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Recapitulation: Predicate Logic

Inductively Defined Sets

• one can define sets inductively via inference rules of form

premise1 . . . premisen
conclusion

meaning: if all premises are satisfied, then one can conclude

• example: the set of even numbers

0 ∈ Even
x ∈ Even

x+ 2 ∈ Even

• the inference rules describe what is contained in the set

• this can be modeled as formula

0 ∈ Even ∧ (∀x. x ∈ Even −→ x+ 2 ∈ Even)

• nothing else is in the set (this is not modeled in the formula!)
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Recapitulation: Predicate Logic

Inductively Defined Sets, Continued

• the set of even numbers

0 ∈ Even
x ∈ Even

x+ 2 ∈ Even

• membership in the set can be proved via inference trees

• example: 4 ∈ Even, proved via inference tree

0 ∈ Even
2 ∈ Even
4 ∈ Even

• proving that something is not in the set is more difficult:
show that no inference tree exists

• example: 3 /∈ Even, −2 /∈ Even
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Recapitulation: Predicate Logic

Inductively Defined Sets and Grammars

• inference rules are similar to grammar rules
• example

• the grammar

S → aSab | b | TaS T → TT | ε

• is modeled via the inference rules

w ∈ S
awab ∈ S b ∈ S

w ∈ T u ∈ S
wau ∈ S

w ∈ T u ∈ T
wu ∈ T ε ∈ T

• in the same way, inference trees are similar to derivation trees
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Recapitulation: Predicate Logic

Inductively Defined Sets: Monotonicity

• inference rules of inductively defined sets must be monotone,
it is not permitted to negatively refer to the defined set

• ill-formed example

0 ∈ Bad
0 ∈ Bad
0 /∈ Bad

• one of the problems: the correspond formula can get unsatisfiability

0 ∈ Bad ∧ (0 ∈ Bad −→ 0 /∈ Bad)
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Recapitulation: Predicate Logic

Inductively Defined Sets: Structural Induction

• example: the set of even numbers

0 ∈ Even
x ∈ Even

x+ 2 ∈ Even

• inductively defined sets give rise to a structural induction rule

• induction rule for example, written again as inference rule:

y ∈ Even P (0) ∀x.P (x) −→ P (x+ 2)

P (y)

where P is an arbitrary property; alternatively as formula

∀y. y ∈ Even −→ P (0)︸︷︷︸
base

−→ (∀x.P (x) −→ P (x+ 2))︸ ︷︷ ︸
step

−→ P (y)
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Recapitulation: Predicate Logic

Inductively Defined Sets: Structural Induction Continued

• depending on the structure of the inference rules there might be several base- and
step-cases

• example: a definition of the set of even integers

0 ∈ EvenZ
x ∈ EvenZ

x+ 2 ∈ EvenZ
x ∈ EvenZ y ∈ EvenZ

x− y ∈ EvenZ

• structural induction rule in this case contains
• one base case (without induction hypothesis): P (0)
• one step case with one induction hypothesis: ∀x.P (x) −→ P (x+ 2)
• one step case with two induction hypotheses: ∀x, y. P (x) −→ P (y) −→ P (x− y)
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Recapitulation: Predicate Logic

Example Proof by Structural Induction

• aim: show that every even number y can be written as 2 · n
• structural induction rule

y ∈ Even P (0) ∀x.P (x) −→ P (x+ 2)

P (y)

• property P (x): x can be written as 2 · n with n ∈ N; P (x) := ∃n. n ∈ N ∧ x = 2 · n
• semi-formal proof: apply structural induction rule to show P (y)

• the subgoal y ∈ Even is by assumption
• the base-case P (0) is trivial, since 0 = 2 · 0 and 0 ∈ N
• the step-case demands a proof of ∀x. P (x) −→ P (x+ 2), so let x be arbitrary,

assume P (x) and show P (x+ 2)
• because of P (x) there is some n ∈ N such that x = 2 · n
• hence n+ 1 ∈ N and x+ 2 = 2 · n+ 2 = 2 · (n+ 1)
• thus P (x+ 2) holds by choosing n+ 1 as witness in existential quantifier

