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Overview

• recall: a functional program is well-defined if
• it is pattern disjoint,
• it is pattern complete, and
• ↪→ is terminating

• well-definedness is prerequisite for standard model, for derived theorems, . . .
• task: given a functional program as input, ensure well-definedness

• known: type-checking algorithm
• known: algorithm for checking pattern disjointness
• missing: algorithm for type-inference
• missing: algorithm for deciding pattern completeness
• missing: methods to ensure termination

• all of these missing parts will be covered in this chapter
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Type-Checking with Implicit Variables

Type-Inference
• structure of functional programs

• data-type definitions
• function definitions: type of new function + defining equations
• not mentioned: type of variables

• in proseminar: work-around via fixed scheme which does not scale
• singleton characters get type Nat
• words ending in ”s” get type List

• aim: infer suitable type of variables automatically

• example: given FP

append : List× List→ List

append(Cons(x, y), z) = Cons(x, append(y, z))

append(Nil, x) = x

we should be able to infer that x : Nat, y : List and z : List in the first equation,
whereas x : List in the second equation

RT (DCS @ UIBK) Part 4 – Checking Well-Definedness of Functional Programs 4/101

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Type-Checking with Implicit Variables

Interlude: Maybe-Type for Errors
• recall type-checking algorithm (variable case omitted)
type_check :: Sig -> Vars -> Term -> Maybe Type

type_check sigma vars (Fun f ts) = do

(tys_in,ty_out) <- sigma f

tys_ts <- mapM (type_check sigma vars) ts

if tys_ts == tys_in then return ty_out else Nothing

• Maybe-type is only one possibility to represent computational results with failure
• let us abstract from concrete Maybe-type:

• introduce new type Check to represent a result or failure
type Check a = Maybe a

• function return :: a -> Check a to produce successful results
• function to raise a failure

failure :: Check a

failure = Nothing
• convenience function: asserting a property
assert :: Bool -> Check ()

assert p = if p then return () else failure
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Type-Checking with Implicit Variables

Making Type-Checking More Abstract
• original type-checking algorithm
type_check :: Sig -> Vars -> Term -> Maybe Type

type_check sig vars (Var x) = vars x

type_check sigma vars (Fun f ts) = do

(tys_in,ty_out) <- sigma f

tys_ts <- mapM (type_check sigma vars) ts

if tys_ts == tys_in then return ty_out else Nothing

• with new abstract types and functions
type_check :: Sig -> Vars -> Term -> Check Type

type_check sig vars (Var x) = vars x

type_check sigma vars (Fun f ts) = do

(tys_in,ty_out) <- sigma f

tys_ts <- mapM (type_check sigma vars) ts

assert (tys_ts == tys_in)

return ty_out

• advantage: readability, change Check-type easily
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Type-Checking with Implicit Variables

Back to Type-Checking and Type-Inference
• known: type-checking algorithm
type_check :: Sig -> Vars -> Term -> Check Type
• type Sig = FSym -> Check ([Type], Type) – Σ
• type Vars = Var -> Check Type – V
• type_check takes Σ and V and delivers type of term

• we want a function that works in the other direction: it gets an intended type as input,
and delivers a suitable type for the variables
infer_type :: Sig -> Type -> Term -> Check [(Var,Type)]

• then type-checking an equation without explicit Vars is possible
type_check_eqn :: Sig -> (Term, Term) -> Check ()

type_check_eqn sigma (Var x, r) = failure

type_check_eqn sigma (l @ (Fun f _), r) = do

(_,ty) <- sigma f

vars <- infer_type sigma ty l

ty_r <- type_check sigma (\ x -> lookup x vars) r

assert (ty == ty_r)
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Type-Checking with Implicit Variables

Type-Inference Algorithm

• note: upcoming algorithm only infers types of variables
(in polymorphic setting often also type of function symbols is inferred)

infer_type :: Sig -> Type -> Term -> Check [(Var,Type)]

infer_type sig ty (Var x) = return [(x,ty)]

infer_type sig ty (Fun f ts) = do

(tys_in,ty_out) <- sig f

assert (length tys_in == length ts)

assert (ty_out == ty)

vars_l <- mapM (\ (ty, t) -> infer_type sig ty t) (zip tys_in ts)

let vars = nub (concat vars_l) -- nub removes duplicates

assert (distinct (map fst vars))

return vars

distinct :: Eq a => [a] -> Bool

distinct xs = length (nub xs) == length xs

RT (DCS @ UIBK) Part 4 – Checking Well-Definedness of Functional Programs 8/101

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Type-Checking with Implicit Variables

Soundness of Type-Inference Algorithm

• properties
• if t ∈ T (Σ,V)τ then infer type Σ τ t = return (V ∩ Vars(t))
• if infer type Σ τ t = return V then

• V is well-defined (no conflicting variable assignments) and
• t ∈ T (Σ,V)τ

• properties can be shown in similar way to type-checking algorithm, cf. slides 2/35–42

• note that ‘if t ∈ T (Σ,V)τ then infer type Σ τ t 6= failure‘ is a property which is not
strong enough when performing induction
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Changing the Error Monad

Weakness of Maybe-Type for Errors

• situation: several functions for checking properties of terms, equations, which can be
assembled to check functional programs wrt. slides 3/4 (data-type definitions), 3/15
(function definitions) and partly 3/45 (well-definedness)
• infer_type :: Sig -> Type -> Term -> Check [(Var,Type)]
• type_check :: Sig -> Vars -> Term -> Check Type
• type_check_eqn :: Sig -> (Term, Term) -> Check ()

• problem: if checks are not successful, we just get result Nothing

• desired: informative error message why a functional program is refused

• possible solution: use more verbose error type than Maybe

type Check a = Either String a

RT (DCS @ UIBK) Part 4 – Checking Well-Definedness of Functional Programs 11/101

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Changing the Error Monad

Changing Implementation of Interface

• current interface for error type
• type Check a = Maybe a
• function return :: a -> Check a
• function assert :: Bool -> Check ()
• function failure :: Check a
• do-blocks, monadic-functions such as mapM, etc.

• it is actually easy to change to Either-type for errors
• type Check a = Either String a
• return, do-blocks and mapM are unchanged, since these are part of generic monad interface
• functions assert and failure need to be changed, since they now require error messages

• failure :: String -> Check a

failure = Left

• assert :: Bool -> String -> Check ()

assert p err = if p then return () else failure err

RT (DCS @ UIBK) Part 4 – Checking Well-Definedness of Functional Programs 12/101

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Changing the Error Monad

Changing Algorithms for Checking Properties
• adapting algorithms often only requires additional error messages

• before change (type Check a = Maybe a)
type_check :: Sig -> Vars -> Term -> Check Type

type_check sigma vars (Var x) = vars x

type_check sigma vars (Fun f ts) = do

(tys_in,ty_out) <- sigma f

tys_ts <- mapM (type_check sigma vars) ts

assert (tys_ts == tys_in)

return ty_out

• after change (type Check a = Either String a)
type_check :: Sig -> Vars -> Term -> Check Type

type_check sigma vars (Var x) = ...

type_check sigma vars t@(Fun f ts) = do

...

assert (tys_ts == tys_in) (show t ++ " ill-typed")

...
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Changing the Error Monad

Changing Algorithms for Checking Properties, Continued

• example requiring more changes; with type Check a = Maybe a

type_check_eqn sigma (Var x, r) = failure

type_check_eqn sigma (l @ (Fun f _), r) = do

(_,ty) <- sigma f

vars <- infer_type sigma ty l

ty_r <- type_check sigma (\ x -> lookup x vars) r

assert (ty == ty_r)

• new version with type Check a = Either String a

type_check_eqn sigma (Var x, r) = failure "var as lhs"

type_check_eqn sigma (l @ (Fun f _), r) = do

...

ty_r <- type_check sigma (\ x -> lookup x vars) r

assert (ty == ty_r) "types of lhs and rhs don't match"

• problem: lookup produces Maybe, not Either String

• solution: use maybeToEither :: e -> Maybe a -> Either e a

RT (DCS @ UIBK) Part 4 – Checking Well-Definedness of Functional Programs 14/101

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Changing the Error Monad

Fixed Type-Checking Algorithm with Error Messages

import Data.Either.Utils -- for maybeToEither

-- import requires MissingH lib; if not installed, define it yourself:

-- maybeToEither e Nothing = Left e

-- maybeToEither _ (Just x) = return x

type_check_eqn sigma (Var x, r) = failure "var as lhs"

type_check_eqn sigma (l @ (Fun f _), r) = do

(_,ty) <- sigma f

vars <- infer_type sigma ty l

ty_r <- type_check

sigma

(\ x -> maybeToEither

(x ++ " is unknown variable")

