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Overview

• definition of a small functional programming language

• operational semantics

• a model in many-sorted logic

• derived inference rules
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Functional Programming – Data Types

Functional Programming – Data Types

Data Type Definitions
• a functional program contains a sequence of data type definitions

• while processing the sequence, we determine the set of types Ty, the signature Σ, and the
predicates P, which are all initially empty
• each data type definition has the following form

data τ = c1 : τ1,1 × . . .× τ1,m1 → τ

| . . .
| cn : τn,1 × . . .× τn,mn → τ

where

• τ /∈ Ty fresh type name
• c1, . . . , cn /∈ Σ and ci 6= cj for i 6= j fresh and distinct constructor names
• each τi,j ∈ {τ} ∪ Ty only known types
• exists ci such that τi,j ∈ Ty for all j non-recursive constructor

• effect: add type, constructors and equality predicate
• Ty := Ty ∪ {τ}
• Σ := Σ ∪ {c1 : τ1,1 × . . .× τ1,m1 → τ, . . . , cn : τn,1 × . . .× τn,mn → τ}
• P := P ∪ {=τ ⊆ τ × τ}
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Functional Programming – Data Types

Data Type Definitions: Examples
• Ty = Σ = P = ∅
• data Nat = Zero : Nat | Succ : Nat→ Nat

• processing updates Ty = {Nat},
Σ = {Zero : Nat,Succ : Nat→ Nat}
and P = {=Nat ⊆ Nat× Nat}
• data List = Nil : List | Cons : Nat× List→ List

• processing updates Ty = {Nat, List},
Σ = {Zero : Nat,Succ : Nat→ Nat,Nil : List,Cons : Nat× List→ List}
and P = {=Nat ⊆ Nat× Nat,=List ⊆ List× List}
• data BList = NilB : BList | ConsB : Bool× BList→ BList

not allowed, since Bool /∈ Ty
• data LList = Nil : LList | Cons : List× LList→ LList

not allowed, since Nil and Cons are already in Σ

• data Tree = Node : Tree× Nat× Tree→ Tree
not allowed, since all constructors are recursive
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Functional Programming – Data Types

Data Type Definitions: Standard Model

• while processing data type definitions we also build a model M for the functional
program, called the standard model

• when processing

data τ = c1 : τ1,1 × . . .× τ1,m1 → τ

| . . .
| cn : τn,1 × . . .× τn,mn → τ

• define universe Aτ for new type τ inductively via the following inference rules
(one for each 1 ≤ i ≤ n)

t1 ∈ Aτi,1 . . . tmi
∈ Aτi,mi

ci(t1, . . . , tmi
) ∈ Aτ

• define cMi (t1, . . . , tmi
) = ci(t1, . . . , tmi

) uninterpreted constructors
• define =Mτ = {(t, t) | t ∈ Aτ} equality

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 6/75

Functional Programming – Data Types

Data Type Definitions: Example and Standard Model
• data Nat = Zero : Nat | Succ : Nat→ Nat

• processing creates universe ANat via the inference rules

Zero ∈ ANat

t ∈ ANat

Succ(t) ∈ ANat

i.e., ANat = {Zero,Succ(Zero),Succ(Succ(Zero)), . . .}
• ZeroM = Zero SuccM(t) = Succ(t)

• =MNat = {(Zero,Zero), (Succ(Zero), Succ(Zero)), . . .}
• data List = Nil : List | Cons : Nat× List→ List

• processing creates universe AList via the inference rules

Nil ∈ AList

t1 ∈ ANat t2 ∈ AList

Cons(t1, t2) ∈ AList

i.e., AList = {Nil,Cons(Zero,Nil),Cons(Succ(Zero),Nil), . . .}
• =MList = {(Nil,Nil), (Cons(Zero,Nil),Cons(Zero,Nil)), . . .}
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Functional Programming – Data Types

Well-Definedness of Standard Model
• question: is the standard model really a model in the sense of many-sorted logic

• is there a unique type for each ci ∈ Σ and =τ ∈ P
• are the definitions of cMi and =Mτ well-defined
• are the definitions of Aτ well-defined, i.e., Aτ 6= ∅

• recall: each data definition has the following form

data τ = c1 : τ1,1 × . . .× τ1,m1 → τ

| . . .
| cn : τn,1 × . . .× τn,mn → τ

where
• τ /∈ Ty fresh type name
• c1, . . . , cn /∈ Σ and ci 6= cj for i 6= j

fresh and distinct constructor names
• each τi,j ∈ {τ} ∪ Ty only known types
• exists ci such that τi,j ∈ Ty for all j non-recursive constructor

• what could happen if one of the conditions is dropped?
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Functional Programming – Data Types

Non-Empty Universes

• without the last condition (non-recursive constructor) the following data type declaration
would be allowed (assuming that Nat and Succ are fresh names)

data Nat = Succ : Nat→ Nat

with the universe defined as the inductive set ANat

t ∈ ANat

Succ(t) ∈ ANat

• consequence: ANat = ∅
• hence, non-recursive constructors are essential for having non-empty universes
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Functional Programming – Data Types

Non-Empty Universes: Proof

Theorem

Let there be a list of data type declarations and an arbitrary type τ from this list. Then
Aτ 6= ∅.

Proof

Let τ1, . . . , τn be the sequence of types that have been defined. We show

P (n) := ∀1 ≤ i ≤ n. Aτi 6= ∅

by induction on n. This will entail the theorem.
In the base case we have to prove P (0), which is trivially true. Now let us show P (n+ 1)
assuming P (n). Because of P (n), we only have to prove Aτn+1 6= ∅. By the definition of
data types, there must be some ci : τi,1 × . . .× τi,mi → τn+1 where all τi,j ∈ {τ1, . . . , τn}. By
the IH P (n) we know that Aτi,j 6= ∅ for all j between 1 and mi. Hence, there must be terms
t1 ∈ Aτi,1 , . . . , tmi ∈ Aτi,mi . Consequently, ci(t1, . . . , tmi) ∈ Aτn+1 , and hence Aτn+1 6= ∅.
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Functional Programming – Data Types

Current State

• presented: data type definitions
• semantics:

• free constructors: each constructor is interpreted as itself
• universe as inductively defined sets: no infinite terms, such as infinite lists

Cons(Zero,Cons(Zero, . . .))
(modeling of infinite data structures would be possible via domain-theory)

• upcoming: functional programs, i.e., function definitions
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Functional Programming – Function Definitions
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Functional Programming – Function Definitions

Splitting the signature
• distinguish between

• constructors, declared via data (capital letters in Haskell)
e.g., Nil,Succ,Cons

• defined functions, declared via equations (lowercase letters in Haskell)
e.g., append, add, reverse

• formally, we have Σ = C ] D
• C is set of constructors, defined via data

• constructors are written c, ci, d in generic constructors such as data type definitions
• start with uppercase letters in concrete examples (Succ,Cons)