• hence, ∀y. y ∈ Even(y) −→ ∃n. n ∈ N ∧ y = 2 · n
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Recapitulation: Predicate Logic

The Other Direction

• aim: show that 2 · n ∈ Even for every natural number n

• here the structural induction rule for Even is useless, since it has y ∈ Even as a premise

• this proof is by induction on n and by using the inference rules from the inductively
defined set Even (and not the induction rule)

0 ∈ Even
x ∈ Even

x+ 2 ∈ Even

• base case n = 0: 2 · 0 = 0 ∈ Even by the first inference rule of Even
• step case from n to n+ 1:

• the induction hypothesis gives us 2 · n ∈ Even
• hence, 2 · (n+ 1) = 2 · n+ 2 ∈ Even by the second inference rule of Even

(instantiate x by 2 · n)
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Recapitulation: Predicate Logic

Final Remark on Inductively Defined Sets

• so far: premises in inference rules speak about set under construction

• in general: there can be additional arbitrary side conditions

• example definition of odd numbers, assuming that Even is already defined:

1 ∈ Odd
x ∈ Even y ∈ Odd

x+ y ∈ Odd

• structural induction adds these side conditions as additional premises

y ∈ Odd P (1) ∀x, y. x ∈ Even −→ P (y) −→ P (x+ y)

P (y)
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Recapitulation: Predicate Logic

Predicate Logic: Terms
• Σ: set of (function) symbols with arity

• V: set of variables, usually infinite

• example: Σ = {plus/2, succ/1, zero/0}, V = {x, y, z, . . .}
• T (Σ,V): set of terms, inductively defined by two inference rules

x ∈ V
x ∈ T (Σ,V)

f/n ∈ Σ t1 ∈ T (Σ,V) . . . tn ∈ T (Σ,V)

f(t1, . . . , tn) ∈ T (Σ,V)

• for symbols with arity 0 we omit the parenthesis in terms in formulas,
i.e., we write zero as term and not zero()

• examples
• plus(x, plus(plus(zero, x), succ(y))) 4
• x 4
• plus 8
• plus(x, y, z) 8

• remark: we do not use infix-symbols for formal terms
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Recapitulation: Predicate Logic

Predicate Logic: Formulas

• Σ: set of function symbols, V: set of variables

• P: set of (predicate) symbols with arity

• F(Σ,P,V): formulas over Σ, P, and V, inductively defined via

true ∈ F(Σ,P,V)

x ∈ V ϕ ∈ F(Σ,P,V)

∀x. ϕ ∈ F(Σ,P,V)

ϕ ∈ F(Σ,P,V)

¬ϕ ∈ F(Σ,P,V)

ϕ ∈ F(Σ,P,V) ψ ∈ F(Σ,P,V)

ϕ ∧ ψ ∈ F(Σ,P,V)

p/n ∈ P t1 ∈ T (Σ,V) . . . tn ∈ T (Σ,V)

p(t1, . . . , tn) ∈ F(Σ,P,V)
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Recapitulation: Predicate Logic

Predicate Logic: Syntactic Sugar

• we use all Boolean connectives
• false = ¬true
• (ϕ ∨ ψ) = (¬(¬ϕ ∧ ¬ψ))
• (ϕ −→ ψ) = (¬ϕ ∨ ψ)
• (ϕ←→ ψ) = ((ϕ −→ ψ) ∧ (ψ −→ ϕ))

• we permit existential quantification
• (∃x. ϕ) = ¬(∀x. ¬ϕ)

• however, these are just abbreviations, so when defining properties of formulas, we only
need to consider the connectives from the previous slide
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Recapitulation: Predicate Logic

