
Computational Logic

Vincent van Oostrom
Course/slides by Aart Middeldorp

Department of Computer Science
University of Innsbruck

SS 2020

Outline

Overview of this lecture

Natural Deduction

λ-calculus

Strong Normalization by Strong Computability

Curry–Howard Isomorphism

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 8 2/34

Overview of this lecture

We continue focusing on the structural and representational aspects of proofs.
Last week, we have seen how combinatory logic (CL) terms could be employed to
represent Hilbert System proofs for the implicational fragment of intuitionistic
propositional logic. More precisely, typed CL-terms correspond to proofs in Hilbert
Systems restricted to Axiom Schemes 1 and 2, the types of the CL-terms
correspond to the formulas proven, and weak-reduction →w of CL terms
corresponds to normalization of the proofs. These correspondences together
constitute the Curry–Howard isomorphism. The isomorphism extends to larger
fragments (including conjunction, disjunction, etc.) of (intuitionistic) logic, but we
will not discuss that in this course.
Instead, we focus on establishing a Curry–Howard isomorphism for the same,
implicational, fragment of intuitionistic logic, but for Natural Deduction (ND)
instead of the Hilbert System (H). In particular, we introduce the λ-calculus as a
term calculus such that typed λ-terms correspond to proofs in ND. More precisely,
λ-terms are terms constructed from variables, applications, and λ-abstractions,
which correspond to (names of) assumptions, Implication Elimination, and
Implication Introduction in ND, respectively.

AM/VvO (CS @ UIBK) lecture 8 3/34

Overview of this lecture

We introduce β-reduction →β of typed λ-terms, show that it corresponds to
normalization of ND proofs, and that every λ-term has a (unique) normal form, i.e.
that every ND can be normalized (doesn’t contain an Implication Introduction
immediately followed by an Implication Elimination). With the types and formulas
as before, this constitutes the Curry–Howard isomorphism between Natural
Deduction and the (typed) λ-calculus.
We finish with relating both term-calculi, i.e. combinatory logic and the λ-calculus.
In particular, we show that every λ-term can be translated to a CL term of the
same type, and vice versa. Bracket abstraction is at the heart of this translation.
Via the Curry–Howard isomorphism, it allows to translate a Natural Deduction
proof of a formula (using Implication Introduction) into a Hilbert System proof
(using Axiom Schemes 1 and 2). The translations establish, e.g., that ND is sound
and complete for Kripke semantics, since Hilbert Systems (restricted to Axiom
Schemes 1 and 2) are, as we showed last time.

AM/VvO (CS @ UIBK) lecture 8 4/34

http://cl-informatik.uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss20/cl/
http://cl-informatik.uibk.ac.at/
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Contents

Part I: Propositional Logic

compactness, completeness, Hilbert systems, Hintikka’s lemma, interpolation,
logical consequence, model existence theorem, propositional semantic tableaux,
soundness

Part II: First-Order Logic

compactness, completeness, Craig’s interpolation theorem, cut elimination,
first-order semantic tableaux, Herbrand models, Herbrand’s theorem, Hilbert
systems, Hintikka’s lemma, Löwenheim–Skolem, logical consequence, model
existence theorem, prenex form, skolemization, soundness

Part III: Limitations and Extensions of First-Order Logic

Curry–Howard isomorphism, intuitionistic logic, Kripke models, second-order logic,
simply-typed λ-calculus, (simply-typed) combinatory logic

AM/VvO (CS @ UIBK) lecture 8 5/34

Natural Deduction

Outline

Overview of this lecture

Natural Deduction

λ-calculus

Strong Normalization by Strong Computability

Curry–Howard Isomorphism

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 8 6/34

Natural Deduction

Definition (Natural Deduction, Tree Variant)

• Assumption Γ, ϕ ` ϕ

• Implication Introduction
Γ, ϕ ` ψ

Γ ` φ ⊃ ψ

• Implication Elimination
Γ ` ϕ ⊃ ψ Γ ` ϕ

Γ ` ψ

Γ `ND ϕ if Γ ` ϕ is derivable

Lemma

Γ `pn ϕ ⇐⇒ Γ `ND ϕ
Here `pn refers to natural deduction as in Section 4.2 of Fitting (line-based, not
tree-based) restricted to the inference rules for implication only: Modus Ponens (as
for Hilbert Systems) and the inference rule given in Figure 4.1.

