

Program Verification

Part 4 – Checking Well-Definedness of Functional Programs

René Thiemann

Department of Computer Science

SS 2021

Overview

- recall: a functional program is well-defined if
 - it is pattern disjoint,
 - it is pattern complete, and
 - $\bullet \ \hookrightarrow \text{ is terminating}$
- well-definedness is prerequisite for standard model, for derived theorems, ...
- task: given a functional program as input, ensure well-definedness
 - known: type-checking algorithm
 - known: algorithm for checking pattern disjointness
 - missing: algorithm for type-inference
 - missing: algorithm for deciding pattern completeness
 - missing: methods to ensure termination
- all of these missing parts will be covered in this chapter

Type-Checking with Implicit Variables

Type-Inference

- structure of functional programs
 - data-type definitions
 - function definitions: type of new function + defining equations
 - not mentioned: type of variables
- in proseminar: work-around via fixed scheme which does not scale
 - singleton characters get type Nat
 - words ending in "s" get type List
- aim: infer suitable type of variables automatically
- example: given FP

append : List × List → List append(Cons(x, y), z) = Cons(x, append(y, z)) append(Nil, x) = x

we should be able to infer that x : Nat, y : List and z : List in the first equation, whereas x : List in the second equation

RT (DCS @ UIBK)

Interlude: Maybe-Type for Errors

- recall type-checking algorithm (variable case omitted)
 type_check :: Sig -> Vars -> Term -> Maybe Type
 type_check sigma vars (Fun f ts) = do
 (tys_in,ty_out) <- sigma f
 tys_ts <- mapM (type_check sigma vars) ts
 if tys_ts == tys_in then return ty_out else Nothing
- Maybe-type is only one possibility to represent computational results with failure
- let us abstract from concrete Maybe-type:
 - introduce new type Check to represent a result or failure type Check a = Maybe a
 - function return :: a -> Check a to produce successful results
 - function to raise a failure

```
failure :: Check a
```

```
failure = Nothing
```

convenience function: asserting a property

```
assert :: Bool -> Check ()
```

```
assert p = if p then return () else failure
```

Making Type-Checking More Abstract

```
    original type-checking algorithm
    type_check :: Sig -> Vars -> Term -> Maybe Type
    type_check sig vars (Var x) = vars x
    type_check sigma vars (Fun f ts) = do
        (tys_in,ty_out) <- sigma f
        tys_ts <- mapM (type_check sigma vars) ts
        if tys_ts == tys_in then return ty_out else Nothing</li>
```

```
• with new abstract types and functions
type_check :: Sig -> Vars -> Term -> Check Type
type_check sig vars (Var x) = vars x
type_check sigma vars (Fun f ts) = do
  (tys_in,ty_out) <- sigma f
  tys_ts <- mapM (type_check sigma vars) ts
  assert (tys_ts == tys_in)
  return ty_out</pre>
```

• advantage: readability, change Check-type easily

Back to Type-Checking and Type-Inference

• known: type-checking algorithm

type_check :: Sig -> Vars -> Term -> Check Type

- type Sig = FSym -> Check ([Type], Type) Σ
- type Vars = Var -> Check Type \mathcal{V}
- type_check takes Σ and ${\mathcal V}$ and delivers type of term
- we want a function that works in the other direction: it gets an intended type as input, and delivers a suitable type for the variables infer_type :: Sig -> Type -> Term -> Check [(Var,Type)]

```
• then type-checking an equation without explicit Vars is possible
type_check_eqn :: Sig -> (Term, Term) -> Check ()
type_check_eqn sigma (Var x, r) = failure
type_check_eqn sigma (1 @ (Fun f _), r) = do
  (_,ty) <- sigma f
  vars <- infer_type sigma ty 1
  ty_r <- type_check sigma (\ x -> lookup x vars) r
  assert (ty == ty_r)
```

Type-Inference Algorithm

• note: upcoming algorithm only infers types of variables

(in polymorphic setting often also type of function symbols is inferred)

```
infer_type :: Sig -> Type -> Term -> Check [(Var,Type)]
infer_type sig ty (Var x) = return [(x,ty)]
infer_type sig ty (Fun f ts) = do
  (tvs_in.tv_out) <- sig f
  assert (length tys_in == length ts)
  assert (ty_out == ty)
  vars_l <- mapM (\ (ty, t) -> infer_type sig ty t) (zip tys_in ts)
  let vars = nub (concat vars_1) -- nub removes duplicates
  assert (distinct (map fst vars))
  return vars
```

```
distinct :: Eq a => [a] -> Bool
distinct xs = length (nub xs) == length xs
```

Soundness of Type-Inference Algorithm

- properties
 - if $t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$ then $infer_type \Sigma \tau t = return (\mathcal{V} \cap \mathcal{V}ars(t))$
 - if $infer_type \Sigma \tau t = return \mathcal{V}$ then
 - ${\mathcal V}$ is well-defined (no conflicting variable assignments) and
 - $t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$
- properties can be shown in similar way to type-checking algorithm, cf. slides 2/35-42
- note that 'if $t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$ then $infer_type \Sigma \tau t \neq failure$ ' is a property which is not strong enough when performing induction

Changing the Error Monad

Weakness of Maybe-Type for Errors

- situation: several functions for checking properties of terms, equations, which can be assembled to check functional programs wrt. slides 3/4 (data-type definitions), 3/15 (function definitions) and partly 3/45 (well-definedness)
 - infer_type :: Sig -> Type -> Term -> Check [(Var,Type)]
 - type_check :: Sig -> Vars -> Term -> Check Type
 - type_check_eqn :: Sig -> (Term, Term) -> Check ()
- problem: if checks are not successful, we just get result Nothing
- desired: informative error message why a functional program is refused
- possible solution: use more verbose error type than Maybe
 type Check a = Either String a

Changing Implementation of Interface

- current interface for error type
 - type Check a = Maybe a
 - function return :: a -> Check a
 - function assert :: Bool -> Check ()
 - function failure :: Check a
 - do-blocks, monadic-functions such as mapM, etc.
- it is actually easy to change to Either-type for errors
 - type Check a = Either String a
 - return, do-blocks and mapM are unchanged, since these are part of generic monad interface
 - functions assert and failure need to be changed, since they now require error messages

```
failure :: String -> Check a
failure = Left
assert :: Bool -> String -> Check ()
assert p err = if p then return () else failure err
```

Changing Algorithms for Checking Properties

• adapting algorithms often only requires additional error messages

```
before change (type Check a = Maybe a)
type_check :: Sig -> Vars -> Term -> Check Type
type_check sigma vars (Var x) = vars x
type_check sigma vars (Fun f ts) = do
(tys_in,ty_out) <- sigma f
tys_ts <- mapM (type_check sigma vars) ts
assert (tys_ts == tys_in)
return ty_out
```

```
    after change (type Check a = Either String a)
type_check :: Sig -> Vars -> Term -> Check Type
type_check sigma vars (Var x) = ...
type_check sigma vars t@(Fun f ts) = do
```

```
...
assert (tys_ts == tys_in) (show t ++ " ill-typed")
```

. . .

Changing Algorithms for Checking Properties, Continued

- example requiring more changes; with type Check a = Maybe a
 type_check_eqn sigma (Var x, r) = failure
 type_check_eqn sigma (1 @ (Fun f _), r) = do
 (_,ty) <- sigma f
 vars <- infer_type sigma ty l
 ty_r <- type_check sigma (\ x -> lookup x vars) r
 assert (ty == ty_r)
- new version with type Check a = Either String a type_check_eqn sigma (Var x, r) = failure "var as lhs" type_check_eqn sigma (l @ (Fun f _), r) = do

ty_r <- type_check sigma (\ x -> lookup x vars) r
assert (ty == ty_r) "types of lhs and rhs don't match"

- problem: lookup produces Maybe, not Either String
- solution: use maybeToEither :: e -> Maybe a -> Either e a

. . .

Fixed Type-Checking Algorithm with Error Messages

import Data.Either.Utils -- for maybeToEither

-- import requires MissingH lib; if not installed, define it yourself:

```
-- maybeToEither e Nothing = Left e
```

```
-- maybeToEither _ (Just x) = return x
```

```
type_check_eqn sigma (Var x, r) = failure "var as lhs"
type_check_eqn sigma (1 @ (Fun f _), r) = do
  (,ty) <- sigma f
  vars <- infer_type sigma ty 1</pre>
  ty_r <- type_check
     sigma
     ( x \rightarrow maybeToEither)
         (x ++ " is unknown variable")
         (lookup x vars))
     r
  assert (ty == ty_r) "types of lhs and rhs don't match"
```

Processing Functional Programs

Processing Functional Programs

- aim: write program which takes
 - functional program as input (data type definitions + function definitions)
 - checks the syntactic requirements
 - stores the relevant information in some internal representation
 - later: also checks well-definedness
- such a program is essential part of a compiler
- program should be easy to verify

Recall: Data Type Definitions

- given: set of types $\mathcal{T}y$, signature $\Sigma = \mathcal{C} \uplus \mathcal{D}$
- each data type definition has the following form

