

Program Verification

Part 2 - Logic for Program Specifications

René Thiemann

Department of Computer Science

Recapitulation: Predicate Logic

Inductively Defined Sets

- one can define sets inductively via inference rules of form

$$
\frac{\text { premise }_{1} \quad \ldots \text { premise }}{n} \text { }
$$

meaning: if all premises are satisfied, then one can conclude

- example: the set of even numbers

$$
\overline{0 \in \text { Even }} \quad \frac{x \in \text { Even }}{x+2 \in \text { Even }}
$$

- the inference rules describe what is contained in the set
- this can be modeled as formula

$$
0 \in \text { Even } \wedge(\forall x . x \in \text { Even } \longrightarrow x+2 \in \text { Even })
$$

- nothing else is in the set (this is not modeled in the formula!)

Inductively Defined Sets, Continued

- the set of even numbers

$$
\overline{0 \in \text { Even }} \quad \frac{x \in \text { Even }}{x+2 \in \text { Even }}
$$

- membership in the set can be proved via inference trees
- example: $4 \in$ Even, proved via inference tree

$$
\begin{aligned}
& \frac{\overline{0 \in E v e n}}{\frac{2 \in E v e n}{4 \in E v e n}}
\end{aligned}
$$

- proving that something is not in the set is more difficult: show that no inference tree exists
- example: $3 \notin$ Even, $-2 \notin$ Even

Inductively Defined Sets and Grammars

- inference rules are similar to grammar rules
- example
- the grammar

$$
S \rightarrow a S a b|b| T a S \quad T \rightarrow T T \mid \epsilon
$$

- is modeled via the inference rules

$$
\begin{array}{rll}
\frac{w \in S}{a w a b \in S} & \overline{b \in S} & \frac{w \in T \quad u \in S}{w a u \in S} \\
\frac{w \in T \quad u \in T}{w u \in T} & \overline{\epsilon \in T} &
\end{array}
$$

- in the same way, inference trees are similar to derivation trees

Inductively Defined Sets: Monotonicity

- inference rules of inductively defined sets must be monotone, it is not permitted to negatively refer to the defined set
- ill-formed example

$$
\overline{0 \in B a d} \quad \frac{0 \in B a d}{0 \notin B a d}
$$

- one of the problems: the correspond formula can get unsatisfiability

$$
0 \in B a d \wedge(0 \in B a d \longrightarrow 0 \notin B a d)
$$

Inductively Defined Sets: Structural Induction

- example: the set of even numbers

$$
\overline{0 \in \text { Even }} \quad \frac{x \in \text { Even }}{x+2 \in \text { Even }}
$$

- inductively defined sets give rise to a structural induction rule
- induction rule for example, written again as inference rule:

$$
\frac{y \in \text { Even } \quad P(0) \quad \forall x \cdot P(x) \longrightarrow P(x+2)}{P(y)}
$$

where P is an arbitrary property; alternatively as formula

$$
\forall y . y \in E v e n \longrightarrow \underbrace{P(0)}_{\text {base }} \longrightarrow \underbrace{(\forall x \cdot P(x) \longrightarrow P(x+2))}_{\text {step }} \longrightarrow P(y)
$$

Inductively Defined Sets: Structural Induction Continued

- depending on the structure of the inference rules there might be several base- and step-cases
- example: a definition of the set of even integers

$$
\begin{array}{ll}
\overline{0 \in \text { Even } Z} & \frac{x \in \operatorname{Even} Z}{x+2 \in \operatorname{Even} Z} \\
& \frac{x \in \text { Even } Z \quad y \in \text { Even } Z}{x-y \in \text { Even } Z}
\end{array}
$$

- structural induction rule in this case contains
- one base case (without induction hypothesis): $P(0)$
- one step case with one induction hypothesis: $\forall x \cdot P(x) \longrightarrow P(x+2)$
- one step case with two induction hypotheses: $\forall x, y \cdot P(x) \longrightarrow P(y) \longrightarrow P(x-y)$

Example Proof by Structural Induction

- aim: show that every even number y can be written as $2 \cdot n$
- structural induction rule

$$
\frac{y \in \text { Even } \quad P(0) \quad \forall x \cdot P(x) \longrightarrow P(x+2)}{P(y)}
$$

- property $P(x): x$ can be written as $2 \cdot n$ with $n \in \mathbb{N} ; P(x):=\exists n . n \in \mathbb{N} \wedge x=2 \cdot n$
- semi-formal proof: apply structural induction rule to show $P(y)$
- the subgoal $y \in$ Even is by assumption
- the base-case $P(0)$ is trivial, since $0=2 \cdot 0$ and $0 \in \mathbb{N}$
- the step-case demands a proof of $\forall x . P(x) \longrightarrow P(x+2)$, so let x be arbitrary, assume $P(x)$ and show $P(x+2)$
- because of $P(x)$ there is some $n \in \mathbb{N}$ such that $x=2 \cdot n$
- hence $n+1 \in \mathbb{N}$ and $x+2=2 \cdot n+2=2 \cdot(n+1)$
- thus $P(x+2)$ holds by choosing $n+1$ as witness in existential quantifier
- hence, $\forall y . y \in \operatorname{Even}(y) \longrightarrow \exists n . n \in \mathbb{N} \wedge y=2 \cdot n$

The Other Direction

- aim: show that $2 \cdot n \in E v e n$ for every natural number n
- here the structural induction rule for Even is useless, since it has $y \in E v e n$ as a premise
- this proof is by induction on n and by using the inference rules from the inductively defined set Even (and not the induction rule)

$$
\overline{0 \in \text { Even }} \quad \frac{x \in \text { Even }}{x+2 \in \text { Even }}
$$