Predicate Logic: Semantics
• defined via models, environments and structural recursion
• a model M for formulas over Σ, P, and V consists of

• a non-empty set A, the universe
• for each f/n ∈ Σ there is a total function fM : An → A
• for each p/n ∈ P there is a relation pM ⊆ An
• an environment is a mapping α : V → A

• the term evaluation [[·]]α : T (Σ,V)→ A is defined recursively as
• [[x]]α = α(x) and [[f(t1, . . . , tn)]]α = fM([[t1]]α, . . . , [[tn]]α)

• the satisfaction predicate M |=α · is defined recursively as
• M |=α true
• M |=α p(t1, . . . , tn) iff ([[t1]]α, . . . , [[tn]]α) ∈ pM
• M |=α ϕ ∧ ψ iff M |=α ϕ and M |=α ψ
• M |=α ¬ϕ iff M 6|=α ϕ
• M |=α ∀x. ϕ iff M |=α[x:=a] ϕ for all a ∈ A

where α[x := a] is defined as α[x := a](y) =

{
a, if y = x

α(y), otherwise

• if ϕ contains no free variables, we omit α and write M |= ϕ
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Recapitulation: Predicate Logic

Examples
• signature: Σ = {plus/2, succ/1, zero/0}, P = {even/1,=/2}
• model 1:

• A = N
• plusM(x, y) = x+ y, succM(x) = x+ 1, zeroM = 0
• evenM = {2 · n | n ∈ N}, =M = {(n, n) | n ∈ N}
• M |= ∀x, y. plus(x, y) = plus(y, x)

• model 2:
• A = Z
• plusM(x, y) = x− y, succM(x) = |x|, zeroM = 42
• evenM = {2,−7}, =M = {(1000, 2000)}
• M 6|= ∀x, y. plus(x, y) = plus(y, x)

• model 3:
• A = {•}
• plusM(x, y) = •, succM(x) = •, zeroM = •
• evenM = {•}, =M = ∅
• M 6|= ∀x, y. plus(x, y) = plus(y, x)

• (not a) model 4:
• A = N, plusM(x, y) = x− y, evenM = {. . . ,−4,−2, 0, 2, 4, . . .}, . . .
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Recapitulation: Predicate Logic

Models for Functional Programming

• consider program

data Nat = Zero | Succ Nat

data List = Nil | Cons Nat List

• datatype definitions clearly correspond to inductively defined sets

Zero ∈ Nat
n ∈ Nat

Succ(n) ∈ Nat

Nil ∈ List
n ∈ Nat xs ∈ List
Cons(n, xs) ∈ List

• tentative definition of universe A of model M for program

A = Nat ∪ List
• obvious definition of meaning of constructors

• ZeroM = Zero, SuccM(n) = Succ(n), NilM = Nil, . . .
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Recapitulation: Predicate Logic

A Problem in the Model

• inductively defined sets

Zero ∈ Nat
n ∈ Nat

Succ(n) ∈ Nat

Nil ∈ List
n ∈ Nat xs ∈ List
Cons(n, xs) ∈ List

• construction of model
• A = Nat ∪ List
• ZeroM = Zero and SuccM(n) = Succ(n)
• NilM = Nil and ConsM(n, xs) = Cons(n, xs)

• problem: this is not a model
• SuccM must be a total function of type A → A
• but SuccM(Nil) = Succ(Nil) /∈ A

• similar problem: a formula like
∀xs ys zs. append(append(xs, ys), zs) = append(xs, append(ys, zs)) would have to hold
even when replacing xs by Zero!
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Many-Sorted Logic

Solution to the One-Universe Problem

• consider many-sorted logic

• idea: a separate universe for each sort

• naming issue: sort in logic ∼ type in functional programming

• this lecture: we mainly speak about types
• types need to be integrated everywhere

• typed signature
• typed terms
• typed formulas
• typed environments
• typed quantifiers
• typed universes
• typed models