• D is set of defined symbols, defined via function declarations
• defined (function) symbols are written f , fi, g in generic constructors such as function

definitions
• start with lowercase letters in concrete examples (append, reverse)

• we use F , G for elements of Σ whenever separation between C and D is not relevant

• note that in the standard model, Aτ is exactly T (C)τ := T (C,∅)τ ,
which is the set of constructor ground terms of type τ
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Functional Programming – Function Definitions

Notions for Preparing Function Definitions

• a pattern is a term in T (C,V), usually written p or pi
• a term t in T (Σ,V) is linear, if all variables within t occur only once

• reverse(Cons(x,Cons(y, xs))) 4
• reverse(Cons(x,Cons(x, xs))) 8

• the variables of a term t are defined as Vars(t)
• Vars(x) = {x}
• Vars(F (t1, . . . , tn)) = Vars(t1) ∪ . . . ∪ Vars(tn)
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Functional Programming – Function Definitions

Function Definitions
• besides data type definitions, a functional program consists of a sequence of function

definitions, each having the following form

f : τ1 × . . .× τn → τ

`1 = r1

. . . = . . .

`m = rm

where

• f is a fresh name and D := D ∪ {f : τ1 × . . .× τn → τ}
(hence, f is also added to Σ = C ∪ D)

• each left-hand side (lhs) `i is linear

• each lhs `i is of the form f(p1, . . . , pn) with all pj ’s being patterns

• each lhs `i and rhs ri respect the type: `i, ri ∈ T (Σ,V)τ

• each equation `i = ri satisfies the variable condition Vars(ri) ⊆ Vars(`i)
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Functional Programming – Function Definitions

Function Definitions: Examples
• assume data types Nat and List have been defined as before (slide 5)

add : Nat× Nat→ Nat

add(Zero, y) = y

add(Succ(x), y) = add(x,Succ(y))

append : List× List→ List

append(Cons(x, xs), ys) = Cons(x, append(xs, ys))

append(xs, ys) = ys

head : List→ Nat

head(Cons(x, xs)) = x

zeros : List

zeros = Cons(Zero, zeros)
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Functional Programming – Function Definitions

Function Definitions: Non-Examples
• assume program from previous slides + data Bool = True | False

even : Nat→ Bool

even(Zero) = True

even(Succ(x)) = odd(x) 8

odd : Nat→ Bool

odd(Zero) = False

odd(Succ(x)) = even(x) 8

random : Nat

random = x 8

minus : Nat× Nat→ Nat

minus(Succ(x),Succ(y)) = minus(x, y)

minus(x,Zero) = x

minus(x, x) = Zero 8

minus(add(x, y), x) = y 8
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Functional Programming – Function Definitions

Semantics for Function Definitions

• problem: given a function definition

f : τ1 × . . .× τn → τ

`1 = r1

. . . = . . .

`m = rm

we need to extend the semantics in the standard model, i.e., define the function

fM : Aτ1 × . . .×Aτn → Aτ

or equivalently
fM : T (C)τ1 × . . .× T (C)τn → T (C)τ

• idea: define fM(t1, . . . , tn) as

the result of f(t1, . . . , tn) after evaluation wrt. equations in program
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Functional Programming – Function Definitions

Semantics for Function Definitions – Continued

• required: fM : T (C)τ1 × . . .× T (C)τn → T (C)τ
• idea: define fM(t1, . . . , tn) as

the result of f(t1, . . . , tn) after evaluation wrt. equations in program
• several issues:

• how is term evaluation defined?
• briefly: replace instances of lhss by instances of rhss as long as possible

• is result unique?
• is result element of T (C)τ?
• does evaluation terminate?
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Functional Programming – Function Definitions

Function Definitions: Examples
• consider previous program, type declarations omitted

add(Zero, y) = y (1)

add(Succ(x), y) = add(x,Succ(y)) (2)

append(Cons(x, xs), ys) = Cons(x, append(xs, ys)) (3)

append(xs, ys) = ys (4)

head(Cons(x, xs)) = x (5)

zeros = Cons(Zero, zeros) (6)

• is result unique? no: consider t = append(Cons(Zero,Nil),Nil)

then t
(3)
= Cons(Zero, append(Nil,Nil))

(4)
= Cons(Zero,Nil)

and t
(4)
= Nil

• is result element of T (C)τ? no: head(Nil) cannot be evaluated

• does evaluation terminate? no: zeros = Cons(Zero, zeros) = . . .

• solution: further restrictions on function definitions
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Functional Programming – Operational Semantics

Functional Programming – Operational Semantics

Functional Programming: Operational Semantics

• operational semantics: formal definition on how evaluation proceeds step-by-step

• main operation: applying a substitution σ : V → T (Σ,V) on a term,
can be defined recursively
• xσ = σ(x)
• F (t1, . . . , tn)σ = F (t1σ, . . . , tnσ)

• one-step evaluation relation ↪→ ⊆ T (Σ,V)× T (Σ,V) defined as inductive set

` = r is equation in program

`σ ↪→ rσ
root step

F ∈ Σ si ↪→ ti
F (s1, . . . , si, . . . , sn) ↪→ F (s1, . . . , ti, . . . , sn)

rewrite in contexts

• given a term t and a lhs `, for checking whether a root-step is applicable one needs
matching: ∃σ. `σ = t (and also deliver that σ)

• same evaluation as in functional programming (lecture),
except that order of equations is ignored and here it becomes formal
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Functional Programming – Operational Semantics

Matching

• we define matching as an operation on a set of pairs P = {(`1, t1), . . . , (`n, tn)} and the
task is to decide: ∃σ. `1σ = t1 ∧ . . . ∧ `nσ = tn, i.e.,
• either return the required substitution σ in the form of a set of pairs {(x1, s1), . . . , (xm, sm)}

with all xi distinct which can then be interpreted as the substitution σ defined by

σ(x) =

{
si, if x = xi for some i

x, otherwise

• or return ⊥ indicating that no such substitution exists

• matching algorithm
• if P contains a pair (F (`1, . . . , `n), F (t1, . . . , tn)), then replace this pair by the n pairs

(`1, t1), . . . , (`n, tn) decompose
• if P contains (F (. . .), G(. . .)) with F 6= G, then return ⊥ clash
• if P contains (F (. . .), x) with x ∈ V, then return ⊥ fun-var
• if P contains (x, s) and (x, t) with x ∈ V and s 6= t, then return ⊥ var-clash
• if none of the above rules is applicable, then return P
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Functional Programming – Operational Semantics

Matching – Example

• we want to test whether there is a root step possible for the term
t = append(Cons(y,Nil),Cons(y, ys)) w.r.t. the equation
(` = r) = (append(Cons(x, xs), ys) = Cons(x, append(xs, ys)))

• setup matching problem {(`, t)}
P = {(append(Cons(x, xs), ys), append(Cons(y,Nil),Cons(y, ys)))}
• decomposition: P = {(Cons(x, xs),Cons(y,Nil)), (ys,Cons(y, ys))}
• decomposition: P = {(x, y), (xs,Nil), (ys,Cons(y, ys))}

• obtain substitution σ(z) =


y, if z = x

Nil, if z = xs

Cons(y, ys), if z = ys

z, otherwise

• so, t = `σ ↪→ rσ = Cons(x, append(xs, ys))σ = Cons(y, append(Nil,Cons(y, ys)))
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Functional Programming – Operational Semantics

Matching – Verification and Termination Proof

• matching algorithm
• whenever P contains a pair (F (`1, . . . , `n), F (t1, . . . , tn)), replace this pair by the n pairs

(`1, t1), . . . , (`n, tn) decompose
• . . .

