

• application (MN) for combinatory terms M and N

Notational Convention

left association to reduce number of parentheses

Definition

(weak) reduction is smallest relation →w on terms such that

KM N →w M SM N P →w M P (N P)

M →w N

M P →w N P

M →w N

P M →w P N

for all terms M, N, P
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Combinatory Logic

Definitions

• →∗w is transitive and reflexive closure of →w

• I = SKK W = SS(KI) B = S(KS)K C = S(BBS)(KK)

Lemma

Ix →∗w x Wxy →∗w xyy Bxyz →∗w x(yz) Cxyz →∗w xzy

Proof

Ix →w Kx(Kx)→w x

Wxy →w Sx(KIx)y →w xy(KIxy)→w xy(Iy)→∗w xyy

Bxyz →w KSx(Kx)yz →w S(Kx)yz →w Kxz(yz)→w x(yz)

Cxyz →w BBSx(KKx)yz →w BBSxKyz →∗w B(Sx)Kyz

→∗w Sx(Ky)z →w xz(Kyz)→w xzy
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Combinatory Logic

Definitions

• normal form is term M such that M →w N for no term N

• =w is transitive, reflexive, and symmetric closure of →w

• term M is normalizing if M →∗w N for some normal form N

• infinite reduction is sequence (Mi )i>0 such that Mi →w Mi+1 for all i > 0

• term M is strongly normalizing if there are no infinite reductions starting at M

Example

term SII(SII) is not strongly normalizing:

SII(SII)→w I(SII)(I(SII))→∗w SII(I(SII))→∗w SII(SII)

Theorem (Confluence)

if M →∗w N1 and M →∗w N2 then N1 →∗w N3 and N2 →∗w N3 for some term N3
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Combinatory Logic Typed Combinatory Logic

Definitions

• simple type is implicational propositional formula

• environment is finite set of pairs Γ = {x1 : τ1, . . . , xn : τn} with pairwise
distinct variables x1, . . . , xn and simple types τ1, . . . , τn

• dom(Γ) = {x | (x : τ) ∈ Γ} and ran(Γ) = {τ | (x : τ) ∈ Γ}
• judgement Γ ` M : τ (term M has type τ in environment Γ) is defined by

type assignment rules

• variable Γ, x : τ ` x : τ

• K Γ ` K : σ → τ → σ

• S Γ ` S : (σ → τ → ρ)→ (σ → τ)→ σ → ρ

• application
Γ ` M : σ → τ Γ ` N : σ

Γ ` (MN) : τ
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Combinatory Logic Typed Combinatory Logic

Examples

• ` SKK : α→ α for all simple types α

S : (α→ (α→ α)→ α)→ (α→ α→ α)→ α→ α K : α→ (α→ α)→ α

SK : (α→ α→ α)→ α→ α K : α→ α→ α

SKK : α→ α

• ` B : (α→ β)→ (γ → α)→ γ → β

S : (µ→ ν → π)→ (µ→ ν)→ (µ→ π)

K : (θ → µ→ θ) S : θ

KS : µ→ θ

S(KS) : (µ→ ν)→ µ→ π K : (µ→ ν)

S(KS)K : µ→ π

with θ = (γ → α→ β)→ (γ → α)→ γ → β, µ = α→ β, ν = γ → α→ β,
π = (γ → α)→ γ → β
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Combinatory Logic Typed Combinatory Logic

Definitions

• set FV(M) of (free) variables of term M:

FV(M) =


{M} if M is variable

∅ if M ∈ {K,S}
FV(M1) ∪ FV(M2) if M = M1M2

• term M is typable if Γ ` M : τ for some environment Γ with dom(Γ) = FV(M)
and simple type τ

Lemma (Subject Reduction)

if Γ ` M : τ and M →∗w N then Γ ` N : τ

Theorem (Strong Normalization)

typable terms are strongly normalizing
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Combinatory Logic Typed Combinatory Logic

Decision Problems

• type checking

instance: term M, environment Γ, simple type τ

question: Γ ` M : τ ?

• type inference

instance: term M

question: Γ ` M : τ for some environment Γ and simple type τ ?

• type inhabitation

instance: type τ , environment Γ

question: Γ ` M : τ for some term M ?

Theorem

type checking, inference, and inhabitation are decidable problems
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Curry–Howard Isomorphism

type assignment Hilbert system

Γ, x : τ ` x : τ Γ, ϕ ` ϕ

Γ ` K : σ → τ → σ Γ ` ϕ ⊃ (ψ ⊃ ϕ)

Γ ` S : (σ → τ → ρ)→ (σ → τ)→ σ → ρ Γ ` (ϕ ⊃ (ψ ⊃ χ)) ⊃ ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ χ))

Γ ` M : σ → τ Γ ` N : σ

Γ ` (MN) : τ

Γ ` ϕ ⊃ ψ Γ ` ϕ
Γ ` ψ

→ and ⊃ are identified

Theorem (Curry–Howard)

1 if Γ ` M : τ then ran(Γ) `H τ

2 if Γ `H ϕ then ∆ ` M : ϕ for some M and ∆ with ran(∆) = Γ
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Curry–Howard Isomorphism

Theorem (Curry–Howard)

1 if Γ ` M : τ then ran(Γ) `H τ

Proof

induction on derivation of judgement Γ ` M : τ

• M = x and Γ = Γ′, x : τ

ran(Γ) = ran(Γ′), τ and thus ran(Γ) `H τ by Assumption

• M = K and τ = (σ → ρ→ σ)

ran(Γ) `H τ by Axiom Scheme 1

• M = S and τ = ((σ → ρ→ χ)→ (σ → ρ)→ σ → χ

ran(Γ) `H τ by Axiom Scheme 2

• M = (NP) and Γ ` N : σ → τ and Γ ` P : σ

ran(Γ) `H σ → τ and ran(Γ) `H σ by induction hypothesis

ran(Γ) `H τ by Modus Ponens
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Curry–Howard Isomorphism