- base case $n=0: 2 \cdot 0=0 \in$ Even by the first inference rule of Even
- step case from n to $n+1$:
- the induction hypothesis gives us $2 \cdot n \in$ Even
- hence, $2 \cdot(n+1)=2 \cdot n+2 \in$ Even by the second inference rule of Even (instantiate x by $2 \cdot n$)

Final Remark on Inductively Defined Sets

- so far: premises in inference rules speak about set under construction
- in general: there can be additional arbitrary side conditions
- example definition of odd numbers, assuming that Even is already defined:

$$
\overline{1 \in O d d}
$$

$$
\frac{x \in \text { Even } \quad y \in O d d}{x+y \in O d d}
$$

- structural induction adds these side conditions as additional premises

$$
\frac{y \in O d d \quad P(1) \quad \forall x, y \cdot x \in E v e n \longrightarrow P(y) \longrightarrow P(x+y)}{P(y)}
$$

- Σ : set of (function) symbols with arity
- \mathcal{V} : set of variables, usually infinite
- example: $\Sigma=\{$ plus $/ 2$, succ $/ 1$, zero $/ 0\}, \mathcal{V}=\{x, y, z, \ldots\}$
- $\mathcal{T}(\Sigma, \mathcal{V})$: set of terms, inductively defined by two inference rules

$$
\frac{x \in \mathcal{V}}{x \in \mathcal{T}(\Sigma, \mathcal{V})} \quad \frac{f / n \in \Sigma \quad t_{1} \in \mathcal{T}(\Sigma, \mathcal{V}) \quad \ldots \quad t_{n} \in \mathcal{T}(\Sigma, \mathcal{V})}{f\left(t_{1}, \ldots, t_{n}\right) \in \mathcal{T}(\Sigma, \mathcal{V})}
$$

- for symbols with arity 0 we omit the parenthesis in terms in formulas, i.e., we write zero as term and not zero()
- examples
- plus($x, \operatorname{plus}($ plus $(z e r o, x), \operatorname{succ}(y)))$
- x
- plus
- plus (x, y, z)
- remark: we do not use infix-symbols for formal terms

Predicate Logic: Formulas

- Σ : set of function symbols, \mathcal{V} : set of variables
- \mathcal{P} : set of (predicate) symbols with arity
- $\mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})$: formulas over Σ, \mathcal{P}, and \mathcal{V}, inductively defined via

$$
\begin{array}{cc}
\frac{x \in \mathcal{V} \quad \varphi \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})}{\text { true } \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})} & \frac{\forall x . \varphi \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})}{} \\
\frac{\varphi \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})}{\neg \varphi \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})} & \frac{\varphi \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V}) \quad \psi \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})}{\varphi \wedge \psi \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})} \\
\frac{p / n \in \mathcal{P}}{} \quad t_{1} \in \mathcal{T}(\Sigma, \mathcal{V}) \ldots \quad t_{n} \in \mathcal{T}(\Sigma, \mathcal{V}) \\
p\left(t_{1}, \ldots, t_{n}\right) \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})
\end{array}
$$

Predicate Logic: Syntactic Sugar

- we use all Boolean connectives
- false $=\neg$ true
- $(\varphi \vee \psi)=(\neg(\neg \varphi \wedge \neg \psi))$
- $(\varphi \longrightarrow \psi)=(\neg \varphi \vee \psi)$
- $(\varphi \longleftrightarrow \psi)=((\varphi \longrightarrow \psi) \wedge(\psi \longrightarrow \varphi))$
- we permit existential quantification
- $(\exists x . \varphi)=\neg(\forall x . \neg \varphi)$
- however, these are just abbreviations, so when defining properties of formulas, we only need to consider the connectives from the previous slide

Predicate Logic: Semantics

- defined via models, environments and structural recursion
- a model \mathcal{M} for formulas over Σ, \mathcal{P}, and \mathcal{V} consists of
- a non-empty set \mathcal{A}, the universe
- for each $f / n \in \Sigma$ there is a total function $f^{\mathcal{M}}: \mathcal{A}^{n} \rightarrow \mathcal{A}$
- for each $p / n \in \mathcal{P}$ there is a relation $p^{\mathcal{M}} \subseteq \mathcal{A}^{n}$
- an environment is a mapping $\alpha: \mathcal{V} \rightarrow \mathcal{A}$
- the term evaluation $\llbracket \cdot \rrbracket_{\alpha}: \mathcal{T}(\Sigma, \mathcal{V}) \rightarrow \mathcal{A}$ is defined recursively as
- $\llbracket x \rrbracket_{\alpha}=\alpha(x) \quad$ and $\quad \llbracket f\left(t_{1}, \ldots, t_{n}\right) \rrbracket_{\alpha}=f^{\mathcal{M}}\left(\llbracket t_{1} \rrbracket_{\alpha}, \ldots, \llbracket t_{n} \rrbracket_{\alpha}\right)$
- the satisfaction predicate $\mathcal{M} \models_{\alpha}$. is defined recursively as
- $\mathcal{M} \models_{\alpha}$ true
- $\mathcal{M} \models_{\alpha} p\left(t_{1}, \ldots, t_{n}\right)$ iff $\left(\llbracket t_{1} \rrbracket_{\alpha}, \ldots, \llbracket t_{n} \rrbracket_{\alpha}\right) \in p^{\mathcal{M}}$
- $\mathcal{M} \models_{\alpha} \varphi \wedge \psi$ iff $\mathcal{M} \models_{\alpha} \varphi$ and $\mathcal{M} \models_{\alpha} \psi$
- $\mathcal{M} \models_{\alpha} \neg \varphi$ iff $\mathcal{M} \not \models_{\alpha} \varphi$
- $\mathcal{M} \models_{\alpha} \forall x$. φ iff $\mathcal{M} \models_{\alpha[x:=a]} \varphi$ for all $a \in \mathcal{A}$
where $\alpha[x:=a]$ is defined as $\alpha[x:=a](y)= \begin{cases}a, & \text { if } y=x \\ \alpha(y), & \text { otherwise }\end{cases}$
- if φ contains no free variables, we omit α and write $\mathcal{M} \models \varphi$

