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Overview

definition of a small functional programming language
® operational semantics
® a model in many-sorted logic

® derived inference rules
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Functional Programming — Data Types

Data Type Definitions
® a functional program contains a sequence of data type definitions

® while processing the sequence, we determine the set of types Ty, the signature 3, and the
predicates P, which are all initially empty
® each data type definition has the following form

dataT=c1:m1 X...XTim — T

| where

| Cn i Tht X ooo X Tm, = T
°7¢Ty fresh type name
® iy en €% and ci#cjfori#j fresh and distinct constructor names
® eachr,; e {T}UTy only known types
® exists ¢; such that 7; ; € Ty for all j non-recursive constructor

o effect: add type, constructors and equality predicate

* Ty:=TyU{r}
Y =XU{c1 T X ... X Timy = TyeveyCniTn 1 X oo X T, —> T}

e P:=PU{=,C7x7}
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Data Type Definitions: Examples

RT (DCS @ UIBK)

Data Type Definitions: Example and Standard Model

RT (DCS @ UIBK)

Functional Programming — Data Types

Tj=2=P=0

data Nat = Zero : Nat | Succ : Nat — Nat

processing updates Ty = {Nat},

¥ = {Zero : Nat, Succ : Nat — Nat}

and P = {=nat C Nat x Nat}

data List = Nil : List | Cons : Nat x List — List
processing updates Ty = {Nat, List},

¥ = {Zero : Nat, Succ : Nat — Nat, Nil : List, Cons : Nat x List — List}
and P = {=nat C Nat x Nat, =t C List x List}

data BList = NilB : BList | ConsB : Bool x BList — BList
not allowed, since Bool ¢ Ty

data LList = Nil : LList | Cons : List x LList — LList
not allowed, since Nil and Cons are already in X

data Tree = Node : Tree x Nat x Tree — Tree
not allowed, since all constructors are recursive
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Functional Programming — Data Types

data Nat = Zero : Nat | Succ : Nat — Nat
processing creates universe At via the inference rules

t e vzlPdat

Zero € Anat Succ(t) € Anat

i.e., Anat = {Zero, Succ(Zero), Succ(Succ(Zero)), ...}

ZeroM = Zero Succ™(t) = Succ(t)
=01, = {(Zero, Zero), (Succ(Zero), Succ(Zero)), ...}
data List = Nil : List | Cons : Nat x List — List

processing creates universe Ay via the inference rules

t1 € Anat T2 € AList
Cons(t1,t2) € AList

Nil € ALt

i.e., AList = {Nil, Cons(Zero, Nil), Cons(Succ(Zero), Nil), ...}
=M. = {(Nil,Nil), (Cons(Zero, Nil), Cons(Zero, Nil)), ...}
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Functional Programming — Data Types

Data Type Definitions: Standard Model

® while processing data type definitions we also build a model M for the functional
program, called the standard model

® when processing

data7=o¢1:

| Cnt T X ...

T11 X oo X Timg — T

X Tnom, — T

® define universe A, for new type 7 inductively via the following inference rules
(one for each 1 <i < n)

t1€ Ar, tm; € Ar, .,
Ci(tl, . 7tmi) €A,
® define cM(ty,. .. tm,) = (tl,...,tml) uninterpreted constructors
® define :;"‘ ={(t,t) |t e A} equality
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Well-Definedness of Standard Model

® question: is the standard model really a model in the sense of many-sorted logic

® is there a unique type for each c7 €eXYand =, €P
® are the definitions of ¢ and = well-defined
® are the definitions of A, weII—defmed, e, A, £ 0

® recall: each data definition has the following form

dataT=cr:T1 X...X T m — T
| Cn i Tni X oo X Tym,, = T
where
*T¢Ty
®¢,..,cn g% and ci #cjfori#y

Functional Programming — Data Types

fresh type name

fresh and distinct constructor names

® each7;; €{T}UTy
® exists ¢; such that 7; ; € Ty for all j

® what could happen if one of the conditions is dropped?
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only known types
non-recursive constructor
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Functional Programming — Data Types

Non-Empty Universes
e without the last condition (non-recursive constructor) the following data type declaration
would be allowed (assuming that Nat and Succ are fresh names)

data Nat = Succ : Nat — Nat

with the universe defined as the inductive set Apnat

t e -ANat
Succ(t) € Anat

® consequence: Anat = @

® hence, non-recursive constructors are essential for having non-empty universes
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Functional Programming — Data Types

Current State

® presented: data type definitions
® semantics:

® free constructors: each constructor is interpreted as itself

® universe as inductively defined sets: no infinite terms, such as infinite lists
Cons(Zero, Cons(Zero, .. .))
(modeling of infinite data structures would be possible via domain-theory)

® upcoming: functional programs, i.e., function definitions
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Functional Programming — Data Types

Non-Empty Universes: Proof

Theorem

Let there be a list of data type declarations and an arbitrary type 7 from this list. Then
A #o.

Proof

Let 7,..., T, be the sequence of types that have been defined. We show
Pn):=Vi<i<n A, #0

by induction on n. This will entail the theorem.

In the base case we have to prove P(0), which is trivially true. Now let us show P(n + 1)
assuming P(n). Because of P(n), we only have to prove A,  , # @. By the definition of
data types, there must be some ¢; : 751 X ... X Tjm; — Tny1 Where all 7 ; € {71,...,7}. By
the IH P(n) we know that A, . # & for all j between 1 and m;. Hence, there must be terms
th€An,, ... tm, € ATi,mi' Consequently, ¢;(t1,...,tm;) € Ar,,, and hence A, # @.