(lookup x vars))

r

assert (ty == ty_r) "types of lhs and rhs don't match"
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Processing Functional Programs

Processing Functional Programs

• aim: write program which takes
• functional program as input (data type definitions + function definitions)
• checks the syntactic requirements
• stores the relevant information in some internal representation
• later: also checks well-definedness

• such a program is essential part of a compiler

• program should be easy to verify
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Processing Functional Programs

Recall: Data Type Definitions

• given: set of types Ty, signature Σ = C ] D
• each data type definition has the following form

data τ = c1 : τ1,1 × . . .× τ1,m1 → τ

| . . .
| cn : τn,1 × . . .× τn,mn → τ

where

• τ /∈ Ty fresh type name
• c1, . . . , cn /∈ Σ and ci 6= cj for i 6= j

fresh and distinct constructor names
• each τi,j ∈ {τ} ∪ Ty only known types
• exists ci such that τi,j ∈ Ty for all j non-recursive constructor

• effect: add new type and new constructors
• Ty := Ty ∪ {τ}
• C := C ∪ {c1 : τ1,1 × . . .× τ1,m1 → τ, . . . , cn : τn,1 × . . .× τn,mn → τ}
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Processing Functional Programs

Existing Encoding of Part 2: Signatures and Terms

type Check a = ... -- Maybe a or Either String a

type Type = String

type Var = String

type FSym = String

type Vars = Var -> Check Type

type FSym_Info = ([Type], Type)

type Sig = FSym -> Check FSym_Info

data Term = Var Var | Fun FSym [Term]

New Auxiliary Function for Error Monad

is_result :: Check a => Bool -- True if argument is not an error

is_result Nothing = False or is_result (Left _) = False

is_result _ = True is_result _ = True
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Processing Functional Programs

Encoding Functional Programs in Haskell

-- input: unchecked data-type definitions and function definitions

data Data_Definition = Data Type [(FSym, FSym_Info)]

data Function_Definition = ... -- later

type Functional_Prog =

([Data_Definition], [Function_Definition])

-- internal representation

type Sig_List = [(FSym, FSym_Info)] -- signatures as list

type Defs = Sig_List -- list of defined symbols

type Cons = Sig_List -- list of constructors

type Equations = [(Term, Term)] -- all function equations

-- all combined in Haskell-type; it also stores known types

data Prog_Info = Prog_Info [Type] Cons Defs Equations

-- checking single data type definition

process_data_definition ::

Prog_Info -> Data_Definition -> Check Prog_Info
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Processing Functional Programs

Checking a Single Data Definitions

process_data_definition

(Prog_Info tys cons defs eqs)

(Data ty new_cs)

= do

assert (not (elem ty tys))

let new_tys = ty : tys

let sigma = sig_list_to_sig (cons ++ defs)

assert (distinct (map fst new_cs))

assert (all

(\ (c,_) -> not (is_result (sigma c))) new_cs)

assert (all (\ (_,(tys_in,ty_out)) ->

ty_out == ty &&

all (\ ty -> elem ty new_tys) tys_in) new_cs)

assert (any

(\ (_,(tys_in,_)) -> all (/= ty) tys_in) new_cs)

return (Prog_Info new_tys (new_cs ++ cons) defs eqs)
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Processing Functional Programs

Checking Several Data Definitions

• processing many data definitions can be easily done by using foldM: predefined monadic
version of foldl

foldM :: Monad m => (b -> a -> m b) -> b -> [a] -> m b

foldM f e [] = return e

foldM f e (x : xs) = do

d <- f e x

foldM f d xs

process_data_definition ::

Prog_Info -> Data_Definition -> Check Prog_Info

process_data_definition = ... -- previous slide

process_data_definitions ::

Prog_Info -> [Data_Definition] -> Check Prog_Info

process_data_definitions = foldM process_data_definition
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Processing Functional Programs

Checking Function Definitions wrt. Slide 3/15

data Function_Definition = Function

FSym -- name of function

FSym_Info -- type of function

[(Term,Term)] -- equations

process_function_definition

:: Prog_Info -> Function_Definition -> Check Prog_Info

process_function_definition = ... -- exercise

process_function_definitions ::

Prog_Info -> [Function_Definition] -> Check Prog_Info

process_function_definitions =

foldM process_function_definition
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Processing Functional Programs

Checking Functional Programs

initial_prog_info = Prog_Info [] [] [] []

process_program :: Functional_Prog -> Check Prog_Info

process_program (data_defs, fun_defs) = do

pi <- process_data_definitions initial_prog_info data_defs

process_function_definitions pi fun_defs
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Processing Functional Programs

Current State

• process_program :: Functional_Prog -> Check Prog_Info is Haskell program to
check user provided functional programs, whether they adhere to the specification of
functional programs wrt. slides 3/4 and 3/15
• its functional style using error monads permits to easily verify its correctness

• no induction required
• based on assumption that builtin functions behave correctly, e.g., all, any, nub, . . .

• missing: checks for well-defined functional programs wrt. slide 3/45

RT (DCS @ UIBK) Part 4 – Checking Well-Definedness of Functional Programs 25/101

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Checking Pattern Disjointness



Checking Pattern Disjointness

Deciding Pattern Disjointness

• program is pattern disjoint if for all f : τ1 × · · · × τn → τ ∈ D and all t1 ∈ T (C)τ1 , . . . ,
tn ∈ T (C)τn there is at most one equation ` = r in the program, such that ` matches
f(t1, . . . , tn)

• in proseminar it was proven that pattern disjointness is equivalent to the following
condition: for each pair of distinct equations `1 = r1 and `2 = r2, `1 and a variable
renamed variant of `2 do not unify

• key missing part for checking pattern disjointness is an algorithm for unification:

given two terms s and t, decide ∃σ. sσ = tσ
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Checking Pattern Disjointness

Unification Algorithm of Martelli and Montanari

• input: unification problem U = {s1
?
= t1, . . . , sn

?
= tn}

• question: is U solvable, i.e., does there exist a solution σ,
a substitution satisfying ∀i ∈ {1, . . . , n}. siσ = tiσ

• two different kinds of output:
• unification problem in solved form:

{x1
?
= v1, . . . , xm

?
= vm} with distinct xj ’s

solved forms can be interpreted as substitution

σ(x) =

{
vi, if x = xi

x, otherwise

and this σ will be solution of U
• ⊥, indicating that U is not solvable

• algorithm itself is build via one-step relation  which is applied as long as possible

RT (DCS @ UIBK) Part 4 – Checking Well-Definedness of Functional Programs 28/101

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Checking Pattern Disjointness

Unification Algorithm of Martelli and Montanari, continued

• input: unification problem U = {s1
?
= t1, . . . , sn

?
= tn}

• output: solution of U via solved form or ⊥, indicating unsolvability

• algorithm applies  as long as possible;  is defined as

U ∪ {t ?
= t} U (delete)

U ∪ {f(u1, . . . , uk)
?
= f(v1, . . . , vk)} U ∪ {u1

?
= v1, . . . , vk

?
= vk} (decompose)

U ∪ {f(u1, . . . , uk)
?
= g(v1, . . . , v`)} ⊥, if f 6= g ∨ k 6= ` (clash)

U ∪ {f(. . . )
?
= x} U ∪ {x ?

= f(. . . )} (swap)

U ∪ {x ?
= f(. . . )} ⊥, if x ∈ Vars(f(. . . )) (occurs check)

U ∪ {x ?
= t} U{x/t} ∪ {x ?

= t},
if x /∈ Vars(t) and x occurs in U

(eliminate)

notation U{x/t}: apply substitution {x/t} on all terms in U (lhs + rhs)

RT (DCS @ UIBK) Part 4 – Checking Well-Definedness of Functional Programs 29/101

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Checking Pattern Disjointness

Correctness of Unification Algorithm

• we only state properties (proofs: see term rewriting lecture)
•  terminates
• normal form of  is ⊥ or a solved form
• whenever U  V , then U and V have same solutions
• in total: to solve unification problem U

• determine some normal form V of U
• if V = ⊥ then U is unsolvable
• otherwise, V represents a substitution that is a solution to U

• note that  is not confluent

• {x ?
= y, y

?
= x} x/y {x ?

= y, y
?
= y} {x ?

= y}
• {x ?

= y, y
?
= x} y/x {x ?

= x, y
?
= x} {y ?

= x}
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Checking Pattern Disjointness

Correctness of an Implementation of a (Unification) Algorithm

• any concrete implementation will make choices
• preference of rules
• selection of pairs from U
• representation of sets U
• (pivot-selection in quicksort)
• (order of edges in graph-/tree-traversals)
• . . .

