- Prepare your solutions on paper.
- Marking an exercise in OLAT means that a significant part of that exercise has been treated.
- Upload your solution in OLAT as a single PDF file.
- This is a bonus exercise sheet.

Exercise 1 Repetition: Proofs by Induction on Terms

Recall that \mathcal{V} denotes a typed set of variables. Let $\mathcal{V}, \mathcal{V}^{\prime}$ be two typed sets of variables.
The merge of two sets of variables is defined as $\mathcal{V} \cup \mathcal{V}^{\prime}$, and implicitly assumes that there are no conflicting variables assignments. For instance $\{x:$ Nat, $y: \operatorname{List}\} \cup\{x:$ Nat, $z:$ Nat $\}$ is possible and results in $\{x:$ Nat, $y:$ List, $z:$ Nat $\}$, but $\{x:$ Nat, $y:$ List $\} \cup\{x:$ List, $z:$ Nat $\}$ is not allowed.

1. Show that the set of typed terms is monotone: $\mathcal{T}(\Sigma, \mathcal{V})_{\tau} \subseteq \mathcal{T}\left(\Sigma, \mathcal{V} \cup \mathcal{V}^{\prime}\right)_{\tau}$.
2. Show soundness of the type inference algorithm, cf. slide 4/8-9: if infer_type $\Sigma \tau t=$ return \mathcal{V} then

- \mathcal{V} is well-defined (no conflicting variable assignments) and
- $t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$

Exercise 2 Semantics of Imperative Programs

Prove the other direction of the equivalence of big-step semantics (see exercise sheet 12) and small-step semantics:

$$
(C, \alpha) \hookrightarrow^{*}(\text { skip }, \beta) \longrightarrow(C, \alpha) \rightarrow \beta
$$

Clearly state which kind of induction you are using.
Hint: In the proof you will most likely figure out one required auxiliary property of \hookrightarrow that you should clearly state as lemma, but don't need to prove.

Exercise 3 Soundness of Hoare-Calculus

In the lecture we only considered partial correctness of the Hoare-calculus, i.e., we proved:

$$
\vdash(|\varphi|) P(\psi \mid \longrightarrow \models(\varphi \mid) P(\psi \mid)
$$

In this exercise we consider total correctness.

1. Provide a definition of $\models_{\text {total }}(|\varphi|) P(|\psi|)$, i.e., a semantic notion of total correctness. You can exploit that \hookrightarrow is deterministic, i.e., for all a there is at most one b such that $a \hookrightarrow b$.
(2 points)
2. How would you try to prove $\vdash(|\varphi|) P(\psi \mid) \longrightarrow \models_{\text {total }}(\varphi \varphi \mid) P(\psi \mid)$ for the Hoare-calculus with while-total rule? Just state the main property you would try to prove, and state which proof principle (induction, proof by contradiction, etc.) you would apply, with a brief justification why this looks like a promising attempt.