RT (DCS @ UIBK) Part 3 — Semantics of Functional Programs 10/75

Functional Programming — Function Definitions
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Functional Programming — Function Definitions Functional Programming — Function Definitions

Splitting the signature
e distinguish between

® constructors, declared via data (capital letters in Haskell)
e.g., Nil, Succ, Cons . . . e .
® defined functions, declared via equations (lowercase letters in Haskell) Notions for Preparing Function Definitions
e.g., append, add, reverse ® a pattern is a term in 7(C,V), usually written p or p;
e formally, we have ¥ =CWD ® aterm ¢ in T(X,V) is linear, if all variables within ¢ occur only once
e (C is set of constructors, defined via data ® reverse(Cons(z, Cons(y, xs))) v
® constructors are written ¢, ¢;, d in generic constructors such as data type definitions * reverse(Cons(z, Cons(z, z5))) X
® start with uppercase letters in concrete examples (Succ, Cons) ® the variables of a term ¢ are defined as Vars(t)
e D is set of defined symbols, defined via function declarations ® Vars(z) = {«}
® defined (function) symbols are written f, f;, g in generic constructors such as function ® Vars(F(ty,....t,)) = Vars(ty) U...UVars(t,)
definitions
® start with lowercase letters in concrete examples (append, reverse)
® we use I, G for elements of 3 whenever separation between C and D is not relevant
® note that in the standard model, A; is exactly 7(C), := T (C, @),
which is the set of constructor ground terms of type 7
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Function Definitions Frmm— Function Definitions: Examples Fmm—

® besides data type definitions, a functional program consists of a sequence of function ® assume data types Nat and List have been defined as before (slide 5)
definitions, each having the following form

add : Nat x Nat — Nat

fiTi X .. XTp—T add(Zero,y) =y
bhh=mn add(Succ(x), y) = add(z, Succ(y))
by, = T'm append : List x List — List

append(Cons(z, zs),ys) = Cons(z, append(zs, ys))
where

e fisafreshnameand D:=DU{f:7 X...x 1, = T}
(hence, f is also added to ¥ = C U D)

® each left-hand side (lhs) ¢; is linear

append(xs,ys) = ys

head : List — Nat

head(Cons(z, zs)) = x
® each lhs ¢; is of the form f(p1,...,p,) with all p;'s being patterns

e each lhs ¢; and rhs r; respect the type: 4;,7; € T(X, V), zeros : List
® each equation ¢; = r; satisfies the variable condition Vars(r;) C Vars(¢;) zeros = Cons(Zero, zeros)
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Function Definitions: Non-Examples

Functional Programming — Function Definitions

® assume program from previous slides + data Bool = True | False

RT (DCS @ UIBK)

even : Nat — Bool
even(Zero) = True
even(Succ(x)) = odd(x)
odd : Nat — Bool
odd(Zero) = False
odd(Succ(x)) = even(z)
random : Nat

random =z

minus : Nat x Nat — Nat
minus(Succ(z), Succ(y)) = minus(z, y)
minus(z, Zero) = x
minus(z, z) = Zero

minus(add(z,y),z) =y

Part 3 — Semantics of Functional Programs

Semantics for Function Definitions — Continued

® required: fM:

TC)r x...xT(C)r, = T(C)r

e idea: define fM(ty,...,t,) as

the result of f(t1,...,t,) after evaluation wrt. equations in program

® several issues:

® how is term evaluation defined?

17/75

Functional Programming — Function Definitions

® briefly: replace instances of |hss by instances of rhss as long as possible

® is result unique?
® is result element of 7(C),?
® does evaluation terminate?

RT (DCS @ UIBK)
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Functional Programming — Function Definitions

Semantics for Function Definitions

® problem: given a function definition

we need to extend the semantics in the standard model, i.e., define the function

or equivalently

fim X X1 =T

5127‘1

by = T,

fMiAL XX AL — A

FM Ty % oo X T(C)r, — T(C)s

e idea: define fM(ty,...,t,) as

RT (DCS @ UIBK)

Function Definitions: Examples

the result of f(t1,...,t,) after evaluation wrt. equations in program

Part 3 — Semantics of Functional Programs

® consider previous program, type declarations omitted

add(Zero,y) =y

add(Succ(z),y) = add(x, Succ(y))
append(Cons(z, zs),ys) = Cons(z, append(zs, ys))
append(xs,ys) = ys

head(Cons(z, zs)) = x

zeros = Cons(Zero, zeros)

® is result unique? no: consider ¢ = append(Cons(Zero, Nil), Nil)

then ¢
and ¢

3

4)

Nil

) Cons(Zero, append(Nil, Nil)) o Cons(Zero, Nil)

® is result element of 7(C),? no: head(Nil) cannot be evaluated

® does evaluation terminate? no: zeros = Cons(Zero, zeros) = ...

® solution: further restrictions on function definitions

RT (DCS @ UIBK)
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Functional Programming — Function Definitions

(1)
(2)
(3)
(4)
(5)
(6)
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Functional Programming — Operational Semantics

Functional Programming — Operational Semantics

Matching
® we define matching as an operation on a set of pairs P = {(¢1,%1),..., (¢n,tn)} and the
task is to decide: do.lioc =t1 A ... Nl,o =t,, ie.,
® either return the required substitution o in the form of a set of pairs {(x1,$1), ..., (Tm,Sm)}

with all z; distinct which can then be interpreted as the substitution o defined by

olz) = sqi, if x = x; for some i
x, otherwise

® or return L indicating that no such substitution exists
® matching algorithm
® if P contains a pair (F({1,...,0,), F(t1,...
(b1,t1)y ey (Lnytn)

,tn)), then replace this pair by the n pairs
decompose

® if P contains (F(...),G(...)) with F' # G, then return L clash
® if P contains (F(...),z) with € V, then return L fun-var
® if P contains (z,s) and (z,¢) with z € V and s # ¢, then return L var-clash
® if none of the above rules is applicable, then return P
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Functional Programming: Operational Semantics
® operational semantics: formal definition on how evaluation proceeds step-by-step

® main operation: applying a substitution o : V — T(X,V) on a term,
can be defined recursively

® zo=o(x)
® F(ty,...,tn)o = F(t10,...,t,0)

® one-step evaluation relation — C 7(3,V) x T (X, V) defined as inductive set

¢ = r is equation in program

root ste
lo— ro P
FeXY st e i text
rewrite in contexts
F(81,. y8iye-ey8n) = F(s1,. . tiy. ., 8n)

® given a term ¢ and a lhs /, for checking whether a root-step is applicable one needs
matching: Jo.fo =t (and also deliver that o)

® same evaluation as in functional programming (lecture),
except that order of equations is ignored and here it becomes formal

RT (DCS @ UIBK) Part 3 — Semantics of Functional Programs

Functional Programming — Operational Semantics
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Functional Programming — Operational Semantics