• task: how to ensure that implementation is sound
• solution: refinement proof

• aim: reuse correctness of abstract algorithm ( )
• define relation between representations in concrete and abstract algorithm (this was called

alignment before and done informally)
• show that concrete algorithm has less behaviour, i.e., every result of concrete (deterministic)

algorithm can be related to some result of (non-deterministic) abstract algorithm
• benefit: clear separation between

• soundness of abstract algorithm (solves unification problems)
• soundness of implementation (implements abstract algorithm)
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Checking Pattern Disjointness

A Concrete Implementing of the Unification Algorithm

subst :: Var -> Term -> Term -> Term

subst x t = apply_subst (\ y -> if y == x then t else Var y)

unify :: [(Term, Term)] -> Maybe [(Var, Term)]

unify u = unify_main u []

unify_main :: [(Term, Term)] -> [(Var,Term)] -> Maybe [(Var, Term)]

unify_main [] v = Just v -- return solved form

unify_main ((Fun f ts, Fun g ss) : u) v =

if f == g && length ts == length ss

then unify_main (zip ts ss ++ u) v -- decompose

else Nothing -- clash

unify_main ((Fun f ts, x) : u) v =

unify_main ((x, Fun f ts) : u) v -- swap

unify_main ((Var x, t) : u) v =

if Var x == t then unify_main u v -- delete

else if x `elem` vars_term t then Nothing -- occurs check

else unify_main -- eliminate

(map ( \ (l,r) -> (subst x t l, subst x t r)) u)

((x,t) : map ( \ (y, s) -> (y, subst x t s)) v)
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Checking Pattern Disjointness

Notes on Implementation

• non-trivial to prove soundness of implementation, since there are several differences wrt.
 
• unify main takes two parameters u and v

• these represent one unification problem u ∪ v
• rule-application is not tried on v, only on u

• we need to know that v is in normal form wrt.  
• in (occurs check)-rule, the algorithm has no test that rhs is function application

• we need to show that this will follow from other conditions

• in (elimination)-rule, the algorithms substitutes only in rhss of v
• we need to know that substituting in lhss of v has no effect

• in (elimination)-rule, the algorithm does not check that x occurs in remaining problem
• we need to check that consequences don’t harm
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Checking Pattern Disjointness

Soundness via Refinement: Setting up the Relation

• relation ∼ formally aligns parameters of concrete algorithm (u and v) with
parameters of abstract algorithm (U); ∼ also includes invariants of implementation

• set converts list to set, we identify s
?
= t with (s, t)

• (u, v) ∼ U iff
• U = set u ∪ set v,
• set v is in normal form wrt.  (notation: set v ∈ NF ( )), and
• for all (x, t) ∈ set v: x does not occur in u

• since alignment between concrete and abstract parameters is specified formally,
alignment properties of auxiliary functions can also be made formal
• set (x : xs) = {x} ∪ set xs
• set (xs ++ ys) = set xs ∪ set ys
• set (zip [x1, . . . , xn] [y1, . . . , yn]) = {(x1, y1), . . . , (xn, yn)}
• set (map f [x1, . . . , xn]) = {f x1, . . . , f xn}
• subst x t s = s{x/t}
• . . .

these properties can be proven formally and also be applied formally
(although we don’t do it in the upcoming proof)
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Checking Pattern Disjointness

Soundness via Refinement: Main Statement

• define set maybe Nothing = ⊥, set maybe (Just w) = set w

• property: whenever (u, v) ∼ U and unify main u v = res then U  ! set maybe res

• once property is established, we can prove that implementation solves unification
problems
• assume input u, i.e., invocation of unify u which yields result res
• hence, unify main u [] = res
• moreover, (u, []) ∼ set u by definition of ∼
• via property conclude set u ! set maybe res
• at this point apply correctness of  :

set maybe res is the correct answer to the unification problem set u
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Checking Pattern Disjointness

Proving the Refinement Property

• property P (u, v, U): (u, v) ∼ U ∧ unify main u v = res −→ U  ! set maybe res

• (u, v) ∼ U ←→ U = set u ∪ set v ∧ set v ∈ NF ( ) ∧ ∀(x, t) ∈ set v. x /∈ Vars(u)

• we prove the property P (u, v, U) by induction on u and v wrt. the algorithm for arbitrary
U , i.e., we consider all left-hand sides and can assume that the property holds for all
recursive calls;
induction wrt. algorithm gives partial correctness result (assumes termination)

• in the lecture, we will cover a simple, a medium, and the hardest case
• case 1 (arguments [] and v):

• we have to prove P ([], v, U), so assume

(*) ([], v) ∼ U and
(**) unify main [] v = res

• from (*) conclude U = set v and set v ∈ NF ( )
• from (**) conclude res = Just v and hence, set maybe res = set v
• we have to show U  ! set maybe res, i.e., set v  ! set v which is satisfied since

set v ∈ NF ( )
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• P (u, v, U): (u, v) ∼ U ∧ unify main u v = res −→ U  ! set maybe res

• (u, v) ∼ U ←→ U = set u ∪ set v ∧ set v ∈ NF ( ) ∧ ∀(x, t) ∈ set v. x /∈ Vars(u)

case 2 (arguments (f(ts), g(ss)) : u and v)

• we have to prove P ((f(ts), g(ss)) : u, v, U), so assume

(*) ((f(ts), g(ss)) : u, v) ∼ U and
(**) unify main ((f(ts), g(ss)) : u) v = res

• consider sub-cases

• ¬(f = g ∧ length ts = length ss):
• from (**) conclude set maybe res = ⊥
• from (*) conclude f(ts)

?
= g(ss) ∈ U and hence U  ⊥ by (clash)

• consequently, U  ! set maybe res

• f = g ∧ length ts = length ss:
• from (**) conclude res = unify main ((f(ts), g(ss)) : u) v = unify main (zip ts ss ++ u) v

• from (*) and alignment for zip and ++ conclude U = {f(ts)
?
= g(ss)} ∪ set u ∪ set v and

hence U  set (zip ts ss ++ u) ∪ set v =: V by (decompose)
• we get P (zip ts ss ++ u, v, V ) as IH; (zip ts ss ++ u, v) ∼ V follows from (*), so
U  V  ! set maybe res
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Checking Pattern Disjointness

• P (u, v, U): (u, v) ∼ U ∧ unify main u v = res −→ U  ! set maybe res

• (u, v) ∼ U ←→ U = set u ∪ set v ∧ set v ∈ NF ( ) ∧ ∀(x, t) ∈ set v. x /∈ Vars(u)

case 4 (arguments (x, t) : u and v)

• we have to prove P ((x, t) : u, v, U), so assume

(*) ((x, t) : u, v) ∼ U and
(**) unify main ((x, t) : u) v = res

• consider sub-cases (where the red part is not triggered by structure of algorithm)

• x 6= t ∧ x /∈ Vars(t) ∧ x occurs in set u ∪ set v:
• define u′ = map (λ(l, r). (subst x t l, subst x t r)) u
• define v′ = map (λ(y, s). (y, subst x t s)) v

• define V = (set u ∪ set v){x/t} ∪ {x ?
= t}

• from (**) conclude res = unify main ((x, t) : u) v = unify main u′ ((x, t) : v′)
• from IH conclude P (u′, (x, t) : v′, V ) and hence, (u′, (x, t) : v′) ∼ V −→ V  ! set maybe res
• for proving U  ! set maybe res it hence suffices to show (u′, (x, t) : v′) ∼ V and U  V

• U
(∗)
= {x ?