AM/VvO (CS @ UIBK) lecture 8 7/34

Natural Deduction

Examples

for arbitrary formulas φ, ψ, χ: (we assume ⊃ is right-associative)

•
φ, ψ ` φ

φ ` ψ ⊃ φ

` φ ⊃ ψ ⊃ φ
• For Γ = {φ ⊃ ψ ⊃ χ, φ ⊃ ψ, φ}

Γ ` φ ⊃ ψ ⊃ χ Γ ` φ

Γ ` ψ ⊃ χ

Γ ` φ ⊃ ψ Γ ` φ

Γ ` ψ

Γ ` χ

φ ⊃ ψ ⊃ χ, φ ⊃ ψ ` φ ⊃ χ

φ ⊃ ψ ⊃ χ ` (φ ⊃ ψ) ⊃ φ ⊃ χ

` (φ ⊃ ψ ⊃ χ) ⊃ (φ ⊃ ψ) ⊃ φ ⊃ χ

AM/VvO (CS @ UIBK) lecture 8 8/34

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

λ-calculus

Outline

Overview of this lecture

Natural Deduction

λ-calculus

Strong Normalization by Strong Computability

Curry–Howard Isomorphism

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 8 9/34

λ-calculus

λ-abstraction for function specification

In mathematics and programming there are various ways to specify functions. We
illustrate several of them by means of the example of the composition function.

• verbose: composition is the function that takes any two functions f and g and
yields a function that when applied to x yields f (g(x)), which is quite verbose

• naming: (f · g)(x) = f (g(x)), which requires naming composition as (f · g)

• naming: in combinatory logic composition is named B (slide 21 of previous
week), with reduction rule B f g x →w f (g x).

• anonymously in Haskell: (\f g x -> f(g x)), with type indeed (t1 ->

t2) -> (t3 -> t1) -> t3 -> t2 according to Haskell

• anonymously in λ-calculus: λfgx .f (g x). We will see that indeed it has type
(α→ β)→ (γ → α)→ (γ → β), or in other words that λfgx .f (g x) is a
Natural Deduction proof of the proposition (Y ⊃ Z) ⊃ (X ⊃ Y) ⊃ (X ⊃ Z)

Remark

Upshot: λ-terms are (anonymous) functions, which are proofs (of implications)

AM/VvO (CS @ UIBK) lecture 8 10/34

λ-calculus

Definition

set L of (λ-)terms is built from

• variables x , y , z , . . .

• λ-abstractions λx .M for variables x and λ-terms M

• application (MN) for λ-terms M and N

Notational Convention

We assume application is left associative to reduce number of parentheses, and
combine λ-abstractions to reduce number of λs.

Definition

(β-)reduction is smallest relation →β on λ-terms such that

(λx .M)N →β M[x :=N]

M →β N

λx .M →β λx .N

M →β N

M P →β N P

M →β N

P M →β P N

for all λ-terms M, N, all variables x , and all λ-terms P
AM/VvO (CS @ UIBK) lecture 8 11/34

λ-calculus

Definition

• λx .M binds occurrences of x in M. occurrence of x is free if not bound.

• capture avoiding substitution

x [x :=N] = N

y [x :=N] = y

(λx .M)[x :=N] = λx .M

(λy .M)[x :=N] = λy .M[x :=N] if y not free in N

(λy .M)[x :=N] = λz .M[y :=z][x :=N] if some y free in N

(M1 M2)[x :=N] = M1[x :=N]M2[x :=N]

with z fresh (first variable not in x , y ,M,N)

Example

(λx .x)x bound free x . λy .(λxy .x)y →β λyz .y , since is
λy .((λx .(λy .x))y)→β λy .(λz .y) per notational convention, which follows from
(λx .(λy .x))y →β (λy .x)[x :=y] = λz .y , which follows by 3rd clause for
λ-abstraction since y is free in y .