• effect: add new type and new constructors

•
$$\mathcal{T}y := \mathcal{T}y \cup \{\tau\}$$

• $\mathcal{C} := \mathcal{C} \cup \{c_1 : \tau_{1,1} \times \ldots \times \tau_{1,m_1} \to \tau, \ldots, c_n : \tau_{n,1} \times \ldots \times \tau_{n,m_n} \to \tau\}$

```
Existing Encoding of Part 2: Signatures and Terms
type Check a = ... -- Maybe a or Either String a
type Type = String
type Var = String
type FSym = String
type Vars = Var -> Check Type
type FSym_Info = ([Type], Type)
type Sig = FSym -> Check FSym_Info
data Term = Var Var | Fun FSym [Term]
New Auxiliary Function for Error Monad
is_result :: Check a => Bool -- True if argument is not an error
is_result Nothing = False or is_result (Left ) = False
is_result _ = True
                         is result = True
```

Encoding Functional Programs in Haskell

```
-- input: unchecked data-type definitions and function definitions
data Data_Definition = Data Type [(FSym, FSym_Info)]
data Function_Definition = ... -- later
type Functional_Prog =
  ([Data_Definition], [Function_Definition])
```

```
-- internal representation
type Sig_List = [(FSym, FSym_Info)] -- signatures as list
type Defs = Sig_List -- list of defined symbols
type Cons = Sig_List -- list of constructors
type Equations = [(Term, Term)] -- all function equations
-- all combined in Haskell-type; it also stores known types
data Prog_Info = Prog_Info [Type] Cons Defs Equations
```

```
-- checking single data type definition
process_data_definition ::
Prog_Info -> Data_Definition -> Check Prog_Info
```

```
Checking a Single Data Definitions
process_data_definition
    (Prog_Info tys cons defs eqs)
    (Data ty new_cs)
 = do
    assert (not (elem ty tys))
    let new_tys = ty : tys
    let sigma = sig_list_to_sig (cons ++ defs)
    assert (distinct (map fst new_cs))
    assert (all
       (\ (c, ) \rightarrow not (is_result (sigma c))) new_cs)
    assert (all (\ (_,(tys_in,ty_out)) ->
      ty_out == tv \&\&
      all (\ ty -> elem ty new_tys) tys_in) new_cs)
    assert (anv
      (\langle (,(tys_in, )) \rightarrow all (/= ty) tys_in) new_cs)
    return (Prog_Info new_tys (new_cs ++ cons) defs eqs)
```

Checking Several Data Definitions

 processing many data definitions can be easily done by using foldM: predefined monadic version of foldl

```
foldM :: Monad m => (b -> a -> m b) -> b -> [a] -> m b
foldM f e [] = return e
foldM f e (x : xs) = do
    d <- f e x
    foldM f d xs</pre>
```

```
process_data_definition ::
    Prog_Info -> Data_Definition -> Check Prog_Info
    process_data_definition = ... -- previous slide
```

```
process_data_definitions ::
    Prog_Info -> [Data_Definition] -> Check Prog_Info
    process_data_definitions = foldM process_data_definition
```

Checking Function Definitions wrt. Slide 3/15

data Function_Definition = Function

FSym -- name of function FSym_Info -- type of function [(Term,Term)] -- equations

process_function_definition

:: Prog_Info -> Function_Definition -> Check Prog_Info process_function_definition = ... -- exercise

```
process_function_definitions ::
    Prog_Info -> [Function_Definition] -> Check Prog_Info
    process_function_definitions =
    foldM process_function_definition
```

Checking Functional Programs

```
initial_prog_info = Prog_Info [] [] []
```

```
process_program :: Functional_Prog -> Check Prog_Info
process_program (data_defs, fun_defs) = do
    pi <- process_data_definitions initial_prog_info data_defs
    process_function_definitions pi fun_defs</pre>
```

Current State

- process_program :: Functional_Prog -> Check Prog_Info is Haskell program to check user provided functional programs, whether they adhere to the specification of functional programs wrt. slides 3/4 and 3/15
- its functional style using error monads permits to easily verify its correctness
 - no induction required
 - based on assumption that builtin functions behave correctly, e.g., all, any, nub, ...
- missing: checks for well-defined functional programs wrt. slide 3/45

Checking Pattern Disjointness

Deciding Pattern Disjointness

- program is pattern disjoint if for all $f : \tau_1 \times \cdots \times \tau_n \to \tau \in \mathcal{D}$ and all $t_1 \in \mathcal{T}(\mathcal{C})_{\tau_1}, \ldots, t_n \in \mathcal{T}(\mathcal{C})_{\tau_n}$ there is at most one equation $\ell = r$ in the program, such that ℓ matches $f(t_1, \ldots, t_n)$
- in proseminar it was proven that pattern disjointness is equivalent to the following condition: for each pair of distinct equations $\ell_1 = r_1$ and $\ell_2 = r_2$, ℓ_1 and a variable renamed variant of ℓ_2 do not unify
- key missing part for checking pattern disjointness is an algorithm for unification:

given two terms s and t, decide $\exists \sigma. s\sigma = t\sigma$

Unification Algorithm of Martelli and Montanari

- input: unification problem $U = \{s_1 \stackrel{?}{=} t_1, \dots, s_n \stackrel{?}{=} t_n\}$
- question: is U solvable, i.e., does there exist a solution σ , a substitution satisfying $\forall i \in \{1, \ldots, n\}$. $s_i \sigma = t_i \sigma$
- two different kinds of output:
 - unification problem in solved form:

$$\{x_1 \stackrel{?}{=} v_1, \dots, x_m \stackrel{?}{=} v_m\}$$
 with distinct x_j 's

solved forms can be interpreted as substitution

$$\sigma(x) = \begin{cases} v_i, & \text{if } x = x_i \\ x, & \text{otherwise} \end{cases}$$

and this σ will be solution of U

- $\perp {\rm ,\ indicating\ that\ } U$ is not solvable
- $\bullet\,$ algorithm itself is build via one-step relation \rightsquigarrow which is applied as long as possible

Checking Pattern Disjointness

Unification Algorithm of Martelli and Montanari, continued

- input: unification problem $U = \{s_1 \stackrel{?}{=} t_1, \dots, s_n \stackrel{?}{=} t_n\}$
- output: solution of U via solved form or $\bot,$ indicating unsolvability
- algorithm applies \rightsquigarrow as long as possible; \rightsquigarrow is defined as

$$U \cup \{t \stackrel{?}{=} t\} \rightsquigarrow U$$
 (delete)

$$U \cup \{f(u_1, \dots, u_k) \stackrel{?}{=} f(v_1, \dots, v_k)\} \rightsquigarrow U \cup \{u_1 \stackrel{?}{=} v_1, \dots, v_k \stackrel{?}{=} v_k\} \quad (\text{decompose})$$

$$U \cup \{f(u_1, \dots, u_k) \stackrel{?}{=} g(v_1, \dots, v_\ell)\} \rightsquigarrow \bot, \text{ if } f \neq g \lor k \neq \ell$$
 (clash)

$$U \cup \{f(\dots) \stackrel{?}{=} x\} \rightsquigarrow U \cup \{x \stackrel{?}{=} f(\dots)\}$$
(swap)

$$U \cup \{x \stackrel{?}{=} f(\ldots)\} \rightsquigarrow \bot, \text{ if } x \in \mathcal{V}ars(f(\ldots))$$
 (occurs check)

$$U \cup \{x \stackrel{?}{=} t\} \rightsquigarrow U\{x/t\} \cup \{x \stackrel{?}{=} t\},$$

if $x \notin \mathcal{V}ars(t)$ and x occurs in U (eliminate)

notation $U\{x/t\}$: apply substitution $\{x/t\}$ on all terms in U (lhs + rhs)

Correctness of Unification Algorithm

- we only state properties (proofs: see term rewriting lecture)
 - → terminates
 - normal form of \rightsquigarrow is \bot or a solved form
 - whenever $U \rightsquigarrow V$, then U and V have same solutions
 - in total: to solve unification problem U
 - determine some normal form V of U
 - if $V = \bot$ then U is unsolvable
 - $\hfill \bullet$ otherwise, V represents a substitution that is a solution to U
- note that \rightsquigarrow is not confluent

•
$$\{x \stackrel{?}{=} y, y \stackrel{?}{=} x\} \stackrel{x/y}{\rightsquigarrow} \{x \stackrel{?}{=} y, y \stackrel{?}{=} y\} \rightsquigarrow \{x \stackrel{?}{=} y\}$$

• $\{x \stackrel{?}{=} y, y \stackrel{?}{=} x\} \stackrel{y/x}{\rightsquigarrow} \{x \stackrel{?}{=} x, y \stackrel{?}{=} x\} \rightsquigarrow \{y \stackrel{?}{=} x\}$

Checking Pattern Disjointness

Correctness of an Implementation of a (Unification) Algorithm

- any concrete implementation will make choices
 - preference of rules
 - selection of pairs from \boldsymbol{U}
 - representation of sets U
 - (pivot-selection in quicksort)
 - (order of edges in graph-/tree-traversals)

• . . .