• this lecture: simple type system
• no polymorphism (no generic List a type)
• first-order (no λ, no partial application, . . . )
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Many-Sorted Logic

Many-Sorted Predicate Logic: Syntax
• Ty: set of types where each τ ∈ Ty is just a name

example: Ty = {Nat, List, . . .}
• Σ: set of function symbols; each f ∈ Σ has type info ∈ Ty+

we write f : τ1 × . . .× τn → τ0 whenever f has type info τ1 . . . τnτ0
example: Σ = {Zero : Nat, plus : Nat× Nat→ Nat,Cons : Nat× List→ List, . . .}
• P: set of predicate symbols; each p ∈ P has type info ∈ Ty∗

we write p ⊆ τ1 × . . .× τn whenever f has type info τ1 . . . τn
example: P = {< ⊆ Nat× Nat,=Nat ⊆ Nat× Nat, even ⊆ Nat,

nonEmpty ⊆ List,=List ⊆ List× List, elem ⊆ Nat× List, . . .}
note: no polymorphism, so there cannot be a generic equality symbol

• V: set of variables, typed
example: V = {n : Nat, xs : List, . . .}
we write Vτ as the set of variables of type τ
• notation

• function and predicate symbols: blue color, variables: black color
• often Ty and V are not explicitly specified
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Many-Sorted Logic

Many-Sorted Predicate Logic: Terms
• T (Σ,V)τ : set of terms of type τ , inductively defined

x : τ ∈ V
x ∈ T (Σ,V)τ

f : τ1 × . . .× τn → τ ∈ Σ t1 ∈ T (Σ,V)τ1 . . . tn ∈ T (Σ,V)τn
f(t1, . . . , tn) ∈ T (Σ,V)τ

• example
• V = {n : N, . . .}
• Σ = {Zero : N,Succ : N→ N,Nil : L,Cons : N× L→ L}
• we omit the “∈ V” and “∈ Σ” when applying the inference rules
• typing terms results in inference trees

Cons : N× L→ L

Succ : N→ N
n : N

n ∈ T (Σ,V)N

Succ(n) ∈ T (Σ,V)N

Nil : L
Nil ∈ T (Σ,V)L

Cons(Succ(n),Nil) ∈ T (Σ,V)L

• for ill-typed terms such as Succ(Nil) there is no inference tree
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Many-Sorted Logic

Many-Sorted Predicate Logic: Formulas

• recall: V, Σ and P are typed sets of variables, function symbols and predicate symbols

• next we define typed formulas F(Σ,P,V) inductively

• the definition is similar as in the untyped setting
only difference: add types to inference rule for predicates

true ∈ F(Σ,P,V)

x ∈ V ψ ∈ F(Σ,P,V)

∀x. ϕ ∈ F(Σ,P,V)

ϕ ∈ F(Σ,P,V)

¬ϕ ∈ F(Σ,P,V)

ϕ ∈ F(Σ,P,V) ψ ∈ F(Σ,P,V)

ϕ ∧ ψ ∈ F(Σ,P,V)

(p ⊆ τ1 × . . .× τn) ∈ P t1 ∈ T (Σ,V)τ1 . . . tn ∈ T (Σ,V)τn
p(t1, . . . , tn) ∈ F(Σ,P,V)
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Many-Sorted Logic

Many-Sorted Predicate Logic: Semantics

• defined via typed models and environments
• a model M for formulas over Ty, Σ, P, and V consists of

• a collection of non-empty universes Aτ , one for each τ ∈ Ty
• for each f : τ1 × . . .× τn → τ ∈ Σ there is a function fM : Aτ1 × . . .×Aτn → Aτ
• for each (p ⊆ τ1 × . . .× τn) ∈ P there is a relation pM ⊆ Aτ1 × . . .×Aτn
• an environment is a type-preserving mapping α : V →

⋃
τ∈Ty Aτ ,

i.e., whenever x : τ ∈ V then α(x) ∈ Aτ
• the term evaluation [[·]]α : T (Σ,V)τ → Aτ is defined recursively as