Matching — Example

® we want to test whether there is a root step possible for the term

t = append(Cons(y, Nil), Cons(y, ys)) w.r.t. the equation

(¢ = r) = (append(Cons(z, xs),ys) = Cons(x, append(zs,ys)))
® setup matching problem {(¢,t)}

P = {(append(Cons(z, zs), ys), append(Cons(y, Nil), Cons(y, ys)))}
e decomposition: P = {(Cons(z, zs), Cons(y, Nil)), (ys, Cons(y, ys))}
e decomposition: P = {(z,y), (zs, Nil), (ys, Cons(y,ys))}

Y, if z==a
Nil, if z=us
® obtain substitution o(z) = Cons( L
ons(y,ys), ifz=ys
z, otherwise

® so, t = fo — ro = Cons(x, append(xs,ys))o = Cons(y, append(Nil, Cons(y, ys)))

RT (DCS @ UIBK) Part 3 — Semantics of Functional Programs
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Functional Programming — Operational Semantics
Matching — Verification and Termination Proof
® matching algorithm

® whenever P contains a pair (F({1,...,0y), F(t1,...,t,)), replace this pair by the n pairs

(b1,t1),y -y (Lnytn) decompose
° e
® soundness = termination + partial verification
® termination: in each step, the sum of the size of terms is decreased
[(F(ly, . ln), Ftr, . tp)| = [F(Crs o )| + [F (- )|
=14+ |6l+1+) |t
i i
>+ |t
i i
= Z |(£i> tz)|
i
RT (DCS @ UIBK) Part 3 — Semantics of Functional Programs 25/75

Functional Programming — Operational Semantics

Matching — Structure of Result

® matching algorithm

® whenever P contains (EF'({y1,...,0,), F(t1,...,tn)) ... decompose
® whenever P contains (F'(...),G(...)) with F' # G, then return L clash
® whenever P contains (F(...),z) with x € V, then return L fun-var
® whenever P contains (z,s) and (z,t) with x € V and s % t then return L var-clash
® when none of the above rules is applicable, return P

® property: result of matching algorithm on well-typed inputs is L or set

{(z1,51),- -, (®m, Sm)} with all z; distinct

® proof

® assume result is not L, then it must be some set of pairs P = {(u1,51),..., (Um,Sm)}

where no rule is applicable

® if all w;'s are variables, then the result follows: there cannot be two entries (u;, s;) and
(uj,sj) with u; = u; and s; # s; because then "var-clash” would have been applied

® it remains to consider the case that some u; = F'({y,...,4,)

® s, = F(ty,...,tx), as result is not L, cf. "clash” and "fun-var”

® then & = n because of type preservation: contraction to "decompose”
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Functional Programming — Operational Semantics

Matching — Type Preservation

® matching algorithm

® whenever P contains a pair (F({1,...
(G1,t1)5 oy (Onsty)

o)y F(t1,...,tn)), replace this pair by the n pairs

decompose

® property: we say that a set of pairs P is type-correct, iff for all pairs (¢,t) € P the types
of £ and ¢ are identical, i.e.,, 37. {4, ¢t} CT(Z,V),

® theorem: whenever P is type-correct, then P will stay type-correct during the algorithm;
consequently, any result # L will be type-correct

® proof: we prove an invariant, so we only need to prove that the property is maintained
when performing a step in the algorithm:
consider " decompose”
® we can assume {F'({1,...,0,), F(t1,...
® 50 F:71 X...XT, — 7 for suitable 7;
® hence, {¢;,t;} C T(X,V),, foralli

i)} CT(E,V)r
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Functional Programming — Operational Semantics

Matching — Preservation of Solutions

® matching algorithm

® whenever P contains a pair (F({1,...,0y), F(t1,...,t,)), replace this pair by the n pairs

(1,t1)y ey (Lnytn) decompose
® whenever P contains (F(...),G(...)) with F' # G, then return L clash
® whenever P contains (F'(...),z) with € V, then return L fun-var
® whenever P contains (x,s) and (z,t) with © € V and s # t then return L var-clash
°

when none of the above rules is applicable, return P

® property: algorithm preserves matching substitutions
(where L has no matching substitution)
® proof via invariant: whenever P is changed to P’, then o is a matcher of P iff o is
matcher of P’
® clash: both "o is matcher of {(F(...),G(...))} UP" and
"o is matcher of L" are wrong: F(t1,...)0 = F(t0,...) # G(...)
® fun-var and var-clash are similar
® decompose: F'(ly,...,4p)0 = F(t1,...,tn)
— F(Ela,...,ﬂna) = F(tl,... 7tn)
<—>Z10’=t1/\.../\£no'=tn
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Functional Programming — Operational Semantics

Matching Algorithm — Summary

® algorithm: apply certain steps until no longer possible
® (one) termination proof
® (many) partial soundness proofs
mainly by showing an invariant that is preserved by each step

* type preservation Semantics in the Standard Model
® preservation of matching substitutions

® result is L or a set which encodes a substitution
® application: compute root steps by testing whether decomposition of term into {o for
equation ¢ = r is possible
e core of functional programming (and term rewriting)

® much better algorithms exists, which avoid to match against all Ihss, based on
precalculation (term indexing), e.g., group equations by root symbol of lhss
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Semantics in the Standard Model Semantics in the Standard Model

Towards Semantics in Standard Model .
Type Preservation of —

® evaluation of terms is now explained: one-step relation — . o how that .
. C : ) aim: show that < preserves types:
® algorithm for evaluation is similar to matching algorithm:

apply —-steps until no longer possible teT(E V) —mt—=s—seT(E,V),
® questions are similar as in matching algorithm
® termination: do we always get result?
® preservation of types? ® preliminary: we call a substitution type-correct, if o(z) € T(2,V), whenever z : 7 € V
® is result a desired value, i.e., a constructor ground term? ® easy result: whenever t € T(X,V), and o is type-correct, then to € T(3,V),
® is result unique? (how would you prove it?)

e proof will be by induction w.r.t. inductively defined set < for arbitrary

® questions don't have positive answer in general, cf. slide 20
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Semantics in the Standard Model