- task: how to ensure that implementation is sound
- solution: refinement proof
 - aim: reuse correctness of abstract algorithm (\rightsquigarrow)
 - define relation between representations in concrete and abstract algorithm (this was called alignment before and done informally)
 - show that concrete algorithm has less behaviour, i.e., every result of concrete (deterministic) algorithm can be related to some result of (non-deterministic) abstract algorithm
 - benefit: clear separation between
 - soundness of abstract algorithm
 - soundness of implementation

(solves unification problems) (implements abstract algorithm) A Concrete Implementing of the Unification Algorithm subst :: Var -> Term -> Term -> Term subst x t = apply_subst ($\langle y \rangle$ -> if y == x then t else Var y) unify :: [(Term, Term)] -> Maybe [(Var, Term)] unify u = unify_main u [] unify_main :: [(Term, Term)] -> [(Var, Term)] -> Maybe [(Var, Term)] unify_main [] v = Just v -- return solved form unify_main ((Fun f ts, Fun g ss) : u) v = if f == g && length ts == length ss then unify_main (zip ts ss ++ u) v -- decompose else Nothing -- clash unify_main ((Fun f ts, x) : u) v =unify_main ((x, Fun f ts) : u) v -- swap unify_main ((Var x, t) : u) v = if Var x == t then unify_main u v -- delete else if x `elem` vars_term t then Nothing -- occurs check else unifv main -- eliminate $(map (\setminus (1,r) \rightarrow (subst x t 1, subst x t r)) u)$ $((x,t) : map (\setminus (y, s) \rightarrow (y, subst x t s)) v)$

Notes on Implementation

- non-trivial to prove soundness of implementation, since there are several differences wrt. \rightsquigarrow
 - \textit{unify}_main takes two parameters u and v
 - these represent one unification problem $u \cup v$
 - rule-application is not tried on v, only on u
 - we need to know that v is in normal form wrt. \rightsquigarrow
 - in (occurs check)-rule, the algorithm has no test that rhs is function application
 - · we need to show that this will follow from other conditions
 - in (elimination)-rule, the algorithms substitutes only in rhss of v
 - $\ensuremath{\,^\circ}$ we need to know that substituting in lhss of v has no effect
 - in (elimination)-rule, the algorithm does not check that x occurs in remaining problem
 - we need to check that consequences don't harm

Soundness via Refinement: Setting up the Relation

- relation \sim formally aligns parameters of concrete algorithm (u and v) with parameters of abstract algorithm (U); \sim also includes invariants of implementation
 - set converts list to set, we identify $s\stackrel{?}{=}t$ with (s,t)
 - $(u,v) \sim U$ iff
 - $U = set \ u \cup set \ v$,
 - set v is in normal form wrt. \rightsquigarrow (notation: set $v \in NF(\rightsquigarrow)$), and
 - for all $(x,t) \in set \ v$: x does not occur in u
- since alignment between concrete and abstract parameters is specified formally, alignment properties of auxiliary functions can also be made formal

• set
$$(x:xs) = \{x\} \cup set xs$$

• set
$$(xs ++ ys) = set \ xs \cup set \ ys$$

• set
$$(zip \ [x_1, \dots, x_n] \ [y_1, \dots, y_n]) = \{(x_1, y_1), \dots, (x_n, y_n)\}$$

• set
$$(map \ f \ [x_1, \dots, x_n]) = \{f \ x_1, \dots, f \ x_n\}$$

• subst
$$x \ t \ s = s\{x/t\}$$

• . . .

Soundness via Refinement: Main Statement

- define set_maybe Nothing $= \bot$, set_maybe (Just w) = set w
- property: whenever $(u, v) \sim U$ and $unify_main \ u \ v = res$ then $U \rightsquigarrow^! set_maybe \ res$
- once property is established, we can prove that implementation solves unification problems
 - assume input u, i.e., invocation of $unify \ u$ which yields result res
 - hence, $unify_main \ u \ [] = res$
 - moreover, $(u,[])\sim set~u$ by definition of \sim
 - via property conclude set $u \rightsquigarrow$! set_maybe res
 - at this point apply correctness of ~→:

 $set_maybe\ res$ is the correct answer to the unification problem $set\ u$

Proving the Refinement Property

- property P(u, v, U): $(u, v) \sim U \wedge unify_main \ u \ v = res \longrightarrow U \rightsquigarrow^! set_maybe \ res$
- $\bullet \ (u,v) \sim U \longleftrightarrow U = set \ u \cup set \ v \wedge set \ v \in NF(\leadsto) \land \forall (x,t) \in set \ v. \ x \notin \mathcal{V}ars(u)$
- we prove the property P(u, v, U) by induction on u and v wrt. the algorithm for arbitrary U, i.e., we consider all left-hand sides and can assume that the property holds for all recursive calls;

induction wrt. algorithm gives partial correctness result (assumes termination)

- in the lecture, we will cover a simple, a medium, and the hardest case
- case 1 (arguments [] and v):
 - we have to prove P([], v, U), so assume
 - $(*) ([], v) \sim U$ and
 - (**) unify_main [] v = res
 - from (*) conclude $U = set \ v$ and $set \ v \in NF(\rightsquigarrow)$
 - from (**) conclude res = Just v and hence, $set_maybe res = set v$
 - we have to show $U \rightsquigarrow! set_maybe res$, i.e., set $v \rightsquigarrow! set v$ which is satisfied since set $v \in NF(\rightsquigarrow)$
- P(u, v, U): $(u, v) \sim U \land unify_main \ u \ v = res \longrightarrow U \rightsquigarrow^! set_maybe \ res$
- $\bullet \ (u,v) \sim U \longleftrightarrow U = set \ u \cup set \ v \wedge set \ v \in NF(\rightsquigarrow) \land \forall (x,t) \in set \ v. \ x \notin \mathcal{V}ars(u)$

case 2 (arguments (f(ts), g(ss)) : u and v)

• we have to prove P((f(ts), g(ss)) : u, v, U), so assume

$$\begin{array}{l} (*) \quad ((f(ts),g(ss)):u,v)\sim U \text{ and} \\ (**) \quad unify_main \ ((f(ts),g(ss)):u) \ v=res \end{array}$$

consider sub-cases

•
$$\neg(f = g \land length \ ts = length \ ss)$$
:

- from (**) conclude $set_maybe \ res = \bot$
- from (*) conclude $f(ts) \stackrel{?}{=} g(ss) \in U$ and hence $U \rightsquigarrow \bot$ by (clash)
- consequently, $U \rightsquigarrow^! set_maybe res$
- $f = g \land length \ ts = length \ ss$:
 - from (**) conclude $res = unify_main ((f(ts), g(ss)) : u) v = unify_main (zip ts ss ++ u) v$
 - from (*) and alignment for *zip* and ++ conclude U = {f(ts) = g(ss)} ∪ set u ∪ set v and hence U → set (*zip* ts ss ++ u) ∪ set v =: V by (decompose)
 - we get $P(zip \ ts \ ss \ ++ \ u, v, V)$ as IH; $(zip \ ts \ ss \ ++ \ u, v) \sim V$ follows from (*), so $U \rightsquigarrow V \rightsquigarrow^! set_maybe \ res$

- P(u, v, U): $(u, v) \sim U \wedge unify_main \ u \ v = res \longrightarrow U \rightsquigarrow^! set_maybe \ res$
- $\bullet \ (u,v) \sim U \longleftrightarrow U = set \ u \cup set \ v \wedge set \ v \in NF(\rightsquigarrow) \land \forall (x,t) \in set \ v. \ x \notin \mathcal{V}ars(u)$

case 4 (arguments (x, t) : u and v)

• we have to prove P((x,t):u,v,U), so assume

 $\begin{array}{ll} (*) & ((x,t):u,v) \sim U \text{ and} \\ (**) & unify_main \ ((x,t):u) \ v = res \end{array}$

- consider sub-cases (where the red part is not triggered by structure of algorithm)
 - $x \neq t \land x \notin \mathcal{V}ars(t) \land x$ occurs in set $u \cup set v$:
 - define $u' = map \ (\lambda(l, r). \ (subst \ x \ t \ l, subst \ x \ t \ r)) \ u$
 - define $v' = map \ (\lambda(y, s). \ (y, subst \ x \ t \ s)) \ v$
 - define $V = (set \ u \cup set \ v)\{x/t\} \cup \{x \stackrel{?}{=} t\}$
 - from (**) conclude $res = unify_main ((x,t):u) v = unify_main u' ((x,t):v')$
 - from IH conclude P(u', (x, t) : v', V) and hence, $(u', (x, t) : v') \sim V \longrightarrow V \rightsquigarrow^! set_maybe restriction restriction is the set of the set o$
 - for proving $U \rightsquigarrow^! set_maybe\ res$ it hence suffices to show $(u', (x, t) : v') \sim V$ and $U \rightsquigarrow V$
 - U = {x = t} ∪ set u ∪ set v → (set u ∪ set v){x/t} ∪ {x/t} = V
 by (eliminate) because of preconditions

•
$$(u, v) \sim U \longleftrightarrow U = set \ u \cup set \ v \land set \ v \in NF(\rightsquigarrow) \land \forall (x, t) \in set \ v. \ x \notin Vars(u)$$

case 4 (arguments (x, t) : u and v)

• we have to prove P((x,t):u,v,U), so assume (*) $((x,t):u,v) \sim U$ and ... and consider sub-case $x \neq t \land x \notin Vars(t) \land x$ occurs in set $u \cup set v$:

• define
$$u' = map \ (\lambda(l, r). \ (subst \ x \ t \ l, subst \ x \ t \ r)) \ u$$