= t} ∪ set u ∪ set v  (set u ∪ set v){x/t} ∪ {x/t} = V
by (eliminate) because of preconditions
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Checking Pattern Disjointness

• (u, v) ∼ U ←→ U = set u ∪ set v ∧ set v ∈ NF ( ) ∧ ∀(x, t) ∈ set v. x /∈ Vars(u)

case 4 (arguments (x, t) : u and v)

• we have to prove P ((x, t) : u, v, U), so assume (*) ((x, t) : u, v) ∼ U and . . .

and consider sub-case x 6= t ∧ x /∈ Vars(t) ∧ x occurs in set u ∪ set v:

• define u′ = map (λ(l, r). (subst x t l, subst x t r)) u
• define v′ = map (λ(y, s). (y, subst x t s)) v

• define V = (set u ∪ set v){x/t} ∪ {x ?
= t}

• we still need to show (u′, (x, t) : v′) ∼ V
• since (*) holds, we know ∀ (y, s) ∈ set v. x 6= y
• hence, v′ = map (λ(y, s). (subst x t y, subst x t s)) v

• so, V = (set u){x/t} ∪ {x ?
= t} ∪ (set v){x/t} = set u′ ∪ set ((x, t) : v′)

• we show ∀(y, s) ∈ set ((x, t) : v′). y /∈ Vars(u′) as follows:
x /∈ Vars(u′) since x /∈ Vars(t); and if (y, s) ∈ set v′, then (y, s′) ∈ set v for some s′ and
by (*) we conclude y /∈ Vars((x, t) : u); thus, y /∈ Vars((set u){x/t}) = Vars(u′)

• we finally show set ((x, t) : v′) ∈ NF ( ): so, assume to the contrary that some step is
applicable; by the shape of set ((x, t) : v′) we know that the step can only be (eliminate),
(delete) or (occurs check); all of these cases result in a contradiction by using the available
facts
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Checking Pattern Disjointness

Proving the Refinement Property

• case 4 (arguments (x, t) : u and v)

• other sub-cases: exercise

• case 3 (arguments (f(ss), x) : u and v): exercise

• summary

• non-trivial implementation of abstract unification algorithm  
• optimizations required additional invariants, encoded in refinement relation
• proof of correctness can be done formally

• induction + case analysis proof uses mostly the structure of the Haskell code;
exception: case analysis on “x occurs in set u ∪ set v”

• most cases can easily be solved, after having identified suitable invariants
• fully reuse correctness of  

• we only proved partial correctness
• termination of implementation: consider lexicographic measure

(|Vars(set u)|︸ ︷︷ ︸
(eliminate)

, |u|︸︷︷︸
(decomp),(delete)

, length [x | (t,Var x)← u]︸ ︷︷ ︸
(swap)

)
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Checking Pattern Completeness

Checking Pattern Completeness

• reminder: program is pattern complete, if for all f : τ1 × . . .× τn → τ ∈ D and all
ti ∈ T (C)τi there is some lhs that matches f(t1, . . . , tn)

• idea of abstract algorithm
• a pattern problem is a set P of pairs (t, L) where

• t is a term, representing the set of all its constructor ground instances
• L is a set of left-hand sides that potentially match instances of t

• initially, P = {(f(x1, . . . , xn), set of all lhss of f -equations) | f ∈ D}
• whenever some left-hand side ` ∈ L cannot match any instance of t anymore, it can be

removed
• whenever L becomes empty, then no instance of t can be matched
• whenever all constructor ground instances of t are matched by L, then (t, L) can be

removed from P
• when P becomes empty, pattern completeness should be guaranteed
• if none of the above is applicable, we instantiate t

• initial task: think about exact statement, what kind of property of pattern problem we
are investigating (similar to definition of solution of unification problem)
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Checking Pattern Completeness

Semantics of Pattern Problems

• in the following algorithm and proofs, we always consider type-correct terms and
substitutions wrt. Σ = C ∪ D, but do not mention this explicitly

• a pattern problem is a set P of pairs (t, L) consisting of a term t and a set of terms L

• P is complete if for all (t, L) ∈ P and all constructor ground substitutions σ there is
some ` ∈ L that matches tσ

• obviously, P = ∅ is complete

• we define ⊥ as additional pattern problem, which is not complete

• define Linit,f as the set of all lhss of f -equations of the program

• define Pinit = {(f(x1, . . . , xn), Linit,f ) | f ∈ D}
• consequence: program is pattern complete iff Pinit is complete
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Checking Pattern Completeness

Deciding Completeness of Pattern Problems

• we develop abstract algorithm that is similar to abstract unification algorithm, it is
defined via a one step relation ⇀ that transforms pattern problems into equivalent
simpler problems

• it uses the matching algorithm of slides 3/23–29 (with detailed error results) as auxiliary
algorithm

• P ∪ {(t, {`} ∪ L)}⇀ P , if ` matches t (match)

• P ∪ {(t, {`} ∪ L)}⇀ P ∪ {(t, L)}, if match ` t clashes (clash)

• P ∪ {(t,∅)}⇀ ⊥ (fail)
• P ∪ {(t, L)}⇀ P ∪ {(tσ1, L), . . . , (tσn, L)}, if (split)

• ` ∈ L and match ` t results in fun-var-conflict with variable x
• the type of x is τ
• τ has n constructors c1, . . . , cn
• σi = {x/ci(x1, . . . , xk)} where k is the arity of ci and the xi’s are distinct fresh variables
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Checking Pattern Completeness

Example

consider

data Bool = True : Bool | False : Bool

`1 := conj(True,True) = . . .

`2 := conj(False, y) = . . .

`3 := conj(x,False) = . . .

then we have

Pinit = {(conj(x1, x2), {`1, `2, `3})}
⇀ {(conj(True, x2), {`1, `2, `3}), (conj(False, x2), {`1, `2, `3})}
⇀ {(conj(True, x2), {`1, `3}), (conj(False, x2), {`1, `2, `3})}
⇀ {(conj(True, x2), {`1, `3}), (conj(False, x2), {`2, `3})}
⇀ {(conj(True, x2), {`1, `3})}
⇀ {(conj(True,True), {`1, `3}), (conj(True,False), {`1, `3})}
⇀ {(conj(True,False), {`1, `3})}
⇀ ∅
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Checking Pattern Completeness

Example

consider

data Bool = True : Bool | False : Bool

`1 := conj(True,True) = . . .

`2 := conj(False, y) = . . .

then we have

Pinit = {(conj(x1, x2), {`1, `2})}
⇀ {(conj(True, x2), {`1, `2}), (conj(False, x2), {`1, `2})}
⇀ {(conj(True, x2), {`1}), (conj(False, x2), {`1, `2})}
⇀ {(conj(True, x2), {`1})}
⇀ {(conj(True,True), {`1}), (conj(True,False), {`1})}
⇀ {(conj(True,False), {`1})}
⇀ {(conj(True,False),∅)}
⇀ ⊥
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Checking Pattern Completeness

Partial Correctness of ⇀

• definition: P is complete if for all (t, L) ∈ P and all constructor ground substitutions σ
there is some ` ∈ L that matches tσ

• theorem: whenever P ⇀ Q, then P is complete iff Q is complete

• corollary: if P ⇀∗ ∅ then P is complete,
and if P ⇀∗ ⊥ then P is not complete
• proof of theorem

• (match): P ∪ {(t, {`} ∪ L)}⇀ P , if ` matches t
• we only have to show that {(t, {`} ∪ L)} is complete, i.e., for all constructor ground

substitutions σ there must be some `′ ∈ {`} ∪ L that matches tσ
• since ` matches t, we know that t = `γ for some substitution γ
• consequently tσ = (`γ)σ = `(γσ), i.e., ` matches tσ and obviously ` ∈ {`} ∪ L

• (fail): P ∪ {(t,∅)}⇀ ⊥
• both matching problems are not complete: ⊥ by definition, and for (t,∅) there obviously isn’t

any ` ∈ ∅ which matches tσ
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Partial Correctness of ⇀, continued

• definition: P is complete if for all (t, L) ∈ P and all constructor ground substitutions σ
there is some ` ∈ L that matches tσ
• proof continued

• (clash): P ∪ {(t, {`} ∪ L)}⇀ P ∪ {(t, L)}, if match ` t clashes
• if suffices to show that ` cannot match any instance of t, i.e., match ` (tσ) will always fail
• to this end we require an auxiliary property of the matching algorithm
• for a matching problem M , define Mσ = {(`, rσ) | (`, r) ∈M}, i.e., where σ is applied on

rhss, and ⊥σ = ⊥
• lemma: whenever M is transformed into M ′ by rule (decompose) or (clash), then Mσ is

transformed into M ′σ by the same rule
• hence, since match ` t clashes, we conclude that match ` (tσ) clashes
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Partial Correctness of ⇀, final part

• definition: P is complete if for all (t, L) ∈ P and all constructor ground substitutions σ
there is some ` ∈ L that matches tσ
• proof continued

• (split): P ∪ {(t, L)}⇀ P ∪ {(tσ1, L), . . . , (tσn, L)}, where x : τ ,
τ has constructors c1, . . . , cn and σi = {x/ci(x1, . . . , xk)} for fresh xi
• we only consider one direction of the proof: we assume that the rhs of ⇀ is complete and

prove that the lhs is complete
• to this end, consider an arbitrary constructor ground substitution σ and we have to show that
tσ is matched by some element of L

• since σ is constructor ground, we know σ(x) = ci(t1, . . . , tk) for some constructor ci and
constructor ground terms t1, . . . , tk

• define γ(y) =

{
tj , if y = xj

σ(y), otherwise
• γ is well-defined since the xj ’s are distinct
• γ is a constructor ground substitution
• tσ = tσiγ since the xj ’s are fresh
• since (tσi, L) is an element of the rhs of ⇀ and the assumed completeness, we conclude that

there is some element of L that matches (tσi)γ and consequently, also tσ
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Correctness of ⇀, Missing Parts

• already proven
• if P ⇀∗ ∅ then P is complete
• if P ⇀∗ ⊥ then P is not complete

• open: termination of ⇀

• open: can ⇀ get stuck?
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⇀ Cannot Get Stuck

• P ∪ {(t, {`} ∪ L)}⇀ P , if ` matches t (match)

• P ∪ {(t, {`} ∪ L)}⇀ P ∪ {(t, L)}, if match ` t results in clash (clash)

• P ∪ {(t,∅)}⇀ ⊥ (fail)
• P ∪ {(t, L)}⇀ P ∪ {(tσ1, L), . . . , (tσn, L)}, if (split)

• ` ∈ L and match ` t results in fun-var-conflict with variable x and . . .