• soundness = termination + partial verification

• termination: in each step, the sum of the size of terms is decreased

|(F (`1, . . . , `n), F (t1, . . . , tn))| = |F (`1, . . . , `n)|+ |F (t1, . . . , tn)|

= 1 +
∑
i

|`i|+ 1 +
∑
i

|ti|

>
∑
i

|`i|+
∑
i

|ti|

=
∑
i

|(`i, ti)|
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Functional Programming – Operational Semantics

Matching – Type Preservation

• matching algorithm
• whenever P contains a pair (F (`1, . . . , `n), F (t1, . . . , tn)), replace this pair by the n pairs

(`1, t1), . . . , (`n, tn) decompose
• . . .

• property: we say that a set of pairs P is type-correct, iff for all pairs (`, t) ∈ P the types
of ` and t are identical, i.e., ∃τ. {`, t} ⊆ T (Σ,V)τ

• theorem: whenever P is type-correct, then P will stay type-correct during the algorithm;
consequently, any result 6= ⊥ will be type-correct

• proof: we prove an invariant, so we only need to prove that the property is maintained
when performing a step in the algorithm:
consider ”decompose”
• we can assume {F (`1, . . . , `n), F (t1, . . . , tn)} ⊆ T (Σ,V)τ
• so F : τ1 × . . .× τn → τ for suitable τi
• hence, {`i, ti} ⊆ T (Σ,V)τi for all i
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Functional Programming – Operational Semantics

Matching – Structure of Result

• matching algorithm
• whenever P contains (F (`1, . . . , `n), F (t1, . . . , tn)) . . . decompose
• whenever P contains (F (. . .), G(. . .)) with F 6= G, then return ⊥ clash
• whenever P contains (F (. . .), x) with x ∈ V, then return ⊥ fun-var
• whenever P contains (x, s) and (x, t) with x ∈ V and s 6= t then return ⊥ var-clash
• when none of the above rules is applicable, return P

• property: result of matching algorithm on well-typed inputs is ⊥ or set
{(x1, s1), . . . , (xm, sm)} with all xi distinct
• proof

• assume result is not ⊥, then it must be some set of pairs P = {(u1, s1), . . . , (um, sm)}
where no rule is applicable

• if all ui’s are variables, then the result follows: there cannot be two entries (ui, si) and
(uj , sj) with ui = uj and si 6= sj because then ”var-clash” would have been applied

• it remains to consider the case that some ui = F (`1, . . . , `n)
• si = F (t1, . . . , tk), as result is not ⊥, cf. ”clash” and ”fun-var”
• then k = n because of type preservation: contraction to ”decompose”
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Functional Programming – Operational Semantics

Matching – Preservation of Solutions

• matching algorithm
• whenever P contains a pair (F (`1, . . . , `n), F (t1, . . . , tn)), replace this pair by the n pairs

(`1, t1), . . . , (`n, tn) decompose
• whenever P contains (F (. . .), G(. . .)) with F 6= G, then return ⊥ clash
• whenever P contains (F (. . .), x) with x ∈ V, then return ⊥ fun-var
• whenever P contains (x, s) and (x, t) with x ∈ V and s 6= t then return ⊥ var-clash
• when none of the above rules is applicable, return P

• property: algorithm preserves matching substitutions
(where ⊥ has no matching substitution)
• proof via invariant: whenever P is changed to P ′, then σ is a matcher of P iff σ is

matcher of P ′

• clash: both ”σ is matcher of {(F (. . .), G(. . .))} ∪ P” and
”σ is matcher of ⊥” are wrong: F (t1, . . .)σ = F (t1σ, . . .) 6= G(. . .)

• fun-var and var-clash are similar
• decompose: F (`1, . . . , `n)σ = F (t1, . . . , tn)
←→ F (`1σ, . . . , `nσ) = F (t1, . . . , tn)
←→ `1σ = t1 ∧ . . . ∧ `nσ = tn
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Functional Programming – Operational Semantics

Matching Algorithm – Summary

• algorithm: apply certain steps until no longer possible

• (one) termination proof

• (many) partial soundness proofs
mainly by showing an invariant that is preserved by each step
• type preservation
• preservation of matching substitutions
• result is ⊥ or a set which encodes a substitution

• application: compute root steps by testing whether decomposition of term into `σ for
equation ` = r is possible

• core of functional programming (and term rewriting)

• much better algorithms exists, which avoid to match against all lhss, based on
precalculation (term indexing), e.g., group equations by root symbol of lhss
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Semantics in the Standard Model

Semantics in the Standard Model

Towards Semantics in Standard Model

• evaluation of terms is now explained: one-step relation ↪→
• algorithm for evaluation is similar to matching algorithm:

apply ↪→-steps until no longer possible
• questions are similar as in matching algorithm

• termination: do we always get result?
• preservation of types?
• is result a desired value, i.e., a constructor ground term?
• is result unique?

• questions don’t have positive answer in general, cf. slide 20
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Semantics in the Standard Model

Type Preservation of ↪→
• aim: show that ↪→ preserves types:

t ∈ T (Σ,V)τ −→ t ↪→ s −→ s ∈ T (Σ,V)τ

• proof will be by induction w.r.t. inductively defined set ↪→ for arbitrary τ

• preliminary: we call a substitution type-correct, if σ(x) ∈ T (Σ,V)τ whenever x : τ ∈ V
• easy result: whenever t ∈ T (Σ,V)τ and σ is type-correct, then tσ ∈ T (Σ,V)τ

(how would you prove it?)