• define
$$v' = map \ (\lambda(y, s). \ (y, subst \ x \ t \ s)) \ v$$

• define
$$V = (set \ u \cup set \ v)\{x/t\} \cup \{x \stackrel{?}{=} t\}$$

• we still need to show
$$(u',(x,t):v') \sim V$$

• since (*) holds, we know
$$\forall (y,s) \in set \ v. \ x \neq y$$

• hence,
$$v' = map \ (\lambda(y, s). \ (subst \ x \ t \ y, subst \ x \ t \ s)) \ v$$

• so,
$$V = (set \ u)\{x/t\} \cup \{x \stackrel{?}{=} t\} \cup (set \ v)\{x/t\} = set \ u' \cup set \ ((x,t):v')$$

- we show $\forall (y,s) \in set \ ((x,t):v'). \ y \notin \mathcal{V}ars(u')$ as follows: $x \notin \mathcal{V}ars(u')$ since $x \notin \mathcal{V}ars(t)$; and if $(y,s) \in set \ v'$, then $(y,s') \in set \ v$ for some s' and by (*) we conclude $y \notin \mathcal{V}ars((x,t):u)$; thus, $y \notin \mathcal{V}ars((set \ u)\{x/t\}) = \mathcal{V}ars(u')$
- we finally show set $((x,t):v') \in NF(\rightsquigarrow)$: so, assume to the contrary that some step is applicable; by the shape of set ((x,t):v') we know that the step can only be (eliminate), (delete) or (occurs check); all of these cases result in a contradiction by using the available facts

Proving the Refinement Property

- case 4 (arguments (x, t) : u and v)
 - other sub-cases: exercise
- case 3 (arguments (f(ss), x) : u and v): exercise
- summary
 - non-trivial implementation of abstract unification algorithm \rightsquigarrow
 - optimizations required additional invariants, encoded in refinement relation
 - proof of correctness can be done formally
 - induction + case analysis proof uses mostly the structure of the Haskell code; exception: case analysis on "x occurs in set u ∪ set v"
 - most cases can easily be solved, after having identified suitable invariants
 - fully reuse correctness of \rightsquigarrow
 - we only proved partial correctness
 - termination of implementation: consider lexicographic measure

$$(\underbrace{|\mathcal{V}ars(set\ u)|}_{(eliminate)},\underbrace{|u|}_{(decomp),(delete)},\underbrace{length\ [x\mid (t, Var\ x)\leftarrow u]}_{(swap)})$$

Checking Pattern Completeness

Checking Pattern Completeness

- reminder: program is pattern complete, if for all $f : \tau_1 \times \ldots \times \tau_n \to \tau \in \mathcal{D}$ and all $t_i \in \mathcal{T}(\mathcal{C})_{\tau_i}$ there is some lhs that matches $f(t_1, \ldots, t_n)$
- idea of abstract algorithm
 - a pattern problem is a set P of pairs (t, L) where
 - t is a term, representing the set of all its constructor ground instances
 - L is a set of left-hand sides that potentially match instances of t
 - initially, $P = \{(f(x_1, \dots, x_n), \text{set of all lhss of } f \text{-equations}) \mid f \in \mathcal{D}\}$
 - whenever some left-hand side $\ell \in L$ cannot match any instance of t anymore, it can be removed
 - whenever L becomes empty, then no instance of t can be matched
 - whenever all constructor ground instances of t are matched by L, then (t,L) can be removed from ${\cal P}$
 - ${\ensuremath{\, \bullet }}$ when P becomes empty, pattern completeness should be guaranteed
 - if none of the above is applicable, we instantiate t
- initial task: think about exact statement, what kind of property of pattern problem we are investigating (similar to definition of solution of unification problem)

Semantics of Pattern Problems

- in the following algorithm and proofs, we always consider type-correct terms and substitutions wrt. $\Sigma = C \cup D$, but do not mention this explicitly
- a pattern problem is a set P of pairs (t, L) consisting of a term t and a set of terms L
- P is complete if for all $(t, L) \in P$ and all constructor ground substitutions σ there is some $\ell \in L$ that matches $t\sigma$
- obviously, $P = \varnothing$ is complete
- we define \perp as additional pattern problem, which is not complete
- define $L_{init,f}$ as the set of all lhss of f-equations of the program
- define $P_{init} = \{(f(x_1, \dots, x_n), L_{init,f}) \mid f \in \mathcal{D}\}$
- consequence: program is pattern complete iff P_{init} is complete

Deciding Completeness of Pattern Problems

- we develop abstract algorithm that is similar to abstract unification algorithm, it is defined via a one step relation → that transforms pattern problems into equivalent simpler problems
- it uses the matching algorithm of slides 3/23–29 (with detailed error results) as auxiliary algorithm

•
$$P \cup \{(t, \{\ell\} \cup L)\} \rightarrow P$$
, if ℓ matches t (match)
• $P \cup \{(t, \{\ell\} \cup L)\} \rightarrow P \cup \{(t, L)\}$, if match ℓ t clashes (clash)
• $P \cup \{(t, \emptyset)\} \rightarrow \bot$ (fail)
• $P \cup \{(t, L)\} \rightarrow P \cup \{(t\sigma_1, L), \dots, (t\sigma_n, L)\}$, if (split)
• $\ell \in L$ and match ℓ t results in fun-var-conflict with variable x
• the type of x is τ
• τ has n constructors c_1, \dots, c_n

• $\sigma_i = \{x/c_i(x_1, \dots, x_k)\}$ where k is the arity of c_i and the x_i 's are distinct fresh variables

Example

consider

data Bool = True : Bool | False : Bool $\ell_1 := \operatorname{conj}(\operatorname{True}, \operatorname{True}) = \dots$ $\ell_2 := \operatorname{conj}(\operatorname{False}, y) = \dots$ $\ell_3 := \operatorname{conj}(x, \operatorname{False}) = \dots$

then we have

$$\begin{split} P_{init} &= \{(\operatorname{conj}(x_1, x_2), \{\ell_1, \ell_2, \ell_3\})\} \\ & \rightarrow \{(\operatorname{conj}(\operatorname{True}, x_2), \{\ell_1, \ell_2, \ell_3\}), (\operatorname{conj}(\operatorname{False}, x_2), \{\ell_1, \ell_2, \ell_3\})\} \\ & \rightarrow \{(\operatorname{conj}(\operatorname{True}, x_2), \{\ell_1, \ell_3\}), (\operatorname{conj}(\operatorname{False}, x_2), \{\ell_1, \ell_2, \ell_3\})\} \\ & \rightarrow \{(\operatorname{conj}(\operatorname{True}, x_2), \{\ell_1, \ell_3\}), (\operatorname{conj}(\operatorname{False}, x_2), \{\ell_2, \ell_3\})\} \\ & \rightarrow \{(\operatorname{conj}(\operatorname{True}, x_2), \{\ell_1, \ell_3\})\} \\ & \rightarrow \{(\operatorname{conj}(\operatorname{True}, \operatorname{True}), \{\ell_1, \ell_3\}), (\operatorname{conj}(\operatorname{True}, \operatorname{False}), \{\ell_1, \ell_3\})\} \\ & \rightarrow \{(\operatorname{conj}(\operatorname{True}, \operatorname{False}), \{\ell_1, \ell_3\})\} \\ & \rightarrow \{(\operatorname{conj}(\operatorname{True}, \operatorname{False}), \{\ell_1, \ell_3\})\} \end{split}$$

Example

consider

data Bool = True : Bool | False : Bool $\ell_1 := \operatorname{conj}(\operatorname{True}, \operatorname{True}) = \dots$ $\ell_2 := \operatorname{conj}(\operatorname{False}, y) = \dots$

then we have

$$\begin{split} P_{init} &= \{(\text{conj}(x_1, x_2), \{\ell_1, \ell_2\})\} \\ & \rightarrow \{(\text{conj}(\text{True}, x_2), \{\ell_1, \ell_2\}), (\text{conj}(\text{False}, x_2), \{\ell_1, \ell_2\})\} \\ & \rightarrow \{(\text{conj}(\text{True}, x_2), \{\ell_1\}), (\text{conj}(\text{False}, x_2), \{\ell_1, \ell_2\})\} \\ & \rightarrow \{(\text{conj}(\text{True}, x_2), \{\ell_1\})\} \\ & \rightarrow \{(\text{conj}(\text{True}, \text{True}), \{\ell_1\}), (\text{conj}(\text{True}, \text{False}), \{\ell_1\})\} \\ & \rightarrow \{(\text{conj}(\text{True}, \text{False}), \{\ell_1\})\} \\ & \rightarrow \{(\text{conj}(\text{True}, \text{False}), \{\ell_1\})\} \\ & \rightarrow \{(\text{conj}(\text{True}, \text{False}), \emptyset)\} \\ & \rightarrow \bot \end{split}$$

Partial Correctness of \rightharpoonup

- definition: P is complete if for all $(t, L) \in P$ and all constructor ground substitutions σ there is some $\ell \in L$ that matches $t\sigma$
- theorem: whenever $P \rightharpoonup Q$, then P is complete iff Q is complete
- corollary: if P →* Ø then P is complete, and if P →* ⊥ then P is not complete
- proof of theorem
 - (match): $P \cup \{(t, \{\ell\} \cup L)\} \rightarrow P$, if ℓ matches t
 - we only have to show that $\{(t, \{\ell\} \cup L)\}$ is complete, i.e., for all constructor ground substitutions σ there must be some $\ell' \in \{\ell\} \cup L$ that matches $t\sigma$
 - since ℓ matches t, we know that $t = \ell \gamma$ for some substitution γ
 - consequently $t\sigma = (\ell\gamma)\sigma = \ell(\gamma\sigma)$, i.e., ℓ matches $t\sigma$ and obviously $\ell \in \{\ell\} \cup L$
 - (fail): $P \cup \{(t, \emptyset)\} \rightharpoonup \bot$
 - both matching problems are not complete: \bot by definition, and for (t, \emptyset) there obviously isn't any $\ell \in \emptyset$ which matches $t\sigma$