AM/VvO (CS @ UIBK) lecture 8 12/34

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

λ-calculus

Definitions

• →∗β is transitive and reflexive closure of →β

• normal form is λ-term M such that M →β N for no λ-term N

• =β is transitive, reflexive, and symmetric closure of →β

• λ-term M is normalizing if M →∗β N for some normal form N

• infinite reduction is sequence (Mi)i>0 such that Mi →β Mi+1 for all i > 0

• λ-term M is strongly normalizing if there are no infinite reductions from M

Example

λ-term Ω = (λx .x x)(λx .x x) not strongly normalizing: Ω→β Ω

Theorem

• (Confluence) if M →∗β N1, M →∗β N2 then N1 →∗β N3, N2 →∗β N3 for some N3

• (Consistency) there are M,N such that M 6=β N, e.g. distinct normal forms.

AM/VvO (CS @ UIBK) lecture 8 13/34

λ-calculus Typed λ-calculus

Definitions

• simple type is implicational propositional formula

• environment is finite set of pairs Γ = {x1 : τ1, . . . , xn : τn} with pairwise
distinct variables x1, . . . , xn and simple types τ1, . . . , τn

• dom(Γ) = {x | (x : τ) ∈ Γ} and ran(Γ) = {τ | (x : τ) ∈ Γ}
• judgement Γ ` M : τ (λ-term M has type τ in environment Γ) is defined by

type assignment rules

• variable Γ, x : τ ` x : τ

• λ-abstraction
Γ, x : σ ` M : τ

Γ ` λx .M : σ → τ

• application
Γ ` M : σ → τ Γ ` N : σ

Γ ` (M N) : τ

Remark
for convenience we assume distinct λs bind distinct variables. for instance,
` λyx .x : σ → (τ → τ) instead of ` λxx .x : σ → (τ → τ) (see exercises).

AM/VvO (CS @ UIBK) lecture 8 14/34

λ-calculus Typed λ-calculus

Example

` λfgx .f (g x) : (α→ β)→ (γ → α)→ (γ → β) for all simple types α, β, γ

Γ ` f : α→ β

Γ ` g : γ → α Γ ` x : γ

Γ ` g x : α

Γ ` f (g x) : β

f : α→ β, g : γ → α ` λx .f (g x) : γ → β

f : α→ β ` λgx .f (g x) : (γ → α)→ γ → β

` λfgx .f (g x) : (α→ β)→ (γ → α)→ γ → β

with Γ = {f : α→ β, g : γ → α, x : γ}

AM/VvO (CS @ UIBK) lecture 8 15/34

λ-calculus Typed λ-calculus

Definitions

• set FV(M) of (free) variables of λ-term M:

FV(M) =

{x} if M = x

FV(M1)− {x} if M = λx .M1

FV(M1) ∪ FV(M2) if M = M1M2

• λ-term M is typable if Γ ` M : τ for some environment Γ with
dom(Γ) = FV(M) and simple type τ

Lemma (Subject Reduction)

if Γ ` M : τ and M →∗β N then Γ ` N : τ

Theorem (Strong Normalization)

typable λ-terms are strongly normalizing

AM/VvO (CS @ UIBK) lecture 8 16/34

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

λ-calculus Typed λ-calculus

Normalization by substitution

• A λ-term (λx .M)N corresponds to having a proof M of some proposition Y
under the assumption named x that X holds, and a proof N that the
assumption X in fact holds. Such a proof can be normalized by directly
proving Y using X everywhere where the assumption that X holds, was used

• At term level, this is brought about by M[x :=N], that is, the proof obtained
from M by substituting the proof N everywhere for x in the proof M. Strong
normalization expresses that this process, of repeatedly doing →β-steps, must
terminate on typable λ-terms. To prepare for that, we will first show strong
normalization of typable CL-terms wrt. →w (left unproven last week), as that
is analogous but easier

Remark
Before, we have given some strategy to successively eliminate cuts from tableau
proofs, this is called weak normalization (WN). For →β we prove something
stronger, appropriately called strong normalization (SN), namely that doing
arbitrary →β steps (every strategy) must terminate, resulting in a λ-term without
subterms of shape (λx .M)N.