Type Preservation of — — Proof

® proof: induction w.r.t. inductively defined set < for arbitrary 7
® base case: {o — ro for some equation £ = r of the program where {o € T(X,V), and
we have to prove ro € T(Z, V),
® since o € T(X,V),, and {,r € T(X,V), by the definition of functional programs, we
conclude that o is type-correct, cf. slide 26
® and since r € T(X,V), and o is type-correct, then also ro € T(X,V),, cf. previous slide
® step case: F(S1,...,8i,...,8n) < F(s1,...,t;,...,8y,) since s; <= t;, we know
F(s1,..-,8iy---,8n) € T(X,V), and have to prove F(s1,...,ti,...,8,) € T(X, V),
® since F($1,...,8i,...,5n) € T(X,V),, we know that F': 7y X ... X 7, = 7 € ¥ and each
55 €T(E, V), for1<j<n
® by the IH we know ¢; € T(X,V),, — note that here we can take a different type than 7,
namely 7;, because the induction was for arbitrary 7
® but then we immediately conclude F(s1,...,t;,...,8,) € T(X, V),
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Semantics in the Standard Model

Preservation of Groundness of —*

® aterm ¢ is ground if Vars(t) = &, or equivalently if ¢t € T(X)

® recall aim: we want to evaluate ground term like append(Cons(Zero, Nil), Nil) to element
of universe, i.e., constructor ground term

® hence, we need to ensure that result of evaluation with < is ground

® preservation of groundness can be shown with similar proof structure as in the proof of
preservation of types
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Semantics in the Standard Model

Type Preservation of —*

e finally, we can show that evaluation (execution of arbitrarily many <—-steps, written —*)
preserves types, which is an easy induction proof by the number of steps, using
type-preservation of —

® theorem: whenever t € T(X,V), and t —* s, then s € T(X,V),

® proofs to obtain global result

1. show that matching preserves types (slide 26)
proof via invariant, since matching algorithm is imperative (while rules-applicable ...)
2. show that substitution application preserves types (slide 31)
proof by induction on terms, following recursive structure of definition of substitution
application (slide 22)
3. show that < preserves types (slide 33)
proof by structural induction wrt. inductively defined set <—;
uses results 1 and 2
4. show that <™ preserves types
proof on number of steps; uses result 3
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Semantics in the Standard Model

Normal Forms — The Results of an Evaluation
® aterm ¢ is a normal form (w.r.t. <) if no further <-steps are possible:
iﬂs. t—s
® whenever t <—* s and s is in normal form, then we write
t's
and call s a normal form of ¢

® normal forms represent the result of an evaluation
® known results at this point: whenever t € 7(X), and t <' s then

* seT(X,V), (type-preservation)

* seT(X) (groundness-preservation)

* seT(X), (combined)
® missing:

* seT(C), (constructor-ground term)

® s is unique
® s always exists
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Semantics in the Standard Model

Pattern Completeness

® a function symbol f: 71 X ... x 7, = 7 € D is pattern complete iff for all t; € T(C),,
.., tn € T(C),, there is an equation £ = r in the program, such that £ matches

flta, ... tn)

® a functional program is pattern complete iff all f € D are pattern complete

® example

append(Cons(z, zs), ys) = Cons(z, append(zs, ys))
append(Nil, ys) = ys
head(Cons(z, zs)) = x

® append is pattern complete
® head is not pattern complete: for head(Nil) there is no matching lhs
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Semantics in the Standard Model
Pattern Disjointness

® a function symbol f: 71 x ... x 7, = 7 € D is pattern disjoint iff for all t; € T(C)~,,
...y ty € T(C)s, there is at most one equation ¢ = r in the program, such that ¢
matches f(t1,...,t,)

® 3 functional program is pattern disjoint iff all f € D are pattern disjoint

® example

append(Cons(z, zs), ys) = Cons(z, append(zs, ys))
append(xs,ys) = ys

head(Cons(z,zs)) =«

® head is pattern disjoint
® append is not pattern disjoint: the term append(Cons(Zero, Nil), Nil) is matched by the Ihss
of both append-equations
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Semantics in the Standard Model

Pattern Completeness and Constructor Ground Terms

® theorem: if a program is pattern complete and ¢ € T(X); is a normal form, then
teT(C),
® proof of P(t,7) by structural induction w.r.t. T(X), for

P(t,7):=tis normal form — t € T(C),

® induction yields only one case: t = F(t1,...,t,) where F: 7y X ... X T, > TE€X

® |H for each i: if ¢; is normal form, then t; € T(C)-,

® premise: F(t1,...,t,) is normal form

® from premise conclude that ¢; is normal form:
(if t; < s; then F(t1,...,t,) < F(t1,...,8i,...,tn) shows that F(t1,...,t,) is not a
normal form)

® in combination with IH: each t; € T(C),

® consider two cases: '€ Cor F €D

® case F' € C: using t; € T(C),, immediately yields F(t1,...,t,) € T(C),

® case F' € D: using pattern completeness and ¢; € 7(C),,, conclude that F(t1,...,t,) must

be matched by Ihs; this is contradiction to F'(¢y,...,%,) being a normal form
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Semantics in the Standard Model

Pattern Disjointness and Unique Normal Forms

® theorem: if a program is pattern disjoint then < is confluent and each term has at most
one normal form

® confluence: whenever s —* t and s —* u then there exists some v such that ¢ —* v and
u—*v
® proof of theorem:
® pattern disjointness in combination with the other syntactic restrictions on functional
programs implies that the defining equations form an orthogonal term rewrite sytem
® Rosen proved that orthogonal term rewrite sytems are confluent
® confluence implies that each term has at most one normal form
® full proof of Rosen given in term rewriting lecture, we only sketch a weaker property on the
next slides, namely local confluence: whenever s < t and s < u then there exists some v
such that t —=* v and u —* v
® Jocal confluence in combination with termination also implies confluence

RT (DCS @ UIBK) Part 3 — Semantics of Functional Programs 40/75


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Semantics in the Standard Model

Proof of Local Confluence: Two Root Steps

® consider the situation in the diagram where two root steps with equations ¢; = r; and
ly = ro are applied

I\

gﬂ
O: 2

/ Y

7, v,
[\
% 7

because of pattern disjointness: ({1 =11) = (f2 = r2)
® uniqueness of matching: o1(z) = o2(x) for all 2 € Vars(4y ;)
® variable condition of programs: o1(x) = o2(z) for all = € Vars(ry2)