• [[x]]α = α(x)
• [[f(t1, . . . , tn)]]α = fM([[t1]]α, . . . , [[tn]]α)

note that [[·]]α is overloaded in the sense that it works for each type τ
• the satisfaction predicate M |=α · is defined recursively as

• M |=α ∀x. ϕ iff M |=α[x:=a] ϕ for all a ∈ Aτ , where τ is the type of x
• M |=α p(t1, . . . , tn) iff ([[t1]]α, . . . , [[tn]]α) ∈ pM
• . . . remainder as in untyped setting
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Many-Sorted Logic

Example
• Ty = {Nat, List}
• Σ = {Zero : Nat, Succ : Nat→ Nat,Nil : List, app : List× List→ List}
P = {= ⊆ List× List}
• ANat = N
• AList = {[x1, . . . , xn] | n ∈ N, ∀1 ≤ i ≤ n. xi ∈ N}
• ZeroM = 0

• SuccM(n) = n+ 1
definition is okay: n can be no list, since n ∈ ANat = N
• NilM = [ ]

• appM([x1, . . . , xn], [y1, . . . , ym]) = [x1, . . . , xn, y1, . . . , ym]
again, this is sufficiently defined, since the arguments of appM are two lists

• =M = {(xs, xs) | xs ∈ AList}
• M |= ∀xs, ys, zs. app(xs, app(ys, zs)) = app(app(xs, ys), zs)

• M 6|= ∀xs. app(xs, xs) = xs M |= ∃xs. app(xs, xs) = xs
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Many-Sorted Logic

Many-Sorted Predicate Logic: Well-Definedness

• consider the term evaluation
• [[x]]α = α(x)
• [[f(t1, . . . , tn)]]α = fM([[t1]]α, . . . , [[tn]]α)

• it was just stated that this a function of type [[·]]α : T (Σ,V)τ → Aτ
• similarly, the definition

• M |=α p(t1, . . . , tn) iff ([[t1]]α, . . . , [[tn]]α) ∈ pM

has to be taken with care: we need to ensure that ([[t1]]α, . . . , [[tn]]α) and pM fit together,
such that the membership test is type-correct

• in general, such type-preservation statements need to be proven!

• however, often this is not even mentioned
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Type-Checking

Type-Checking

• inference trees are proofs that certain terms have a certain type

• inference trees cannot be used to show that a term is not typable

• want: executable algorithm that given Σ, V, and a candidate term,
computes the type or detects failure

• in Haskell: function definition with type
type_check :: Sig -> Vars -> Term -> Maybe Type

• preparation: error handling in Haskell with monads
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Type-Checking

Explicit Error-Handling with Maybe
• recall Haskell’s builtin type
data Maybe a = Just a | Nothing

• useful to distinguish successful from non-successful computations
• Just x represents successful computation with result value x
• Nothing represents that some error occurred

• example for explicit error handling: evaluating an arithmetic expression

data Expr = Var String | Plus Expr Expr | Div Expr Expr

eval :: (String -> Integer) -> Expr -> Maybe Integer

eval alpha (Var x) = Just (alpha x)

eval alpha (Plus e1 e2) = case (eval alpha e1, eval alpha e2) of

(Just x1, Just x2) -> Just (x1 + x2)

_ -> Nothing

eval alpha (Div e1 e2) = case (eval alpha e1, eval alpha e2) of

(Just x1, Just x2) ->

if x2 /= 0 then Just (x1 `div` x2) else Nothing

_ -> Nothing
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Type-Checking

Error-Handling with Monads

• recall Haskell’s I/O-monad
• IO a internally stores a state (the world) and returns result of type a
• with do-blocks, we can sequentially perform IO-actions, and receive intermediate values;

core function for sequential composition: (>>=) :: IO a -> (a -> IO b) -> IO b
• example
greeting = do

x <- getLine -- IO String, action: read user input

putStr "hello " -- IO (), action: print something

putStr x -- IO (), action: print something

return (x ++ x) -- IO String, no action, return result

• also Maybe can be viewed as monad
• Maybe a internally stores a state (successful or error) and returns result of type a
• core functions for Maybe-monad

