Computational Logic

Vincent van Oostrom
Course/slides by Aart Middeldorp

Department of Computer Science
University of Innsbruck

SS 2020

Outline

- Overview of this lecture
- Natural Deduction
- λ-calculus
- Strong Normalization by Strong Computability
- Curry-Howard Isomorphism
- Exercises
- Further Reading

We continue focusing on the structural and representational aspects of proofs. Last week, we have seen how combinatory logic (CL) terms could be employed to represent Hilbert System proofs for the implicational fragment of intuitionistic propositional logic. More precisely, typed CL-terms correspond to proofs in Hilbert Systems restricted to Axiom Schemes 1 and 2, the types of the CL-terms correspond to the formulas proven, and weak-reduction \rightarrow_{w} of CL terms corresponds to normalization of the proofs. These correspondences together constitute the Curry-Howard isomorphism. The isomorphism extends to larger fragments (including conjunction, disjunction, etc.) of (intuitionistic) logic, but we will not discuss that in this course.
Instead, we focus on establishing a Curry-Howard isomorphism for the same, implicational, fragment of intuitionistic logic, but for Natural Deduction (ND) instead of the Hilbert System (H). In particular, we introduce the λ-calculus as a term calculus such that typed λ-terms correspond to proofs in ND. More precisely, λ-terms are terms constructed from variables, applications, and λ-abstractions, which correspond to (names of) assumptions, Implication Elimination, and Implication Introduction in ND, respectively.

We introduce β-reduction \rightarrow_{β} of typed λ-terms, show that it corresponds to normalization of ND proofs, and that every λ-term has a (unique) normal form, i.e. that every ND can be normalized (doesn't contain an Implication Introduction immediately followed by an Implication Elimination). With the types and formulas as before, this constitutes the Curry-Howard isomorphism between Natural Deduction and the (typed) λ-calculus. We finish with relating both term-calculi, i.e. combinatory logic and the λ-calculus. In particular, we show that every λ-term can be translated to a CL term of the same type, and vice versa. Bracket abstraction is at the heart of this translation. Via the Curry-Howard isomorphism, it allows to translate a Natural Deduction proof of a formula (using Implication Introduction) into a Hilbert System proof (using Axiom Schemes 1 and 2). The translations establish, e.g., that ND is sound and complete for Kripke semantics, since Hilbert Systems (restricted to Axiom Schemes 1 and 2) are, as we showed last time.

Part I: Propositional Logic

compactness, completeness, Hilbert systems, Hintikka's lemma, interpolation, logical consequence, model existence theorem, propositional semantic tableaux, soundness

Part II: First-Order Logic

compactness, completeness, Craig's interpolation theorem, cut elimination, first-order semantic tableaux, Herbrand models, Herbrand's theorem, Hilbert systems, Hintikka's lemma, Löwenheim-Skolem, logical consequence, model existence theorem, prenex form, skolemization, soundness

Part III: Limitations and Extensions of First-Order Logic

Curry-Howard isomorphism, intuitionistic logic, Kripke models, second-order logic, simply-typed λ-calculus, (simply-typed) combinatory logic

Part I: Propositional Logic

compactness, completeness, Hilbert systems, Hintikka's lemma, interpolation, logical consequence, model existence theorem, propositional semantic tableaux, soundness

Part II: First-Order Logic

compactness, completeness, Craig's interpolation theorem, cut elimination, first-order semantic tableaux, Herbrand models, Herbrand's theorem, Hilbert systems, Hintikka's lemma, Löwenheim-Skolem, logical consequence, model existence theorem, prenex form, skolemization, soundness

Part III: Limitations and Extensions of First-Order Logic

Curry-Howard isomorphism, intuitionistic logic, Kripke models, second-order logic, simply-typed λ-calculus, (simply-typed) combinatory logic

Part I: Propositional Logic

compactness, completeness, Hilbert systems, Hintikka's lemma, interpolation, logical consequence, model existence theorem, propositional semantic tableaux, soundness

Part II: First-Order Logic

compactness, completeness, Craig's interpolation theorem, cut elimination, first-order semantic tableaux, Herbrand models, Herbrand's theorem, Hilbert systems, Hintikka's lemma, Löwenheim-Skolem, logical consequence, model existence theorem, prenex form, skolemization, soundness

Part III: Limitations and Extensions of First-Order Logic

Curry-Howard isomorphism, intuitionistic logic, Kripke models, seeenel-erkler-legie, simply-typed λ-calculus, (simply-typed) combinatory logic

Outline

- Overview of this lecture
- Natural Deduction
- λ-calculus
- Strong Normalization by Strong Computability
- Curry-'Howard' 'somorphism
- Exercises
- Further Reading

Definition (Natural Deduction, Tree Variant)

- Assumption

$$
\ulcorner, \varphi \vdash \varphi
$$

Definition (Natural Deduction, Tree Variant)

- Assumption

$$
\ulcorner, \varphi \vdash \varphi
$$

- Implication Introduction $\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \phi \supset \psi}$

Definition (Natural Deduction, Tree Variant)

- Assumption

$$
\ulcorner, \varphi \vdash \varphi
$$

- Implication Introduction $\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \phi \supset \psi}$
- Implication Elimination $\frac{\Gamma \vdash \varphi \supset \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi}$

Definition (Natural Deduction, Tree Variant)

- Assumption

$$
\ulcorner, \varphi \vdash \varphi
$$

- Implication Introduction $\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \phi \supset \psi}$
- Implication Elimination

$$
\frac{\Gamma \vdash \varphi \supset \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi}
$$

$\Gamma \vdash_{N D} \varphi$ if $\Gamma \vdash \varphi$ is derivable

Definition (Natural Deduction, Tree Variant)

- Assumption
- Implication Introduction $\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \phi \supset \psi}$
- Implication Elimination

$$
\Gamma, \varphi \vdash \varphi
$$

$$
\overline{\Gamma \vdash \phi \supset \psi}
$$

$$
\frac{\Gamma \vdash \varphi \supset \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi}
$$

Lemma

$\Gamma \vdash_{p n} \varphi \quad \Longleftrightarrow \quad \Gamma \vdash_{N D} \varphi$
Here $\vdash_{p n}$ refers to natural deduction as in Section 4.2 of Fitting (line-based, not tree-based) restricted to the inference rules for implication only: Modus Ponens (as for Hilbert Systems) and the inference rule given in Figure 4.1.

Examples
for arbitrary formulas ϕ, ψ, χ : (we assume \supset is right-associative)

$$
\frac{\frac{\phi, \psi \vdash \phi}{\phi \vdash \psi \supset \phi}}{\vdash \phi \supset \psi \supset \phi}
$$

- For $\Gamma=\{\phi \supset \psi \supset \chi, \phi \supset \psi, \phi\}$

Outline

- Overview of this lecture
- Natural Deduction
- λ-calculus
- Strong Normalization by Strong Computability
- Curry-Howard Isomorphism
- Exercises
- Further Reading

λ-abstraction for function specification

In mathematics and programming there are various ways to specify functions. We illustrate several of them by means of the example of the composition function.

- verbose: composition is the function that takes any two functions f and g and yields a function that when applied to x yields $f(g(x))$, which is quite verbose

λ-abstraction for function specification

In mathematics and programming there are various ways to specify functions. We illustrate several of them by means of the example of the composition function.

- verbose: composition is the function that takes any two functions f and g and yields a function that when applied to x yields $f(g(x))$, which is quite verbose
- naming: $(f \cdot g)(x)=f(g(x))$, which requires naming composition as $(f \cdot g)$

λ-abstraction for function specification

In mathematics and programming there are various ways to specify functions. We illustrate several of them by means of the example of the composition function.

- verbose: composition is the function that takes any two functions f and g and yields a function that when applied to x yields $f(g(x))$, which is quite verbose
- naming: $(f \cdot g)(x)=f(g(x))$, which requires naming composition as $(f \cdot g)$
- naming: in combinatory logic composition is named B (slide 21 of previous week), with reduction rule $\mathrm{B} f g x \rightarrow_{w} f(g x)$.

λ-abstraction for function specification

In mathematics and programming there are various ways to specify functions. We illustrate several of them by means of the example of the composition function.