AM/VvO (CS @ UIBK) lecture 8 17/34

Strong Normalization by Strong Computability

Outline

Overview of this lecture

Natural Deduction

λ-calculus

Strong Normalization by Strong Computability
Strong normalisation of →w

Curry–Howard Isomorphism

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 8 18/34

Strong Normalization by Strong Computability Strong normalisation of →w

Theorem
→w is strongly normalizing on the typable CL-terms in C.

Proof

How to prove?

• Untyped CL-terms are not strongly normalizing, so types need to be exploited

• Idea: define strong computability (SC) by induction on types such that SC
implies SN (and both are equivalent for base types).

• A typed term M is strongly computable if for all (possibly empty) vectors
~N = N1,N2, . . . of (appropriately typed) SC terms, the term

M ~N = MN1N2 . . . (parenthesized to the left) is SN.

• Cf. this definition to how functions (terms of function type) are usually
compared via elements (terms of base type) in math: f ≥ g if ∀x ∈ R,
f (x) ≥ g(x), so-called pointwise comparison. In logic, relations defined in
this way, inductively lifting a relation on base types to arbitrary types, are
called logical relations. SC is the logical relation obtained by lifting SN.

We show all simply typed CL-terms to be SC by induction on terms.

• For a variable x we must show for all SC vectors N1,N2, . . ., that xN1N2 . . . is
SN. This follows since N1,N2, . . . is SN, and if xN1N2 . . .→∗w M, then M has
shape xN ′1N

′
2 . . . with Ni →∗w N ′i . We conclude by the Pigeon Hole Principle.

(Working out the details is left as an exercise.)

• For an application M1M2, we have to show for all SC vectors N1,N2, . . ., that
M1M2N1N2 . . . is SN. By the IH both M1 and the vector M2,N1,N2, . . . are
SC, from which we conclude. (Amazingly, just rebracketing, viewing

(M1M2)
−−−−−−→
N1,N2, . . . as M1

−−−−−−−−−−→
M2,N1,N2, . . ., solves the induction step!)

• For the constant K we must show for all SC vectors ~N = N1,N2,N3, . . ., the
term K ~N is SN. Since the Ni are SN, if there were an infinite reduction it
would have shape KN1N2N3 . . .→∗w KN ′1N

′
2N
′
3 . . .→w N ′1N

′
3 . . .→w But

then KN1N2N3 . . .→w N1N3 . . .→∗w N ′1N
′
3 . . .→w . . . would also be an

infinite reduction. But N1N3 . . . is SN as application of the SC term N1 to
the SC vector N3, . . . For the constant S we proceed analogously to K : If
SN1N2N3N4 . . .→∗w SN ′1N

′
2N
′
3N
′
4 . . .→w N ′1N

′
3(N ′2N

′
3)N ′4 . . .→w . . . were

infinite, then so would
SN1N2N3N4 . . .→w N1N3(N2N3)N4 . . .→∗w N ′1N

′
3(N ′2N

′
3)N ′4 . . .→w But

N1N3(N2N3)N4 . . . is SN as application of the SC term N1 to the SC vector
N3,N2N3,N4, . . . (N2N3 is SC since N2,N3 are.)

AM/VvO (CS @ UIBK) lecture 8 19/34

Strong Normalization by Strong Computability Strong normalisation of →w

Theorem
→β is strongly normalizing on the typable λ-terms in L.