• (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

Nothing >>= _ = Nothing -- errors propagate

Just x >>= f = f x
• return :: a -> Maybe a

return x = Just x
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Type-Checking

Monads in Haskell

• Haskell’s I/O-monad
• (>>=) :: IO a -> (a -> IO b) -> IO b
• return :: a -> IO a

• the error monad of type Maybe a
• (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
• return :: a -> Maybe a

• generalization: arbitrary monads via type-class
class Monad m where

(>>=) :: m a -> (a -> m b) -> m b

return :: a -> m a
• IO and Maybe are instances of Monad
• do-notation is available for all monads
• monad-instances should satisfy the three monad laws
(return x) >>= f = f x

m >>= return = m

(m >>= f) >>= g = m >>= (\ x -> f x >>= g)
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Type-Checking

Example: Expression-Evaluation in Monadic Style

data Expr = Var String | Plus Expr Expr | Div Expr Expr

eval :: (String -> Integer) -> Expr -> Maybe Integer

eval alpha (Var x) = return (alpha x)

eval alpha (Plus e1 e2) = do

x1 <- eval alpha e1

x2 <- eval alpha e2

return (x1 + x2)

eval alpha (Div e1 e2) = do

x1 <- eval alpha e1

x2 <- eval alpha e2

if x2 /= 0 then return (x1 `div` x2) else Nothing

• advantages
• no pattern-matching on Maybe-type required any more, more readable code;

hence monadic style simplifies reasoning about these programs
• easy to switch to other monads, e.g. for errors with messages
• Prelude already contains several functions for monads
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Type-Checking

Example Library Function for Monads

• mapM :: Monad m => (a -> m b) -> [a] -> m [b]
• similar to map :: (a -> b) -> [a] -> [b], just in monadic setting
• applies a monadic function sequentially on all list elements
• possible implementation
mapM f [] = return []

mapM f (x : xs) = do

y <- f x

ys <- mapM f xs

return (y : ys)
• consequence for Maybe-monad:

mapM f [x1, ..., xn] = return ys

is satisfied iff
• f xi = return yi for all 1 ≤ i ≤ n, and
• ys = [y1, ..., yn]
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Type-Checking

Type-Checking Algorithm

• back to type-checking

• the algorithm can now be defined concisely as

type Type = String

type Var = String

type FSym = String

type Vars = Var -> Maybe Type

type FSym_Info = ([Type], Type)

type Sig = FSym -> Maybe FSym_Info

data Term = Var Var | Fun FSym [Term]

type_check :: Sig -> Vars -> Term -> Maybe Type

type_check sigma vars (Var x) = vars x

type_check sigma vars (Fun f ts) = do

(tys_in,ty_out) <- sigma f

tys_ts <- mapM (type_check sigma vars) ts

if tys_ts == tys_in then return ty_out else Nothing
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Type-Checking

Correctness of Type-Checking
• aim: prove correctness of type-checking algorithm
• (informal) proof is performed in two steps

• if t ∈ T (Σ,V)τ then type_check sigma vars t = return tau
• if type_check sigma vars t = return tau then t ∈ T (Σ,V)τ

• before these two steps are done, some alignment of the representation is performed
• in the theory V is set of type-annotated variables
• in the program vars is a partial function from variables to types
• obviously, these two representations can be aligned:

x : τ ∈ V is the same as vars x = return tau

• similarly for function symbols we demand that

f : τ1 × · · · × τn → τ0 ∈ Σ
is the same as

sigma f = return ([tau_1,...,tau_n], tau_0)

• moreover the term representations can be aligned, e.g.