Examples

- signature: $\Sigma=\{$ plus $/ 2$, succ $/ 1$, zero $/ 0\}, \mathcal{P}=\{$ even $/ 1,=/ 2\}$
- model 1 :
- $\mathcal{A}=\mathbb{N}$
- $\operatorname{plus}^{\mathcal{M}}(x, y)=x+y, \operatorname{succ}^{\mathcal{M}}(x)=x+1$, zero $^{\mathcal{M}}=0$
- even ${ }^{\mathcal{M}}=\{2 \cdot n \mid n \in \mathbb{N}\},=\mathcal{M}=\{(n, n) \mid n \in \mathbb{N}\}$
- $\mathcal{M} \equiv \forall x, y \cdot \operatorname{plus}(x, y)=\operatorname{plus}(y, x)$
- model 2 :
- $\mathcal{A}=\mathbb{Z}$
- $\operatorname{plus}^{\mathcal{M}}(x, y)=x-y, \operatorname{succ}^{\mathcal{M}}(x)=|x|$, zero $^{\mathcal{M}}=42$
- even $^{\mathcal{M}}=\{2,-7\},={ }^{\mathcal{M}}=\{(1000,2000)\}$
- $\mathcal{M} \not \vDash \forall x, y \cdot \operatorname{plus}(x, y)=\operatorname{plus}(y, x)$
- model 3:
- $\mathcal{A}=\{\bullet\}$
- $\operatorname{plus}^{\mathcal{M}}(x, y)=\bullet, \operatorname{succ}^{\mathcal{M}}(x)=\bullet, \operatorname{zero}^{\mathcal{M}}=\bullet$
- even $^{\mathcal{M}}=\{\bullet\},=^{\mathcal{M}}=\varnothing$
- $\mathcal{M} \not \vDash \forall x, y \cdot \operatorname{plus}(x, y)=\operatorname{plus}(y, x)$
- (not a) model 4:
$\bullet \mathcal{A}=\mathbb{N}, \operatorname{plus}^{\mathcal{M}}(x, y)=x-y$, even $^{\mathcal{M}}=\{\ldots,-4,-2,0,2,4, \ldots\}, \ldots$

Models for Functional Programming

- consider program

$$
\begin{aligned}
& \text { data Nat }=\text { Zero } \mid \text { Succ Nat } \\
& \text { data List }=\text { Nil } \mid \text { Cons Nat List }
\end{aligned}
$$

- datatype definitions clearly correspond to inductively defined sets

$$
\begin{gathered}
\text { Zero } \in \text { Nat } \\
\overline{\text { Nil } \in \text { List }}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{n \in \mathrm{Nat}}{\operatorname{Succ}(n) \in \mathrm{Nat}} \\
& \frac{n \in \mathrm{Nat} \quad x s \in \text { List }}{\text { Cons }(n, x s) \in \text { List }}
\end{aligned}
$$

- tentative definition of universe \mathcal{A} of model \mathcal{M} for program

$$
\mathcal{A}=\text { Nat } \cup \text { List }
$$

- obvious definition of meaning of constructors
- Zero $^{\mathcal{M}}=$ Zero, $\quad \operatorname{Succ}^{\mathcal{M}}(n)=\operatorname{Succ}(n), \quad \operatorname{Nil}^{\mathcal{M}}=\operatorname{Nil}, \ldots$
- inductively defined sets

$$
\begin{gathered}
\overline{\text { Zero } \in \text { Nat }} \\
\overline{\text { Nil } \in \operatorname{List}}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{n \in \text { Nat }}{\text { Succ }(n) \in \text { Nat }} \\
& \frac{n \in \text { Nat } \quad x s \in \text { List }}{\text { Cons }(n, x s) \in \text { List }}
\end{aligned}
$$

- construction of model
- $\mathcal{A}=$ Nat \cup List
- Zero ${ }^{\mathcal{M}}=$ Zero \quad and $\quad \operatorname{Succ}^{\mathcal{M}}(n)=\operatorname{Succ}(n)$
- $\mathrm{Nil}^{\mathcal{M}}=\mathrm{Nil} \quad$ and $\quad \operatorname{Cons}^{\mathcal{M}}(n, x s)=\operatorname{Cons}(n, x s)$
- problem: this is not a model
- Succ ${ }^{\mathcal{M}}$ must be a total function of type $\mathcal{A} \rightarrow \mathcal{A}$
- but $\operatorname{Succ}^{\mathcal{M}}(\mathrm{Nil})=\operatorname{Succ}(\mathrm{Nil}) \notin \mathcal{A}$
- similar problem: a formula like
$\forall x s y s z s$. append(append $(x s, y s), z s)=\operatorname{append}(x s, \operatorname{append}(y s, z s))$ would have to hold even when replacing $x s$ by Zero!