Proof
We claim for all typable λ-terms M and for all SC substitutions σ the λ-term Mσ
is SC. Here, a substitution is SC if it maps variables to SC λ-terms (of the same
type), From the claim the theorem follows by taking the identity substitution,
mapping x to x , noting that it is is SC and yields M when applied to M. The
claim is proven by induction on M. We only show the λ-abstraction case since the
other cases (variable and application) are analogous to those for →w :

• For a λ-abstraction λx .M we must show for all SC vectors ~N = N1,N2,N3, . . .
and SC substitutions σ, the λ-term (λx .M)σ ~N is SN. Since by the IH Mσ is
SC, if there were an infinite reduction it would have shape
(λx .M)σN1N2 . . .→∗β (λx .M ′)N ′1N

′
2 . . .→β M ′[x :=N ′1]N ′2 . . .→β But

then (λx .M)σN1N2 . . .→β Mσ[x :=N1]N2 . . .→∗β M ′[x :=N ′1]N ′2 . . .→β . . .
would also be an infinite reduction. But Mσ[x :=N1]N2 . . . is SN as
application of the λ-term Mσ[x :=N1], SC by the IH, to the SC vector N2, . . .

AM/VvO (CS @ UIBK) lecture 8 20/34

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Strong Normalization by Strong Computability Strong normalisation of β-reduction

Decision Problems

• type checking

instance: λ-term M, environment Γ, simple type τ

question: Γ ` M : τ ?

• type inference

instance: λ-term M

question: Γ ` M : τ for some environment Γ and simple type τ ?

• type inhabitation

instance: type τ , environment Γ

question: Γ ` M : τ for some λ-term M ?

Theorem

type checking, inference, and inhabitation are decidable problems

AM/VvO (CS @ UIBK) lecture 8 21/34

Strong Normalization by Strong Computability Strong normalisation of β-reduction

Theorem
type inhabitation is decidable

Proof
Idea: normalization allows to limit the search for ND proofs to finitely many
possibilities. Formally, we claim the subformula property holds: if Γ ` φ, then there
is an ND proof (namely am ND proof in normal form) in which only subformulas of
formulas in Γ and φ occur. From the claim the theorem follows easily.
The subformula property is proven by induction on normalized ND proofs. The
interesting case is Implication Elimination (Modus Ponens).

• Suppose Γ ` (MN) : φ is inferred from Γ ` M : ψ → φ and Γ ` N : ψ. It
suffices to show that ψ → φ is a subformula of Γ. Because the ND proof is
normalized, M must have shape xM1 . . .Mn for some variable x and λ-terms
M1, . . . ,Mn; otherwise a →β-step would be possible. Thus we must have
Γ ` x : ψ1 → . . .→ ψn → ψ → φ with Γ ` Mi : ψi . Hence
ψ1 → . . .→ ψn → ψ → φ ∈ Γ, from which we conclude that ψ → φ is indeed
a subformula of some formula in Γ (namely of the assumption x)

AM/VvO (CS @ UIBK) lecture 8 22/34

Curry–Howard Isomorphism

Outline

Overview of this lecture

Natural Deduction

λ-calculus

Strong Normalization by Strong Computability

Curry–Howard Isomorphism

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 8 23/34

Curry–Howard Isomorphism

type assignment Natural Deduction

Γ, x : τ ` x : τ Γ, ϕ ` ϕ

Γ, x : σ ` M : τ

Γ ` (λx .M) : σ → τ

Γ, ϕ ` ψ
Γ ` φ ⊃ ψ

Γ ` M : σ → τ Γ ` N : σ

Γ ` (MN) : τ

Γ ` ϕ ⊃ ψ Γ ` ϕ
Γ ` ψ

Theorem (Curry–Howard)

identifying → and ⊃ as before:

1 if Γ ` M : τ then ran(Γ) `ND τ

2 if Γ `ND ϕ then ∆ ` M : ϕ for some M and ∆ with ran(∆) = Γ

AM/VvO (CS @ UIBK) lecture 8 24/34

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Curry–Howard Isomorphism

Theorem (Curry–Howard)

1 if Γ ` M : τ then ran(Γ) `ND τ

Proof

By induction on derivation of judgement Γ ` M : τ as for typed combinatory logic.
We only give the new, λ-abstraction, case:

• M = λx .N and τ = σ → ρ

ran(Γ), σ `ND ρ by induction hypothesis

ran(Γ) `ND σ → ρ Implication Introduction

Theorem (Curry–Howard)

2 if Γ `ND ϕ then ∆ ` M : ϕ for some M and ∆ with ran(∆) = Γ

Proof

Induction on Γ `ND ϕ as for the Hilbert System H. No interesting new cases.
AM/VvO (CS @ UIBK) lecture 8 25/34

Curry–Howard Isomorphism Bracket Abstraction vs. Deduction Theorem

Definition

Translations ()CL : L → C and ()λ : C → L are defined by mapping variables and
applications to ‘themselves’ (homomorphically) and defining

(λx .M)CL = [x](M)CL

(K)λ = λxy .x

(S)λ = λxyz .xz(yz)

where the first clause uses the bracket abstraction algorithm

Examples

• (λxy .x)CL = [x](λy .x)CL = [x][y](x)CL = [x][y]x = [x](Kx) = K , using the
optimization of the exercises, for the last equality

• (SKK)λ = (λxyz .xz(yz))(λxy .x)(λxy .x). Recall SKK is Hilbert System proof
of X ⊃ X . Note (λxyz .xz(yz))(λxy .x)(λxy .x)→∗β (λyz .z)(λxy .x)→∗β λz .z ,
with λz .z the identity function, which obviously has type τ → τ , which would
justify defining (I)λ = λx .x

AM/VvO (CS @ UIBK) lecture 8 26/34

Curry–Howard Isomorphism Bracket Abstraction vs. Deduction Theorem

Theorem

The translations ()CL and ()λ on terms preserve types, showing
Γ `H ϕ ⇐⇒ Γ `ND ϕ

Proof

By induction on derivations, using for ()CL the lemma on slide 33 of last week,
and for ()λ that the translations λxy .x and λxyz .xz(yz) have the same types (in
the typed λ-calculus) as K and S have (in typed combinatory logic).

Remark
This result allows to ‘switch freely’ between ND and H, e.g. it follows that ND is
sound and complete for Kripke semantics. However, beware the translation ()λ is
linear, but ‘the’ reverse translation ()CL is exponential. That is, ND proofs blow
up in size when translated to H proofs, but not vice versa. On the other hand, H
proofs do not use λ-abstraction, a notion considered complex. Indeed combinatory
logic was invented to get rid of λ-abstractions, more precisely of bound variables.

AM/VvO (CS @ UIBK) lecture 8 27/34

Exercises

Outline

Overview of this lecture

Natural Deduction

λ-calculus

Strong Normalization by Strong Computability

Curry–Howard Isomorphism

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 8 28/34

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Exercises

1 Give three λ-terms M such that ` M : τ → τ → τ , for τ an arbitrary type.

We count only terms up to renaming of variables; so λxy .xy and λyx .yx are
considered the same (as they can be obtained by renaming x into y and vice
versa), but different from λxy .yx . Is this a reasonable way to count terms
inhabiting types, i.e. to count proofs of propositions, vis-à-vis the
Curry–Howard isomorphism?

2 Bonus: Show that, among the three λ-terms in the previous exercise, at least
two must be =β-related.

3 Reduce the λ-term M = (λx .xx)(λyz .yz) to normal form N (it requires 3
→β-steps; give each of them).

4 Show that there is no λ-term M such that ` M : (τ → τ)→ τ , for τ an
arbitrary type.
Hint: normalization or Kripke models (1 cross each)

5 Compute the translation (SS(KI))λ, i.e. the translation of W on slide 21 of
the previous week, and reduce the resulting λ-term to normal form.

AM/VvO (CS @ UIBK) lecture 8 29/34

Exercises

6 Bonus (1 cross per item): The Haskell expression (\x -> \x -> x)

corresponds to the λ-term λx .λx .x . Asking Haskell the type of the former
yields p1 -> p2 -> p2.