Partial Correctness of \rightarrow , continued

- definition: P is complete if for all $(t, L) \in P$ and all constructor ground substitutions σ there is some $\ell \in L$ that matches $t\sigma$
- proof continued
 - (clash): $P \cup \{(t, \{\ell\} \cup L)\} \rightarrow P \cup \{(t, L)\}$, if match ℓ t clashes
 - if suffices to show that ℓ cannot match any instance of t, i.e., $match \ \ell \ (t\sigma)$ will always fail
 - to this end we require an auxiliary property of the matching algorithm
 - for a matching problem M, define $M\sigma = \{(\ell, r\sigma) \mid (\ell, r) \in M\}$, i.e., where σ is applied on rhss, and $\perp \sigma = \perp$
 - lemma: whenever M is transformed into M' by rule (decompose) or (clash), then $M\sigma$ is transformed into $M'\sigma$ by the same rule
 - hence, since $match \ \ell \ t$ clashes, we conclude that $match \ \ell \ (t\sigma)$ clashes

Partial Correctness of \rightarrow , final part

- definition: P is complete if for all $(t, L) \in P$ and all constructor ground substitutions σ there is some $\ell \in L$ that matches $t\sigma$
- proof continued
 - (split): $P \cup \{(t,L)\} \rightarrow P \cup \{(t\sigma_1,L),\ldots,(t\sigma_n,L)\}$, where $x:\tau$,
 - au has constructors c_1,\ldots,c_n and $\sigma_i=\{x/c_i(x_1,\ldots,x_k)\}$ for fresh x_i
 - we only consider one direction of the proof: we assume that the rhs of \rightharpoonup is complete and prove that the lhs is complete
 - to this end, consider an arbitrary constructor ground substitution σ and we have to show that $t\sigma$ is matched by some element of L
 - since σ is constructor ground, we know $\sigma(x) = c_i(t_1, \ldots, t_k)$ for some constructor c_i and constructor ground terms t_1, \ldots, t_k

• define
$$\gamma(y) = \begin{cases} t_j, & \text{if } y = x_j \\ \sigma(y), & \text{otherwise} \end{cases}$$

- γ is well-defined since the x_j 's are distinct
- γ is a constructor ground substitution
- $t\sigma = t\sigma_i\gamma$ since the x_j 's are fresh
- since $(t\sigma_i, L)$ is an element of the rhs of \rightharpoonup and the assumed completeness, we conclude that there is some element of L that matches $(t\sigma_i)\gamma$ and consequently, also $t\sigma$

Correctness of \rightarrow , Missing Parts

- already proven
 - if $P \rightharpoonup^* \emptyset$ then P is complete
 - if $P \rightharpoonup^* \bot$ then P is not complete
- open: termination of \rightharpoonup
- open: can \rightarrow get stuck?

(match)

(clash)

(split)

(fail)

ightarrow Cannot Get Stuck

- $P \cup \{(t, \{\ell\} \cup L)\} \rightarrow P$, if ℓ matches t
- $P \cup \{(t, \{\ell\} \cup L)\} \rightarrow P \cup \{(t, L)\}$, if $match \ \ell \ t$ results in clash
- $P \cup \{(t, \varnothing)\} \rightharpoonup \bot$
- $P \cup \{(t,L)\} \rightharpoonup P \cup \{(t\sigma_1,L),\ldots,(t\sigma_n,L)\}$, if
 - $\ell \in L$ and $match \ \ell \ t$ results in fun-var-conflict with variable x and \dots
- lemma: whenever P is in normal form wrt. \rightharpoonup and for all $(t, L) \in P$ and all $\ell \in L$, the lhs ℓ is linear, then $P \in \{\emptyset, \bot\}$
- proof by contradiction
 - assume P is such a normal form, $P \notin \{\emptyset, \bot\}$
 - hence, $(t,L) \in P$ for some t and L
 - since (fail) is not applicable, $L \neq \varnothing$, i.e., $\ell \in L$ for some ℓ
 - as (match) is not applicable, $match \ \ell \ t$ must fail
 - as (clash) and (split) are not applicable the failure can only be a var-clash
 - however, a var-clash cannot occur since ℓ is linear

(match)

(clash)

(fail)

Termination of \rightharpoonup

- $P \cup \{(t, \{\ell\} \cup L)\}
 ightarrow P$, if ℓ matches t
- $P \cup \{(t, \{\ell\} \cup L)\} \rightarrow P \cup \{(t, L)\}$, if $match \ \ell \ t$ clashes
- $P \cup \{(t, \varnothing)\} \rightharpoonup \bot$
- $P \cup \{(t,L)\} \rightarrow P \cup \{(t\sigma_1,L),\ldots,(t\sigma_n,L)\}$, if $\ell \in L$ and match ℓ t results in fun-var-conflict with variable x and ... (split)
- $\bullet\,$ clearly, $\rightharpoonup\,$ without (split) terminates as in every step the size of the pattern problem is reduced
- argumentation that also (split) cannot be applied infinitely often
 - a fun-var-conflict between t and $\ell \in L$ occurs iff the subterm of t at position p is a variable x, but the subterm ℓ at position p is a function application
 - the effect of (split) is that the variable x becomes a constructor, so there is no fun-var-conflict of $t\sigma_i$ with any lhs at position p any more
 - hence, when (split)ting over-and-over again, all possible fun-var-conflicts move to deeper positions
 - since the depths of the conflict positions are bounded by the sizes of the terms in *L*, all fun-var-conflicts eventually disappear, so that (split) is no longer applicable

Implementing \rightharpoonup

- a direct implementation of \rightarrow mainly faces two problems (exercise)
 - handling of fresh variable
 - figuring out constructors in (split)
- direct: matching algorithm is started from scratch every time
- an optimized implementation should try to reuse previous runs of matching algorithm after applying (split)
- this will require changes in the interface of matching algorithm

Summary on Pattern Completeness

• pattern completeness of functional programs is decidable:

program is pattern complete iff $P_{init} \rightharpoonup^! \varnothing$

- partial correctness was proven via invariant of \rightharpoonup
- proof required additional properties of matching algorithm
- termination of \rightharpoonup was shown informally
- formal proof would require further properties of matching algorithm
- termination proof was tricky, definitely requiring human interaction
- in contrast: upcoming part is on automated termination proving

Termination – Dependency Pairs

Termination of Programs

- the question of termination is a famous problem
 - Turing showed that "halting problem" is undecidable
 - halting problem
 - question: does program (Turing machine) terminate on given input
 - problem is semi-decidable: positive instances can always be identified
 - algorithm: just simulate the program and then say "yes, terminates"
- we here consider universal termination, i.e., termination on all inputs
- universal termination is not even semi-decidable
- · despite theoretical limits: often termination can be proven automatically

Termination of Functional Programs

- for termination, we mainly consider functional programs which are pattern-disjoint; hence, → is confluent
- consequence: it suffices to prove innermost termination, i.e., the restriction of \hookrightarrow such that arguments t_i will be fully evaluated before evaluating a function invocation $f(t_1, \ldots, t_n)$
- example without confluence

$$(\mathsf{True}, \mathsf{False}, x) = \mathsf{f}(x, x, x)$$
$$\mathsf{f}(\dots, \dots, x) = x \qquad (\text{all other cases})$$
$$\mathsf{coin} = \mathsf{True}$$
$$\mathsf{coin} = \mathsf{False}$$

- both f and coin terminate if seen as separate programs
- program is innermost terminating, but not terminating in general

 $\mathsf{f}(\mathsf{True},\mathsf{False},\mathsf{coin}) \hookrightarrow \mathsf{f}(\mathsf{coin},\mathsf{coin},\mathsf{coin}) \hookrightarrow^2 \mathsf{f}(\mathsf{True},\mathsf{False},\mathsf{coin}) \hookrightarrow \dots$

Subterm Relation and Innermost Evaluation

• define \triangleright as the strict subterm relation and \triangleright as its reflexive closure

$$\frac{t_i \triangleright s}{F(t_1, \dots, t_n) \triangleright t_i} \qquad \qquad \frac{t_i \triangleright s}{F(t_1, \dots, t_n) \triangleright s}$$

• innermost evaluation $\stackrel{i}{\rightarrow}$ is defined similar to one-step evaluation \hookrightarrow

$$\frac{s_i \stackrel{i}{\hookrightarrow} t_i}{F(s_1, \dots, s_i, \dots, s_n) \stackrel{i}{\hookrightarrow} F(s_1, \dots, t_i, \dots, s_n)} \text{ rewrite in contexts} \\ \frac{\ell = r \text{ is equation in program } \forall s \lhd \ell\sigma. \ s \in NF(\hookrightarrow)}{\ell\sigma \stackrel{i}{\hookrightarrow} r\sigma} \text{ root step}$$