Many-Sorted Logic

Solution to the One-Universe Problem

- consider many-sorted logic
- idea: a separate universe for each sort
- naming issue: sort in logic \sim type in functional programming
- this lecture: we mainly speak about types
- types need to be integrated everywhere
- typed signature
- typed terms
- typed formulas
- typed environments
- typed quantifiers
- typed universes
- typed models
- this lecture: simple type system
- no polymorphism (no generic List a type)
- first-order (no λ, no partial application, ...)

Many-Sorted Predicate Logic: Syntax

- $\mathcal{T} y$: set of types where each $\tau \in \mathcal{T} y$ is just a name example: $\mathcal{T} y=\{$ Nat, List, $\ldots\}$
- Σ : set of function symbols; each $f \in \Sigma$ has type info $\in \mathcal{T}^{+}$ we write $f: \tau_{1} \times \ldots \times \tau_{n} \rightarrow \tau_{0}$ whenever f has type info $\tau_{1} \ldots \tau_{n} \tau_{0}$
example: $\Sigma=\{$ Zero : Nat, plus : Nat \times Nat \rightarrow Nat, Cons : Nat \times List \rightarrow List, $\ldots\}$
- \mathcal{P} : set of predicate symbols; each $p \in \mathcal{P}$ has type info $\in \mathcal{T y}^{*}$
we write $p \subseteq \tau_{1} \times \ldots \times \tau_{n}$ whenever f has type info $\tau_{1} \ldots \tau_{n}$
example: $\mathcal{P}=\left\{<\subseteq\right.$ Nat \times Nat, $=_{\text {Nat }} \subseteq$ Nat \times Nat, even \subseteq Nat, nonEmpty \subseteq List, $=$ List \subseteq List \times List, elem \subseteq Nat \times List,,$\ldots\}$ note: no polymorphism, so there cannot be a generic equality symbol
- \mathcal{V} : set of variables, typed
example: $\mathcal{V}=\{n:$ Nat, $x s:$ List, $\ldots\}$ we write \mathcal{V}_{τ} as the set of variables of type τ
- notation
- function and predicate symbols: blue color, variables: black color
- often $\mathcal{T} y$ and \mathcal{V} are not explicitly specified

Many-Sorted Predicate Logic: Terms

- $\mathcal{T}(\Sigma, \mathcal{V})_{\tau}$: set of terms of type τ, inductively defined

$$
\begin{aligned}
& \frac{x: \tau \in \mathcal{V}}{x \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}} \\
& \frac{f: \tau_{1} \times \ldots \times \tau_{n} \rightarrow \tau \in \Sigma \quad t_{1} \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau_{1}} \quad \ldots \quad t_{n} \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau_{n}}}{f\left(t_{1}, \ldots, t_{n}\right) \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}}
\end{aligned}
$$

- example
- $\mathcal{V}=\{n: \mathrm{N}, \ldots\}$
- $\Sigma=\{$ Zero: N, Succ : $\mathrm{N} \rightarrow \mathrm{N}$, Nil : L, Cons: $\mathrm{N} \times \mathrm{L} \rightarrow \mathrm{L}\}$
- we omit the " $\in \mathcal{V}$ " and " $\in \Sigma$ " when applying the inference rules
- typing terms results in inference trees

$$
\frac{\text { Succ }: \mathrm{N} \rightarrow \mathrm{~N} \frac{n: \mathrm{N}}{n \in \mathcal{T}(\Sigma, \mathcal{V})_{\mathrm{N}}}}{\operatorname{Succ}(n) \in \mathcal{T}(\Sigma, \mathcal{V})_{\mathrm{N}}} \frac{\mathrm{Nil}: \mathrm{L}}{\operatorname{Cons}(\operatorname{Succ}(n), \operatorname{Nil}) \in \mathcal{T}(\Sigma, \mathcal{V})_{\mathrm{L}}}
$$

- for ill-typed terms such as $\operatorname{Succ}(\mathrm{Nil})$ there is no inference tree

Many-Sorted Predicate Logic: Formulas

- recall: \mathcal{V}, Σ and \mathcal{P} are typed sets of variables, function symbols and predicate symbols
- next we define typed formulas $\mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})$ inductively
- the definition is similar as in the untyped setting only difference: add types to inference rule for predicates

$$
\begin{array}{ll}
\overline{\operatorname{true} \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})} & \frac{x \in \mathcal{V} \quad \psi \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})}{\forall x . \varphi \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})} \\
\frac{\varphi \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})}{\neg \varphi \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})} & \frac{\varphi \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V}) \quad \psi \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})}{\varphi \wedge \psi \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})} \\
\frac{\left(p \subseteq \tau_{1} \times \ldots \times \tau_{n}\right) \in \mathcal{P}}{p\left(t_{1}, \ldots, t_{n}\right) \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})}
\end{array}
$$