® hence 1101 = 1909
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Semantics in the Standard Model

Proof of Local Confluence: Root- and Substitution-Step
® consider the situation in the diagram where a root step overlaps with a step done in the

substitution

® just do the steps in reverse order (perhaps multiple times)
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Semantics in the Standard Model

Proof of Local Confluence: Independent Steps

® consider the situation in the diagram where two steps at independent positions are applied

AN

® just do the steps in reverse order
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Semantics in the Standard Model

Graphical Local Confluence Proof
® the diagrams in the three previous slides describe all situations where one term can be
evaluated in two different ways (within one step)
® in all cases the diagrams could be joined
e overall: intuitive graphical proof of local confluence

® often hard task: transform such an intuitive proof into a formal, purely textual proof,
using induction, case-analysis, etc.
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Semantics in the Standard Model

Semantics for Functional Programs in the Standard Model

® we are now ready to complete the semantics for functional programs
® we call a functional program well-defined, if

® it is pattern disjoint,

® it is pattern complete, and

® < is terminating

o for well-defined programs, we define foreach f: 7 X ... x 7, > 7€ D
MET(C)ry X o X T(C)r,, — T(C)r
P, t) = s
where s is the unique normal form of f(t1,...,t,), i.e., f(t1,...,tn) ='s
® remarks:

® a normal form exists, since < is terminating
® s is unique because of pattern disjointness
® s € T(C), because of pattern completeness, and type- and groundness-preservation
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Semantics in the Standard Model

Without Pattern Disjointness
® consider Haskell program

conj :: Bool -> Bool -> Bool
conj True True = True -- (1
conj x N = False -- (2)

® obviously not pattern disjoint
® however, Haskell still has unique results, since equations are ordered

® an equation is only applicable
if all previous equations are not applicable
® so, conj True True can only be evaluated to True

® ordering of equations can be resolved by instantiation equations via complementary

patterns
e equivalent equations (in Haskell) which do not rely upon order of equations
conj :: Bool -> Bool -> Bool
conj True True = True -- (1)
conj False y = False -- (2) with x / False
conj True False = False -- (2) with x / True, y / False
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Summary: Standard Model

® standard model
® universes: T(C),
® constructors: cM(ty,...,t,) =c(t1,... tn)
® defined symbols: fM(ty,...,t,) is normal form of f(t1,...,t,) wrt. <
e if functional program is well-defined
® pattern disjoint,
® pattern complete, and
® < is terminating
then standard model is well-defined
® upcoming
® what about functional programs that are not well-defined?
® comparison to real functional programming languages
® treatment in real proof assistants
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Semantics in the Standard Model

Without Pattern Disjointness — Continued
® pattern disjointness is sufficient criterion to ensure confluence

® overlaps can be allowed, if they do not cause conflicts

® example:
conj :: Bool -> Bool -> Bool
conj True True = True
conj False y = False -- (1)
conj x False = False -- (2)

the only overlap is conj False False; it is harmless since the term evaluates to the
same result using both (1) and (2)
® translating ordered equations into pattern disjoint equations or equations which only have
harmless overlaps can be done automatically
® usually, there are several possibilities
¢ finding the smallest set of equations is hard
® automatically done in proof-assistants such as Isabelle;
e.g., overlapping conj from previous slide is translated into above one
® consequence: pattern disjointness is no real restriction
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Semantics in the Standard Model

Without Pattern Completeness
® pattern completeness is naturally missing in several functions

® examples from Haskell libraries
head :: [a] -> a
head (x

® resolving pattern incompleteness is possible in the standard model

xs) = x
® determine missing patterns
® add for these missing cases equations that assign some element of the universe

head(Cons(z, zs)) =«
head(Nil) = some element of T(C)nat

equation as before

new equation

in this way, head becomes pattern complete and head™ is total
® "some element” really is an element of 7 (C)nat,
and not a special error value like L
® the added equation with "some element” is usually not revealed to the user, so she cannot
reason about what number head(Nil) actually is

® consequence: pattern completeness is no real restriction
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Semantics in the Standard Model

Without Termination
e definition of standard model just doesn’'t work properly in case of non-termination

® one possibility: use Scott's domain theory where among others,
explicit L -elements are added to universe
® examples
® Apnat = {L, Zero, Succ(Zero), Succ(Succ(Zero)), . .., Succ™}
® Auise = {L,Nil, Cons(Zero, Nil), Cons(_L, Nil), Cons(L, L),...}
® then semantics can be given to non-terminating computations
® inf = Succ(inf) leads to inf™ = Succ™®
® undef = undef leads to undef™ = L
® problem: certain equalities don't hold wrt. domain theory semantics
® assume usual definition of program for minus, then
V. minus(z,x) = Zero is not true, consider x = inf or = undef
® since reasoning in domain theory is more complex,
in this course we restrict to terminating functional programs

® even large proof assistants like Isabelle and Coq usually restrict to terminating functions

for that reason
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Plan

® from now until the end of these slides consider only well-defined functional programs, so
that standard model is well-defined
® aim
® derive theorems and inference rules
which are valid in the standard model
® these can be used to formally reason about functional programs
as on slide 1/18 where associativity of append was proven
® examples
® reasoning about constructors

® Vz,y. Succ(x) =nat Succ(y) <—  =nat Y
® Vz. - Succ(z) =nat Zero

® getting defining equations of functional programs as theorems
® Vz,xs,ys. append(Cons(z, zs), ys) =Lt Cons(z, append(zs,ys))

® induction schemes
p(Zero) Vz.p(xz) — p(Succ(z))

° V. p(z)
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Inference Rules for the Standard Model

Notation — The Normal Form
® when speaking about <, we always consider some fixed well-defined functional program

® since every term has a unique normal form wrt. <, we can define a function
LT, V) = T(X,V), which returns this normal form and write it in postfix notation:

t [ := the unique normal of ¢ wrt. —
® using [, the meaning of symbols in the standard model can concisely be written as
FM(ty, ... ty) = F(ty, ... tn) ]

® proof
o if FeC, then FM(ty,. .. t)) S F(ty, ... tn) = F(t1,...,tn) ]
o if FeD, then FM(ty, ... t,) " F(tr,... tn)]
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Reverse Substitution Lemma in the Standard Model
® the substitution lemma holds independently of the model
® in case of the standard model, we have the special condition that A, = 7(C);, so