• example

```
f(True, False, coin) \not\rightarrow f(coin, coin, coin)
```

since $\operatorname{coin} \triangleleft f(\operatorname{True}, \operatorname{False}, \operatorname{coin})$ and $\operatorname{coin} \notin NF(\hookrightarrow)$

Strong Normalization

• relation \succ is strongly normalizing, written $SN(\succ)$, if there is no infinite sequence

 $a_1 \succ a_2 \succ a_3 \succ \ldots$

- strong normalization is other notion for termination
- strong normalization is also equivalent to induction; the following two conditions are equivalent
 - $SN(\succ)$
 - $\forall P. \ (\forall x. \ (\forall y. \ x \succ y \longrightarrow P \ y) \longrightarrow P \ x) \longrightarrow (\forall x. \ P \ x)$
- equivalence shows why it is possible to perform induction wrt. algorithm for terminating programs

Termination Analysis with Dependency Pairs

- aim: prove $SN(\stackrel{i}{\hookrightarrow})$
- only reason for potential non-termination: recursive calls
- for each recursive call of eqn. $f(t_1, \ldots, t_n) = \ell = r \succeq f(s_1, \ldots, s_n)$ build one dependency pair with fresh (constructor) symbol f^{\sharp} :

$$f^{\sharp}(t_1,\ldots,t_n) \to f^{\sharp}(s_1,\ldots,s_n)$$

define DP as the set of all dependency pairs

• example program for Ackermann function has three dependency pairs

 $\begin{aligned} \mathsf{ack}(\mathsf{Zero}, y) &= \mathsf{Succ}(y) \\ \mathsf{ack}(\mathsf{Succ}(x), \mathsf{Zero}) &= \mathsf{ack}(x, \mathsf{Succ}(\mathsf{Zero})) \\ \mathsf{ack}(\mathsf{Succ}(x), \mathsf{Succ}(y)) &= \mathsf{ack}(x, \mathsf{ack}(\mathsf{Succ}(x), y)) \\ \mathsf{ack}^{\sharp}(\mathsf{Succ}(x), \mathsf{Zero}) &\to \mathsf{ack}^{\sharp}(x, \mathsf{Succ}(\mathsf{Zero})) \\ \mathsf{ack}^{\sharp}(\mathsf{Succ}(x), \mathsf{Succ}(y)) &\to \mathsf{ack}^{\sharp}(x, \mathsf{ack}(\mathsf{Succ}(x), y)) \\ \mathsf{ack}^{\sharp}(\mathsf{Succ}(x), \mathsf{Succ}(y)) &\to \mathsf{ack}^{\sharp}(\mathsf{Succ}(x), y) \\ \mathsf{Part 4 - Checking Well-Definedness of Functional Programs} \end{aligned}$

Termination Analysis with Dependency Pairs, continued

- dependency pairs provide characterization of termination
- definition: let $P \subseteq DP$; a *P*-chain is a possible infinite sequence

$$s_1\sigma_1 \to t_1\sigma_1 \stackrel{\iota}{\hookrightarrow} s_2\sigma_2 \to t_2\sigma_2 \stackrel{\iota}{\hookrightarrow} s_3\sigma_3 \to t_3\sigma_3 \stackrel{\iota}{\hookrightarrow} \dots$$

such that all $s_i \to t_i \in P$ and all $s_i \sigma_i \in NF(\hookrightarrow)$

- $s_i\sigma_i \rightarrow t_i\sigma_i$ represent the "main" recursive calls that may lead to non-termination
- $t_i \sigma_i \stackrel{i}{\hookrightarrow} s_{i+1} \sigma_{i+1}$ corresponds to evaluation of arguments of recursive calls
- theorem: $SN(\hookrightarrow)$ iff there is no infinite DP-chain
- advantage of dependency pairs
 - in infinite chain, non-terminating recursive calls are always applied at the root
 - simplifies termination analysis

Example of Evaluation and Chain

$$\begin{split} \min(x, \operatorname{Zero}) &= x \\ \min(\operatorname{Succ}(x), \operatorname{Succ}(y)) &= \min(x, y) \\ \operatorname{div}(\operatorname{Zero}, \operatorname{Succ}(y)) &= \operatorname{Zero} \\ \operatorname{div}(\operatorname{Succ}(x), \operatorname{Succ}(y)) &= \operatorname{Succ}(\operatorname{div}(\min(x, y), \operatorname{Succ}(y))) \\ \min(\operatorname{Succ}(x), \operatorname{Succ}(y)) &\to \min(x, y) \\ \operatorname{div}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) &\to \operatorname{div}^{\sharp}(\min(x, y), \operatorname{Succ}(y)) \end{split}$$

example innermost evaluation

 $\begin{array}{c} \mathsf{div}(\mathsf{Succ}(\mathsf{Zero}),\mathsf{Succ}(\mathsf{Zero})) \\ \stackrel{i}{\hookrightarrow} \mathsf{Succ}(\mathsf{div}(\mathsf{minus}(\mathsf{Zero},\mathsf{Zero}),\mathsf{Succ}(\mathsf{Zero}))) \\ \stackrel{i}{\hookrightarrow} \mathsf{Succ}(\mathsf{div}(\mathsf{Zero},\mathsf{Succ}(\mathsf{Zero}))) \\ \stackrel{i}{\hookrightarrow} \mathsf{Succ}(\mathsf{Zero}) \\ \text{and its (partial) representation as } DP\text{-chain} \\ \stackrel{div^{\sharp}(\mathsf{Succ}(\mathsf{Zero}),\mathsf{Succ}(\mathsf{Zero})) \\ \stackrel{i}{\to} \mathsf{div}^{\sharp}(\mathsf{minus}(\mathsf{Zero},\mathsf{Zero}),\mathsf{Succ}(\mathsf{Zero})) \\ \stackrel{i}{\to} \mathsf{div}^{\sharp}(\mathsf{Zero},\mathsf{Succ}(\mathsf{Zero})) \\ \end{array}$

Part 4 - Checking Well-Definedness of Functional Programs

Proving Termination

- global approaches
 - try to find one termination argument that no infinite chain exists
- iterative approaches
 - identify dependency pairs that are harmless, i.e., cannot be used infinitely often in a chain
 - · remove harmless dependency pairs from set of dependency pairs
 - until no dependency pairs are left
- we focus on iterative approaches, in particular those that are incremental
 - incremental: a termination proof of some function stays valid if later on other functions are added to the program
 - incremental termination proving is not possible in general case (for non-confluent programs), consider coin-example on slide 57

Termination – Subterm Criterion

A First Termination Technique – The Subterm Criterion

- the subterm criterion works as follows
 - let $P \subseteq DP$
 - choose f^{\sharp} , a symbol of arity n
 - choose some argument position $i \in \{1, \ldots, n\}$
 - demand $s_i \ge t_i$ for all $f^{\sharp}(s_1, \ldots, s_n) \to f^{\sharp}(t_1, \ldots, t_n) \in P$
 - define $P_{\triangleright} = \{ f^{\sharp}(s_1, \dots, s_n) \to f^{\sharp}(t_1, \dots, t_n) \in P \mid s_i \triangleright t_i \}$
 - then for proving absence of infinite P-chains it suffices to prove absence of infinite $P \setminus P_{\triangleright}$ -chains, i.e., one can remove all pairs in P_{\triangleright}
- observations
 - easy to test: just find argument position i such that each i-th argument of all f^{\sharp} -dependency pairs decreases wrt. \succeq and then remove all strictly decreasing pairs
 - incremental method: adding other dependency pairs for g^{\sharp} later on will have no impact
 - can be applied iteratively
 - fast, but limited power

Subterm Criterion – Example

• consider a program with the following set of dependency pairs

$$\operatorname{ack}^{\sharp}(\operatorname{Succ}(x),\operatorname{Zero}) \to \operatorname{ack}^{\sharp}(x,\operatorname{Succ}(\operatorname{Zero}))$$
 (1)

$$\operatorname{ack}^{\sharp}(\operatorname{Succ}(x),\operatorname{Succ}(y)) \to \operatorname{ack}^{\sharp}(x,\operatorname{ack}(\operatorname{Succ}(x),y))$$
 (2)

$$\operatorname{ack}^{\sharp}(\operatorname{Succ}(x),\operatorname{Succ}(y)) \to \operatorname{ack}^{\sharp}(\operatorname{Succ}(x),y)$$
 (3)

$$\mathsf{minus}^{\sharp}(\mathsf{Succ}(x),\mathsf{Succ}(y)) \to \mathsf{minus}^{\sharp}(x,y) \tag{4}$$

$$\operatorname{div}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) \to \operatorname{div}^{\sharp}(\operatorname{minus}(x, y), \operatorname{Succ}(y))$$
$$\operatorname{plus}^{\sharp}(\operatorname{Succ}(x), y) \to \operatorname{plus}^{\sharp}(y, x)$$

(5)

- it is easy to remove (4) by choosing any argument of minus[#]
- we can remove (1) and (2) by choosing argument 1 of ack^\sharp
- afterwards we can remove (3) by choosing argument 2 of $\operatorname{ack}^{\sharp}$
- it is not possible to remove any of the remaining dependency pairs (5) and (6) by the subterm criterion