Many-Sorted Predicate Logic: Semantics

- defined via typed models and environments
- a model \mathcal{M} for formulas over $\mathcal{T} y, \Sigma, \mathcal{P}$, and \mathcal{V} consists of
- a collection of non-empty universes \mathcal{A}_{τ}, one for each $\tau \in \mathcal{T} y$
- for each $f: \tau_{1} \times \ldots \times \tau_{n} \rightarrow \tau \in \Sigma$ there is a function $f^{\mathcal{M}}: \mathcal{A}_{\tau_{1}} \times \ldots \times \mathcal{A}_{\tau_{n}} \rightarrow \mathcal{A}_{\tau}$
- for each $\left(p \subseteq \tau_{1} \times \ldots \times \tau_{n}\right) \in \mathcal{P}$ there is a relation $p^{\mathcal{M}} \subseteq \mathcal{A}_{\tau_{1}} \times \ldots \times \mathcal{A}_{\tau_{n}}$
- an environment is a type-preserving mapping $\alpha: \mathcal{V} \rightarrow \bigcup_{\tau \in \mathcal{T}_{\mathcal{H}}} \mathcal{A}_{\tau}$, i.e., whenever $x: \tau \in \mathcal{V}$ then $\alpha(x) \in \mathcal{A}_{\tau}$
- the term evaluation $\llbracket \cdot \rrbracket_{\alpha}: \mathcal{T}(\Sigma, \mathcal{V})_{\tau} \rightarrow \mathcal{A}_{\tau}$ is defined recursively as
- $\llbracket x \rrbracket_{\alpha}=\alpha(x)$
- $\llbracket f\left(t_{1}, \ldots, t_{n}\right) \rrbracket_{\alpha}=f^{\mathcal{M}}\left(\llbracket t_{1} \rrbracket_{\alpha}, \ldots, \llbracket t_{n} \rrbracket_{\alpha}\right)$
note that $\llbracket \cdot \rrbracket_{\alpha}$ is overloaded in the sense that it works for each type τ
- the satisfaction predicate $\mathcal{M} \models_{\alpha}$. is defined recursively as
- $\mathcal{M} \models_{\alpha} \forall x$. φ iff $\mathcal{M} \models_{\alpha[x:=a]} \varphi$ for all $a \in \mathcal{A}_{\tau}$, where τ is the type of x
- $\mathcal{M}=_{\alpha} p\left(t_{1}, \ldots, t_{n}\right)$ iff $\left(\llbracket t_{1} \rrbracket_{\alpha}, \ldots, \llbracket t_{n} \rrbracket_{\alpha}\right) \in p^{\mathcal{M}}$
- ... remainder as in untyped setting

Example

- $\mathcal{T} y=\{$ Nat, List $\}$
- $\Sigma=\{$ Zero : Nat, Succ : Nat \rightarrow Nat, Nil : List, app : List \times List \rightarrow List $\}$ $\mathcal{P}=\{=\subseteq$ List \times List $\}$
- $\mathcal{A}_{\text {Nat }}=\mathbb{N}$
- $\mathcal{A}_{\text {List }}=\left\{\left[x_{1}, \ldots, x_{n}\right] \mid n \in \mathbb{N}, \forall 1 \leq i \leq n . x_{i} \in \mathbb{N}\right\}$
- Zero $^{M}=0$
- $\operatorname{Succ}^{\mathcal{M}}(n)=n+1$
definition is okay: n can be no list, since $n \in \mathcal{A}_{\text {Nat }}=\mathbb{N}$
- $\mathrm{Nil}^{\mathcal{M}}=[]$
- $\operatorname{app}^{\mathcal{M}}\left(\left[x_{1}, \ldots, x_{n}\right],\left[y_{1}, \ldots, y_{m}\right]\right)=\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$
again, this is sufficiently defined, since the arguments of app ${ }^{\mathcal{M}}$ are two lists
- $=^{\mathcal{M}}=\left\{(x s, x s) \mid x s \in \mathcal{A}_{\text {List }}\right\}$
- $\mathcal{M} \equiv \forall x s, y s, z s . \operatorname{app}(x s, \operatorname{app}(y s, z s))=\operatorname{app}(\operatorname{app}(x s, y s), z s)$
- $\mathcal{M} \not \vDash \forall x s . \operatorname{app}(x s, x s)=x s \quad \mathcal{M} \models \exists x s . \operatorname{app}(x s, x s)=x s$

Many-Sorted Predicate Logic: Well-Definedness

- consider the term evaluation
- $\llbracket x \rrbracket_{\alpha}=\alpha(x)$
- $\llbracket f\left(t_{1}, \ldots, t_{n}\right) \rrbracket_{\alpha}=f^{\mathcal{M}}\left(\llbracket t_{1} \rrbracket_{\alpha}, \ldots, \llbracket t_{n} \rrbracket_{\alpha}\right)$
- it was just stated that this a function of type $\llbracket \cdot \rrbracket_{\alpha}: \mathcal{T}(\Sigma, \mathcal{V})_{\tau} \rightarrow \mathcal{A}_{\tau}$
- similarly, the definition
- $\mathcal{M} \vDash{ }_{\alpha} p\left(t_{1}, \ldots, t_{n}\right)$ iff $\left(\llbracket t_{1} \rrbracket_{\alpha}, \ldots, \llbracket t_{n} \rrbracket_{\alpha}\right) \in p^{\mathcal{M}}$
has to be taken with care: we need to ensure that $\left(\llbracket t_{1} \rrbracket_{\alpha}, \ldots, \llbracket t_{n} \rrbracket_{\alpha}\right)$ and $p^{\mathcal{M}}$ fit together, such that the membership test is type-correct
- in general, such type-preservation statements need to be proven!
- however, often this is not even mentioned

Type-Checking

Type-Checking

- inference trees are proofs that certain terms have a certain type
- inference trees cannot be used to show that a term is not typable
- want: executable algorithm that given Σ, \mathcal{V}, and a candidate term, computes the type or detects failure
- in Haskell: function definition with type

```
type_check :: Sig -> Vars -> Term -> Maybe Type
```