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 32/75

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Semantics in the Standard Model

Type Preservation of ↪→ – Proof

• proof: induction w.r.t. inductively defined set ↪→ for arbitrary τ
• base case: `σ ↪→ rσ for some equation ` = r of the program where `σ ∈ T (Σ,V)τ and

we have to prove rσ ∈ T (Σ,V)τ
• since `σ ∈ T (Σ,V)τ , and `, r ∈ T (Σ,V)τ by the definition of functional programs, we

conclude that σ is type-correct, cf. slide 26
• and since r ∈ T (Σ,V)τ and σ is type-correct, then also rσ ∈ T (Σ,V)τ , cf. previous slide

• step case: F (s1, . . . , si, . . . , sn) ↪→ F (s1, . . . , ti, . . . , sn) since si ↪→ ti, we know
F (s1, . . . , si, . . . , sn) ∈ T (Σ,V)τ and have to prove F (s1, . . . , ti, . . . , sn) ∈ T (Σ,V)τ
• since F (s1, . . . , si, . . . , sn) ∈ T (Σ,V)τ , we know that F : τ1 × . . .× τn → τ ∈ Σ and each
sj ∈ T (Σ,V)τj for 1 ≤ j ≤ n

• by the IH we know ti ∈ T (Σ,V)τi – note that here we can take a different type than τ ,
namely τi, because the induction was for arbitrary τ

• but then we immediately conclude F (s1, . . . , ti, . . . , sn) ∈ T (Σ,V)τ

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 33/75

Semantics in the Standard Model

Type Preservation of ↪→∗

• finally, we can show that evaluation (execution of arbitrarily many ↪→-steps, written ↪→∗)
preserves types, which is an easy induction proof by the number of steps, using
type-preservation of ↪→
• theorem: whenever t ∈ T (Σ,V)τ and t ↪→∗ s, then s ∈ T (Σ,V)τ
• proofs to obtain global result

1. show that matching preserves types (slide 26)
proof via invariant, since matching algorithm is imperative (while rules-applicable ...)

2. show that substitution application preserves types (slide 31)
proof by induction on terms, following recursive structure of definition of substitution
application (slide 22)

3. show that ↪→ preserves types (slide 33)
proof by structural induction wrt. inductively defined set ↪→;
uses results 1 and 2

4. show that ↪→∗ preserves types
proof on number of steps; uses result 3
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Preservation of Groundness of ↪→∗

• a term t is ground if Vars(t) = ∅, or equivalently if t ∈ T (Σ)

• recall aim: we want to evaluate ground term like append(Cons(Zero,Nil),Nil) to element
of universe, i.e., constructor ground term

• hence, we need to ensure that result of evaluation with ↪→ is ground

• preservation of groundness can be shown with similar proof structure as in the proof of
preservation of types
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Normal Forms – The Results of an Evaluation

• a term t is a normal form (w.r.t. ↪→) if no further ↪→-steps are possible:

@s. t ↪→ s

• whenever t ↪→∗ s and s is in normal form, then we write

t ↪→! s

and call s a normal form of t

• normal forms represent the result of an evaluation
• known results at this point: whenever t ∈ T (Σ)τ and t ↪→! s then

• s ∈ T (Σ,V)τ (type-preservation)
• s ∈ T (Σ) (groundness-preservation)
• s ∈ T (Σ)τ (combined)

• missing:
• s ∈ T (C)τ (constructor-ground term)
• s is unique
• s always exists
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Pattern Completeness

• a function symbol f : τ1 × . . .× τn → τ ∈ D is pattern complete iff for all t1 ∈ T (C)τ1 ,
. . . , tn ∈ T (C)τn there is an equation ` = r in the program, such that ` matches
f(t1, . . . , tn)

• a functional program is pattern complete iff all f ∈ D are pattern complete

• example

append(Cons(x, xs), ys) = Cons(x, append(xs, ys))

append(Nil, ys) = ys

head(Cons(x, xs)) = x

• append is pattern complete
• head is not pattern complete: for head(Nil) there is no matching lhs
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Pattern Completeness and Constructor Ground Terms

• theorem: if a program is pattern complete and t ∈ T (Σ)τ is a normal form, then
t ∈ T (C)τ
• proof of P (t, τ) by structural induction w.r.t. T (Σ)τ for

P (t, τ) := t is normal form −→ t ∈ T (C)τ
• induction yields only one case: t = F (t1, . . . , tn) where F : τ1 × . . .× τn → τ ∈ Σ
• IH for each i: if ti is normal form, then ti ∈ T (C)τi
• premise: F (t1, . . . , tn) is normal form
• from premise conclude that ti is normal form:

(if ti ↪→ si then F (t1, . . . , tn) ↪→ F (t1, . . . , si, . . . , tn) shows that F (t1, . . . , tn) is not a
normal form)

• in combination with IH: each ti ∈ T (C)τi
• consider two cases: F ∈ C or F ∈ D
• case F ∈ C: using ti ∈ T (C)τi immediately yields F (t1, . . . , tn) ∈ T (C)τ
• case F ∈ D: using pattern completeness and ti ∈ T (C)τi , conclude that F (t1, . . . , tn) must

be matched by lhs; this is contradiction to F (t1, . . . , tn) being a normal form
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Pattern Disjointness

• a function symbol f : τ1 × . . .× τn → τ ∈ D is pattern disjoint iff for all t1 ∈ T (C)τ1 ,
. . . , tn ∈ T (C)τn there is at most one equation ` = r in the program, such that `
matches f(t1, . . . , tn)

• a functional program is pattern disjoint iff all f ∈ D are pattern disjoint

• example

append(Cons(x, xs), ys) = Cons(x, append(xs, ys))

append(xs, ys) = ys

head(Cons(x, xs)) = x

• head is pattern disjoint
• append is not pattern disjoint: the term append(Cons(Zero,Nil),Nil) is matched by the lhss

of both append-equations
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Pattern Disjointness and Unique Normal Forms

• theorem: if a program is pattern disjoint then ↪→ is confluent and each term has at most
one normal form

• confluence: whenever s ↪→∗ t and s ↪→∗ u then there exists some v such that t ↪→∗ v and
u ↪→∗ v
• proof of theorem:

• pattern disjointness in combination with the other syntactic restrictions on functional
programs implies that the defining equations form an orthogonal term rewrite sytem

• Rosen proved that orthogonal term rewrite sytems are confluent
• confluence implies that each term has at most one normal form
• full proof of Rosen given in term rewriting lecture, we only sketch a weaker property on the

next slides, namely local confluence: whenever s ↪→ t and s ↪→ u then there exists some v
such that t ↪→∗ v and u ↪→∗ v

• local confluence in combination with termination also implies confluence
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Proof of Local Confluence: Two Root Steps

• consider the situation in the diagram where two root steps with equations `1 = r1 and
`2 = r2 are applied

• because of pattern disjointness: (`1 = r1) = (`2 = r2)

• uniqueness of matching: σ1(x) = σ2(x) for all x ∈ Vars(`1/2)
• variable condition of programs: σ1(x) = σ2(x) for all x ∈ Vars(r1/2)
• hence r1σ1 = r2σ2
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Proof of Local Confluence: Independent Steps

• consider the situation in the diagram where two steps at independent positions are applied

• just do the steps in reverse order

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 42/75

Semantics in the Standard Model

Proof of Local Confluence: Root- and Substitution-Step
• consider the situation in the diagram where a root step overlaps with a step done in the

substitution

• just do the steps in reverse order (perhaps multiple times)
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Graphical Local Confluence Proof

• the diagrams in the three previous slides describe all situations where one term can be
evaluated in two different ways (within one step)