Subterm Criterion – Soundness Proof

- assume the chosen parameters in the subterm criterion are f^{\sharp} and i
- it suffices to prove that there is no infinite chain

$$s_1\sigma_1 \to t_1\sigma_1 \stackrel{i}{\hookrightarrow} s_2\sigma_2 \to t_2\sigma_2 \stackrel{i}{\hookrightarrow} s_3\sigma_3 \to t_3\sigma_3 \stackrel{i}{\hookrightarrow} \dots$$

such that all $s_j \to t_j \in P$, all s_j and t_j have f^{\sharp} as root and there are infinitely many $s_j \to t_j \in P_{\triangleright}$; perform proof by contradiction

- hence all $s_j \to t_j$ are of the form $f^{\sharp}(s_{j,1}, \ldots, s_{j,n}) \to f^{\sharp}(t_{j,1}, \ldots, t_{j,n})$
- from condition $s_{j,i} \succeq t_{j,i}$ of criterion conclude $s_{j,i}\sigma_j \succeq t_{j,i}\sigma_j$ and if $s_j \to t_j \in P_{\rhd}$ then $s_{j,i} \rhd t_{j,i}$ and thus $s_{j,i}\sigma_j \rhd t_{j,i}\sigma_j$
- we further know $t_{j,i}\sigma_j \stackrel{\iota}{\hookrightarrow} s_{j+1,i}\sigma_{j+1}$ since f^{\sharp} is a constructor
- this implies $t_{j,i}\sigma_j = s_{j+1,i}\sigma_{j+1}$ since $t_{j,i}\sigma_j \in NF(\hookrightarrow)$ as $t_{j,i}\sigma_j \trianglelefteq s_{j,i}\sigma_j \lhd f^{\sharp}(s_{j,1}\sigma_j,\ldots,s_{j,n}\sigma_j) = s_j\sigma_j \in NF(\hookrightarrow)$
- obtain an infinite sequence with infinitely many \triangleright ; this is a contradiction to $SN(\triangleright)$

$$s_{1,i}\sigma_1 \succeq t_{1,i}\sigma_1 = s_{2,i}\sigma_2 \succeq t_{2,i}\sigma_2 = s_{3,i}\sigma_3 \succeq t_{3,i}\sigma_3 = \dots$$

RT (DCS @ UIBK)

Part 4 – Checking Well-Definedness of Functional Programs

Termination – Size-Change Principle

The Size-Change Principle

- the size-change principle abstracts decreases of arguments into size-change graphs
- size-change graph
 - let f^{\sharp} be a symbol of arity n
 - a size-change graph for f^{\sharp} is a bipartite graph G=(V,W,E)
 - the nodes are $V = \{1_{in}, \ldots, n_{in}\}$ and $W = \{1_{out}, \ldots, n_{out}\}$
 - E is a set of directed edges between in- and out-nodes labelled with \succ or \succsim
 - the size-change graph G of a dependency pair $f^{\sharp}(s_1, \ldots, s_n) \to f^{\sharp}(t_1, \ldots, t_n)$ defines E as follows
 - $i_{in} \stackrel{\succ}{\rightarrow} j_{out} \in E$ whenever $s_i \triangleright t_j$ (strict decrease)
 - $i_{in} \stackrel{\sim}{\to} j_{out} \in E$ whenever $s_i = t_j$ (weak decrease)
- in representation, in-nodes are on the left, out-nodes are on the right, and subscripts are omitted

Example – Size-Change Graphs

 consider the following dependency pairs; they include permutations that cannot be solved by the subterm criterion

$$f^{\sharp}(\operatorname{Succ}(x), y) \to f^{\sharp}(x, \operatorname{Succ}(x))$$
 (7)

$$f^{\sharp}(x, \operatorname{Succ}(y)) \to f^{\sharp}(y, x)$$
 (8)

• obtain size-change graphs that contain more information than just the size-decrease in one argument, as we had in subterm criterion

Multigraphs and Concatenation

- graphs can be glued together, tracing size-changes in chains, i.e., subsequent dependency pairs
- definition: let G be a set of size-change graphs for the same symbol f[#]; then the set of multigraphs for f[#] is defined as follows
 - every $G \in \mathcal{G}$ is a multigraph
 - whenever there are multigraphs G₁ and G₂ with edges E₁ and E₂ then also the concatenated graph G = G₁ • G₂ is a multigraph; here, the edges of E of G are defined as
 - if $i \to j \in E_1$ and $j \to k \in E_2$, then $i \to k \in E$
 - if at least one of the edges $i \to j$ and $j \to k$ is labeled with \succ then $i \to k$ is labeled with \succ , otherwise with \succeq
 - if the previous rules would produce two edges $i \stackrel{\succ}{\to} k$ and $i \stackrel{\succeq}{\to} k$, then only the former is added to E
- a multigraph G is maximal if $G = G \cdot G$
- since there are only finitely many possible sets of edges, the set of multigraphs is finite and can easily be computed

Example – Multigraphs

• consider size-change graphs

• this leads to three maximal multigraphs

$$\begin{array}{cccc} G_{(7)} \bullet G_{(8)} : 1 \xrightarrow{\succ} 1 & G_{(8)} \bullet G_{(7)} : 1 & 1 & G_{(8)} \bullet G_{(8)} : 1 \xrightarrow{\succ} 1 \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & &$$

• and a non-maximal multigraph

$$G_{(8)} \cdot G_{(8)} \cdot G_{(8)} : 1$$

RT (DCS @ UIBK)

72/101
Size-Change Termination

- instead of multigraphs, one can also glue two graphs G_1 and G_2 by just identifying the out-nodes of G_1 with the in-nodes of G_2 , defined as $G_1 \circ G_2$; in this way it is also possible to consider an infinite sequence of graphs $G_1 \circ G_2 \circ G_3 \circ \ldots$
- example:

$$\begin{array}{cccc} G_{(7)} \circ G_{(8)} \circ G_{(8)} \circ G_{(7)} : & 1 \stackrel{\succ}{\searrow} 1 & 1 \stackrel{\sim}{\searrow} 1 \\ & 2 & 2 & 2 & 2 & 2 \\ \end{array}$$

- definition: a set G of size-change graph is size-change terminating iff for every infinite concatenation of graphs of G there is a path with infinitely many →-edges
- theorem: let P be a set of dependency pairs for symbol f^{\sharp} and \mathcal{G} be the corresponding size-change graphs; if \mathcal{G} is size-change terminating, then there is no infinite P-chain
- the proof is mostly identical to the one of the subterm criterion

Deciding Size-Change Termination

- definition: a set G of size-change graph is size-change terminating iff for every infinite concatenation of graphs of G there is a path with infinitely many →-edges
- checking size-change termination directly is not possible
- still, size-change termination is decidable
- theorem: let \mathcal{G} be a set of size-change graphs; the following two properties are equivalent
 - $1. \ \mathcal{G}$ is size-change terminating
 - 2. every maximal multigraph of ${\mathcal G}$ contains an edge $i \xrightarrow{\succ} i$
- although the above theorem only gives rise to an EXPSPACE-algorithm, size-change termination is in PSPACE;

in fact, size-change termination is PSPACE-complete

• despite the high theoretical complexity class, for sets of size-change graphs arising from usual algorithms, the number of multigraphs is rather low

Proof of Theorem

- the direction that size-change termination implies the property on maximal multigraphs can be done in a straight-forward way
- the other direction is much more advanced and relies upon Ramsey's theorem in its infinite version

Proof of Theorem: Easy Direction (1. implies 2.)

- assume that ${\cal G}$ is size-change terminating, and consider any maximal graph G
- since G is a multigraph, it can be written as $G = G_1 \cdot \ldots \cdot G_n$ with each $G_i \in \mathcal{G}$
- consider infinite graph $G_1 \circ \ldots \circ G_n \circ G_1 \circ \ldots \circ G_n \circ \ldots$
- because of size-change termination, this graph contains path with infinitely many $\stackrel{\succ}{\rightarrow} \text{-edges}$
- hence $G \circ G \circ \ldots$ also has a path with infinitely many $\xrightarrow{\succ}$ -edges
- $\bullet\,$ on this path some index i must be visited infinitely often
- hence there is a path of length k such that G ∘ G ∘ ... ∘ G (k-times) contains a path from the leftmost argument i to the rightmost argument i with at least one →-edge
- consequently $G \bullet G \bullet \ldots \bullet G$ (k-times) contains an edge $i \xrightarrow{\succ} i$
- by maximality, $G = G \bullet G \bullet \ldots \bullet G$, and thus G contains an edge $i \xrightarrow{\succ} i$

Ramsey's Theorem

• definition: given set X and $n \in \mathbb{N}$, we define $X^{(n)}$ as the set of all subsets of X of size n; formally:

$$X^{(n)} = \{ Z \mid Z \subseteq X \land |Z| = n \}$$

- Ramsey's Theorem Infinite Version
 - let $n \in \mathbb{N}$
 - let C be a finite set of colors
 - let X be an infinite set
 - let c be a coloring of the size n sets of X, i.e., $c:X^{(n)}\to C$
 - theorem: there exists an infinite subset $Y\subseteq X$ such that all size n sets of Y have the same color

Proof of Theorem: Hard Direction (2. implies 1.)