- preparation: error handling in Haskell with monads

Explicit Error-Handling with Maybe

- recall Haskell's builtin type
data Maybe $\mathrm{a}=$ Just $\mathrm{a} \mid$ Nothing
- useful to distinguish successful from non-successful computations
- Just x represents successful computation with result value x
- Nothing represents that some error occurred
- example for explicit error handling: evaluating an arithmetic expression

```
data Expr = Var String | Plus Expr Expr | Div Expr Expr
```

eval :: (String -> Integer) -> Expr -> Maybe Integer
eval alpha (Var x) = Just (alpha x)
eval alpha (Plus e1 e2) = case (eval alpha e1, eval alpha e2) of
(Just x1, Just x2) -> Just ($\mathrm{x} 1 \mathrm{+} \mathrm{x} 2$)
_ -> Nothing
eval alpha (Div e1 e2) = case (eval alpha e1, eval alpha e2) of
(Just x1, Just x2) ->
if x2 /= 0 then Just (x1 `div` x2) else Nothing
_ -> Nothing

Error-Handling with Monads

- recall Haskell's I/O-monad
- IO a internally stores a state (the world) and returns result of type a
- with do-blocks, we can sequentially perform IO-actions, and receive intermediate values; core function for sequential composition: (>>=) :: IO a -> (a -> IO b) -> IO b
- example

```
greeting = do
    x <- getLine -- IO String, action: read user input
    putStr "hello " -- IO (), action: print something
    putStr x -- IO (), action: print something
    return (x ++ x) -- IO String, no action, return result
```

- also Maybe can be viewed as monad
- Maybe a internally stores a state (successful or error) and returns result of type a
- core functions for Maybe-monad
- (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b Nothing >>= _ = Nothing -- errors propagate Just $x \quad \gg=f=f \quad x$
- return :: a -> Maybe a return $\mathrm{x}=$ Just x

Monads in Haskell

- Haskell's I/O-monad
- (>>=) :: IO a -> (a -> IO b) -> IO b
- return : : a -> IO a
- the error monad of type Maybe a
- (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
- return :: a -> Maybe a
- generalization: arbitrary monads via type-class class Monad m where

```
(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a
```

- IO and Maybe are instances of Monad
- do-notation is available for all monads
- monad-instances should satisfy the three monad laws

```
(return x) >>= f = f x
m >>= return = m
(m >>= f) >>= g = m >>= (\ x -> f x >>= g)
```

```
data Expr = Var String | Plus Expr Expr | Div Expr Expr
```

```
eval :: (String -> Integer) -> Expr -> Maybe Integer
eval alpha (Var x) = return (alpha x)
eval alpha (Plus e1 e2) = do
    x1 <- eval alpha e1
    x2 <- eval alpha e2
    return (x1 + x2)
eval alpha (Div e1 e2) = do
    x1 <- eval alpha e1
    x2 <- eval alpha e2
    if x2 /= 0 then return (x1 `div` x2) else Nothing
    - advantages
```

 - no pattern-matching on Maybe-type required any more, more readable code;
 hence monadic style simplifies reasoning about these programs
 - easy to switch to other monads, e.g. for errors with messages
 - Prelude already contains several functions for monads

Example Library Function for Monads

- mapM : : Monad m => (a -> m b) -> [a] -> m [b]
- similar to map : : (a -> b) -> [a] -> [b], just in monadic setting
- applies a monadic function sequentially on all list elements
- possible implementation

$$
\operatorname{mapM} f[]=\text { return [] }
$$

$$
\operatorname{mapM} f(x: x s)=\text { do }
$$

y <- f x
ys <- mapM f xs
return (y : ys)

- consequence for Maybe-monad:

```
mapM f [x1, ..., xn] = return ys
```

is satisfied iff

- f xi $=$ return yi for all $1 \leq i \leq n$, and
- $y s=[y 1, \ldots, y n]$

Type-Checking Algorithm

- back to type-checking
- the algorithm can now be defined concisely as

```
type Type = String
type Var = String
type FSym = String
type Vars = Var -> Maybe Type
type FSym_Info = ([Type], Type)
```

type Sig = FSym -> Maybe FSym_Info
data Term = Var Var | Fun FSym [Term]
type_check :: Sig -> Vars -> Term -> Maybe Type
type_check sigma vars (Var x) = vars x
type_check sigma vars (Fun f ts) = do
(tys_in,ty_out) <- sigma f
tys_ts <- mapM (type_check sigma vars) ts
if tys_ts == tys_in then return ty_out else Nothing

Correctness of Type-Checking

- aim: prove correctness of type-checking algorithm
- (informal) proof is performed in two steps
- if $t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$ then type_check sigma vars $\mathrm{t}=$ return tau
- if type_check sigma vars $\mathrm{t}=$ return tau then $t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$
- before these two steps are done, some alignment of the representation is performed
- in the theory \mathcal{V} is set of type-annotated variables
- in the program vars is a partial function from variables to types
- obviously, these two representations can be aligned:

$$
x: \tau \in \mathcal{V} \text { is the same as vars } \mathrm{x}=\text { return tau }
$$

- similarly for function symbols we demand that

$$
\begin{gathered}
f: \tau_{1} \times \cdots \times \tau_{n} \rightarrow \tau_{0} \in \Sigma \\
\text { is the same as } \\
\text { sigma } f=\operatorname{return}([\text { tau_1, } ., \text { tau_n }], \text { tau_0 })
\end{gathered}
$$

- moreover the term representations can be aligned, e.g.