• in all cases the diagrams could be joined

• overall: intuitive graphical proof of local confluence

• often hard task: transform such an intuitive proof into a formal, purely textual proof,
using induction, case-analysis, etc.
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Semantics in the Standard Model

Semantics for Functional Programs in the Standard Model

• we are now ready to complete the semantics for functional programs
• we call a functional program well-defined, if

• it is pattern disjoint,
• it is pattern complete, and
• ↪→ is terminating

• for well-defined programs, we define for each f : τ1 × . . .× τn → τ ∈ D

fM : T (C)τ1 × . . .× T (C)τn → T (C)τ
fM(t1, . . . , tn) = s

where s is the unique normal form of f(t1, . . . , tn), i.e., f(t1, . . . , tn) ↪→! s

• remarks:
• a normal form exists, since ↪→ is terminating
• s is unique because of pattern disjointness
• s ∈ T (C)τ because of pattern completeness, and type- and groundness-preservation
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Summary: Standard Model

• standard model
• universes: T (C)τ
• constructors: cM(t1, . . . , tn) = c(t1, . . . , tn)
• defined symbols: fM(t1, . . . , tn) is normal form of f(t1, . . . , tn) wrt. ↪→

• if functional program is well-defined
• pattern disjoint,
• pattern complete, and
• ↪→ is terminating

then standard model is well-defined
• upcoming

• what about functional programs that are not well-defined?
• comparison to real functional programming languages
• treatment in real proof assistants
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Without Pattern Disjointness
• consider Haskell program
conj :: Bool -> Bool -> Bool

conj True True = True -- (1)

conj x y = False -- (2)

• obviously not pattern disjoint
• however, Haskell still has unique results, since equations are ordered

• an equation is only applicable
if all previous equations are not applicable

• so, conj True True can only be evaluated to True

• ordering of equations can be resolved by instantiation equations via complementary
patterns

• equivalent equations (in Haskell) which do not rely upon order of equations
conj :: Bool -> Bool -> Bool

conj True True = True -- (1)

conj False y = False -- (2) with x / False

conj True False = False -- (2) with x / True, y / False
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Without Pattern Disjointness – Continued
• pattern disjointness is sufficient criterion to ensure confluence

• overlaps can be allowed, if they do not cause conflicts

• example:
conj :: Bool -> Bool -> Bool

conj True True = True

conj False y = False -- (1)

conj x False = False -- (2)
the only overlap is conj False False; it is harmless since the term evaluates to the
same result using both (1) and (2)
• translating ordered equations into pattern disjoint equations or equations which only have

harmless overlaps can be done automatically
• usually, there are several possibilities
• finding the smallest set of equations is hard
• automatically done in proof-assistants such as Isabelle;

e.g., overlapping conj from previous slide is translated into above one

• consequence: pattern disjointness is no real restriction

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 48/75

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
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Without Pattern Completeness
• pattern completeness is naturally missing in several functions

• examples from Haskell libraries
head :: [a] -> a

head (x : xs) = x

• resolving pattern incompleteness is possible in the standard model
• determine missing patterns
• add for these missing cases equations that assign some element of the universe

head(Cons(x, xs)) = x equation as before

head(Nil) = some element of T (C)Nat new equation

• in this way, head becomes pattern complete and headM is total
• ”some element” really is an element of T (C)Nat,

and not a special error value like ⊥
• the added equation with ”some element” is usually not revealed to the user, so she cannot

reason about what number head(Nil) actually is

• consequence: pattern completeness is no real restriction
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Without Termination
• definition of standard model just doesn’t work properly in case of non-termination

• one possibility: use Scott’s domain theory where among others,
explicit ⊥-elements are added to universe
• examples

• ANat = {⊥,Zero,Succ(Zero),Succ(Succ(Zero)), . . . ,Succ∞}
• AList = {⊥,Nil,Cons(Zero,Nil),Cons(⊥,Nil),Cons(⊥,⊥), . . .}

• then semantics can be given to non-terminating computations
• inf = Succ(inf) leads to infM = Succ∞

• undef = undef leads to undefM = ⊥
• problem: certain equalities don’t hold wrt. domain theory semantics

• assume usual definition of program for minus, then
∀x.minus(x, x) = Zero is not true, consider x = inf or x = undef

• since reasoning in domain theory is more complex,
in this course we restrict to terminating functional programs

• even large proof assistants like Isabelle and Coq usually restrict to terminating functions
for that reason
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Inference Rules for the Standard Model

Plan

• from now until the end of these slides consider only well-defined functional programs, so
that standard model is well-defined
• aim

• derive theorems and inference rules
which are valid in the standard model

• these can be used to formally reason about functional programs
as on slide 1/18 where associativity of append was proven

• examples
• reasoning about constructors

• ∀x, y. Succ(x) =Nat Succ(y)←→ x =Nat y
• ∀x. ¬Succ(x) =Nat Zero

• getting defining equations of functional programs as theorems
• ∀x, xs, ys. append(Cons(x, xs), ys) =List Cons(x, append(xs, ys))

• induction schemes

•
ϕ(Zero) ∀x. ϕ(x) −→ ϕ(Succ(x))

∀x. ϕ(x)
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Notation – The Normal Form

• when speaking about ↪→, we always consider some fixed well-defined functional program

• since every term has a unique normal form wrt. ↪→, we can define a function↪→

: T (Σ,V)τ → T (Σ,V)τ which returns this normal form and write it in postfix notation:

t

↪→

:= the unique normal of t wrt. ↪→

• using

↪→

, the meaning of symbols in the standard model can concisely be written as

FM(t1, . . . , tn) = F (t1, . . . , tn)

↪→

• proof

• if F ∈ C, then FM(t1, . . . , tn)
def
= F (t1, . . . , tn) = F (t1, . . . , tn)

↪→

• if F ∈ D, then FM(t1, . . . , tn)
def
= F (t1, . . . , tn)

↪→
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The Substitution Lemma
• there are two possibilities to plug in objects into variables

• as environment: α : Vτ → Aτ
result of [[t]]α is an element of Aτ

• as substitution: σ : Vτ → T (Σ,V)τ
result of tσ is an element of T (Σ,V)τ

• substitution lemma: substitutions can be moved into environment:

[[tσ]]α = [[t]]β

where β(x) := [[σ(x)]]α
• proof by structural induction on t

• [[xσ]]α = [[σ(x)]]α = β(x) = [[x]]β
•

[[F (t1, . . . , tn)σ]]α = [[F (t1σ, . . . , tnσ)]]α

= FM([[t1σ]]α, . . . , [[tnσ]]α)

IH
= FM([[t1]]β , . . . , [[tn]]β)

= [[F (t1, . . . , tn)]]β
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Reverse Substitution Lemma in the Standard Model
• the substitution lemma holds independently of the model
• in case of the standard model, we have the special condition that Aτ = T (C)τ , so

• the universes consist of terms
• hence, each environment α : Vτ → T (C)τ is a special kind of substitution

(constructor ground substitution)

• consequence: possibility to encode environment as substitution

• reverse substitution lemma:
[[t]]α = tα

↪→

• proof by structural induction on t

• [[x]]α = α(x)
(∗)
= α(x)

↪→

= xα

↪→

where (∗) holds, since α(x) ∈ T (C)
•

[[F (t1, . . . , tn)]]α = FM([[t1]]α, . . . , [[tn]]α)

IH
= FM(t1α

↪→

, . . . , tnα

↪→

) = F (t1α

↪→

, . . . , tnα

↪→

)

↪→
(confl.)