• lemma: whenever P is in normal form wrt. ⇀ and for all (t, L) ∈ P and all ` ∈ L, the lhs
` is linear, then P ∈ {∅,⊥}
• proof by contradiction

• assume P is such a normal form, P /∈ {∅,⊥}
• hence, (t, L) ∈ P for some t and L
• since (fail) is not applicable, L 6= ∅, i.e., ` ∈ L for some `
• as (match) is not applicable, match ` t must fail
• as (clash) and (split) are not applicable the failure can only be a var-clash
• however, a var-clash cannot occur since ` is linear
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Checking Pattern Completeness

Termination of ⇀

• P ∪ {(t, {`} ∪ L)}⇀ P , if ` matches t (match)

• P ∪ {(t, {`} ∪ L)}⇀ P ∪ {(t, L)}, if match ` t clashes (clash)

• P ∪ {(t,∅)}⇀ ⊥ (fail)

• P ∪ {(t, L)}⇀ P ∪ {(tσ1, L), . . . , (tσn, L)}, if (split)
` ∈ L and match ` t results in fun-var-conflict with variable x and . . .

• clearly, ⇀ without (split) terminates as in every step the size of the pattern problem is
reduced
• argumentation that also (split) cannot be applied infinitely often

• a fun-var-conflict between t and ` ∈ L occurs iff the subterm of t at position p is a
variable x, but the subterm ` at position p is a function application

• the effect of (split) is that the variable x becomes a constructor, so there is no
fun-var-conflict of tσi with any lhs at position p any more

• hence, when (split)ting over-and-over again, all possible fun-var-conflicts move to deeper
positions

• since the depths of the conflict positions are bounded by the sizes of the terms in L, all
fun-var-conflicts eventually disappear, so that (split) is no longer applicable
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Implementing ⇀

• a direct implementation of ⇀ mainly faces two problems (exercise)
• handling of fresh variable
• figuring out constructors in (split)

• direct: matching algorithm is started from scratch every time

• an optimized implementation should try to reuse previous runs of matching algorithm
after applying (split)

• this will require changes in the interface of matching algorithm
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Checking Pattern Completeness

Summary on Pattern Completeness

• pattern completeness of functional programs is decidable:

program is pattern complete iff Pinit ⇀
! ∅

• partial correctness was proven via invariant of ⇀

• proof required additional properties of matching algorithm

• termination of ⇀ was shown informally

• formal proof would require further properties of matching algorithm

• termination proof was tricky, definitely requiring human interaction

• in contrast: upcoming part is on automated termination proving
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Termination – Dependency Pairs

Termination of Programs

• the question of termination is a famous problem
• Turing showed that “halting problem” is undecidable
• halting problem

• question: does program (Turing machine) terminate on given input
• problem is semi-decidable: positive instances can always be identified
• algorithm: just simulate the program and then say ”yes, terminates”

• we here consider universal termination, i.e., termination on all inputs

• universal termination is not even semi-decidable

• despite theoretical limits: often termination can be proven automatically
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Termination of Functional Programs
• for termination, we mainly consider functional programs which are pattern-disjoint;

hence, ↪→ is confluent

• consequence: it suffices to prove innermost termination, i.e., the restriction of ↪→ such
that arguments ti will be fully evaluated before evaluating a function invocation
f(t1, . . . , tn)

• example without confluence

f(True,False, x) = f(x, x, x)

f(. . . , . . . , x) = x (all other cases)

coin = True

coin = False

• both f and coin terminate if seen as separate programs

• program is innermost terminating, but not terminating in general

f(True,False, coin) ↪→ f(coin, coin, coin) ↪→2 f(True,False, coin) ↪→ . . .
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Subterm Relation and Innermost Evaluation

• define B as the strict subterm relation and D as its reflexive closure

F (t1, . . . , tn)B ti

ti B s
F (t1, . . . , tn)B s

• innermost evaluation i↪→ is defined similar to one-step evaluation ↪→

si
i↪→ ti

F (s1, . . . , si, . . . , sn) i↪→ F (s1, . . . , ti, . . . , sn)
rewrite in contexts

` = r is equation in program ∀sC `σ. s ∈ NF (↪→)

`σ i↪→ rσ
root step

• example
f(True,False, coin) 6 i↪→ f(coin, coin, coin)

since coinC f(True,False, coin) and coin /∈ NF (↪→)
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Termination – Dependency Pairs

Strong Normalization

• relation � is strongly normalizing, written SN(�), if there is no infinite sequence

a1 � a2 � a3 � . . .

• strong normalization is other notion for termination

• strong normalization is also equivalent to induction;
the following two conditions are equivalent
• SN(�)
• ∀P. (∀x. (∀y. x � y −→ P y) −→ P x) −→ (∀x. P x)

• equivalence shows why it is possible to perform induction wrt. algorithm for terminating
programs
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Termination – Dependency Pairs

Termination Analysis with Dependency Pairs
• aim: prove SN( i↪→)

• only reason for potential non-termination: recursive calls

• for each recursive call of eqn. f(t1, . . . , tn) = ` = rD f(s1, . . . , sn) build one dependency
pair with fresh (constructor) symbol f ]:

f ](t1, . . . , tn)→ f ](s1, . . . , sn)

define DP as the set of all dependency pairs

• example program for Ackermann function has three dependency pairs

ack(Zero, y) = Succ(y)

ack(Succ(x),Zero) = ack(x,Succ(Zero))

ack(Succ(x), Succ(y)) = ack(x, ack(Succ(x), y))

ack](Succ(x),Zero)→ ack](x,Succ(Zero))

ack](Succ(x), Succ(y))→ ack](x, ack(Succ(x), y))

ack](Succ(x), Succ(y))→ ack](Succ(x), y)
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Termination – Dependency Pairs

Termination Analysis with Dependency Pairs, continued

• dependency pairs provide characterization of termination

• definition: let P ⊆ DP ; a P -chain is a possible infinite sequence

s1σ1 → t1σ1
i↪→∗ s2σ2 → t2σ2

i↪→∗ s3σ3 → t3σ3
i↪→∗ . . .

such that all si → ti ∈ P and all siσi ∈ NF (↪→)
• siσi → tiσi represent the “main” recursive calls that may lead to non-termination
• tiσi i↪→∗ si+1σi+1 corresponds to evaluation of arguments of recursive calls

• theorem: SN( i↪→) iff there is no infinite DP -chain
• advantage of dependency pairs

• in infinite chain, non-terminating recursive calls are always applied at the root
• simplifies termination analysis
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Example of Evaluation and Chain
minus(x,Zero) = x

minus(Succ(x),Succ(y)) = minus(x, y)

div(Zero,Succ(y)) = Zero

div(Succ(x),Succ(y)) = Succ(div(minus(x, y),Succ(y)))

minus](Succ(x),Succ(y))→ minus](x, y)

div](Succ(x),Succ(y))→ div](minus(x, y),Succ(y))

• example innermost evaluation

div(Succ(Zero),Succ(Zero))
i↪→ Succ(div(minus(Zero,Zero),Succ(Zero)))
i↪→ Succ(div(Zero,Succ(Zero)))
i↪→ Succ(Zero)

and its (partial) representation as DP -chain

div](Succ(Zero),Succ(Zero))

→ div](minus(Zero,Zero),Succ(Zero))
i↪→∗ div](Zero,Succ(Zero))
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Termination – Dependency Pairs

Proving Termination

• global approaches
• try to find one termination argument that no infinite chain exists