f(t1, . . . , tn) is the same as Fun f [t_1,...t_n]

from now on we mainly use mathematical notation assuming the obvious alignments,
even when executing Haskell programs
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Type-Checking

Completeness of Type-Checking Algorithm

if t ∈ T (Σ,V)τ then type check Σ V t = return τ

• proof is by structural induction of the definition of T (Σ,V)τ

• note that in the definition of the inductively defined set T (Σ,V)τ the τ changes;
therefore, the induction rule uses a binary property:

t ∈ T (Σ,V)τ ∀x, τ0. x : τ0 ∈ V −→ P (x, τ0) (∗)
P (t, τ)

∀f, τ0, . . . , τn, t1, . . . , tn. f : τ1 × . . .× τn → τ0 ∈ Σ −→ (∗)
P (t1, τ1) −→ . . . −→ P (tn, τn) −→ P (f(t1, . . . , tn), τ0)

• in our case P (t, τ) is type check Σ V t = return τ

• base case:
• let x : τ0 ∈ V, aim is to prove P (x, τ0)
• via the alignment we know V x = return τ0

(where here V refers to the partial function within the algorithm)
• hence by the definition of the algorithm: type check Σ V x = V x = return τ0
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Type-Checking

Completeness of Type-Checking Algorithm

recall: P (t, τ) is type check Σ V t = return τ

• it remains to prove (∗), so let f : τ1 × . . .× τn → τ0 ∈ Σ

• we have to prove P (f(t1, . . . , tn), τ0) using the induction hypothesis P (ti, τi) for all
1 ≤ i ≤ n
• via the alignment we know Σ f = return ([τ1, . . . , τn], τ0)

• from the induction hypothesis we know that
map (type check Σ V) [t1, . . . , tn] = [return τ1, . . . , return τn]

• hence, by the definition of mapM ,
mapM (type check Σ V) [t1, . . . , tn] = return [τ1, . . . , τn]

• hence by evaluating the Haskell-code we obtain
type check Σ V f(t1, . . . , tn)
= if [τ1, . . . , τn] = [τ1, . . . , τn] then return τ0 else Nothing
= return τ0
so P (f(t1, . . . , tn), τ0) is satisfied
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Type-Checking

Soundness of Type-Checking Algorithm

if type check Σ V t = return τ then t ∈ T (Σ,V)τ

• we perform structural induction on t
(wrt. untyped terms as defined by the Haskell datatype definition)

• the induction rule only mentions a unary property

∀x. P (Var x) (∗)
P (t : Term)

∀f, t1, . . . , tn. P (t1) −→ . . . −→ P (tn) −→ P (f(t1, . . . , tn)) (∗)

• first attempt: define P (t) as

type check Σ V t = return τ −→ t ∈ T (Σ,V)τ

• then the induction hypothesis in the case f(t1, . . . , tn) for each ti is

P (ti) = (type check Σ V ti = return τ −→ ti ∈ T (Σ,V)τ )

• the IH is unusable as ti will have type τi which usually differs from τ
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Type-Checking

Induction Proofs with Arbitrary Variables
• previous slide: using

P (t) = (type check Σ V t = return τ −→ t ∈ T (Σ,V)τ )

as property in induction rule is too restrictive, leads to IH

P (ti) = (type check Σ V ti = return τ −→ ti ∈ T (Σ,V)τ )

• aim: ability to use arbitrary τi in IH instead of τ

• formal solution via universal quantification:
define P and Q as follows and use P in induction

Q(t, τ) = (type check Σ V t = return τ −→ t ∈ T (Σ,V)τ )

P (t) = (∀τ. Q(t, τ))

• effect: induction hypothesis for ti will be P (ti) = (∀τ. Q(ti, τ)) which in particular
implies the desired Q(ti, τi)
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Type-Checking

Induction Proofs with Arbitrary Variables
• previous slide:

Q(t, τ) = (type check Σ V t = return τ −→ t ∈ T (Σ,V)τ )