® the universes consist of terms
® hence, each environment a : V. — T(C). is a special kind of substitution
(constructor ground substitution)

® consequence: possibility to encode environment as substitution

® reverse substitution lemma:

[tla = taf

proof by structural induction on ¢
°* [z]a = a(z) @ a(z) [ = za [ where (x) holds, since a(z) € T(C)
[[F(tla ce. ,tn)]]oc = FM([[tl]]Ow CRR ) [[tnﬂa)
L pMtal, .. teal) = F(tial, ... taal) [

€Y pita,. . tha) [ = F(ty,... ta)al
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The Substitution Lemma

® there are two possibilities to plug in objects into variables

® as environment: oV, — A,
result of [t], is an element of A,

® as substitution: o : V, — T(X,V),
result of to is an element of T(X,V),

® substitution lemma: substitutions can be moved into environment:

Htaﬂn - [[ﬂ]ﬁ
where §(z) := [o(2)]a

® proof by structural induction on ¢
: [z0]a = [0(2)]a = B(z) = [z]5
[E(t1,. .. tn)o]a = [F(t10,. .. t00)]a
= FM([t10]a;, - - -, [tn0]a)
= FM (s, [tals)
=[F(t1,...,tn)]s
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Defining Equations are Theorems in Standard Model

® notation: 9@ means that universal quantification ranges over all free variables that occur
in @
® example: if ¢ is append(Cons(z, zs),ys) =List Cons(z, append(xs,ys)) then ch is

YV, xs,ys. append(Cons(z, xs),ys) =List Cons(z, append(zs,ys))

theorem: if £ = r is defining equation of program (of type 7), then
MEVE=, 7

® consequence: conversion of well-defined functional programs into equations is now
possible, cf. previous problem on slide 1/21

proof of theorem

® by definition of = and =™ we have to show [(], = [r]« for all
® via reverse substitution lemma this is equivalent to la [ = ra.[
® easily follows from confluence, since fa — ra
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Inference Rules for the Standard Model

Axiomatic Reasoning

RT (DCS @ UIBK)

previous slide already provides us with some theorems that are satisfied in standard model
axiomatic reasoning:

take those theorems as axioms to show property ¢

added axioms are theorems of standard model, so they are consistent

example AX = {V{ =, 1|0 =ris def. eqn.}

show AX = ¢ using first-order reasoning in order to prove M = ¢

(and forget standard model M during the reasoning!)

question: is it possible to prove every property ¢ in this way for which M = ¢ holds?
answer for above example is " no"”

® reason: there are models different than the standard model in which all axioms of AX are
satisfied, but where ¢ does not hold!
® example on next slide
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Inference Rules for the Standard Model

Godel’s Incompleteness Theorem

RT (DCS @ UIBK)

taking AX as set of defining equations does not suffice to deduce all valid theorems of
standard model

obvious approach: add more theorems to axioms AX

(theorems about =, induction rules, ...)

question: is it then possible to deduce all valid theorems of standard model?
negative answer by Godel's First Incompleteness Theorem

theorem: consider a well-defined functional program that includes addition and
multiplication of natural numbers;

let AX be a decidable set of valid theorems in the standard model;
then there is a formula ¢ such that M |= ¢, but AX }~ ¢

note: adding ¢ to AX does not fix the problem, since then there is another formula ¢’
so that AX U {¢} £ ¢
consequence: " proving ¢ via AX | ¢" is sound, but never complete

upcoming: add more axioms than just defining equations,
so that still several proofs are possible
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Axiomatic Reasoning — Problematic Model
® consider addition program, then example AX consists of two axioms

Vy.plus(Zero, y) =nat y
Yz, y. plus(Succ(x), y) =nat Succ(plus(z,y))

® we want to prove associativity of plus, so let ¢ be

Inference Rules for the Standard Model

Va,y, z. plus(plus(z,y), 2) =nat plus(z, plus(y, 2))

e consider the following model M’

Anae =NU{z+ 3 |zez}={.. -1}, -3,0,3,1,1,2,22 ...}

e ZeroM =0
® SuceM'(n)=n+1

RT (DCS @ UIBK)

Axioms

ifneNormeN
n—m+ %, otherwise

:NatM = {(n,n) ‘ n e ANat}
M= NAX, but M’ = ¢: consider a(z) = 2, a(y) = 3,a(z) = 1
problem: values in & do not correspond to constructor ground terms

plus™’ (n,m) = ntm,

Part 3 — Semantics of Functional Programs

about Equality

58/75

Inference Rules for the Standard Model

® we define decomposition theorems and disjointness theorems in the form of logical
equivalences

® foreachc: 7 X ... X 1, — 7 € C we define its
decomposition theorem as

Ve(ar, ..o an) =7 c(yi, ..

) Z/'n,) 1= NI ATy =5, Yn

and for all d: 7{ x ... x 7, = 7 € C with ¢ # d we define the disjointness theorem as

—

Ve(zy, ..

® proof of validity of decomposition theorem:

iff
iff
iff
iff

RT (DCS @ UIBK)

Mg (@1, 20) =7 (Y1, ., Yn)

c(a(xl), LR Ck(ibn)) = C(a(yl)7 ceey a(yn))
a(z1) = ayr) and .. .and a(z,) = aly,)
MEq,z1 =1 y1and ...and M =y ©n =1, Yn
M ':axl =n 1A ANTp =1, YUn

Part 3 — Semantics of Functional Programs
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Inference Rules for the Standard Model

Axioms about Equality — Example

® for the datatypes of natural numbers and lists we get the following axioms

Zero =pat Zero <—» true
YV, y. Succ(x) =nat Succ(y) — & =Nat ¥
Nil =ist Nil «<— true

Ve, xs,y,ys. Cons(x, xs) =List Cons(y, ys) +— T =Nat Y A TS =List YS

Vy. Zero =nat Succ(y) +— false
V. Succ(z) =Nat Zero «+— false
Yy, ys. Nil =15t Cons(y, ys) +— false

YV, xs. Cons(z, xs) =Lt Nil +— false
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Induction Theorems — Example Instances
® induction scheme