• iterative approaches
• identify dependency pairs that are harmless, i.e., cannot be used infinitely often in a chain
• remove harmless dependency pairs from set of dependency pairs
• until no dependency pairs are left

• we focus on iterative approaches, in particular those that are incremental
• incremental: a termination proof of some function stays valid

if later on other functions are added to the program
• incremental termination proving is not possible in general case (for non-confluent programs),

consider coin-example on slide 57

RT (DCS @ UIBK) Part 4 – Checking Well-Definedness of Functional Programs 63/101

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Termination – Subterm Criterion



Termination – Subterm Criterion

A First Termination Technique – The Subterm Criterion

• the subterm criterion works as follows
• let P ⊆ DP
• choose f ], a symbol of arity n
• choose some argument position i ∈ {1, . . . , n}
• demand si D ti for all f ](s1, . . . , sn)→ f ](t1, . . . , tn) ∈ P
• define PB = {f ](s1, . . . , sn)→ f ](t1, . . . , tn) ∈ P | si B ti}
• then for proving absence of infinite P -chains it suffices to prove absence of infinite
P \ PB-chains, i.e., one can remove all pairs in PB

• observations
• easy to test: just find argument position i such that each i-th argument of all
f ]-dependency pairs decreases wrt. D and then remove all strictly decreasing pairs

• incremental method: adding other dependency pairs for g] later on will have no impact
• can be applied iteratively
• fast, but limited power
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Subterm Criterion – Example

• consider a program with the following set of dependency pairs

ack](Succ(x),Zero)→ ack](x, Succ(Zero)) (1)

ack](Succ(x),Succ(y))→ ack](x, ack(Succ(x), y)) (2)

ack](Succ(x),Succ(y))→ ack](Succ(x), y) (3)

minus](Succ(x),Succ(y))→ minus](x, y) (4)

div](Succ(x),Succ(y))→ div](minus(x, y),Succ(y)) (5)

plus](Succ(x), y)→ plus](y, x) (6)

• it is easy to remove (4) by choosing any argument of minus]

• we can remove (1) and (2) by choosing argument 1 of ack]

• afterwards we can remove (3) by choosing argument 2 of ack]

• it is not possible to remove any of the remaining dependency pairs (5) and (6) by the
subterm criterion
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Subterm Criterion – Soundness Proof

• assume the chosen parameters in the subterm criterion are f ] and i

• it suffices to prove that there is no infinite chain

s1σ1 → t1σ1
i↪→∗ s2σ2 → t2σ2

i↪→∗ s3σ3 → t3σ3
i↪→∗ . . .

such that all sj → tj ∈ P , all sj and tj have f ] as root and there are infinitely many
sj → tj ∈ PB; perform proof by contradiction

• hence all sj → tj are of the form f ](sj,1, . . . , sj,n)→ f ](tj,1, . . . , tj,n)

• from condition sj,i D tj,i of criterion conclude sj,iσj D tj,iσj
and if sj → tj ∈ PB then sj,i B tj,i and thus sj,iσj B tj,iσj
• we further know tj,iσj

i↪→∗ sj+1,iσj+1 since f ] is a constructor

• this implies tj,iσj = sj+1,iσj+1 since tj,iσj ∈ NF (↪→) as
tj,iσj E sj,iσj C f ](sj,1σj , . . . , sj,nσj) = sjσj ∈ NF (↪→)

• obtain an infinite sequence with infinitely many B; this is a contradiction to SN(B)

s1,iσ1 D t1,iσ1 = s2,iσ2 D t2,iσ2 = s3,iσ3 D t3,iσ3 = . . .
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Termination – Size-Change Principle

The Size-Change Principle

• the size-change principle abstracts decreases of arguments into size-change graphs
• size-change graph

• let f ] be a symbol of arity n
• a size-change graph for f ] is a bipartite graph G = (V,W,E)
• the nodes are V = {1in, . . . , nin} and W = {1out, . . . , nout}
• E is a set of directed edges between in- and out-nodes labelled with � or %
• the size-change graph G of a dependency pair f ](s1, . . . , sn)→ f ](t1, . . . , tn) defines E as

follows
• iin

�→ jout ∈ E whenever si B tj (strict decrease)

• iin
%→ jout ∈ E whenever si = tj (weak decrease)

• in representation, in-nodes are on the left, out-nodes are on the right, and subscripts are
omitted
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Example – Size-Change Graphs

• consider the following dependency pairs; they include permutations that cannot be solved
by the subterm criterion

f](Succ(x), y)→ f](x,Succ(x)) (7)

f](x,Succ(y))→ f](y, x) (8)

• obtain size-change graphs that contain more information than just the size-decrease in
one argument, as we had in subterm criterion

G(7) : 1
� //
%

��

1

2 2

G(8) : 1 %

��

1

2
�

AA

2
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Multigraphs and Concatenation

• graphs can be glued together, tracing size-changes in chains, i.e., subsequent dependency
pairs
• definition: let G be a set of size-change graphs for the same symbol f ]; then the set of

multigraphs for f ] is defined as follows
• every G ∈ G is a multigraph
• whenever there are multigraphs G1 and G2 with edges E1 and E2 then also the

concatenated graph G = G1·G2 is a multigraph; here, the edges of E of G are defined as
• if i→ j ∈ E1 and j → k ∈ E2, then i→ k ∈ E
• if at least one of the edges i→ j and j → k is labeled with � then i→ k is labeled with �,

otherwise with %

• if the previous rules would produce two edges i
�→ k and i

%→ k, then only the former is added
to E

• a multigraph G is maximal if G = G·G
• since there are only finitely many possible sets of edges,

the set of multigraphs is finite and can easily be computed
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Termination – Size-Change Principle

Example – Multigraphs
• consider size-change graphs

G(7) : 1
� //
%

��

1

2 2

G(8) : 1 %

��

1

2
�

AA

2

• this leads to three maximal multigraphs

G(7)·G(8) : 1
� //
�
��

1

2 2

G(8)·G(7) : 1 1

2 �
//

�
BB

2

G(8)·G(8) : 1
� // 1

2
� // 2

• and a non-maximal multigraph

G(8)·G(8)·G(8) : 1 �

��

1

2
�

BB

2
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Size-Change Termination

• instead of multigraphs, one can also glue two graphs G1 and G2 by just identifying the
out-nodes of G1 with the in-nodes of G2, defined as G1 ◦G2; in this way it is also
possible to consider an infinite sequence of graphs G1 ◦G2 ◦G3 ◦ . . .
• example:

G(7) ◦G(8) ◦G(8) ◦G(7) : 1
� //
%

��

1 %

��

1 %

��

1
� //
%

��

1

2 2
�

AA

2
�

AA

2 2

• definition: a set G of size-change graph is size-change terminating iff for every infinite

concatenation of graphs of G there is a path with infinitely many
�→-edges

• theorem: let P be a set of dependency pairs for symbol f ] and G be the corresponding
size-change graphs; if G is size-change terminating, then there is no infinite P -chain

• the proof is mostly identical to the one of the subterm criterion
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Deciding Size-Change Termination

• definition: a set G of size-change graph is size-change terminating iff for every infinite

concatenation of graphs of G there is a path with infinitely many
�→-edges

• checking size-change termination directly is not possible

• still, size-change termination is decidable
• theorem: let G be a set of size-change graphs; the following two properties are equivalent

1. G is size-change terminating

2. every maximal multigraph of G contains an edge i
�→ i

• although the above theorem only gives rise to an EXPSPACE-algorithm, size-change
termination is in PSPACE;
in fact, size-change termination is PSPACE-complete

• despite the high theoretical complexity class, for sets of size-change graphs arising from
usual algorithms, the number of multigraphs is rather low
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Proof of Theorem

• the direction that size-change termination implies the property on maximal multigraphs
can be done in a straight-forward way

• the other direction is much more advanced and relies upon Ramsey’s theorem in its
infinite version
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Proof of Theorem: Easy Direction (1. implies 2.)