- verbose: composition is the function that takes any two functions f and g and yields a function that when applied to x yields $f(g(x))$, which is quite verbose
- naming: $(f \cdot g)(x)=f(g(x))$, which requires naming composition as $(f \cdot g)$
- naming: in combinatory logic composition is named B (slide 21 of previous week), with reduction rule B $f g x \rightarrow_{w} f(g x)$.
- anonymously in Haskell: (\f $g \mathrm{x} \rightarrow \mathrm{f}(\mathrm{g} x)$), with type indeed (t1 \rightarrow t2) $->$ ($\mathrm{t} 3->\mathrm{t} 1$) $->\mathrm{t} 3->\mathrm{t} 2$ according to Haskell

λ-abstraction for function specification

In mathematics and programming there are various ways to specify functions. We illustrate several of them by means of the example of the composition function.

- verbose: composition is the function that takes any two functions f and g and yields a function that when applied to x yields $f(g(x))$, which is quite verbose
- naming: $(f \cdot g)(x)=f(g(x))$, which requires naming composition as $(f \cdot g)$
- naming: in combinatory logic composition is named B (slide 21 of previous week), with reduction rule $\mathrm{B} f g x \rightarrow_{w} f(g x)$.
- anonymously in Haskell: ($\backslash \mathrm{f} \mathrm{g} x$-> $\mathrm{f}(\mathrm{g} \mathrm{x})$), with type indeed (t 1 -> t2) -> (t 3 -> t1) -> t3 -> t2 according to Haskell
- anonymously in λ-calculus: λ fgx. $f(g x)$. We will see that indeed it has type $(\alpha \rightarrow \beta) \rightarrow(\gamma \rightarrow \alpha) \rightarrow(\gamma \rightarrow \beta)$, or in other words that $\lambda f g x . f(g x)$ is a Natural Deduction proof of the proposition $(Y \supset Z) \supset(X \supset Y) \supset(X \supset Z)$

λ-abstraction for function specification

In mathematics and programming there are various ways to specify functions. We illustrate several of them by means of the example of the composition function.

- verbose: composition is the function that takes any two functions f and g and yields a function that when applied to x yields $f(g(x))$, which is quite verbose
- naming: $(f \cdot g)(x)=f(g(x))$, which requires naming composition as $(f \cdot g)$
- naming: in combinatory logic composition is named B (slide 21 of previous week), with reduction rule $\mathrm{B} f g x \rightarrow_{w} f(g x)$.
- anonymously in Haskell: ($\backslash \mathrm{f} \mathrm{g} \mathrm{x} \mathrm{->} \mathrm{f}(\mathrm{g} \mathrm{x})$), with type indeed (t 1 -> t2) -> (t 3 -> t1) -> t3 -> t2 according to Haskell
- anonymously in λ-calculus: λ fgx. $f(g x)$. We will see that indeed it has type $(\alpha \rightarrow \beta) \rightarrow(\gamma \rightarrow \alpha) \rightarrow(\gamma \rightarrow \beta)$, or in other words that $\lambda f g x . f(g x)$ is a Natural Deduction proof of the proposition $(Y \supset Z) \supset(X \supset Y) \supset(X \supset Z)$

Remark

Upshot: λ-terms are (anonymous) functions, which are proofs (of implications)

Definition

set \mathcal{L} of $(\lambda-)$ terms is built from

- variables

$$
x, y, z, \ldots
$$

Definition

set \mathcal{L} of $(\lambda$ -)terms is built from

- variables
x, y, z, \ldots
- λ-abstractions $\lambda x . M$ for variables x and λ-terms M

Definition

set \mathcal{L} of $(\lambda$ -)terms is built from

- variables
x, y, z, \ldots
- λ-abstractions $\lambda x . M$ for variables x and λ-terms M
- application
$(M N)$ for λ-terms M and N

Definition

set \mathcal{L} of $(\lambda-)$ terms is built from

- variables
- λ-abstractions $\lambda x . M$ for variables x and λ-terms M
- application

Notational Convention

We assume application is left associative to reduce number of parentheses, and combine λ-abstractions to reduce number of λ s.

Definition

set \mathcal{L} of $(\lambda$ - $)$ terms is built from

- variables
- λ-abstractions
- application

$$
x, y, z, \ldots
$$

$$
\lambda x . M \text { for variables } x \text { and } \lambda \text {-terms } M
$$

($M N$) for λ-terms M and N

Notational Convention

We assume application is left associative to reduce number of parentheses, and combine λ-abstractions to reduce number of $\lambda \mathrm{s}$.

Definition

$\left(\beta\right.$-)reduction is smallest relation \rightarrow_{β} on λ-terms such that
$\overline{(\lambda x . M) N \rightarrow_{\beta} M[x:=N]}$
for all λ-terms M, N

Definition

set \mathcal{L} of $(\lambda$ - $)$ terms is built from

- variables
- λ-abstractions
- application

$$
x, y, z, \ldots
$$

$\lambda x . M$ for variables x and λ-terms M
($M N$) for λ-terms M and N

Notational Convention

We assume application is left associative to reduce number of parentheses, and combine λ-abstractions to reduce number of $\lambda \mathrm{s}$.

Definition

$\left(\beta\right.$-)reduction is smallest relation \rightarrow_{β} on λ-terms such that

$$
\overline{(\lambda x . M) N \rightarrow_{\beta} M[x:=N]} \quad \frac{M \rightarrow_{\beta} N}{\lambda x \cdot M \rightarrow_{\beta} \lambda x . N}
$$

for all λ-terms M, N, all variables x

Definition

set \mathcal{L} of $(\lambda$ - $)$ terms is built from

- variables
- λ-abstractions
- application

$$
x, y, z, \ldots
$$

$\lambda x . M$ for variables x and λ-terms M
($M N$) for λ-terms M and N

Notational Convention

We assume application is left associative to reduce number of parentheses, and combine λ-abstractions to reduce number of $\lambda \mathrm{s}$.

Definition

$\left(\beta\right.$-)reduction is smallest relation \rightarrow_{β} on λ-terms such that
$\overline{(\lambda x . M) N \rightarrow_{\beta} M[x:=N]} \quad \frac{M \rightarrow_{\beta} N}{\lambda x \cdot M \rightarrow_{\beta} \lambda x . N} \quad \frac{M \rightarrow_{\beta} N}{M P \rightarrow_{\beta} N P} \quad \frac{M \rightarrow_{\beta} N}{P M \rightarrow_{\beta} P N}$ for all λ-terms M, N, all variables x, and all λ-terms P

Definition

- $\lambda x . M$ binds occurrences of x in M. occurrence of x is free if not bound.
- capture avoiding substitution

$$
\begin{array}{rll}
x[x:=N] & =N & \\
y[x:=N] & =y & \\
(\lambda x \cdot M)[x:=N] & =\lambda x \cdot M & \text { if } y \text { not free in } N \\
(\lambda y \cdot M)[x:=N] & =\lambda y \cdot M[x:=N] & \\
(\lambda y \cdot M)[x:=N] & =\lambda z \cdot M[y:=z][x:=N] & \text { if some } y \text { free in } N \\
\left(M_{1} M_{2}\right)[x:=N] & =M_{1}[x:=N] M_{2}[x:=N] &
\end{array}
$$

with z fresh (first variable not in x, y, M, N)

Definition

- $\lambda x . M$ binds occurrences of x in M. occurrence of x is free if not bound.
- capture avoiding substitution

$$
\begin{array}{rlr}
x[x:=N] & =N & \\
y[x:=N] & =y \\
(\lambda x \cdot M)[x:=N] & =\lambda x \cdot M & \\
(\lambda y \cdot M)[x:=N] & =\lambda y \cdot M[x:=N] & \text { if } y \text { not free in } N \\
(\lambda y \cdot M)[x:=N] & =\lambda z \cdot M[y:=z][x:=N] & \text { if some } y \text { free in } N \\
\left(M_{1} M_{2}\right)[x:=N] & =M_{1}[x:=N] M_{2}[x:=N] &
\end{array}
$$

with z fresh (first variable not in x, y, M, N)

Example

$(\lambda x . x) x$ bound x.

Definition

- $\lambda x . M$ binds occurrences of x in M. occurrence of x is free if not bound.
- capture avoiding substitution

$$
\begin{array}{rlr}
x[x:=N] & =N & \\
y[x:=N] & =y \\
(\lambda x \cdot M)[x:=N] & =\lambda x \cdot M & \\
(\lambda y \cdot M)[x:=N] & =\lambda y \cdot M[x:=N] & \text { if } y \text { not free in } N \\
(\lambda y \cdot M)[x:=N] & =\lambda z \cdot M[y:=z][x:=N] & \text { if some } y \text { free in } N \\
\left(M_{1} M_{2}\right)[x:=N] & =M_{1}[x:=N] M_{2}[x:=N] &
\end{array}
$$

with z fresh (first variable not in x, y, M, N)

Example

$(\lambda x . x) x$ free x.