= F (t1α, . . . , tnα)

↪→

= F (t1, . . . , tn)α

↪→
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Defining Equations are Theorems in Standard Model

• notation: ~∀ϕ means that universal quantification ranges over all free variables that occur
in ϕ

• example: if ϕ is append(Cons(x, xs), ys) =List Cons(x, append(xs, ys)) then ~∀ϕ is

∀x, xs, ys. append(Cons(x, xs), ys) =List Cons(x, append(xs, ys))

• theorem: if ` = r is defining equation of program (of type τ), then

M |= ~∀ ` =τ r

• consequence: conversion of well-defined functional programs into equations is now
possible, cf. previous problem on slide 1/21
• proof of theorem

• by definition of |= and =Mτ we have to show [[`]]α = [[r]]α for all α
• via reverse substitution lemma this is equivalent to `α

↪→

= rα

↪→

• easily follows from confluence, since `α ↪→ rα
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Inference Rules for the Standard Model

Axiomatic Reasoning

• previous slide already provides us with some theorems that are satisfied in standard model

• axiomatic reasoning:
take those theorems as axioms to show property ϕ

• added axioms are theorems of standard model, so they are consistent

• example AX = {~∀ ` =τ r | ` = r is def. eqn.}
• show AX |= ϕ using first-order reasoning in order to prove M |= ϕ

(and forget standard model M during the reasoning!)

• question: is it possible to prove every property ϕ in this way for which M |= ϕ holds?
• answer for above example is ”no”

• reason: there are models different than the standard model in which all axioms of AX are
satisfied, but where ϕ does not hold!

• example on next slide
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Axiomatic Reasoning – Problematic Model
• consider addition program, then example AX consists of two axioms

∀y. plus(Zero, y) =Nat y

∀x, y. plus(Succ(x), y) =Nat Succ(plus(x, y))

• we want to prove associativity of plus, so let ϕ be

∀x, y, z. plus(plus(x, y), z) =Nat plus(x, plus(y, z))

• consider the following model M′
• ANat = N ∪ {x+ 1

2 | x ∈ Z} = {. . . ,−1 1
2 ,−

1
2 , 0,

1
2 , 1, 1

1
2 , 2, 2

1
2 , . . . }

• ZeroM
′

= 0
• SuccM

′
(n) = n+ 1

• plusM
′
(n,m) =

{
n+m, if n ∈ N or m ∈ N
n−m+ 1

2 , otherwise

• =Nat
M = {(n, n) | n ∈ ANat}

• M′ |=
∧
AX, but M′ 6|= ϕ: consider α(x) = 19

2 , α(y) = 9
2 , α(z) = 7

2
• problem: values in α do not correspond to constructor ground terms
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Gödel’s Incompleteness Theorem
• taking AX as set of defining equations does not suffice to deduce all valid theorems of

standard model

• obvious approach: add more theorems to axioms AX
(theorems about =τ , induction rules, . . . )

• question: is it then possible to deduce all valid theorems of standard model?

• negative answer by Gödel’s First Incompleteness Theorem

• theorem: consider a well-defined functional program that includes addition and
multiplication of natural numbers;
let AX be a decidable set of valid theorems in the standard model;
then there is a formula ϕ such that M |= ϕ, but AX 6|= ϕ

• note: adding ϕ to AX does not fix the problem, since then there is another formula ϕ′

so that AX ∪ {ϕ} 6|= ϕ′

• consequence: ”proving ϕ via AX |= ϕ” is sound, but never complete

• upcoming: add more axioms than just defining equations,
so that still several proofs are possible
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Axioms about Equality
• we define decomposition theorems and disjointness theorems in the form of logical

equivalences

• for each c : τ1 × . . .× τn → τ ∈ C we define its
decomposition theorem as

~∀ c(x1, . . . , xn) =τ c(y1, . . . , yn)←→ x1 =τ1 y1 ∧ . . . ∧ xn =τn yn

and for all d : τ ′1 × . . .× τ ′k → τ ∈ C with c 6= d we define the disjointness theorem as

~∀ c(x1, . . . , xn) =τ d(y1, . . . , yk)←→ false

• proof of validity of decomposition theorem:

M |=α c(x1, . . . , xn) =τ c(y1, . . . , yn)
iff c(α(x1), . . . , α(xn)) = c(α(y1), . . . , α(yn))
iff α(x1) = α(y1) and . . . and α(xn) = α(yn)
iff M |=α x1 =τ1 y1 and . . . and M |=α xn =τn yn
iff M |=α x1 =τ1 y1 ∧ . . . ∧ xn =τn yn
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Inference Rules for the Standard Model

Axioms about Equality – Example

• for the datatypes of natural numbers and lists we get the following axioms

Zero =Nat Zero←→ true

∀x, y.Succ(x) =Nat Succ(y)←→ x =Nat y

Nil =List Nil←→ true

∀x, xs, y, ys.Cons(x, xs) =List Cons(y, ys)←→ x =Nat y ∧ xs =List ys

∀y.Zero =Nat Succ(y)←→ false

∀x. Succ(x) =Nat Zero←→ false

∀y, ys.Nil =List Cons(y, ys)←→ false

∀x, xs.Cons(x, xs) =List Nil←→ false
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Induction Theorems
• current axioms are not even strong enough to prove simple theorems, e.g.,
∀x. plus(x,Zero) =Nat x

• problem: proofs by induction are not yet covered in axioms

• since the principle of induction cannot be defined in general in a single first-order formula,
we will add infinitely many induction theorems to the set of axioms, one for each property

• not a problem, since set of axioms stays decidable, i.e., one can see whether some
tentative formula is an element of the axiom set or not
• example: induction over natural numbers

• formula below is general, but not first-order as it quantifies over ϕ

∀ϕ(x : Nat). ϕ(Zero) −→ (∀x. ϕ(x) −→ ϕ(Succ(x))) −→ ∀x. ϕ(x)

• quantification can be done on meta-level instead:
let ϕ be an arbitrary formula with a free variable of type Nat; then

ϕ(Zero) −→ (∀x. ϕ(x) −→ ϕ(Succ(x))) −→ ∀x. ϕ(x)

is a valid theorem; quantifying over ϕ results in induction scheme
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Induction Theorems – Example Instances
• induction scheme