$$
f\left(t_{1}, \ldots, t_{n}\right) \text { is the same as Fun } f\left[\mathrm{t}_{_} 1, \ldots \mathrm{t}_{_} \mathrm{n}\right]
$$

from now on we mainly use mathematical notation assuming the obvious alignments, even when executing Haskell programs
if $t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$ then type_check $\Sigma \mathcal{V} t=$ return τ

- proof is by structural induction of the definition of $\mathcal{T}(\Sigma, \mathcal{V})_{\tau}$
- note that in the definition of the inductively defined set $\mathcal{T}(\Sigma, \mathcal{V})_{\tau}$ the τ changes; therefore, the induction rule uses a binary property:

$$
\begin{align*}
& \frac{t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau} \quad \forall x, \tau_{0} . x: \tau_{0} \in \mathcal{V} \longrightarrow P\left(x, \tau_{0}\right) \quad(*)}{P(t, \tau)} \\
& \forall f, \tau_{0}, \ldots, \tau_{n}, t_{1}, \ldots, t_{n} . f: \tau_{1} \times \ldots \times \tau_{n} \rightarrow \tau_{0} \in \Sigma \longrightarrow \tag{*}\\
& P\left(t_{1}, \tau_{1}\right) \longrightarrow \ldots \longrightarrow P\left(t_{n}, \tau_{n}\right) \longrightarrow P\left(f\left(t_{1}, \ldots, t_{n}\right), \tau_{0}\right)
\end{align*}
$$

- in our case $P(t, \tau)$ is type_check $\Sigma \mathcal{V} t=$ return τ
- base case:
- let $x: \tau_{0} \in \mathcal{V}$, aim is to prove $P\left(x, \tau_{0}\right)$
- via the alignment we know $\mathcal{V} x=\operatorname{return} \tau_{0}$
(where here \mathcal{V} refers to the partial function within the algorithm)
- hence by the definition of the algorithm: type_check $\Sigma \mathcal{V} x=\mathcal{V} x=\operatorname{return} \tau_{0}$

Completeness of Type-Checking Algorithm

recall: $P(t, \tau)$ is type_check $\Sigma \mathcal{V} t=$ return τ

- it remains to prove $(*)$, so let $f: \tau_{1} \times \ldots \times \tau_{n} \rightarrow \tau_{0} \in \Sigma$
- we have to prove $P\left(f\left(t_{1}, \ldots, t_{n}\right), \tau_{0}\right)$ using the induction hypothesis $P\left(t_{i}, \tau_{i}\right)$ for all $1 \leq i \leq n$
- via the alignment we know $\Sigma f=\operatorname{return}\left(\left[\tau_{1}, \ldots, \tau_{n}\right], \tau_{0}\right)$
- from the induction hypothesis we know that map (type_check $\Sigma \mathcal{V})\left[t_{1}, \ldots, t_{n}\right]=\left[\operatorname{return} \tau_{1}, \ldots\right.$, return $\left.\tau_{n}\right]$
- hence, by the definition of $\operatorname{map} M$, mapM (type_check $\Sigma \mathcal{V})\left[t_{1}, \ldots, t_{n}\right]=\operatorname{return}\left[\tau_{1}, \ldots, \tau_{n}\right]$
- hence by evaluating the Haskell-code we obtain
type_check $\Sigma \mathcal{V} f\left(t_{1}, \ldots, t_{n}\right)$
$=$ if $\left[\tau_{1}, \ldots, \tau_{n}\right]=\left[\tau_{1}, \ldots, \tau_{n}\right]$ then return τ_{0} else Nothing
$=$ return τ_{0}
so $P\left(f\left(t_{1}, \ldots, t_{n}\right), \tau_{0}\right)$ is satisfied
- we perform structural induction on t
(wit. untyped terms as defined by the Haskell datatype definition)
- the induction rule only mentions a unary property

$$
\begin{align*}
& \frac{\forall x . P(\operatorname{Var} x)(*)}{P(t: \operatorname{Term})} \\
& \forall f, t_{1}, \ldots, t_{n} . P\left(t_{1}\right) \longrightarrow \ldots \longrightarrow P\left(t_{n}\right) \longrightarrow P\left(f\left(t_{1}, \ldots, t_{n}\right)\right) \tag{*}
\end{align*}
$$

- first attempt: define $P(t)$ as

$$
\text { type_check } \Sigma \mathcal{V} t=\text { return } \tau \longrightarrow t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}
$$

- then the induction hypothesis in the case $f\left(t_{1}, \ldots, t_{n}\right)$ for each t_{i} is

$$
P\left(t_{i}\right)=\left(\text { type_check } \Sigma \mathcal{V} t_{i}=\operatorname{return} \tau \longrightarrow t_{i} \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}\right)
$$

- the IH is unusable as t_{i} will have type τ_{i} which usually differs from τ
- previous slide: using

$$
P(t)=\left(\text { type_check } \Sigma \mathcal{V} t=\operatorname{return} \tau \longrightarrow t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}\right)
$$

as property in induction rule is too restrictive, leads to IH

$$
P\left(t_{i}\right)=\left(\text { type_check } \Sigma \mathcal{V} t_{i}=\operatorname{return} \tau \longrightarrow t_{i} \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}\right)
$$

- aim: ability to use arbitrary τ_{i} in IH instead of τ
- formal solution via universal quantification: define P and Q as follows and use P in induction

$$
\begin{aligned}
Q(t, \tau) & =\left(\text { type_check } \Sigma \mathcal{V} t=\operatorname{return} \tau \longrightarrow t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}\right) \\
P(t) & =(\forall \tau . Q(t, \tau))
\end{aligned}
$$