• assume that G is size-change terminating, and consider any maximal graph G

• since G is a multigraph, it can be written as G = G1· . . . ·Gn with each Gi ∈ G
• consider infinite graph G1 ◦ . . . ◦Gn ◦G1 ◦ . . . ◦Gn ◦ . . .
• because of size-change termination, this graph contains path with infinitely many
�→-edges

• hence G ◦G ◦ . . . also has a path with infinitely many
�→-edges

• on this path some index i must be visited infinitely often

• hence there is a path of length k such that G ◦G ◦ . . . ◦G (k-times) contains a path

from the leftmost argument i to the rightmost argument i with at least one
�→-edge

• consequently G·G· . . . ·G (k-times) contains an edge i
�→ i

• by maximality, G = G·G· . . . ·G, and thus G contains an edge i
�→ i
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Ramsey’s Theorem

• definition: given set X and n ∈ N, we define X(n) as the set of all subsets of X of
size n; formally:

X(n) = {Z | Z ⊆ X ∧ |Z| = n}
• Ramsey’s Theorem – Infinite Version

• let n ∈ N
• let C be a finite set of colors
• let X be an infinite set
• let c be a coloring of the size n sets of X, i.e., c : X(n) → C
• theorem: there exists an infinite subset Y ⊆ X such that all size n sets of Y have the same

color
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Proof of Theorem: Hard Direction (2. implies 1.)
• consider some arbitrary infinite graph G0 ◦G1 ◦G2 ◦ . . .
• for n < m define Gn,m = Gn· . . . ·Gm−1
• by Ramsey’s theorem there is an infinite set I ⊆ N such that Gn,m is always the same

graph G for all n,m ∈ I with n < m
(n = 2, C = multigraphs, X = N, c({n,m}) = Gmin{n,m},max{n,m})

• G is maximal: for n1 < n2 < n3 with {n1, n2, n3} ⊆ I, we have
Gn1,n3 = Gn1· . . . ·Gn2−1·Gn2· . . . ·Gn3−1 = Gn1,n2·Gn2,n3 , and thus G = G·G
• by assumption, G contains edge i

�→ i

• let I = {n1, n2, . . .} with n1 < n2 < . . . and obtain

G0 ◦G1 ◦ . . .
= G0 ◦ . . . ◦Gn1−1 ◦Gn1 ◦ . . . ◦Gn2−1 ◦Gn2 ◦ . . . ◦Gn3−1 ◦ . . .
∼ G0 ◦ . . . ◦Gn1−1 ◦G ◦G ◦ . . .

so that edge i
�→ i of G delivers path with infinitely many

�→-edges
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Proof of Ramsey’s Theorem

• Ramsey’s Theorem – Infinite Version
• let n ∈ N
• let C be a finite set of colors
• let X be an infinite set
• let c be a coloring of the size n sets of X, i.e., c : X(n) → C
• theorem: there exists an infinite subset Y ⊆ X such that all size n sets of Y have the same

color

• proof of Ramsey’s theorem is interesting
• it is simple, in that it only uses standard induction on n with arbitrary c and X
• it is complex, in that it uses a non-trivial construction in the step-case, in particular applying

the IH infinitely often

• base case n = 0 is trivial, since there is only one size-0 set: the empty set
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Proof of Ramsey’s Theorem – Step Case n = m+ 1
• define X0 = X

• pick an arbitrary element a0 of X0

• define Y0 = X0 \ {a0}; define coloring c′ : Y
(m)
0 → C as c′(Z) = c(Z ∪ {a0})

• IH yields infinite subset X1 ⊆ Y0 such that all size m sets of X1 have the same color c0
w.r.t. c′

• hence, c({a0} ∪ Z) = c0 for all Z ∈ X(m)
1

• next pick an arbitrary element a1 of X1 to obtain infinite set X2 ⊆ X1 \ {a1} such that

c({a1} ∪ Z) = c1 for all Z ∈ X(m)
2

• by iterating this obtain elements a0, a1, a2, . . ., colors c0, c1, c2 . . . and sets
X0, X1, X2, . . . satisfying the above properties

• since C is finite there must be some color d in the infinite list c0, c1, . . . that occurs
infinitely often; define Y = {ai | ci = d}
• Y has desired properties since all size n sets of Y have color d: if Z ∈ Y (n) then Z can

be written as {ai1 , . . . , ain} with i1 < . . . < in; hence, Z = {ai1} ∪ Z ′ with Z ′ ∈ X(m)
i1+1,

i.e., c(Z) = ci1 = d
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Termination – Size-Change Principle

Summary of Size-Change Principle

• size-change principle abstracts dependency pairs into set of size-change graphs

• if no critical graph exists (multigraph without edge i
�→ i), termination is proven

• soundness relies upon Ramsey’s theorem

• subsumes subterm criterion

• still no handling of defined symbols in dependency pairs as in

div](Succ(x), Succ(y))→ div](minus(x, y), Succ(y))
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Termination – Reduction Pairs

Reduction Pairs

• recall definition: P -chain is sequence

s1σ1 → t1σ1
i↪→∗ s2σ2 → t2σ2

i↪→∗ s3σ3 → t3σ3
i↪→∗ . . .

such that all si → ti ∈ P and all siσi ∈ NF (↪→)

• previously we used B on si → ti to ensure decrease siσi B tiσi
• previously we used siσ ∈ NF (↪→) and D to turn i↪→∗ into =

• now generalize B to strongly normalizing relation �
• now demand ` % r for equations to ensure decrease tiσi % si+1σi+1

• definition: reduction pair (�,%) is pair of relations such that
• SN(�)
• % is transitive
• � and % are compatible: � ◦% ⊆ �
• both � and % are closed under substitutions: s

(
%

)
t −→ sσ

(
%

)
tσ

• % is closed under contexts: s % t −→ F (. . . , s, . . . ) % F (. . . , t, . . . )
• note: � does not have to be closed under contexts
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Termination – Reduction Pairs

Applying Reduction Pairs

• recall definition: P -chain is sequence

s1σ1 → t1σ1
i↪→∗ s2σ2 → t2σ2

i↪→∗ s3σ3 → t3σ3
i↪→∗ . . .

such that all si → ti ∈ P and all siσ ∈ NF (↪→)

• demand s % t for all s→ t ∈ P to ensure siσi % tiσi
• demand ` % r for all equations to ensure tiσi % si+1σi+1

• define P� = {s→ t ∈ P | s � t}
• effect: pairs in P� cannot be applied infinitely often and can therefore be removed

• theorem: if there is an infinite P -chain, then there also is an infinite P \ P�-chain
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Example
• remaining termination problem

minus(x,Zero) = x

minus(Succ(x),Succ(y)) = minus(x, y)

div(Zero,Succ(y)) = Zero

div(Succ(x),Succ(y)) = Succ(div(minus(x, y), Succ(y)))

div](Succ(x),Succ(y))→ div](minus(x, y), Succ(y))

• constraints

minus(x,Zero) % x

minus(Succ(x),Succ(y)) % minus(x, y)

div(Zero,Succ(y)) % Zero

div(Succ(x),Succ(y)) % Succ(div(minus(x, y), Succ(y)))

div](Succ(x),Succ(y)) � div](minus(x, y), Succ(y))
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Usable Equations

div](Succ(x), Succ(y))→ div](minus(x, y), Succ(y))

• requiring ` % r for all program equations ` = r is quite demanding
• not incremental, i.e., adding other functions later will invalidate proof
• not necessary, i.e., argument evaluation in example only requires minus

• definition: the usable equations U wrt. a set P are program equations of those symbols
that occur in P or that are invoked by (other) usable equations; formally, let E be set of
equations of program, let root (f(. . . )) = f ; then U is defined as

s→ t ∈ P tD u ` = r ∈ E root u = root `
` = r ∈ U

`′ = r′ ∈ U r′ D u ` = r ∈ E root u = root `
` = r ∈ U

• observation whenever tiσi
i↪→∗ si+1σi+1 in chain, then only usable equations of {si → ti}

can be used
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Applying Reduction Pairs with Usable Equations

• recall definition: P -chain is sequence

s1σ1 → t1σ1
i↪→∗ s2σ2 → t2σ2

i↪→∗ s3σ3 → t3σ3
i↪→∗ . . .

such that all si → ti ∈ P and all siσ ∈ NF (↪→)

• choose a symbol f ] and define Pf] = {s→ t ∈ P | root s = f ]}
• demand s % t for all s→ t ∈ Pf]
• demand ` % r for all l = r ∈ U where U are usable equations wrt. Pf]

• define P� = {s→ t ∈ Pf] | s � t}
• effect: pairs in P� cannot be applied infinitely often and can therefore be removed

• theorem: if there is an infinite P -chain, then there also is an infinite P \ P�-chain
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Example with Usable Equations
• remaining termination problem

minus(x,Zero) = x

minus(Succ(x),Succ(y)) = minus(x, y)

div(Zero,Succ(y)) = Zero

div(Succ(x),Succ(y)) = Succ(div(minus(x, y), Succ(y)))

div](Succ(x),Succ(y))→ div](minus(x, y), Succ(y))

• constraints

minus(x,Zero) % x

minus(Succ(x), Succ(y)) % minus(x, y)

div](Succ(x), Succ(y)) � div](minus(x, y),Succ(y))

