
Program Verification SS 2021 LVA 703083+703084

Sheet 3 Deadline: March 23, 2021, 8am

• Prepare your solutions on paper.

• Marking an exercise in OLAT means that a significant part of that exercise has been treated.

• Upload your solution in OLAT as a single PDF file.

Exercise 1 Type-Checking of Formulas 7 p.

Consider the type-checking algorithm for formulas from the (solution of the) previous exercise sheet. Prove
soundness of the type-checking algorithm as in slides 2/39 – 2/41.

type check formula Σ V P ϕ = return () −→ ϕ ∈ F(Σ,P,V)

Be precise when applying induction: what kind of induction? on which property P (. . .)? on which variables?
which variables are arbitrary?

Exercise 2 Data Type Definitions 5 p.

Consider slides 3/3 and 3/7.

1. What would go wrong if one drops distinctness of the constructor names? Provide a concrete data type
definition where something goes wrong, i.e., where all conditions except for the distinctness of constructor
names are satisfied, but where in the definitions of Ty, Σ, P and M some problem occurs. (2 points)

2. Consider the following sequence of datatypes that define rose trees, i.e., trees where each node may have
arbitrarily many children. (3 points)

data Nat = Zero : Nat | Succ : Nat→ Nat

data Tree = Node : Nat× Tree List→ Tree

data Tree List = Nil : Tree List | Cons : Tree× Tree List→ Tree List

• Describe the universes of trees and tree-lists as inductive sets.

• Are all universes non-empty? For each non-empty universe provide an element that is in the universe.

• Is the definition allowed wrt. slide 3/3? If not, give a short description why it is not allowed.

Exercise 3 Functional Programming 8 p.

Consider slides 3/14 – 3/20.

1. Specify an algorithm for subtraction of two natural numbers within the functional programming language
defined in the slides and evaluate ”3− 2” and ”2− 3” step-by-step on paper. (2 points)

2. Specify an algorithm for the division of two natural numbers within the functional programming language
defined in the slides. Evaluate ”2/2” step-by-step on paper. How does your algorithm handle division-by-
zero? How does your algorithm handle non-exact division, e.g., dividing 1 by 2. (3 points)

3. Function definitions on slide 3/15 are quite restricted, e.g., no mutual recursion, no if-then-else, no built-in
integers, etc. (3 points)

• Try to modify the definition of function definitions on slide 3/15 in a way that allows mutual recursion.

• Ensure that the even-odd definitions on slide 3/17 are accepted.