ϕ(Zero) −→ (∀x. ϕ(x) −→ ϕ(Succ(x))) −→ ∀x. ϕ(x)

• example: right-neutral element: ϕ(x) := plus(x,Zero) =Nat x

plus(Zero,Zero) =Nat Zero

−→ (∀x. plus(x,Zero) =Nat x −→ plus(Succ(x),Zero) =Nat Succ(x))

−→ ∀x. plus(x,Zero) =Nat x

• example with quantifiers and free variables:
ϕ(x) := ∀y. plus(plus(x, y), z) =Nat plus(x, plus(y, z))

∀y. plus(plus(Zero, y), z) =Nat plus(Zero, plus(y, z))

−→ (∀x. (∀y. plus(plus(x, y), z) =Nat plus(x, plus(y, z)))

−→ (∀y. plus(plus(Succ(x), y), z) =Nat plus(Succ(x), plus(y, z))))

−→ ∀x.∀y. plus(plus(x, y), z) =Nat plus(x, plus(y, z))
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Inference Rules for the Standard Model

Preparing Induction Theorems – Substitutions in Formulas

• current situation
• substitutions are functions of type V → T (Σ,V)
• lifted to functions of type T (Σ,V)→ T (Σ,V), cf. slide 22
• substitution of variables of formulas is not yet defined, but is required for induction formulas,

cf. notation ϕ(x) −→ ϕ(Succ(x)) on previous slide

• formal definition of applying a substitution σ on formulas
• trueσ = true
• (¬ϕ)σ = ¬(ϕσ)
• (ϕ ∧ ψ)σ = ϕσ ∧ ψσ
• P (t1, . . . , tn)σ = P (t1σ, . . . , tnσ)

• (∀x. ϕ)σ = ∀x. (ϕσ)
if x does not occur in σ, i.e., σ(x) = x and x /∈ Vars(σ(y))
for all y 6= x

• (∀x. ϕ)σ = (∀y. ϕ[x/y])σ if x occurs in σ where
• y is a fresh variable, i.e., σ(y) = y, y /∈ Vars(σ(z)) for all z 6= y, and y is not a free variable

of ϕ
• [x/y] is the substitution which just replaces x by y
• effect is α-renaming: just rename universally quantified variable before substitution to avoid

variable capture
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Inference Rules for the Standard Model

Examples

• substitution of formulas
• (∀x. ϕ)σ = ∀x. (ϕσ) if x does not occur in σ
• (∀x. ϕ)σ = (∀y. ϕ[x/y])σ if x occurs in σ where y is fresh

• example substitution applications
• ϕ := ∀x.¬x =Nat y
• ϕ[y/Zero] = ∀x.¬x =Nat Zero no renaming required
• ϕ[y/Succ(z)] = ∀x.¬x =Nat Succ(z) no renaming required
• ϕ[y/Succ(x)] = ∀z.¬ z =Nat Succ(x) renaming [x/z] required

without renaming result would be wrong: ∀x.¬x =Nat Succ(x)
• ϕ[x/Succ(y)] = ∀z.¬ z =Nat y renaming [x/z] required

without renaming result would be wrong: ∀x.¬Succ(y) =Nat y

• example theorems involving substitutions

ϕ[x/Zero] −→ (∀y. ϕ[x/y] −→ ϕ[x/Succ(y)]) −→ ∀x. ϕ
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Substitution Lemma for Formulas

• example induction formula

ϕ[x/Zero] −→ (∀y. ϕ[x/y] −→ ϕ[x/Succ(y)]) −→ ∀x. ϕ

• proving validity of this formula (in standard model) requires another substitution lemma
about substitutions in formulas

• lemma: M |=α ϕσ iff M |=β ϕ where β(x) := [[σ(x)]]α
• proof by structural induction on ϕ for arbitrary α and σ

• M |=α P (t1, . . . , tn)σ
iff M |=α P (t1σ, . . . , tnσ)
iff ([[t1σ]]α, . . . , [[tnσ]]α) ∈ PM
iff ([[t1]]β , . . . , [[tn]]β) ∈ PM
iff M |=β P (t1, . . . , tn)
where we use the substitution lemma of slide 54 to conclude [[tiσ]]α = [[ti]]β

• M |=α (¬ϕ)σ iff M |=α ¬(ϕσ) iff M 6|=α ϕσ
iff M 6|=β ϕ (by IH) iff M |=β ¬ϕ

• cases “true” and conjunction are proved in same way as negation
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Substitution Lemma for Formulas – Proof Continued

• lemma: M |=α ϕσ iff M |=β ϕ where β(x) := [[σ(x)]]α
• proof by structural induction on ϕ for arbitrary α and σ

• for quantification we here only consider the more complex case where renaming is required
• M |=α (∀x. ϕ)σ

iff M |=α (∀y. ϕ[x/y])σ for fresh y
iff M |=α ∀y. (ϕ[x/y]σ)
iff M |=α[y:=a] ϕ[x/y]σ for all a ∈ A
iff M |=β′ ϕ for all a ∈ A where β′(z) := [[([x/y]σ)(z)]]α[y:=a] (by IH)
iff M |=β[x:=a] ϕ for all a ∈ A only non-automatic step
iff M |=β ∀x. ϕ

• equivalence of β′ and β[x := a] on variables of ϕ
• β′(x) = [[([x/y]σ)(x)]]α[y:=a] = [[σ(y)]]α[y:=a] = [[y]]α[y:=a] = a and β[x := a](x) = a
• z is variable of ϕ, z 6= x:

by freshness condition conclude z 6= y and y /∈ Vars(σ(z)); hence
β′(z) = [[([x/y]σ)(z)]]α[y:=a] = [[σ(z)]]α[y:=a] = [[σ(z)]]α and
β[x := a](z) = β(z) = [[σ(z)]]α

RT (DCS @ UIBK) Part 3 – Semantics of Functional Programs 67/75

Inference Rules for the Standard Model

Substitution Lemma in Standard Model

• substitution lemma: M |=α ϕσ iff M |=β ϕ where β(x) := [[σ(x)]]α

• lemma is valid for all models

• in standard model, substitution lemma permits to characterize universal quantification by
substitutions, similar to reverse substitution lemma on slide 55
• lemma: let x : τ ∈ V, let M be the standard model

1. M |=α[x:=t] ϕ iff M |=α ϕ[x/t]
2. M |=α ∀x. ϕ iff M |=α ϕ[x/t] for all t ∈ T (C)τ

• proof

1. first note that the usage of α[x := t] implies t ∈ Aτ = T (C)τ ;
by the substitution lemma obtain
M |=α ϕ[x/t]
iff M |=β ϕ for β(z) = [[[x/t](z)]]α = α[x := [[t]]α](z)
iff M |=α[x:=t] ϕ ([[t]]α = t, since t ∈ T (C))

2. immediate by part 1 of lemma
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Inference Rules for the Standard Model