Definition

- $\lambda x . M$ binds occurrences of x in M. occurrence of x is free if not bound.
- capture avoiding substitution

$$
\begin{array}{rlr}
x[x:=N] & =N & \\
y[x:=N] & =y \\
(\lambda x \cdot M)[x:=N] & =\lambda x \cdot M & \\
(\lambda y \cdot M)[x:=N] & =\lambda y \cdot M[x:=N] \quad \text { if } y \text { not free in } N \\
(\lambda y \cdot M)[x:=N] & =\lambda z \cdot M[y:=z][x:=N] & \text { if some } y \text { free in } N \\
\left(M_{1} M_{2}\right)[x:=N] & =M_{1}[x:=N] M_{2}[x:=N] &
\end{array}
$$

with z fresh (first variable not in x, y, M, N)

Example

$\lambda y .(\lambda x y . x) y \rightarrow_{\beta} \lambda y z . y$

Definition

- $\lambda x . M$ binds occurrences of x in M. occurrence of x is free if not bound.
- capture avoiding substitution

$$
\begin{array}{rlr}
x[x:=N] & =N & \\
y[x:=N] & =y & \\
(\lambda x \cdot M)[x:=N] & =\lambda x \cdot M & \text { if } y \text { not free in } N \\
(\lambda y \cdot M)[x:=N] & =\lambda y \cdot M[x:=N] & \\
(\lambda y \cdot M)[x:=N] & =\lambda z \cdot M[y:=z][x:=N] & \text { if some } y \text { free in } N \\
\left(M_{1} M_{2}\right)[x:=N] & & M_{1}[x:=N] M_{2}[x:=N]
\end{array}
$$

with z fresh (first variable not in x, y, M, N)

Example

$\lambda y .(\lambda x y . x) y \rightarrow_{\beta} \lambda y z . y$, since is $\lambda y \cdot((\lambda x .(\lambda y \cdot x)) y) \rightarrow_{\beta} \lambda y .(\lambda z . y)$ per notational convention

Definition

- $\lambda x . M$ binds occurrences of x in M. occurrence of x is free if not bound.
- capture avoiding substitution

$$
\begin{array}{rlr}
x[x:=N] & =N & \\
y[x:=N] & =y & \\
(\lambda x \cdot M)[x:=N] & =\lambda x \cdot M & \text { if } y \text { not free in } N \\
(\lambda y \cdot M)[x:=N] & =\lambda y \cdot M[x:=N] & \\
(\lambda y \cdot M)[x:=N] & =\lambda z \cdot M[y:=z][x:=N] & \text { if some } y \text { free in } N \\
\left(M_{1} M_{2}\right)[x:=N] & & M_{1}[x:=N] M_{2}[x:=N]
\end{array}
$$

with z fresh (first variable not in x, y, M, N)

Example

$\lambda y .(\lambda x y . x) y \rightarrow_{\beta} \lambda y z . y$, since is $\lambda y .((\lambda x .(\lambda y \cdot x)) y) \rightarrow_{\beta} \lambda y .(\lambda z . y)$ per notational convention, which follows from $(\lambda x .(\lambda y . x)) y \rightarrow_{\beta}(\lambda y . x)[x:=y]=\lambda z . y$

Definition

- $\lambda x . M$ binds occurrences of x in M. occurrence of x is free if not bound.
- capture avoiding substitution

$$
\begin{array}{rlr}
x[x:=N] & =N & \\
y[x:=N] & =y & \\
(\lambda x \cdot M)[x:=N] & =\lambda x \cdot M & \text { if } y \text { not free in } N \\
(\lambda y \cdot M)[x:=N] & =\lambda y \cdot M[x:=N] & \\
(\lambda y \cdot M)[x:=N] & =\lambda z \cdot M[y:=z][x:=N] & \text { if some } y \text { free in } N \\
\left(M_{1} M_{2}\right)[x:=N] & =M_{1}[x:=N] M_{2}[x:=N] &
\end{array}
$$

with z fresh (first variable not in x, y, M, N)

Example

$\lambda y .(\lambda x y . x) y \rightarrow_{\beta} \lambda y z . y$, since is $\lambda y .((\lambda x .(\lambda y \cdot x)) y) \rightarrow_{\beta} \lambda y .(\lambda z . y)$ per notational convention, which follows from $(\lambda x .(\lambda y . x)) y \rightarrow_{\beta}(\lambda y . x)[x:=y]=\lambda z . y$, which follows by 3rd clause for λ-abstraction since y is free in y.

Definitions

- \rightarrow_{β}^{*} is transitive and reflexive closure of \rightarrow_{β}

Definitions

- \rightarrow_{β}^{*} is transitive and reflexive closure of \rightarrow_{β}
- normal form is λ-term M such that $M \rightarrow_{\beta} N$ for no λ-term N

λ-calculus

Definitions

- \rightarrow_{β}^{*} is transitive and reflexive closure of \rightarrow_{β}
- normal form is λ-term M such that $M \rightarrow_{\beta} N$ for no λ-term N
- $={ }_{\beta}$ is transitive, reflexive, and symmetric closure of \rightarrow_{β}

λ-calculus

Definitions

- \rightarrow_{β}^{*} is transitive and reflexive closure of \rightarrow_{β}
- normal form is λ-term M such that $M \rightarrow_{\beta} N$ for no λ-term N
- $={ }_{\beta}$ is transitive, reflexive, and symmetric closure of \rightarrow_{β}
- λ-term M is normalizing if $M \rightarrow{ }_{\beta}^{*} N$ for some normal form N

Definitions

- \rightarrow_{β}^{*} is transitive and reflexive closure of \rightarrow_{β}
- normal form is λ-term M such that $M \rightarrow_{\beta} N$ for no λ-term N
- $={ }_{\beta}$ is transitive, reflexive, and symmetric closure of \rightarrow_{β}
- λ-term M is normalizing if $M \rightarrow_{\beta}^{*} N$ for some normal form N
- infinite reduction is sequence $\left(M_{i}\right)_{i \geqslant 0}$ such that $M_{i} \rightarrow_{\beta} M_{i+1}$ for all $i \geqslant 0$

Definitions

- \rightarrow_{β}^{*} is transitive and reflexive closure of \rightarrow_{β}
- normal form is λ-term M such that $M \rightarrow_{\beta} N$ for no λ-term N
- $={ }_{\beta}$ is transitive, reflexive, and symmetric closure of \rightarrow_{β}
- λ-term M is normalizing if $M \rightarrow_{\beta}^{*} N$ for some normal form N
- infinite reduction is sequence $\left(M_{i}\right)_{i \geqslant 0}$ such that $M_{i} \rightarrow_{\beta} M_{i+1}$ for all $i \geqslant 0$
- λ-term M is strongly normalizing if there are no infinite reductions from M

Definitions

- \rightarrow_{β}^{*} is transitive and reflexive closure of \rightarrow_{β}
- normal form is λ-term M such that $M \rightarrow_{\beta} N$ for no λ-term N
- $={ }_{\beta}$ is transitive, reflexive, and symmetric closure of \rightarrow_{β}
- λ-term M is normalizing if $M \rightarrow_{\beta}^{*} N$ for some normal form N
- infinite reduction is sequence $\left(M_{i}\right)_{i \geqslant 0}$ such that $M_{i} \rightarrow_{\beta} M_{i+1}$ for all $i \geqslant 0$
- λ-term M is strongly normalizing if there are no infinite reductions from M

Example

λ-term $\Omega=(\lambda x . x x)(\lambda x . x x)$ not strongly normalizing: $\Omega \rightarrow_{\beta} \Omega$

Definitions

- \rightarrow_{β}^{*} is transitive and reflexive closure of \rightarrow_{β}
- normal form is λ-term M such that $M \rightarrow_{\beta} N$ for no λ-term N
- $={ }_{\beta}$ is transitive, reflexive, and symmetric closure of \rightarrow_{β}
- λ-term M is normalizing if $M \rightarrow_{\beta}^{*} N$ for some normal form N
- infinite reduction is sequence $\left(M_{i}\right)_{i \geqslant 0}$ such that $M_{i} \rightarrow_{\beta} M_{i+1}$ for all $i \geqslant 0$
- λ-term M is strongly normalizing if there are no infinite reductions from M

Example

λ-term $\Omega=(\lambda x . x x)(\lambda x . x x)$ not strongly normalizing: $\Omega \rightarrow_{\beta} \Omega$

Theorem

- (Confluence) if $M \rightarrow{ }_{\beta}^{*} N_{1}, M \rightarrow{ }_{\beta}^{*} N_{2}$ then $N_{1} \rightarrow{ }_{\beta}^{*} N_{3}, N_{2} \rightarrow_{\beta}^{*} N_{3}$ for some N_{3}
- (Consistency) there are M, N such that $M \not{ }_{\beta} N$, e.g. distinct normal forms.