Theorem (Curry–Howard)

2 if Γ `H ϕ then ∆ ` M : ϕ for some M and ∆ with ran(∆) = Γ

Proof

induction on derivation of Γ `H ϕ

interesting case: ϕ is obtained by Modus Ponens

Γ `H ψ → ϕ and Γ `H ψ

induction hypothesis: ∆1 ` M1 : ψ → ϕ and ∆2 ` M2 : ψ
for some M1, ∆1, M2, ∆2 with ran(∆1) = ran(∆2) = Γ

suppose Γ = {φ1, . . . , φn}

∆1 = {x1 : φ1, . . . , xn : φn}
∆2 = {y1 : φ1, . . . , yn : φn}

let M ′2 be obtained from M2 by replacing every yi with xi

∆1 ` M ′2 : ψ and thus ∆1 ` (M1M
′
2) : ϕ
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Curry–Howard Isomorphism

Corollary

if Γ, x : σ ` M : τ then Γ ` N : σ → τ for some term N

Proof

Curry–Howard in combination with deduction theorem

Remark

term N can be computed from M and x by bracket abstraction

Definition (Bracket Abstraction)

term [x ]M is defined for all terms M and variables x :

[x ]M =


I if M = x

KM if x /∈ FV(M)

S ([x ]M1) ([x ]M2) if M = M1M2 and x ∈ FV(M)
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Curry–Howard Isomorphism

Definition (Bracket Abstraction)

term [x ]M is defined for all terms M and variables x :

[x ]M =


I if M = x

KM if x /∈ FV(M)

S ([x ]M1) ([x ]M2) if M = M1M2 and x ∈ FV(M)

Example

[x ][y ][z ](xzy) = [x ][y ](S([z ](xz))([z ]y)) = [x ][y ](S(S([z ]x)([z ]z))(Ky))

= [x ][y ](S(S(Kx)I)(Ky)) = [x ](S([y ](S(S(Kx)I)))([y ](Ky)))

= [x ](S(K(S(S(Kx)I)))(S([y ]K)([y ]y)))

= [x ](S(K(S(S(Kx)I)))(S(KK)I))

= · · ·
= S(S(KS)(S(KK)(S(KS)(S(S(KS)(S(KK)I))(KI)))))(K(S(KK)I))
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Curry–Howard Isomorphism

Lemma

([x ]M)N →∗w M{x/N} for all terms M and N

Lemma

if Γ, x : σ ` M : τ then Γ ` [x ]M : σ → τ
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Curry–Howard Isomorphism

Haskell Curry
(1900 – 1982)

William Craig
(1918 – 2016)

Jacques Herbrand
(1908 – 1931)

David Hilbert
(1862 – 1943)

Jaakko Hintikka
(1929 – 2015)

William Howard
(1926 – )

Saul Kripke
(1940 – )

Leopold Löwenheim
(1878 – 1957)

Thoralf Skolem
(1887 – 1963)
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Exercises
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Further Reading
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Exercises

Earlier Exam

• Exercise 2 of the exam of March 4, 2016.

Intuitionistic Logic

• 
 ϕ ⊃ ¬¬ϕ ?

• 
 ¬¬ϕ ⊃ ϕ ?

• 
 (ϕ ⊃ ¬ψ) ⊃ (¬¬ϕ ⊃ ¬ψ) ?

• Prove that ϕ is a propositional tautology if and only if 
 ¬¬ϕ.
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Exercises

Fitting

• Argue that the Example on slide 32 illustrating the abstraction algorithm
gives, via the Curry–Howard correspondence, a solution to Exercise 4.1.1.
That is, first show that x : P ⊃ (Q ⊃ R), y : Q, z : P ` (xz)y : R can be
inferred in the type inference system (we identify ⊃ with →). Next, show that
performing the abstraction algorithm three times to compute [x ][y ][z ](xz)y
yields a (closed) term of type (P ⊃ (Q ⊃ R)) ⊃ (Q ⊃ (P ⊂ R)). Conclude
this gives rise to a Hilbert System proof of (P ⊃ (Q ⊃ R)) ⊃ (Q ⊃ (P ⊂ R)).

• In the solution to Exercise 4.1.1 I had made use of the following extra rule
(having priority over the others) for the abstraction algorithm:

[x ](Mx) = M if x 6∈ FV(M)

Show this optimisation to be correct (in the sense of the lemmata on
slide 33), and check whether or not I made a mistake in my solution,. Is the
extra rule to be preferred or not? Argue why (not).

• Bonus Implement both above versions of the abstraction algorithm and check
whether or not slide 32 and the earlier solution to Exercise 4.1.1 are correct.

• Bonus Exercise 4.1.8 (again . . . )
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Further Reading
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Further Reading

Fitting

• Section 4.1 (revisit from earlier this course, from new C–H-perspective)

• Section 4.2 (revisit from Ba logic course as preparation for next week)

• Section 4.3 (idem)

Additional Literature

• Philip Wadler, Propositions as Types, Communications of the ACM 58(12),
pp. 75 – 84, 2015

• Morten Heine Sørensen and Pawel Urzyczyn, Lectures on the Curry–Howard
Isomorphism, Studies in Logic and the Foundations of Mathematics, volume
149, Elsevier, 2006 (cached PDF of preliminary version on citeseer)
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