P (t) = (∀τ. Q(t, τ))

• we now prove P (t) by induction on t, this time being quite formal
• base case: t = Var x

• we have to show P (t) = P (Var x) = (∀τ. Q(Var x, τ))
◦ ∀-intro: pick an arbitrary τ and show Q(Var x, τ), i.e.,

type check Σ V (Var x) = return τ −→ x ∈ T (Σ,V)τ
• −→-intro: assume type check Σ V (Var x) = return τ ,

and then show x ∈ T (Σ,V)τ
• simplify assumpt. type check Σ V (Var x) = return τ to V x = return τ
• by alignment this is identical to x : τ ∈ Σ
• use introduction rule of T (Σ,V)τ to finally show x ∈ T (Σ,V)τ

note that step ◦ is the only additional (but obvious) step that was required to deal with
the auxiliary universal quantifier
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Type-Checking

Induction Proofs with Arbitrary Variables: Step Case

Q(t, τ) = (type check Σ V t = return τ −→ t ∈ T (Σ,V)τ )

P (t) = (∀τ. Q(t, τ))

• step case: t = f(t1, . . . , tn)
• we have to show P (f(t1, . . . , tn)) = (∀τ. Q(f(t1, . . . , tn), τ))
◦ ∀-intro: pick an arbitrary τ and show Q(f(t1, . . . , tn), τ), i.e.,

type check Σ V f(t1, . . . , tn) = return τ −→ f(t1, . . . , tn) ∈ T (Σ,V)τ
• −→-intro: assume type check Σ V f(t1, . . . , tn) = return τ , and show
f(t1, . . . , tn) ∈ T (Σ,V)τ

• by the assumption type check Σ V f(t1, . . . , tn) = return τ and by definition of type check ,
we know that there must be types τ1, . . . , τn such that
mapM (type check Σ V) [t1, . . . , tn] = return [τ1, . . . , τn], and hence
type check Σ V ti = return τi for all 1 ≤ i ≤ n

• again using the assumption and the algorithm definition we conclude that
Σ f = return ([τ1, . . . , τn], τ) and thus, f : τ1 × . . .× τn → τ ∈ Σ

◦ by the IH we conclude P (ti) and hence Q(ti, τi) using ∀-elimination
• in combination with type check Σ V ti = return τi we arrive at ti ∈ T (Σ,V)τi and can

finally apply the introduction rules for typed terms to conclude f(t1, . . . , tn) ∈ T (Σ,V)τ
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Type-Checking

Induction Proofs with Arbitrary Variables: Remarks

Q(t, τ) = (type check Σ V t = return τ −→ t ∈ T (Σ,V)τ )

P (t) = (∀τ. Q(t, τ))

• the method to make a variable arbitrary within an induction proof is always the same, via
universal quantification

• the required steps within the formal reasoning (marked with ◦ in the previous proof) are
also automatic

• therefore, in the following we will just write statements like

“we perform induction on x for arbitrary y and z”

or

“we prove P (x, y, z) by induction on x for arbitrary y and z”

without doing the universal quantification explicitly
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Type-Checking

Summary of Type-Checking

• definition of typed terms via inference rules

• equivalent definition via type-checking algorithm
• both representations have their advantages

• inference rules come with convenient induction principle
• type-checking can also detect typing errors, i.e.,

it can show that something is not member of an inductively defined set

• note: we have verified a first non-trivial program!
• given the precise semantics of typed terms
• via an intuitive meaning of what inductively defined sets are
• with an intuitive meaning of how Haskell evaluates
• with intuitively created alignments
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Type-Checking

Summary of Chapter

• inductively defined sets give rise to structural induction rule

• inductively defined sets can be used to model datatypes of
(first-order non-polymorphic) functional programs

• many sorted/typed terms and predicate logic allows adequate modeling of datatypes

• verified type-checking algorithm

• induction proofs with ”arbitrary” variables
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