- effect: induction hypothesis for t_{i} will be $P\left(t_{i}\right)=\left(\forall \tau . Q\left(t_{i}, \tau\right)\right)$ which in particular implies the desired $Q\left(t_{i}, \tau_{i}\right)$

Induction Proofs with Arbitrary Variables

- previous slide:

$$
\begin{aligned}
Q(t, \tau) & =\left(\text { type_check } \Sigma \mathcal{V} t=\text { return } \tau \longrightarrow t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}\right) \\
P(t) & =(\forall \tau . Q(t, \tau))
\end{aligned}
$$

- we now prove $P(t)$ by induction on t, this time being quite formal
- base case: $t=\operatorname{Var} x$
- we have to show $P(t)=P(\operatorname{Var} x)=(\forall \tau . Q(\operatorname{Var} x, \tau))$
- \forall-intro: pick an arbitrary τ and show $Q(\operatorname{Var} x, \tau)$, i.e., type_check $\Sigma \mathcal{V}($ Var $x)=$ return $\tau \longrightarrow x \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$
- \longrightarrow-intro: assume type_check $\Sigma \mathcal{V}(\operatorname{Var} x)=$ return τ, and then show $x \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$
- simplify assumpt. type_check $\Sigma \mathcal{V}(\operatorname{Var} x)=\operatorname{return} \tau$ to $\mathcal{V} x=\operatorname{return} \tau$
- by alignment this is identical to $x: \tau \in \Sigma$
- use introduction rule of $\mathcal{T}(\Sigma, \mathcal{V})_{\tau}$ to finally show $x \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$
note that step \circ is the only additional (but obvious) step that was required to deal with the auxiliary universal quantifier

Induction Proofs with Arbitrary Variables: Step Case

$$
\begin{aligned}
Q(t, \tau) & =\left(\text { type_check } \Sigma \mathcal{V} t=\text { return } \tau \longrightarrow t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}\right) \\
P(t) & =(\forall \tau . Q(t, \tau))
\end{aligned}
$$

- step case: $t=f\left(t_{1}, \ldots, t_{n}\right)$
- we have to show $P\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=\left(\forall \tau . Q\left(f\left(t_{1}, \ldots, t_{n}\right), \tau\right)\right)$
- \forall-intro: pick an arbitrary τ and show $Q\left(f\left(t_{1}, \ldots, t_{n}\right), \tau\right)$, i.e., type_check $\Sigma \mathcal{V} f\left(t_{1}, \ldots, t_{n}\right)=\operatorname{return} \tau \longrightarrow f\left(t_{1}, \ldots, t_{n}\right) \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$
- \longrightarrow-intro: assume type_check $\Sigma \mathcal{V} f\left(t_{1}, \ldots, t_{n}\right)=$ return τ, and show $f\left(t_{1}, \ldots, t_{n}\right) \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$
- by the assumption type_check $\Sigma \mathcal{V} f\left(t_{1}, \ldots, t_{n}\right)=$ return τ and by definition of type_check, we know that there must be types $\tau_{1}, \ldots, \tau_{n}$ such that mapM (type_check $\Sigma \mathcal{V})\left[t_{1}, \ldots, t_{n}\right]=\operatorname{return}\left[\tau_{1}, \ldots, \tau_{n}\right]$, and hence type_check $\Sigma \mathcal{V} t_{i}=$ return τ_{i} for all $1 \leq i \leq n$
- again using the assumption and the algorithm definition we conclude that $\Sigma f=\operatorname{return}\left(\left[\tau_{1}, \ldots, \tau_{n}\right], \tau\right)$ and thus, $f: \tau_{1} \times \ldots \times \tau_{n} \rightarrow \tau \in \Sigma$
- by the IH we conclude $P\left(t_{i}\right)$ and hence $Q\left(t_{i}, \tau_{i}\right)$ using \forall-elimination
- in combination with type_check $\Sigma \mathcal{V} t_{i}=\operatorname{return} \tau_{i}$ we arrive at $t_{i} \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau_{i}}$ and can finally apply the introduction rules for typed terms to conclude $f\left(t_{1}, \ldots, t_{n}\right) \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$

Induction Proofs with Arbitrary Variables: Remarks

$$
\begin{aligned}
Q(t, \tau) & =\left(\text { type_check } \Sigma \mathcal{V} t=\operatorname{return} \tau \longrightarrow t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}\right) \\
P(t) & =(\forall \tau . Q(t, \tau))
\end{aligned}
$$

- the method to make a variable arbitrary within an induction proof is always the same, via universal quantification
- the required steps within the formal reasoning (marked with \circ in the previous proof) are also automatic
- therefore, in the following we will just write statements like
"we perform induction on x for arbitrary y and z "
or
"we prove $P(x, y, z)$ by induction on x for arbitrary y and z "
without doing the universal quantification explicitly

Summary of Type-Checking

- definition of typed terms via inference rules
- equivalent definition via type-checking algorithm
- both representations have their advantages
- inference rules come with convenient induction principle
- type-checking can also detect typing errors, i.e., it can show that something is not member of an inductively defined set
- note: we have verified a first non-trivial program!
- given the precise semantics of typed terms
- via an intuitive meaning of what inductively defined sets are
- with an intuitive meaning of how Haskell evaluates
- with intuitively created alignments

Summary of Chapter

- inductively defined sets give rise to structural induction rule
- inductively defined sets can be used to model datatypes of (first-order non-polymorphic) functional programs
- many sorted/typed terms and predicate logic allows adequate modeling of datatypes
- verified type-checking algorithm
- induction proofs with "arbitrary" variables