Definitions

- simple type is implicational propositional formula

Definitions

- simple type is implicational propositional formula
- environment is finite set of pairs $\Gamma=\left\{x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right\}$ with pairwise distinct variables x_{1}, \ldots, x_{n} and simple types $\tau_{1}, \ldots, \tau_{n}$

Definitions

- simple type is implicational propositional formula
- environment is finite set of pairs $\Gamma=\left\{x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right\}$ with pairwise distinct variables x_{1}, \ldots, x_{n} and simple types $\tau_{1}, \ldots, \tau_{n}$
- $\operatorname{dom}(\Gamma)=\{x \mid(x: \tau) \in \Gamma\}$ and $\operatorname{ran}(\Gamma)=\{\tau \mid(x: \tau) \in \Gamma\}$

Definitions

- simple type is implicational propositional formula
- environment is finite set of pairs $\Gamma=\left\{x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right\}$ with pairwise distinct variables x_{1}, \ldots, x_{n} and simple types $\tau_{1}, \ldots, \tau_{n}$
- $\operatorname{dom}(\Gamma)=\{x \mid(x: \tau) \in \Gamma\}$ and $\operatorname{ran}(\Gamma)=\{\tau \mid(x: \tau) \in \Gamma\}$
- judgement $\Gamma \vdash M: \tau(\lambda$-term M has type τ in environment $\Gamma)$

Definitions

- simple type is implicational propositional formula
- environment is finite set of pairs $\Gamma=\left\{x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right\}$ with pairwise distinct variables x_{1}, \ldots, x_{n} and simple types $\tau_{1}, \ldots, \tau_{n}$
- $\operatorname{dom}(\Gamma)=\{x \mid(x: \tau) \in \Gamma\}$ and $\operatorname{ran}(\Gamma)=\{\tau \mid(x: \tau) \in \Gamma\}$
- judgement $\Gamma \vdash M: \tau(\lambda$-term M has type τ in environment $\Gamma)$ is defined by type assignment rules
- variable 「, $x: \tau \vdash x: \tau$

Definitions

- simple type is implicational propositional formula
- environment is finite set of pairs $\Gamma=\left\{x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right\}$ with pairwise distinct variables x_{1}, \ldots, x_{n} and simple types $\tau_{1}, \ldots, \tau_{n}$
- $\operatorname{dom}(\Gamma)=\{x \mid(x: \tau) \in \Gamma\}$ and $\operatorname{ran}(\Gamma)=\{\tau \mid(x: \tau) \in \Gamma\}$
- judgement $\Gamma \vdash M: \tau(\lambda$-term M has type τ in environment $\Gamma)$ is defined by type assignment rules
- variable 「, $x: \tau \vdash x: \tau$
- λ-abstraction $\frac{\Gamma, x: \sigma \vdash M: \tau}{\Gamma \vdash \lambda x \cdot M: \sigma \rightarrow \tau}$

Definitions

- simple type is implicational propositional formula
- environment is finite set of pairs $\Gamma=\left\{x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right\}$ with pairwise distinct variables x_{1}, \ldots, x_{n} and simple types $\tau_{1}, \ldots, \tau_{n}$
- $\operatorname{dom}(\Gamma)=\{x \mid(x: \tau) \in \Gamma\}$ and $\operatorname{ran}(\Gamma)=\{\tau \mid(x: \tau) \in \Gamma\}$
- judgement $\Gamma \vdash M: \tau(\lambda$-term M has type τ in environment $\Gamma)$ is defined by type assignment rules
- variable 「, $x: \tau \vdash x: \tau$
- λ-abstraction $\frac{\Gamma, x: \sigma \vdash M: \tau}{\Gamma \vdash \lambda x \cdot M: \sigma \rightarrow \tau}$
- application $\frac{\Gamma \vdash M: \sigma \rightarrow \tau \quad \Gamma \vdash N: \sigma}{\Gamma \vdash(M N): \tau}$

Definitions

- simple type is implicational propositional formula
- environment is finite set of pairs $\Gamma=\left\{x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right\}$ with pairwise distinct variables x_{1}, \ldots, x_{n} and simple types $\tau_{1}, \ldots, \tau_{n}$
- $\operatorname{dom}(\Gamma)=\{x \mid(x: \tau) \in \Gamma\}$ and $\operatorname{ran}(\Gamma)=\{\tau \mid(x: \tau) \in \Gamma\}$
- judgement $\Gamma \vdash M: \tau(\lambda$-term M has type τ in environment $\Gamma)$ is defined by type assignment rules
- variable \quad, $x: \tau \vdash x: \tau$
- λ-abstraction $\frac{\Gamma, x: \sigma \vdash M: \tau}{\Gamma \vdash \lambda x \cdot M: \sigma \rightarrow \tau}$
- application

$$
\frac{\Gamma \vdash M: \sigma \rightarrow \tau \quad\ulcorner\vdash N: \sigma}{\Gamma \vdash(M N): \tau}
$$

Remark

for convenience we assume distinct λs bind distinct variables. for instance, $\vdash \lambda y x . x: \sigma \rightarrow(\tau \rightarrow \tau)$ instead of $\vdash \lambda x x . x: \sigma \rightarrow(\tau \rightarrow \tau)$ (see exercises).

Example

$\vdash \lambda f g x . f(g x):(\alpha \rightarrow \beta) \rightarrow(\gamma \rightarrow \alpha) \rightarrow(\gamma \rightarrow \beta) \quad$ for all simple types α, β, γ

Example

$\vdash \lambda f g x . f(g x):(\alpha \rightarrow \beta) \rightarrow(\gamma \rightarrow \alpha) \rightarrow(\gamma \rightarrow \beta) \quad$ for all simple types α, β, γ

$$
\frac{\Gamma \vdash f: \alpha \rightarrow \beta}{\frac{\Gamma \vdash g: \gamma \rightarrow \alpha \quad \Gamma \vdash x: \gamma}{\Gamma \vdash g x: \alpha}} \frac{\frac{\Gamma \vdash f(g x): \beta}{f: \alpha \rightarrow \beta, g: \gamma \rightarrow \alpha \vdash \lambda x . f(g x): \gamma \rightarrow \beta}}{\frac{f(\alpha f g x . f(g x):(\alpha \rightarrow \beta) \rightarrow(\gamma \rightarrow \alpha) \rightarrow \gamma \rightarrow \beta}{\vdash}}
$$

$$
\text { with } \Gamma=\{f: \alpha \rightarrow \beta, g: \gamma \rightarrow \alpha, x: \gamma\}
$$

Definitions

- set $\mathrm{FV}(M)$ of (free) variables of λ-term M :

$$
F V(M)= \begin{cases}\{x\} & \text { if } M=x \\ F V\left(M_{1}\right)-\{x\} & \text { if } M=\lambda x \cdot M_{1} \\ F V\left(M_{1}\right) \cup F V\left(M_{2}\right) & \text { if } M=M_{1} M_{2}\end{cases}
$$

Definitions

- set $\mathrm{FV}(M)$ of (free) variables of λ-term M :

$$
F V(M)= \begin{cases}\{x\} & \text { if } M=x \\ F V\left(M_{1}\right)-\{x\} & \text { if } M=\lambda x \cdot M_{1} \\ F V\left(M_{1}\right) \cup F V\left(M_{2}\right) & \text { if } M=M_{1} M_{2}\end{cases}
$$

- λ-term M is typable if $\Gamma \vdash M: \tau$ for some environment Γ with $\operatorname{dom}(\Gamma)=\mathrm{FV}(M)$ and simple type τ

Definitions

- set $\mathrm{FV}(M)$ of (free) variables of λ-term M :

$$
F V(M)= \begin{cases}\{x\} & \text { if } M=x \\ F V\left(M_{1}\right)-\{x\} & \text { if } M=\lambda x \cdot M_{1} \\ F V\left(M_{1}\right) \cup F V\left(M_{2}\right) & \text { if } M=M_{1} M_{2}\end{cases}
$$

- λ-term M is typable if $\Gamma \vdash M: \tau$ for some environment Γ with $\operatorname{dom}(\Gamma)=\mathrm{FV}(M)$ and simple type τ