@w(Zero) — (Vz. o(xz) — ¢(Succ(z))) — V. p(x)

e example: right-neutral element: ¢(z) := plus(z, Zero) =nat
plus(Zero, Zero) =nat Zero
— (V. plus(x, Zero) =nat £ — plus(Succ(z), Zero) =nat Succ(z))

— V. plus(z, Zero) =nat ©

® example with quantifiers and free variables:
o(x) == Vy. plus(plus(x, y), 2) =nat plus(z, plus(y, 2))

Vy. plus(plus(Zero, y), 2) =nat plus(Zero, plus(y, z))
— (V. (Vy. plus(plus(z, y), z) =Nat plus(z, plus(y, 2)))

— (Vy. plus(plus(Succ(x), y), 2) =Nat plus(Succ(z), plus(y, 2))))
— V. Vy. plus(plus(x, y), z) =nat plus(z, plus(y, 2))
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Induction Theorems
® current axioms are not even strong enough to prove simple theorems, e.g.,
V. plus(x, Zero) =nat @
® problem: proofs by induction are not yet covered in axioms

® since the principle of induction cannot be defined in general in a single first-order formula,
we will add infinitely many induction theorems to the set of axioms, one for each property

® not a problem, since set of axioms stays decidable, i.e., one can see whether some
tentative formula is an element of the axiom set or not
® example: induction over natural numbers
® formula below is general, but not first-order as it quantifies over ¢

Vo(z : Nat). p(Zero) — (V. p(z) — ¢(Succ(z))) — Va. p(z)

® quantification can be done on meta-level instead:
let © be an arbitrary formula with a free variable of type Nat; then

p(Zero) — (Vz. p(z) — ¢(Succ(z))) — V. p(x)

is a valid theorem; quantifying over ¢ results in induction scheme
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Preparing Induction Theorems — Substitutions in Formulas

® current situation

® substitutions are functions of type ¥V — T (X, V)
® lifted to functions of type 7(X,V) — T (X, V), cf. slide 22
® substitution of variables of formulas is not yet defined, but is required for induction formulas,
cf. notation ¢(z) — ¢(Succ(z)) on previous slide
e formal definition of applying a substitution ¢ on formulas
true o = true
(mp)o = —(po)
(pAY)o = o Ao
P(t1,...,tn)o = P(t10,...,t,0)
if z does not occur in o, i.e., o(z) =z and = ¢ Vars(o(y))

for all y # =
if x occurs in o where

(V. p)o = V. (po)

(V. p)o = (Vy. elz/yl)o
® y is a fresh variable, i.e., o(y) =y, y & Vars(o(z)) for all z # y, and y is not a free variable
of ¢
® [z/y] is the substitution which just replaces = by y
® effect is a-renaming: just rename universally quantified variable before substitution to avoid
variable capture
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Examples

® substitution of formulas
* (Vz.p)o =Vz. (po)
* (Va.p)o = (Vy. plz/y])o
® example substitution applications
® p:=Vr.ox =Nat ¥y
® oly/Zero] = Va.—x =nat Zero
® ply/Succ(z)] = V. 7z =nae Succ(z)
® oly/Succ(z)] = Vz. 7z =nat Succ(z)
without renaming result would be wrong: Va. =& =yat Succ(x)
® plz/Succ(y)] =Vz. 2z =nar y
without renaming result would be wrong: Vx. = Succ(y) =nat ¥

if £ does not occur in o
if  occurs in o where y is fresh

no renaming required
no renaming required
renaming [z/z] required

renaming [z/z] required
® example theorems involving substitutions

plz/Zero] — (Vy. plz/y] — ¢[r/Succ(y)]) — Yz. ¢
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Substitution Lemma for Formulas — Proof Continued
® lemma: M |=q o iff M |=g ¢ where 8(z) := [o(2)]a

® proof by structural induction on ¢ for arbitrary o and o
® for quantification we here only consider the more complex case where renaming is required

* Mk, (Va.p)o
iff M = (Vy. o[z/y])o for fresh y
i M o Yy (9l2/1]0)
iff M E=qpy—q) 0lz/ylo for alla € A
iff M =g @ for all a € A where 8'(2) := [([z/y]o)(2)]ay:=q] (by IH)
iff M Eplzima) @ forallae A only non-automatic step
iff M =5 V. ¢
® equivalence of 3’ and [z := a] on variables of ¢
M ﬁ,(m) = [[([I/y]a')(x)]]a[y:a] = [[U(y)]]a[y:a] = Hy]]a[y:a] =a and B[x = a](x) =a
® 2z is variable of ¢, z # x:
by freshness condition conclude z # y and y ¢ Vars(o(z)); hence
/Bl(z) = [[([m/y]o')(z)]]a[y::a] = Ha(z)]a[y::a] = [[U(Z)]]a and
Blz :=a](2) = B(2) = [0(2)]a
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Substitution Lemma for Formulas

® example induction formula
plz/Zero] — (Vy. p[z/y] — ¢lz/Succ(y)]) — Vz. ¢

® proving validity of this formula (in standard model) requires another substitution lemma
about substitutions in formulas
® lemma: M =, po iff M =5 ¢ where () := [o(z)]a
® proof by structural induction on ¢ for arbitrary o and o
° M |:o< P(tl,...,tn)U
iff M =4 P(t10,...,t,0)
iff ([t10]as-- -, [tnola) € PM
iff (Tl ., [tul ) € PM
iff M =5 Plth, ... 1)
where we use the substitution lemma of slide 54 to conclude [t;0] = [¢t:]8
* M=, (mp)o iff M =q —(po) iff M o o
iff M b o (by IH) iff M =5 —p
® cases “true” and conjunction are proved in same way as negation
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Substitution Lemma in Standard Model
substitution lemma: M =, po iff M =5 ¢ where 5(z) := [o(2)]a

® |emma is valid for all models

in standard model, substitution lemma permits to characterize universal quantification by
substitutions, similar to reverse substitution lemma on slide 55
lemma: let z: 7 € V, let M be the standard model

1. M =y ¢ iff M =4 pln/t]

2. M=o V. @ iff M =4 ¢[z/t] for all t € T(C),
® proof
1. first note that the usage of afz := t] implies t € A, = T(C),;

by the substitution lemma obtain

M Ea plz/t]

iff M =5 ¢ for B(z) = [[2/1](2)]a = afz := [t]a](2)

iff M ':a[ac::t] P

2. immediate by part 1 of lemma

([tla = t, since t € T(C))
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Inference Rules for the Standard Model