• Explain why using the type assignment rules for λ-calculus (slide 13), we
can infer ` λy .λx .x : σ → (τ → τ), but not ` λx .λx .x : σ → (τ → τ),
assuming σ 6= τ (cf. the remark there).
Could one overcome this limitation? That is, could our type assignment
system be adapted such that we do have ` λx .λx .x : σ → (τ → τ)?

• Just as per our conventions λyx .x is shorthand for λy .λx .x , in Haskell
(\y x -> x) is shorthand for (\y -> \x -> x) Do (\x x -> x) and
(\x -> \x -> x) have the same type in Haskell? Can you explain why
(not)?

7 SC is defined (slide 17) in terms of itself: SC of M is defined in terms of SC

of ~N. Argue that SC is still well-defined, i.e. that it is a proper inductive
definition for simply typed terms (either CL-terms or λ-terms).

8 Work out the details of the first item, the variable case, (slide 17) of the
proof that all simply typed CL terms are SC. In particular, show that SC
entails SN and that every typed variable is SC.

AM/VvO (CS @ UIBK) lecture 8 30/34

Exercises

9 Complete the details of the proof (slide 20) that inhabitation is decidable.
More precisely, give both the details of the proof of the subformula property,
and of that the subformula property entails decidability of inhabitation.

10 Bonus (worth 4 crosses): implement an inhabitation checker for implicational
intuitionistic logic, based on the previous exercise.

11 Bonus: Suppose combinatory logic would have another constant J having
some type and reduction rule, for all terms Mi , JM1 . . .Mn →w E where E is
an expression only constructed from applications and the Mi and both sides
have the same base type, e.g. Γ ` J : (σ → σ → τ)→ σ → τ with rule
JM1M2 →w M1M2M2 (note the conditions hold for K and S). Is →w still
strongly normalizing? If it is not, give a specific J and rule for it allowing an
infinite reduction. If it is, give a proof.

12 Bonus (worth 3 crosses): directly show weak normalization of →β on typable
λ-terms, without showing (a property that entails) strong normalization .
Hint: an idea analogous to that for the cut elimination procedure in the book
works, judiciously choosing a →β step among the possible ones and showing
that that decreases some measure.

AM/VvO (CS @ UIBK) lecture 8 31/34

Exercises

13 Bonus (worth 4 crosses): Prove or disprove that the tableau cut-elimination
procedure in Fitting is strongly normalizing. Proceed as follows: the proof of
Lemma 8.9.3 establishes weak normalization by transforming minimal cuts.
(Try to) verify whether

• correctness of the transformations depends on minimality,
• the induction (see p. 232) used in the proof works for non-minimal cuts,
• strong normalization, when eliminating arbitrary cuts, holds.

AM/VvO (CS @ UIBK) lecture 8 32/34

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Further Reading

Outline

Overview of this lecture

Natural Deduction

λ-calculus

Strong Normalization by Strong Computability

Curry–Howard Isomorphism

Exercises

Further Reading

AM/VvO (CS @ UIBK) lecture 8 33/34

Further Reading

Fitting

• Section 4.1 (from Curry–Howard-perspective)

• Section 4.2 (idem)

Additional Literature

• Philip Wadler, Propositions as Types, Communications of the ACM 58(12),
pp. 75 – 84, 2015

• Morten Heine Sørensen and Pawel Urzyczyn, Lectures on the Curry–Howard
Isomorphism, Studies in Logic and the Foundations of Mathematics, volume
149, Elsevier, 2006 (cached PDF of preliminary version on citeseer)

AM/VvO (CS @ UIBK) lecture 8 34/34

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://dx.doi.org/10.1145/2699407
http://dx.doi.org/10.1145/2699407
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.7385
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	lecture 6
	Overview of this lecture
	Contents
	Natural Deduction
	-calculus
	Typed -calculus

	Strong Normalization by Strong Computability
	Strong normalisation of w
	Strong normalisation of w
	Strong normalisation of -reduction

	Curry–Howard Isomorphism
	Bracket Abstraction vs. Deduction Theorem

	Exercises
	Further Reading