Lemma (Subject Reduction)

if $\Gamma \vdash M: \tau$ and $M \rightarrow_{\beta}^{*} N$ then $\Gamma \vdash N: \tau$

Definitions

- set $\mathrm{FV}(M)$ of (free) variables of λ-term M :

$$
F V(M)= \begin{cases}\{x\} & \text { if } M=x \\ \operatorname{FV}\left(M_{1}\right)-\{x\} & \text { if } M=\lambda x \cdot M_{1} \\ F V\left(M_{1}\right) \cup F V\left(M_{2}\right) & \text { if } M=M_{1} M_{2}\end{cases}
$$

- λ-term M is typable if $\Gamma \vdash M: \tau$ for some environment Γ with $\operatorname{dom}(\Gamma)=\mathrm{FV}(M)$ and simple type τ

Lemma (Subject Reduction)

if $\Gamma \vdash M: \tau$ and $M \rightarrow_{\beta}^{*} N$ then $\Gamma \vdash N: \tau$

Theorem (Strong Normalization)

typable λ-terms are strongly normalizing

Normalization by substitution

- A λ-term $(\lambda x \cdot M) N$ corresponds to having a proof M of some proposition Y under the assumption named x that X holds, and a proof N that the assumption X in fact holds. Such a proof can be normalized by directly proving Y using X everywhere where the assumption that X holds, was used

Normalization by substitution

- A λ-term $(\lambda x . M) N$ corresponds to having a proof M of some proposition Y under the assumption named x that X holds, and a proof N that the assumption X in fact holds. Such a proof can be normalized by directly proving Y using X everywhere where the assumption that X holds, was used
- At term level, this is brought about by $M[x:=N]$, that is, the proof obtained from M by substituting the proof N everywhere for x in the proof M. Strong normalization expresses that this process, of repeatedly doing \rightarrow_{β}-steps, must terminate on typable λ-terms. To prepare for that, we will first show strong normalization of typable CL-terms wrt. \rightarrow_{w} (left unproven last week), as that is analogous but easier

Normalization by substitution

- A λ-term $(\lambda x . M) N$ corresponds to having a proof M of some proposition Y under the assumption named x that X holds, and a proof N that the assumption X in fact holds. Such a proof can be normalized by directly proving Y using X everywhere where the assumption that X holds, was used
- At term level, this is brought about by $M[x:=N]$, that is, the proof obtained from M by substituting the proof N everywhere for x in the proof M. Strong normalization expresses that this process, of repeatedly doing \rightarrow_{β}-steps, must terminate on typable λ-terms. To prepare for that, we will first show strong normalization of typable CL-terms wrt. \rightarrow_{w} (left unproven last week), as that is analogous but easier

Remark

Before, we have given some strategy to successively eliminate cuts from tableau proofs, this is called weak normalization (WN). For \rightarrow_{β} we prove something stronger, appropriately called strong normalization (SN), namely that doing arbitrary \rightarrow_{β} steps (every strategy) must terminate, resulting in a λ-term without subterms of shape $(\lambda x . M) N$.

Outline

- Overview of this lecture
- Natural Deduction
- λ-calculus
- Strong Normalization by Strong Computability
- Strong normalisation of \rightarrow_{w}
- Curry-Howard Isomorphism
- Exercises
- Further Reading

Theorem

\rightarrow_{w} is strongly normalizing on the typable CL-terms in \mathcal{C}.

Proof

How to prove?

- Untyped CL-terms are not strongly normalizing, so types need to be exploited

Theorem

\rightarrow_{w} is strongly normalizing on the typable CL-terms in \mathcal{C}.

Proof

How to prove?

- Untyped CL-terms are not strongly normalizing, so types need to be exploited
- Idea: define strong computability (SC) by induction on types such that SC implies SN (and both are equivalent for base types).

Theorem

\rightarrow_{w} is strongly normalizing on the typable CL-terms in \mathcal{C}.

Proof

How to prove?

- Untyped CL-terms are not strongly normalizing, so types need to be exploited
- Idea: define strong computability (SC) by induction on types such that SC implies SN (and both are equivalent for base types).
- A typed term M is strongly computable if for all (possibly empty) vectors $\vec{N}=N_{1}, N_{2}, \ldots$ of (appropriately typed) SC terms, the term $M \vec{N}=M N_{1} N_{2} \ldots$ (parenthesized to the left) is SN.

Theorem

\rightarrow_{w} is strongly normalizing on the typable CL-terms in \mathcal{C}.

Proof

How to prove?

- Untyped CL-terms are not strongly normalizing, so types need to be exploited
- Idea: define strong computability (SC) by induction on types such that SC implies SN (and both are equivalent for base types).
- A typed term M is strongly computable if for all (possibly empty) vectors $\vec{N}=N_{1}, N_{2}, \ldots$ of (appropriately typed) SC terms, the term $M \vec{N}=M N_{1} N_{2} \ldots$ (parenthesized to the left) is SN.
- Cf. this definition to how functions (terms of function type) are usually compared via elements (terms of base type) in math: $f \geq g$ if $\forall x \in \mathbb{R}$, $f(x) \geq g(x)$, so-called pointwise comparison. In logic, relations defined in this way, inductively lifting a relation on base types to arbitrary types, are called logical relations. SC is the logical relation obtained by lifting SN.

Theorem

\rightarrow_{w} is strongly normalizing on the typable CL-terms in \mathcal{C}.

Proof

We show all simply typed CL-terms to be SC by induction on terms.

- For a variable x we must show for all SC vectors N_{1}, N_{2}, \ldots, that $x N_{1} N_{2} \ldots$ is SN. This follows since N_{1}, N_{2}, \ldots is SN, and if $x N_{1} N_{2} \ldots \rightarrow_{w}^{*} M$, then M has shape $\times N_{1}^{\prime} N_{2}^{\prime} \ldots$ with $N_{i} \rightarrow{ }_{w}^{*} N_{i}^{\prime}$. We conclude by the Pigeon Hole Principle.

Theorem

\rightarrow_{w} is strongly normalizing on the typable CL-terms in \mathcal{C}.

Proof

We show all simply typed CL-terms to be SC by induction on terms.

- For a variable x we must show for all SC vectors N_{1}, N_{2}, \ldots, that $\times N_{1} N_{2} \ldots$ is SN. This follows since N_{1}, N_{2}, \ldots is SN, and if $x N_{1} N_{2} \ldots \rightarrow_{w}^{*} M$, then M has shape $x N_{1}^{\prime} N_{2}^{\prime} \ldots$ with $N_{i} \rightarrow{ }_{w}^{*} N_{i}^{\prime}$. We conclude by the Pigeon Hole Principle. (Working out the details is left as an exercise.)

Theorem

\rightarrow_{w} is strongly normalizing on the typable CL-terms in \mathcal{C}.

Proof

We show all simply typed CL-terms to be SC by induction on terms.

- For a variable x we must show for all SC vectors N_{1}, N_{2}, \ldots, that $x N_{1} N_{2} \ldots$ is SN. This follows since N_{1}, N_{2}, \ldots is SN, and if $x N_{1} N_{2} \ldots \rightarrow_{w}^{*} M$, then M has shape $x N_{1}^{\prime} N_{2}^{\prime} \ldots$ with $N_{i} \rightarrow_{w}^{*} N_{i}^{\prime}$. We conclude by the Pigeon Hole Principle.
- For an application $M_{1} M_{2}$, we have to show for all SC vectors N_{1}, N_{2}, \ldots, that $M_{1} M_{2} N_{1} N_{2} \ldots$ is SN. By the IH both M_{1} and the vector $M_{2}, N_{1}, N_{2}, \ldots$ are SC, from which we conclude.

Theorem

\rightarrow_{w} is strongly normalizing on the typable CL-terms in \mathcal{C}.

Proof

We show all simply typed CL-terms to be SC by induction on terms.

- For a variable x we must show for all SC vectors N_{1}, N_{2}, \ldots, that $\times N_{1} N_{2} \ldots$ is SN. This follows since N_{1}, N_{2}, \ldots is SN, and if $x N_{1} N_{2} \ldots \rightarrow_{w}^{*} M$, then M has shape $x N_{1}^{\prime} N_{2}^{\prime} \ldots$ with $N_{i} \rightarrow_{w}^{*} N_{i}^{\prime}$. We conclude by the Pigeon Hole Principle.
- For an application $M_{1} M_{2}$, we have to show for all SC vectors N_{1}, N_{2}, \ldots, that $M_{1} M_{2} N_{1} N_{2} \ldots$ is SN. By the IH both M_{1} and the vector $M_{2}, N_{1}, N_{2}, \ldots$ are SC, from which we conclude. (Amazingly, just rebracketing, viewing $\left(M_{1} M_{2}\right) \xrightarrow[N_{1}, N_{2}, \ldots]{ }$ as $M_{1} \overline{M_{2}, N_{1}, N_{2}, \ldots}$, solves the induction step!)