Substitution Lemma and Induction Formulas
• substitution lemma (SL) is crucial result to lift structural

induction rule of universe T (C)τ to a structural induction formula

• example: structural induction formula ψ for lists with fresh x, xs

ψ := ϕ[ys/Nil]︸ ︷︷ ︸
1

−→ (∀x, xs. ϕ[ys/xs] −→ ϕ[ys/Cons(x, xs)]︸ ︷︷ ︸
2

) −→ ∀ys. ϕ

• proof of M |=α ψ:
assume premises 1 (M |=α ϕ[ys/Nil]) and 2 and show M |=α ∀ys. ϕ:
by SL the latter is equivalent to “M |=α ϕ[ys/`] for all ` ∈ T (C)List”;
prove this statement by structural induction on lists
• Nil: showing M |=α ϕ[ys/Nil] is easy: it is exactly premise 1
• Cons(n, `): use SL on premise 2 to conclude

M |=α (ϕ[ys/xs] −→ ϕ[ys/Cons(x, xs)])[x/n, xs/`]

hence
M |=α ϕ[ys/`] −→ ϕ[ys/Cons(n, `)]

and with IH M |=α ϕ[ys/`] conclude M |=α ϕ[ys/Cons(n, `)]
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Freshness of Variables
• example: structural induction formula for lists with fresh x, xs

ϕ[ys/Nil] −→ (∀x, xs. ϕ[ys/xs] −→ ϕ[ys/Cons(x, xs)]) −→ ∀ys. ϕ

• why freshness required? isn’t name of quantified variables irrelevant?

• problem: substitution is applied below quantifier!

• example: let us drop freshness condition and ”prove” non-theorem

M |= ∀x, xs, ys. ys =List Nil ∨ ys =List Cons(x, xs)

• by semantics of ∀x, xs. . . . it suffices to prove

M |=α ∀ys. ys =List Nil ∨ ys =List Cons(x, xs)︸ ︷︷ ︸
ϕ

• apply above induction formula and obtain two subgoals M |=α . . . for
• ϕ[ys/Nil] which is Nil =List Nil ∨ Nil =List Cons(x, xs)
• ∀x, xs. ϕ[ys/xs] −→ ϕ[ys/Cons(x, xs)] which is
∀x, xs. . . . −→ Cons(x, xs) =List Nil ∨ Cons(x, xs) =List Cons(x, xs)

• solution: rename variables in induction formula whenever required
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Structural Induction Formula
• finally definition of induction formula for data structures is possible

• consider

data τ = c1 : τ1,1 × . . .× τ1,m1 → τ

| . . .
| cn : τn,1 × . . .× τn,mn → τ

• let x ∈ Vτ , let ϕ be a formula, let variables x1, x2, . . . be fresh wrt. ϕ

• for each ci define

ϕi := ∀x1, . . . , xmi .

 ∧
j,τi,j=τ

ϕ[x/xj ]


︸ ︷︷ ︸

IH for recursive arguments

−→ ϕ[x/ci(x1, . . . , xmi)]

• the induction formula is ~∀ (ϕ1 −→ . . . −→ ϕn −→ ∀x. ϕ)

• theorem: M |= ~∀ (ϕ1 −→ . . . −→ ϕn −→ ∀x. ϕ)
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Proof of Structural Induction Formula

• to prove: M |= ~∀ (ϕ1 −→ . . . −→ ϕn −→ ∀x. ϕ)

• ∀-intro: M |=α (ϕ1 −→ . . . −→ ϕn −→ ∀x. ϕ) for arbitrary α

• −→-intro: assume M |=α ϕi for all i and show M |=α ∀x. ϕ
• ∀-intro via SL: show M |=α ϕ[x/t] for all t ∈ T (C)τ
• prove this by structural induction on t wrt. induction rule of T (C)τ

(for precisely this α, not for arbitrary α)
• induction step for each constructor ci : τi,1 × . . .× τi,mi → τ

• aim: M |=α ϕ[x/ci(t1, . . . , tmi)] IH: M |=α ϕ[x/tj ] for all j such that τi,j = τ
• use assumption M |=α ϕi, i.e., (here important: same α)

M |=α ∀x1, . . . , xmi . (
∧

j,τi,j=τ

ϕ[x/xj ]) −→ ϕ[x/ci(x1, . . . , xmi)]

• use SL as ∀-elimination with substitution [x1/t1, . . . , xmi
/tmi

], obtain

M |=α (
∧

j,τi,j=τ

ϕ[x/tj ]) −→ ϕ[x/ci(t1, . . . , tmi)]

• combination with IH yields desired M |=α ϕ[x/ci(t1, . . . , tmi)]
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Inference Rules for the Standard Model

Summary: Axiomatic Proofs of Functional Programs

• given a well-defined functional program, define a set of axioms AX consisting of
• equations of defined symbols (slide 56)
• axioms about equality of constructors (slide 60)
• structural induction formulas (slide 71)

• instead of proving M |= ϕ deduce AX |= ϕ

• fact: standard model is ignored in previous step

• question: why all these efforts and not just state AX?

• reason:

having proven M |= ψ for all ψ ∈ AX
implies that AX is consistent!

• recall: already just converting functional program equations naively into theorems led to
proof of 0 = 1 on slide 1/21, i.e., inconsistent axioms,
and AX now contains much more powerful axioms
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Example: Attempt to Prove Associativity of Append via AX
• task: prove associativity of append via natural deduction and AX
• define ϕ := append(append(xs, ys), zs) =List append(xs, append(ys, zs))

1. show ∀xs, ys, zs. ϕ
2. ∀-intro: show ϕ where now xs, ys, zs are fresh variables
3. to this end prove intermediate goal: ∀xs. ϕ
4. applying induction axiom

ϕ[xs/Nil] −→ (∀u, us. ϕ[xs/us] −→ ϕ[xs/Cons(u, us)]) −→ ∀xs. ϕ
in combination with modus ponens yields two subgoals, one of them is ϕ[xs/Nil], i.e.,
append(append(Nil, ys), zs) =List append(Nil, append(ys, zs))

5. use axiom ∀ys. append(Nil, ys) =List ys
6. ∀-elim: append(Nil, append(ys, zs)) =List append(ys, zs)
7. at this point we would like to simplify the rhs in the goal to obtain obligation

append(append(Nil, ys), zs) =List append(ys, zs)
8. this is not possible at this point: there are missing axioms

• =List is an equivalence relation
• =List is a congruence; required to simplify the lhs append(·, zs) at ·
• . . .

• reconsider the reasoning engine and the available axioms in part 5
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Summary of Part 3

• definition of well-defined functional programs
• datatypes and function definitions (first order)
• type-preserving equations within simple type system
• well-defined: terminating, pattern complete and pattern disjoint

• definition of operational semantics ↪→
• definition of standard model
• definition of several axioms (inference rules)

• all axioms are satisfied in standard model, so they are consistent

• upcoming
• part 4: detect well-definedness, in particular termination
• part 5: equational reasoning engine to prove properties of programs
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