• because of usable equations, applying reduction pairs becomes incremental: new function
definitions won’t increase usable equations of DPs of previously defined equations
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Remaining Problem

• given constraints

minus(x,Zero) % x

minus(Succ(x), Succ(y)) % minus(x, y)

div](Succ(x), Succ(y)) � div](minus(x, y),Succ(y))

find a suitable reduction pair such that these constraints are satisfied
• many such reductions pair are available (cf. term rewriting lecture)

• Knuth–Bendix order (constraint solving is in P)
• recursive path order (NP-complete)
• polynomial interpretations (undecidable)

• powerful
• intuitive
• automatable

• matrix interpretations (undecidable)
• weighted path order (undecidable)
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Polynomial Interpretation

• interpret each n-ary symbol F as polynomial pF (x1, . . . , xn)

• polynomials are over N and have to be weakly monotone

xi ≥ yi −→ pF (x1, . . . , xi, . . . , xn) ≥ pF (x1, . . . , yi, . . . , xn)

sufficient criterion: forbid subtraction and negative numbers in pF
• interpretation is lifted to terms by composing polynomials

[[x]] = x

[[F (t1, . . . , tn)]] = pF ([[t1]], . . . , [[tn]])

•
(
%

)
is defined as

s
(
%

)
t iff ∀~x ∈ N∗. [[s]]

(
≥

)
[[t]]

• (�,%) is a reduction pair, e.g.,
• SN(�) follows from strong-normalization of > on N
• % is closed under contexts since each pF is weakly monotone
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Termination – Reduction Pairs

Example – Polynomial Interpretation
• given constraints

minus(x,Zero) % x

minus(Succ(x), Succ(y)) % minus(x, y)

div](Succ(x), Succ(y)) � div](minus(x, y),Succ(y))

and polynomial interpretation

pminus(x1, x2) = x1

pZero = 2

pSucc(x1) = 1 + x1

pdiv](x1, x2) = x1 + 3x2

we obtain polynomial constraints

[[minus(x,Zero)]] = x ≥ x = [[x]]

[[minus(Succ(x),Succ(y))]] = 1 + x ≥ x = [[minus(x, y)]]

[[div](Succ . . .)]] = 4 + x+ 3y > 3 + x+ 3y = [[div](minus . . .)]]
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Solving Polynomial Constraints
• each polynomial constraint over N can be brought into simple form “p ≥ 0” for some

polynomial p
• replace p1 > p2 by p1 ≥ p2 + 1
• replace p1 ≥ p2 by p1 − p2 ≥ 0

• the question of “p ≥ 0” over N is undecidable
(Hilbert’s 10th problem)

• approximation via absolute positiveness: if all coefficients of p are non-negative, then
p ≥ 0 for all instances over N
• division example has trivial constraints

original simplified

x ≥ x 0 ≥ 0

1 + x ≥ x 1 ≥ 0

4 + x+ 3y > 3 + x+ 3y 0 ≥ 0
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Finding Polynomial Interpretations

• in division example, interpretation was given on slides

• aim: search for suitable interpretation

• approach: perform everything symbolically
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Symbolic Polynomial Interpretations
• fix shape of polynomial, e.g., linear

pF (x1, . . . , xn) = F0 + F1x1 + · · ·+ Fnxn

where the Fi are symbolic coefficients

• pminus(x1, x2) = x1

pZero = 2

pSucc(x1) = 1 + x1

pdiv](x1, x2) = x1 + 3x2

concrete interpretation above becomes symbolic

pminus(x1, x2) = m0 + m1x1 + m2x2

pZero = Z0

pSucc(x1) = S0 + S1x1

pdiv](x1, x2) = d0 + d1x1 + d2x2
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Symbolic Polynomial Constraints
• given constraints

minus(x,Zero) % x

minus(Succ(x), Succ(y)) % minus(x, y)

div](Succ(x), Succ(y)) � div](minus(x, y),Succ(y))

• obtain symbolic polynomial constraints

m0 + m1x+ m2Z0 ≥ x
m0 + m1(S0 + S1x) + m2(S0 + S1y) ≥ m0 + m1x+ m2y

d0 + d1(S0 + S1x) + d2(S0 + S1y) > d0 + d1(m0 + m1x+ m2y)

+ d2(S0 + S1y)

• and simplify to

(m0 + m2Z0) + (m1 − 1)x ≥ 0

(m1S0 + m2S0) + (m1S1 −m1)x+ (m2S1 −m2)y ≥ 0

(d1S0 − d1m0 − 1) + (d1S1 − d1m1)x+ (−d1m2)y ≥ 0
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Absolute Positiveness – Symbolic Example
• on symbolic polynomial constraints

(m0 + m2Z0) + (m1 − 1)x ≥ 0

(m1S0 + m2S0) + (m1S1 −m1)x+ (m2S1 −m2)y ≥ 0

(d1S0 − d1m0 − 1) + (d1S1 − d1m1)x+ (−d1m2)y ≥ 0

absolute positiveness works as before; obtain constraints

m0 + m2Z0 ≥ 0 m1 − 1 ≥ 0

m1S0 + m2S0 ≥ 0 m1S1 −m1 ≥ 0 m2S1 −m2 ≥ 0

d1S0 − d1m0 − 1 ≥ 0 d1S1 − d1m1 ≥ 0 −d1m2 ≥ 0

• at this point, use solver for integer arithmetic to find suitable coefficients (in N)

• popular choice: SMT solver for integer arithmetic where one has to add constraints
m0 ≥ 0,m1 ≥ 0,m2 ≥ 0, S0 ≥ 0, S1 ≥ 0,Z0 ≥ 0, . . .
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Constraint Solving by Hand – Example
• original constraints

m0 + m2Z0 ≥ 0 m1 − 1 ≥ 0

m1S0 + m2S0 ≥ 0 m1S1 −m1 ≥ 0 m2S1 −m2 ≥ 0

d1S0 − d1m0 − 1 ≥ 0 d1S1 − d1m1 ≥ 0 −d1m2 ≥ 0

• delete trivial constraints

m1 − 1 ≥ 0

m1S1 −m1 ≥ 0 m2S1 −m2 ≥ 0

d1S0 − d1m0 − 1 ≥ 0 d1S1 − d1m1 ≥ 0 −d1m2 ≥ 0

• conclusions

m1 ≥ 1 d1 ≥ 1

S0 ≥ 1 S1 ≥ 1

m2 = 0 S1 ≥ m1 m0 = 0
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Constraint Solving by SMT-Solver – Example
• original constraints

m0 + m2Z0 ≥ 0 m1 − 1 ≥ 0

m1S0 + m2S0 ≥ 0 m1S1 −m1 ≥ 0 m2S1 −m2 ≥ 0

d1S0 − d1m0 − 1 ≥ 0 d1S1 − d1m1 ≥ 0 −d1m2 ≥ 0

• encode as SMT problem in file division.smt2

(set-logic QF_NIA)

(declare-fun m0 () Int) ... (declare-fun d2 () Int)

(assert (>= m0 0)) ... (assert (>= d2 0))

(assert (>= (+ m0 (* m2 Z0)) 0))

...

(assert (>= (* (- 1) d1 m2) 0))

(check-sat)

(get-model)

(exit)
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Constraint Solving by SMT-Solver – Example Continued

• invoke SMT solver, e.g., Microsoft’s open source solver Z3

cmd> z3 division.smt2

sat

(model

(define-fun d1 () Int 8)

(define-fun S1 () Int 15)

(define-fun S0 () Int 8)

(define-fun Z0 () Int 0)

(define-fun m2 () Int 0)

(define-fun m1 () Int 12)

(define-fun m0 () Int 4)

(define-fun d2 () Int 0)

(define-fun d0 () Int 0)

)

• parse result to obtain polynomial interpretation
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Constraint Solving by SMT-Solver – Scepticism

• polynomial interpretation found by SMT solving approach is generated by complex
(potentially buggy) tool

• however, termination is essential for well-defined programs, i.e., in particular to derive
correct theorems
• solution: certification

• search for interpretation can be done in arbitrary untrusted way
• write simple trusted checker that certifies whether concrete interpretation indeed satisfies all

constraints
• like solving NP-complete problem: positive answer can easily be verified

• in fact, this approach is heavily used in termination proving
• untrusted tools: AProVE, TTT2, Terminator, . . .
• trusted checker: CeTA; soundness formally proven in Isabelle/HOL
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Summary

• pattern-completeness and pattern-disjointness are decidable
• termination proving can be done via

• dependency pairs
• subterm criterion
• size-change termination
• polynomial interpretation

• termination proving often performed with help of SMT solvers

• increase reliability via certification: checking of generated proofs
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