Theorem

\rightarrow_{w} is strongly normalizing on the typable CL-terms in \mathcal{C}.

Proof

We show all simply typed CL-terms to be SC by induction on terms.

- For a variable x we must show for all SC vectors N_{1}, N_{2}, \ldots, that $\times N_{1} N_{2} \ldots$ is SN. This follows since N_{1}, N_{2}, \ldots is SN, and if $x N_{1} N_{2} \ldots \rightarrow_{w}^{*} M$, then M has shape $\times N_{1}^{\prime} N_{2}^{\prime} \ldots$ with $N_{i} \rightarrow{ }_{w}^{*} N_{i}^{\prime}$. We conclude by the Pigeon Hole Principle.
- For an application $M_{1} M_{2}$, we have to show for all SC vectors N_{1}, N_{2}, \ldots, that $M_{1} M_{2} N_{1} N_{2} \ldots$ is SN. By the IH both M_{1} and the vector $M_{2}, N_{1}, N_{2}, \ldots$ are SC, from which we conclude.
- For the constant K we must show for all SC vectors $\vec{N}=N_{1}, N_{2}, N_{3}, \ldots$, the term $K \vec{N}$ is SN . Since the N_{i} are SN , if there were an infinite reduction it would have shape $K N_{1} N_{2} N_{3} \ldots \rightarrow_{w}^{*} K N_{1}^{\prime} N_{2}^{\prime} N_{3}^{\prime} \ldots \rightarrow_{w} N_{1}^{\prime} N_{3}^{\prime} \ldots \rightarrow_{w} \ldots$. But then $K N_{1} N_{2} N_{3} \ldots \rightarrow_{w} N_{1} N_{3} \ldots \rightarrow_{w}^{*} N_{1}^{\prime} N_{3}^{\prime} \ldots \rightarrow_{w} \ldots$ would also be an infinite reduction. But $N_{1} N_{3} \ldots$ is SN as application of the SC term N_{1} to the SC vector N_{3}, \ldots

Theorem

\rightarrow_{w} is strongly normalizing on the typable CL-terms in \mathcal{C}.

Proof

We show all simply typed CL-terms to be SC by induction on terms.

- For a variable x we must show for all SC vectors N_{1}, N_{2}, \ldots, that $\times N_{1} N_{2} \ldots$ is SN. This follows since N_{1}, N_{2}, \ldots is SN, and if $x N_{1} N_{2} \ldots \rightarrow_{w}^{*} M$, then M has shape $\times N_{1}^{\prime} N_{2}^{\prime} \ldots$ with $N_{i} \rightarrow{ }_{w}^{*} N_{i}^{\prime}$. We conclude by the Pigeon Hole Principle.
- For an application $M_{1} M_{2}$, we have to show for all SC vectors N_{1}, N_{2}, \ldots, that $M_{1} M_{2} N_{1} N_{2} \ldots$ is SN. By the IH both M_{1} and the vector $M_{2}, N_{1}, N_{2}, \ldots$ are SC, from which we conclude.
- For the constant S we proceed analogously to K : If $S N_{1} N_{2} N_{3} N_{4} \ldots \rightarrow_{w}^{*} S N_{1}^{\prime} N_{2}^{\prime} N_{3}^{\prime} N_{4}^{\prime} \ldots \rightarrow_{w} N_{1}^{\prime} N_{3}^{\prime}\left(N_{2}^{\prime} N_{3}^{\prime}\right) N_{4}^{\prime} \ldots \rightarrow_{w} \ldots$ were infinite, then so would
$S N_{1} N_{2} N_{3} N_{4} \ldots \rightarrow_{w} N_{1} N_{3}\left(N_{2} N_{3}\right) N_{4} \ldots \rightarrow_{w}^{*} N_{1}^{\prime} N_{3}^{\prime}\left(N_{2}^{\prime} N_{3}^{\prime}\right) N_{4}^{\prime} \ldots \rightarrow_{w} \ldots$. But $N_{1} N_{3}\left(N_{2} N_{3}\right) N_{4} \ldots$ is SN as application of the SC term N_{1} to the SC vector $N_{3}, N_{2} N_{3}, N_{4}, \ldots\left(N_{2} N_{3}\right.$ is SC since N_{2}, N_{3} are. $)$

Theorem

\rightarrow_{β} is strongly normalizing on the typable λ-terms in \mathcal{L}.

Proof

We claim for all typable λ-terms M and for all SC substitutions σ the λ-term $M \sigma$ is SC. Here, a substitution is SC if it maps variables to SC λ-terms (of the same type), From the claim the theorem follows by taking the identity substitution, mapping x to x, noting that it is is SC and yields M when applied to M.

Theorem

\rightarrow_{β} is strongly normalizing on the typable λ-terms in \mathcal{L}.

Proof

We claim for all typable λ-terms M and for all SC substitutions σ the λ-term $M \sigma$ is SC. Here, a substitution is SC if it maps variables to SC λ-terms (of the same type), From the claim the theorem follows by taking the identity substitution, mapping x to x, noting that it is is SC and yields M when applied to M. The claim is proven by induction on M. We only show the λ-abstraction case since the other cases (variable and application) are analogous to those for \rightarrow_{w} :

Theorem

\rightarrow_{β} is strongly normalizing on the typable λ-terms in \mathcal{L}.

Proof

We claim for all typable λ-terms M and for all SC substitutions σ the λ-term $M \sigma$ is SC. Here, a substitution is SC if it maps variables to SC λ-terms (of the same type), From the claim the theorem follows by taking the identity substitution, mapping x to x, noting that it is is SC and yields M when applied to M. The claim is proven by induction on M. We only show the λ-abstraction case since the other cases (variable and application) are analogous to those for \rightarrow_{w} :

- For a λ-abstraction λx. M we must show for all SC vectors $\vec{N}=N_{1}, N_{2}, N_{3}, \ldots$ and SC substitutions σ, the λ-term $(\lambda x . M) \sigma \vec{N}$ is $S N$. Since by the IH $M \sigma$ is SC, if there were an infinite reduction it would have shape $(\lambda x . M) \sigma N_{1} N_{2} \ldots \rightarrow_{\beta}^{*}\left(\lambda x . M^{\prime}\right) N_{1}^{\prime} N_{2}^{\prime} \ldots \rightarrow_{\beta} M^{\prime}\left[x:=N_{1}^{\prime}\right] N_{2}^{\prime} \ldots \rightarrow_{\beta} \ldots$. But then $(\lambda x . M) \sigma N_{1} N_{2} \ldots \rightarrow_{\beta} M \sigma\left[x:=N_{1}\right] N_{2} \ldots \rightarrow_{\beta}^{*} M^{\prime}\left[x:=N_{1}^{\prime}\right] N_{2}^{\prime} \ldots \rightarrow_{\beta} \ldots$ would also be an infinite reduction. But $M \sigma\left[x:=N_{1}\right] N_{2} \ldots$ is SN as application of the λ-term $M \sigma\left[x:=N_{1}\right]$, SC by the IH, to the SC vector N_{2}, \ldots

Decision Problems

- type checking
instance: $\quad \lambda$-term M, environment Γ, simple type τ
question: $\ulcorner\vdash M: \tau$?

Decision Problems

- type checking
instance: $\quad \lambda$-term M, environment Γ, simple type τ
question: $\quad\ulcorner\vdash M: \tau$?
- type inference
instance: λ-term M
question: $\quad \Gamma \vdash M: \tau$ for some environment Γ and simple type τ ?

Decision Problems

- type checking
instance: $\quad \lambda$-term M, environment Γ, simple type τ
question: $\quad\ulcorner\vdash M: \tau$?
- type inference
instance: λ-term M
question: $\quad \Gamma \vdash M: \tau$ for some environment Γ and simple type τ ?
- type inhabitation
instance: type τ, environment Γ
question: $\quad \Gamma \vdash M: \tau$ for some λ-term M ?

Decision Problems

- type checking
instance: $\quad \lambda$-term M, environment Γ, simple type τ
question: $\quad \Gamma \vdash M: \tau$?
- type inference
instance: λ-term M
question: $\quad \Gamma \vdash M: \tau$ for some environment Γ and simple type τ ?
- type inhabitation
instance: type τ, environment Γ
question: $\quad \Gamma \vdash M: \tau$ for some λ-term M ?