Substitution Lemma and Induction Formulas

® substitution lemma (SL) is crucial result to lift structural
induction rule of universe 7(C), to a structural induction formula

® example: structural induction formula 1 for lists with fresh x, xs

¥ = pys/Nil] — (Va, zs. plys/zs] — p[ys/Cons(z, z5)]) — Vys. ¢
N——

1 2

e proof of M =, :
assume premises 1 (M =4 ¢[ys/Nil]) and 2 and show M =, Vys. ¢:

by SL the latter is equivalent to "M k=, ¢[ys/¢] for all £ € T(C)List";
prove this statement by structural induction on lists

® Nil: showing M =, ¢[ys/Nil] is easy: it is exactly premise 1
® Cons(n,¢): use SL on premise 2 to conclude
M [=a (plys/zs] — olys/Cons(x, xs)])[x/n, s /(]
hence
M=o ¢lys/t] — ¢lys/Cons(n, 0)]
and with IH M =, ¢[ys/{] conclude M =, ¢[ys/Cons(n,?)]
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Inference Rules for the Standard Model

Structural Induction Formula
e finally definition of induction formula for data structures is possible

® consider
dataT=cr:m1 X...XTim — T
| Cn i Tni X oo X T, = T
® let z € V;, let ¢ be a formula, let variables z1, xo,... be fresh wrt. ¢

® for each ¢; define

©i =VTL, . T, — plz/ci(z1,. .., Tm,)]

A elofa;

JTij=T

IH for recursive arguments

e the induction formula is ¥V (p1 — ... —> pp — V. )

® theorem: M =V (91 — ... — @ — V2. @)
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Inference Rules for the Standard Model

Freshness of Variables
® example: structural induction formula for lists with fresh =, s
elys/Nill — (Y, zs. plys/xs] — lys/Cons(z, x5)]) — Vys. ¢
® why freshness required? isn't name of quantified variables irrelevant?
® problem: substitution is applied below quantifier!
® example: let us drop freshness condition and " prove” non-theorem

M EVz, zs,ys. ys =Lt Nil V ys =5t Cons(z, zs)

® by semantics of Vz, zs. ... it suffices to prove

M, Vys. ys =List Nil V ys =it Cons(z, zs)

73
® apply above induction formula and obtain two subgoals M =, ... for
® lys/Nil] which is Nil =g Nil V Nil =i Cons(z, zs)
® YV, xs. plys/zs] — plys/Cons(x, xs)] which is
Vz,zs. ... — Cons(x, xs) =Lt Nil V Cons(z, zs) =List Cons(z, zs)

® solution: rename variables in induction formula whenever required
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Inference Rules for the Standard Model

Proof of Structural Induction Formula

* to prove: M =V (1 — ... — o, — V. )
® V-intro: M =, (p1 — ... —> ¢, —> V. ) for arbitrary «
® —-intro: assume M =, ; for all ¢ and show M =, V. p
® V-intro via SL: show M =, ¢[z/t] for all t € T(C)-
® prove this by structural induction on ¢ wrt. induction rule of 7(C),
(for precisely this «, not for arbitrary )
® induction step for each constructor ¢; : T;1 X ... X Tym; = T
® aim: M=o olz/ci(te, .. tm,)] IH: M =, plz/t;] for all j such that 7, ; =7
® use assumption M =, ¢;, i.e., (here important: same «)

MEa Ve, o T, ( /\ olz/z;]) — pla/ci(z1, ..., Tm,)]

JTi g =T

® use SL as V-elimination with substitution [z1/t1,. .., Zm, /tm,], obtain

MEa (N ela/ty]) — ele/eiltis. . tm,)]

3T i =T

® combination with IH yields desired M =4 ¢[z/c;(t1,. .., tm,)]

RT (DCS @ UIBK) Part 3 — Semantics of Functional Programs 72/75


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Inference Rules for the Standard Model

Summary: Axiomatic Proofs of Functional Programs

® given a well-defined functional program, define a set of axioms AX consisting of

® equations of defined symbols (slide 56)
® axioms about equality of constructors (slide 60)
® structural induction formulas (slide 71)

® instead of proving M = ¢ deduce AX = ¢

e fact: standard model is ignored in previous step

® question: why all these efforts and not just state AX?
® reason:

having proven M =1 for all ¢ € AX
implies that AX is consistent!
® recall: already just converting functional program equations naively into theorems led to
proof of 0 = 1 on slide 1/21, i.e., inconsistent axioms,
and AX now contains much more powerful axioms
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Summary of Part 3

e definition of well-defined functional programs
® datatypes and function definitions (first order)
® type-preserving equations within simple type system
® well-defined: terminating, pattern complete and pattern disjoint

definition of operational semantics <
® definition of standard model
e definition of several axioms (inference rules)
® all axioms are satisfied in standard model, so they are consistent
® upcoming
® part 4: detect well-definedness, in particular termination
® part 5: equational reasoning engine to prove properties of programs
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Example: Attempt to Prove Associativity of Append via AX
® task: prove associativity of append via natural deduction and AX
® define ¢ := append(append(zs,ys), zs) =List append(zs, append(ys, 2s))
1. show Vxs,ys, zs. ¢
2. V-intro: show ¢ where now zs,ys, zs are fresh variables
3. to this end prove intermediate goal: Vzs. ¢
4. applying induction axiom
ples/Nil] — (Vu, us. plxs/us] — plrs/Cons(u, us)]) — Vas. ¢
in combination with modus ponens yields two subgoals, one of them is p[zs/Nill, i.e.,
append(append(Nil, ys), zs) =List append(Nil, append(ys, zs))
5. use axiom Vys. append(Nil, ys) =List ¥
V-elim: append(Nil, append(ys, zs)) =List append(ys, zs)
7. at this point we would like to simplify the rhs in the goal to obtain obligation

append(append(Nil, ys), zs) =List append(ys, zs)
8. this is not possible at this point: there are missing axioms

o

® —|i. is an equivalence relation
® =i is a congruence; required to simplify the Ihs append(:, zs) at -
L)

® reconsider the reasoning engine and the available axioms in part 5
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