- Prepare your solutions on paper.
- Marking an exercise in OLAT means that a significant part of that exercise has been treated.
- Upload your solution in OLAT as a single PDF file.

Exercise 1 Proof Tableaux
Consider the following algorithm Copy

```
a := x;
y := 0;
while (a != 0) {
    y := y + 1;
    a := a - 1;
}
```

1. Show partial correctness of Copy, i.e., develop a proof tableau for $(x \geq 0 \mid) \operatorname{Copy}(|x=y|)$ using the while-rule. (3 points)
2. Show total correctness of Copy, i.e., develop a proof tableau for $(x \geq 0 \mid) \operatorname{Copy}(x=y \mid)$ using the while-total-rule.
 prove it.

Exercise 2 Minimal-Sum Section

8 p.

Consider the algorithm Min_Sum on slide 6/38.

1. Is the program still correct, if one swaps the two assignment $t:=\ldots$ and $s:=\ldots$ within the while-loop? Provide a counter-example, where the modified program produces a wrong result, or briefly argue why it is still sound.
(2 points)
2. Prove $(n>0 \mid)$ Min_Sum $\left(S p_{2}\right)$ where $S p_{2}$ is the specification on slide $6 / 39$. To this end, find suitable invariants and create a proof tableau using the while-rule for partial correctness. Also provide informal proofs for all implications that occur in the tableau.

Exercise 3 Non-Termination of Imperative Programs

The Hoare-calculus can not only be used to prove termination (with the while-total-rule), but it can also be used to prove non-termination via the while-rule.

1. Given a set of inputs characterised by some formula φ, provide a Hoare-triple (for partial correctness) that encodes that program P does not terminate on these inputs. (it might be useful to have a look at slide $6 / 51$ that was not yet discussed in the lecture, where termination is formulated as stand-alone property via Hoare-triples)
(3 points)
2. Prove non-termination of the factorial program for all inputs $x<0$ by constructing a suitable proof tableau.
y := 1;
while (x ! $=0$) \{
$\mathrm{y}:=\mathrm{y} * \mathrm{x}$;
$\mathrm{x}:=\mathrm{x}-1$
\}