Theorem

type checking, inference, and inhabitation are decidable problems

Theorem

type inhabitation is decidable

Proof

Idea: normalization allows to limit the search for ND proofs to finitely many possibilities. Formally, we claim the subformula property holds: if $\Gamma \vdash \phi$, then there is an ND proof (namely am ND proof in normal form) in which only subformulas of formulas in Γ and ϕ occur. From the claim the theorem follows easily.

Theorem

type inhabitation is decidable

Proof

Idea: normalization allows to limit the search for ND proofs to finitely many possibilities. Formally, we claim the subformula property holds: if $\Gamma \vdash \phi$, then there is an ND proof (namely am ND proof in normal form) in which only subformulas of formulas in Γ and ϕ occur. From the claim the theorem follows easily. The subformula property is proven by induction on normalized ND proofs. The interesting case is Implication Elimination (Modus Ponens).

Theorem

type inhabitation is decidable

Proof

Idea: normalization allows to limit the search for ND proofs to finitely many possibilities. Formally, we claim the subformula property holds: if $\Gamma \vdash \phi$, then there is an ND proof (namely am ND proof in normal form) in which only subformulas of formulas in Γ and ϕ occur. From the claim the theorem follows easily. The subformula property is proven by induction on normalized ND proofs. The interesting case is Implication Elimination (Modus Ponens).

- Suppose $\Gamma \vdash(M N): \phi$ is inferred from $\Gamma \vdash M: \psi \rightarrow \phi$ and $\Gamma \vdash N: \psi$. It suffices to show that $\psi \rightarrow \phi$ is a subformula of Γ.

Theorem

type inhabitation is decidable

Proof

Idea: normalization allows to limit the search for ND proofs to finitely many possibilities. Formally, we claim the subformula property holds: if $\Gamma \vdash \phi$, then there is an ND proof (namely am ND proof in normal form) in which only subformulas of formulas in Γ and ϕ occur. From the claim the theorem follows easily. The subformula property is proven by induction on normalized ND proofs. The interesting case is Implication Elimination (Modus Ponens).

- Suppose $\Gamma \vdash(M N): \phi$ is inferred from $\Gamma \vdash M: \psi \rightarrow \phi$ and $\Gamma \vdash N: \psi$. It suffices to show that $\psi \rightarrow \phi$ is a subformula of Γ. Because the ND proof is normalized, M must have shape $x M_{1} \ldots M_{n}$ for some variable x and λ-terms M_{1}, \ldots, M_{n}; otherwise a \rightarrow_{β}-step would be possible. Thus we must have $\Gamma \vdash x: \psi_{1} \rightarrow \ldots \rightarrow \psi_{n} \rightarrow \psi \rightarrow \phi$ with $\Gamma \vdash M_{i}: \psi_{i}$. Hence $\psi_{1} \rightarrow \ldots \rightarrow \psi_{n} \rightarrow \psi \rightarrow \phi \in \Gamma$, from which we conclude that $\psi \rightarrow \phi$ is indeed a subformula of some formula in Γ (namely of the assumption x)

Outline

- Overview of this lecture
- Natural Deduction
- λ-calculus
- Strong Normalization by Strong Computability
- Curry-Howard Isomorphism
- Exercises
- Further Reading

type assignment

$$
\begin{aligned}
& \Gamma, x: \tau \vdash x: \tau \\
& \frac{\Gamma, x: \sigma \vdash M: \tau}{\Gamma \vdash(\lambda x \cdot M): \sigma \rightarrow \tau} \\
& \frac{\Gamma \vdash M: \sigma \rightarrow \tau \quad \Gamma \vdash N: \sigma}{\Gamma \vdash(M N): \tau}
\end{aligned}
$$

type assignment
$\Gamma, x: \tau \vdash x: \tau$
$\frac{\Gamma, x: \sigma \vdash M: \tau}{\Gamma \vdash(\lambda x \cdot M): \sigma \rightarrow \tau}$
$\frac{\Gamma \vdash M: \sigma \rightarrow \tau \quad \Gamma \vdash N: \sigma}{\Gamma \vdash(M N): \tau}$

Natural Deduction

$$
\begin{aligned}
& \Gamma, \varphi \vdash \varphi \\
& \frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \phi \supset \psi} \\
& \frac{\Gamma \vdash \varphi \supset \psi}{\Gamma \vdash \psi}
\end{aligned}
$$

type assignment
$\Gamma, x: \tau \vdash x: \tau$
$\frac{\Gamma, x: \sigma \vdash M: \tau}{\Gamma \vdash(\lambda x \cdot M): \sigma \rightarrow \tau}$
$\frac{\Gamma \vdash M: \sigma \rightarrow \tau \quad \Gamma \vdash N: \sigma}{\Gamma \vdash(M N): \tau}$

Natural Deduction

$$
\begin{aligned}
& \Gamma, \varphi \vdash \varphi \\
& \frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \phi \supset \psi} \\
& \frac{\Gamma \vdash \varphi \supset \psi \psi}{\Gamma \vdash \psi}
\end{aligned}
$$

Theorem (Curry-Howard)
identifying \rightarrow and \supset as before:
1 if $\Gamma \vdash M: \tau$ then $\operatorname{ran}(\Gamma) \vdash_{N D} \tau$
type assignment
$\Gamma, x: \tau \vdash x: \tau$
$\frac{\Gamma, x: \sigma \vdash M: \tau}{\Gamma \vdash(\lambda x \cdot M): \sigma \rightarrow \tau}$
$\frac{\Gamma \vdash M: \sigma \rightarrow \tau \quad \Gamma \vdash N: \sigma}{\Gamma \vdash(M N): \tau}$

Natural Deduction

$$
\begin{aligned}
& \Gamma, \varphi \vdash \varphi \\
& \frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \phi \supset \psi} \\
& \frac{\Gamma \vdash \varphi \supset \psi \psi}{\Gamma \vdash \psi}
\end{aligned}
$$

Theorem (Curry-Howard)

identifying \rightarrow and \supset as before:
1 if $\Gamma \vdash M: \tau$ then $\operatorname{ran}(\Gamma) \vdash \vdash_{N D} \tau$
2 if $\Gamma \vdash \vdash_{N D} \varphi$ then $\Delta \vdash M: \varphi$ for some M and Δ with $\operatorname{ran}(\Delta)=\Gamma$

Theorem (Curry-Howard)

1 if $\Gamma \vdash M: \tau$ then $\operatorname{ran}(\Gamma) \vdash_{N D} \tau$

Proof

By induction on derivation of judgement $\Gamma \vdash M: \tau$ as for typed combinatory logic. We only give the new, λ-abstraction, case:

Theorem (Curry-Howard)

1 if $\Gamma \vdash M: \tau$ then $\operatorname{ran}(\Gamma) \vdash_{N D} \tau$

Proof

By induction on derivation of judgement $\Gamma \vdash M: \tau$ as for typed combinatory logic. We only give the new, λ-abstraction, case:

- $M=\lambda x . N$ and $\tau=\sigma \rightarrow \rho$

Theorem (Curry-Howard)

1 if $\Gamma \vdash M: \tau$ then $\operatorname{ran}(\Gamma) \vdash_{N D} \tau$

Proof

By induction on derivation of judgement $\Gamma \vdash M: \tau$ as for typed combinatory logic. We only give the new, λ-abstraction, case:

- $M=\lambda x . N$ and $\tau=\sigma \rightarrow \rho$
$\operatorname{ran}(\Gamma), \sigma \vdash_{N D} \rho$ by induction hypothesis

Theorem (Curry-Howard)

1 if $\Gamma \vdash M: \tau$ then $\operatorname{ran}(\Gamma) \vdash_{N D} \tau$

Proof

By induction on derivation of judgement $\Gamma \vdash M: \tau$ as for typed combinatory logic. We only give the new, λ-abstraction, case:

- $M=\lambda x . N$ and $\tau=\sigma \rightarrow \rho$
$\operatorname{ran}(\Gamma), \sigma \vdash_{N D} \rho$ by induction hypothesis $\operatorname{ran}(\Gamma) \vdash_{N D} \sigma \rightarrow \rho$ Implication Introduction

Theorem (Curry-Howard)

2 if $\Gamma \vdash_{N D} \varphi$ then $\Delta \vdash M: \varphi$ for some M and Δ with $\operatorname{ran}(\Delta)=\Gamma$

Proof

Induction on $\Gamma \vdash_{N D} \varphi$ as for the Hilbert System H. No interesting new cases.

Definition

Translations $(-)_{C L}: \mathcal{L} \rightarrow \mathcal{C}$ and ()$_{\lambda}: \mathcal{C} \rightarrow \mathcal{L}$ are defined by mapping variables and applications to 'themselves' (homomorphically) and defining

$$
\begin{aligned}
(\lambda x \cdot M)_{C L} & =[x](M)_{C L} \\
(K)_{\lambda} & =\lambda x y \cdot x \\
(S)_{\lambda} & =\lambda x y z \cdot x z(y z)
\end{aligned}
$$

where the first clause uses the bracket abstraction algorithm

Examples

- $(\lambda x y \cdot x)_{C L}=[x](\lambda y \cdot x)_{C L}=[x][y](x)_{C L}=[x][y] x=[x](K x)=K$, using the optimization of the exercises, for the last equality
- $(S K K)_{\lambda}=(\lambda x y z . x z(y z))(\lambda x y \cdot x)(\lambda x y \cdot x)$. Recall SKK is Hilbert System proof of $X \supset X$. Note $(\lambda x y z . x z(y z))(\lambda x y . x)(\lambda x y . x) \rightarrow_{\beta}^{*}(\lambda y z . z)(\lambda x y . x) \rightarrow_{\beta}^{*} \lambda z . z$, with $\lambda z . z$ the identity function, which obviously has type $\tau \rightarrow \tau$, which would justify defining $(I)_{\lambda}=\lambda x \cdot x$

Theorem

The translations ()$_{C L}$ and ()$_{\lambda}$ on terms preserve types, showing $\Gamma \vdash_{H} \varphi \Longleftrightarrow \Gamma \vdash_{N D} \varphi$

Proof

By induction on derivations, using for $(-)_{C L}$ the lemma on slide 33 of last week, and for $(-)_{\lambda}$ that the translations $\lambda x y \cdot x$ and $\lambda x y z \cdot x z(y z)$ have the same types (in the typed λ-calculus) as K and S have (in typed combinatory logic).

Theorem

The translations ()$_{C L}$ and ()$_{\lambda}$ on terms preserve types, showing
$\Gamma \vdash_{H} \varphi \quad \Longleftrightarrow \quad \Gamma \vdash_{N D} \varphi$

Proof

By induction on derivations, using for ()$_{C L}$ the lemma on slide 33 of last week, and for $(-)_{\lambda}$ that the translations $\lambda x y . x$ and $\lambda x y z . x z(y z)$ have the same types (in the typed λ-calculus) as K and S have (in typed combinatory logic).

Remark

This result allows to 'switch freely' between ND and H, e.g. it follows that ND is sound and complete for Kripke semantics. However, beware the translation $(-)_{\lambda}$ is linear, but 'the' reverse translation (-) $)_{C L}$ is exponential. That is, ND proofs blow up in size when translated to H proofs, but not vice versa. On the other hand, H proofs do not use λ-abstraction, a notion considered complex. Indeed combinatory logic was invented to get rid of λ-abstractions, more precisely of bound variables.

Outline

- Overview of this lecture
- Natural Deduction
- λ-calculus
- Strong Normalization by Strong Computability
- Curry-Howard Isomorphism
- Exercises
- Further Reading

1 Give three λ-terms M such that $\vdash M: \tau \rightarrow \tau \rightarrow \tau$, for τ an arbitrary type. We count only terms up to renaming of variables; so $\lambda x y . x y$ and $\lambda y x . y x$ are considered the same (as they can be obtained by renaming x into y and vice versa), but different from $\lambda x y . y x$. Is this a reasonable way to count terms inhabiting types, i.e. to count proofs of propositions, vis-à-vis the Curry-Howard isomorphism?

2 Bonus: Show that, among the three λ-terms in the previous exercise, at least two must be $={ }_{\beta}$-related.

3 Reduce the λ-term $M=(\lambda x . x x)(\lambda y z . y z)$ to normal form N (it requires 3 \rightarrow_{β}-steps; give each of them).

4 Show that there is no λ-term M such that $\vdash M:(\tau \rightarrow \tau) \rightarrow \tau$, for τ an arbitrary type.
Hint: normalization or Kripke models (1 cross each)
5 Compute the translation $(\mathrm{SS}(\mathrm{KI}))_{\lambda}$, i.e. the translation of W on slide 21 of the previous week, and reduce the resulting λ-term to normal form.

6 Bonus (1 cross per item): The Haskell expression ($\backslash \mathrm{x}$-> $\backslash \mathrm{x}->\mathrm{x}$) corresponds to the λ-term $\lambda x . \lambda x . x$. Asking Haskell the type of the former yields p1 \rightarrow p2 \rightarrow p2.

- Explain why using the type assignment rules for λ-calculus (slide 13), we can infer $\vdash \lambda y . \lambda x . x: \sigma \rightarrow(\tau \rightarrow \tau)$, but not $\vdash \lambda x . \lambda x . x: \sigma \rightarrow(\tau \rightarrow \tau)$, assuming $\sigma \neq \tau$ (cf. the remark there).
Could one overcome this limitation? That is, could our type assignment system be adapted such that we do have $\vdash \lambda x . \lambda x . x: \sigma \rightarrow(\tau \rightarrow \tau)$?
- Just as per our conventions $\lambda y x . x$ is shorthand for $\lambda y . \lambda x . x$, in Haskell ($\backslash \mathrm{y}$ x $\rightarrow \mathrm{x}$) is shorthand for ($\backslash \mathrm{y} \rightarrow \mathrm{x} \rightarrow \mathrm{x}$) Do ($\backslash \mathrm{x} x \rightarrow \mathrm{x}$) and ($\backslash \mathrm{x}->\backslash \mathrm{x}->\mathrm{x}$) have the same type in Haskell? Can you explain why (not)?
7 SC is defined (slide 17) in terms of itself: SC of M is defined in terms of SC of \vec{N}. Argue that SC is still well-defined, i.e. that it is a proper inductive definition for simply typed terms (either CL-terms or λ-terms).
8 Work out the details of the first item, the variable case, (slide 17) of the proof that all simply typed CL terms are SC. In particular, show that SC entails SN and that every typed variable is SC.

9 Complete the details of the proof (slide 20) that inhabitation is decidable. More precisely, give both the details of the proof of the subformula property, and of that the subformula property entails decidability of inhabitation.

10 Bonus (worth 4 crosses): implement an inhabitation checker for implicational intuitionistic logic, based on the previous exercise.

11 Bonus: Suppose combinatory logic would have another constant J having some type and reduction rule, for all terms $M_{i}, J M_{1} \ldots M_{n} \rightarrow_{w} E$ where E is an expression only constructed from applications and the M_{i} and both sides have the same base type, e.g. $\Gamma \vdash \mathrm{J}:(\sigma \rightarrow \sigma \rightarrow \tau) \rightarrow \sigma \rightarrow \tau$ with rule $J M_{1} M_{2} \rightarrow_{w} M_{1} M_{2} M_{2}$ (note the conditions hold for K and S). Is \rightarrow_{w} still strongly normalizing? If it is not, give a specific J and rule for it allowing an infinite reduction. If it is, give a proof.

12 Bonus (worth 3 crosses): directly show weak normalization of \rightarrow_{β} on typable λ-terms, without showing (a property that entails) strong normalization . Hint: an idea analogous to that for the cut elimination procedure in the book works, judiciously choosing a \rightarrow_{β} step among the possible ones and showing that that decreases some measure.

13 Bonus (worth 4 crosses): Prove or disprove that the tableau cut-elimination procedure in Fitting is strongly normalizing. Proceed as follows: the proof of Lemma 8.9.3 establishes weak normalization by transforming minimal cuts. (Try to) verify whether

- correctness of the transformations depends on minimality,
- the induction (see p. 232) used in the proof works for non-minimal cuts,
- strong normalization, when eliminating arbitrary cuts, holds.

Outline

- Overview of this lecture
- Natural Deduction
- λ-calculus
- Strong Normalization by Strong Computability
- Curry-Howard Isomorphism
- Exercises
- Further Reading

Fitting

- Section 4.1 (from Curry-Howard-perspective)
- Section 4.2 (idem)

Additional Literature

- Philip Wadler, Propositions as Types, Communications of the ACM 58(12), pp. 75-84, 2015
- Morten Heine Sørensen and Pawel Urzyczyn, Lectures on the Curry-Howard Isomorphism, Studies in Logic and the Foundations of Mathematics, volume 149, Elsevier, 2006 (cached PDF of preliminary version on citeseer)