- consider some arbitrary infinite graph $G_0 \circ G_1 \circ G_2 \circ \ldots$
- for n < m define $G_{n,m} = G_n \bullet \ldots \bullet G_{m-1}$
- by Ramsey's theorem there is an infinite set I ⊆ N such that G_{n,m} is always the same graph G for all n, m ∈ I with n < m
 (n = 2, C = multimethe X = N ∈ ((n = m)) = C

(n = 2, C =multigraphs, $X = \mathbb{N}, c(\{n, m\}) = G_{min\{n,m\},max\{n,m\}})$

- G is maximal: for $n_1 < n_2 < n_3$ with $\{n_1, n_2, n_3\} \subseteq I$, we have $G_{n_1,n_3} = G_{n_1} \cdot \ldots \cdot G_{n_2-1} \cdot G_{n_2} \cdot \ldots \cdot G_{n_3-1} = G_{n_1,n_2} \cdot G_{n_2,n_3}$, and thus $G = G \cdot G$
- by assumption, G contains edge $i \xrightarrow{\succ} i$
- let $I = \{n_1, n_2, \ldots\}$ with $n_1 < n_2 < \ldots$ and obtain

$$G_0 \circ G_1 \circ \dots$$

= $G_0 \circ \dots \circ G_{n_1-1} \circ G_{n_1} \circ \dots \circ G_{n_2-1} \circ G_{n_2} \circ \dots \circ G_{n_3-1} \circ \dots$
~ $G_0 \circ \dots \circ G_{n_1-1} \circ G$ $\circ G$ $\circ \dots$

so that edge $i \xrightarrow{\succ} i$ of G delivers path with infinitely many $\xrightarrow{\succ}$ -edges

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

Proof of Ramsey's Theorem

- Ramsey's Theorem Infinite Version
 - let $n \in \mathbb{N}$
 - let C be a finite set of colors
 - let X be an infinite set
 - let c be a coloring of the size n sets of X, i.e., $c: X^{(n)} \to C$
 - theorem: there exists an infinite subset $Y\subseteq X$ such that all size n sets of Y have the same color
- proof of Ramsey's theorem is interesting
 - it is simple, in that it only uses standard induction on n with arbitrary c and X
 - it is complex, in that it uses a non-trivial construction in the step-case, in particular applying the IH infinitely often
- base case n = 0 is trivial, since there is only one size-0 set: the empty set

Proof of Ramsey's Theorem – Step Case n = m + 1

- define $X_0 = X$
- pick an arbitrary element a_0 of X_0
- define $Y_0 = X_0 \setminus \{a_0\}$; define coloring $c': Y_0^{(m)} \to C$ as $c'(Z) = c(Z \cup \{a_0\})$
- IH yields infinite subset $X_1 \subseteq Y_0$ such that all size m sets of X_1 have the same color c_0 w.r.t. c'
- hence, $c(\{a_0\}\cup Z)=c_0$ for all $Z\in X_1^{(m)}$
- next pick an arbitrary element a_1 of X_1 to obtain infinite set $X_2 \subseteq X_1 \setminus \{a_1\}$ such that $c(\{a_1\} \cup Z) = c_1$ for all $Z \in X_2^{(m)}$
- by iterating this obtain elements a_0, a_1, a_2, \ldots , colors $c_0, c_1, c_2 \ldots$ and sets X_0, X_1, X_2, \ldots satisfying the above properties
- since C is finite there must be some color d in the infinite list c_0, c_1, \ldots that occurs infinitely often; define $Y = \{a_i \mid c_i = d\}$
- Y has desired properties since all size n sets of Y have color d: if $Z \in Y^{(n)}$ then Z can be written as $\{a_{i_1}, \ldots, a_{i_n}\}$ with $i_1 < \ldots < i_n$; hence, $Z = \{a_{i_1}\} \cup Z'$ with $Z' \in X_{i_1+1}^{(m)}$, i.e., $c(Z) = c_{i_1} = d$ RT (DCS @ UIBK) Part 4 - Checking Well-Definedness of Functional Programs

Summary of Size-Change Principle

- size-change principle abstracts dependency pairs into set of size-change graphs
- if no critical graph exists (multigraph without edge $i \stackrel{\succ}{\to} i$), termination is proven
- soundness relies upon Ramsey's theorem
- subsumes subterm criterion
- still no handling of defined symbols in dependency pairs as in

 $\mathsf{div}^{\sharp}(\mathsf{Succ}(x),\mathsf{Succ}(y))\to\mathsf{div}^{\sharp}(\mathsf{minus}(x,y),\mathsf{Succ}(y))$

Termination – Reduction Pairs

Reduction Pairs

• recall definition: P-chain is sequence

$$s_1\sigma_1 \to t_1\sigma_1 \stackrel{i}{\hookrightarrow} s_2\sigma_2 \to t_2\sigma_2 \stackrel{i}{\hookrightarrow} s_3\sigma_3 \to t_3\sigma_3 \stackrel{i}{\hookrightarrow} \dots$$

such that all $s_i \to t_i \in P$ and all $s_i \sigma_i \in NF(\hookrightarrow)$

- previously we used \triangleright on $s_i \rightarrow t_i$ to ensure decrease $s_i \sigma_i \triangleright t_i \sigma_i$
- previously we used $s_i\sigma\in NF(\hookrightarrow)$ and \trianglerighteq to turn $\stackrel{\cdot}{\hookrightarrow}^*$ into =
- now generalize \triangleright to strongly normalizing relation \succ
- now demand $\ell \succeq r$ for equations to ensure decrease $t_i \sigma_i \succeq s_{i+1} \sigma_{i+1}$
- definition: reduction pair (\succ, \succeq) is pair of relations such that
 - $SN(\succ)$
 - \succsim is transitive
 - \succ and \succeq are compatible: $\succ \circ \succeq \subseteq \succ$
 - both \succ and \succeq are closed under substitutions: $s \succeq t \longrightarrow s\sigma \succeq t\sigma$
 - \succeq is closed under contexts: $s \succeq t \longrightarrow F(\dots, s, \dots) \succeq F(\dots, t, \dots)$
 - note: \succ does not have to be closed under contexts

Applying Reduction Pairs

• recall definition: *P*-chain is sequence

$$s_1\sigma_1 \to t_1\sigma_1 \stackrel{i}{\hookrightarrow} s_2\sigma_2 \to t_2\sigma_2 \stackrel{i}{\hookrightarrow} s_3\sigma_3 \to t_3\sigma_3 \stackrel{i}{\hookrightarrow} \dots$$

such that all $s_i \to t_i \in P$ and all $s_i \sigma \in NF(\hookrightarrow)$

- demand $s \succeq t$ for all $s \to t \in P$ to ensure $s_i \sigma_i \succeq t_i \sigma_i$
- demand $\ell \succeq r$ for all equations to ensure $t_i \sigma_i \succeq s_{i+1} \sigma_{i+1}$
- define $P_{\succ} = \{s \to t \in P \mid s \succ t\}$
- effect: pairs in P_{\succ} cannot be applied infinitely often and can therefore be removed
- theorem: if there is an infinite P-chain, then there also is an infinite $P \setminus P_{\succ}$ -chain

Example

remaining termination problem

 $\begin{aligned} \minus(x, \operatorname{Zero}) &= x\\ \minus(\operatorname{Succ}(x), \operatorname{Succ}(y)) &= \minus(x, y)\\ \operatorname{div}(\operatorname{Zero}, \operatorname{Succ}(y)) &= \operatorname{Zero}\\ \operatorname{div}(\operatorname{Succ}(x), \operatorname{Succ}(y)) &= \operatorname{Succ}(\operatorname{div}(\minus(x, y), \operatorname{Succ}(y)))\\ \operatorname{div}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) &\to \operatorname{div}^{\sharp}(\minus(x, y), \operatorname{Succ}(y)) \end{aligned}$

constraints

 $\begin{array}{l} \min(x, {\sf Zero}) \succsim x\\ \min({\sf Succ}(x), {\sf Succ}(y)) \succsim \min(x, y)\\ \operatorname{div}({\sf Zero}, {\sf Succ}(y)) \succsim {\sf Zero}\\ \operatorname{div}({\sf Succ}(x), {\sf Succ}(y)) \succsim {\sf Succ}(\operatorname{div}(\min(x, y), {\sf Succ}(y)))\\ \operatorname{div}^{\sharp}({\sf Succ}(x), {\sf Succ}(y)) \succ \operatorname{div}^{\sharp}(\min(x, y), {\sf Succ}(y))\end{array}$

Usable Equations

 $\mathsf{div}^{\sharp}(\mathsf{Succ}(x),\mathsf{Succ}(y)) \to \mathsf{div}^{\sharp}(\mathsf{minus}(x,y),\mathsf{Succ}(y))$

- requiring $\ell \succsim r$ for all program equations $\ell = r$ is quite demanding
 - not incremental, i.e., adding other functions later will invalidate proof
 - not necessary, i.e., argument evaluation in example only requires minus
- definition: the usable equations \mathcal{U} wrt. a set P are program equations of those symbols that occur in P or that are invoked by (other) usable equations; formally, let \mathcal{E} be set of equations of program, let $root (f(\ldots)) = f$; then \mathcal{U} is defined as

$$\frac{s \to t \in P \quad t \succeq u \quad \ell = r \in \mathcal{E} \quad root \ u = root \ \ell}{\ell = r \in \mathcal{U}}$$
$$\frac{\ell' = r' \in \mathcal{U} \quad r' \trianglerighteq u \quad \ell = r \in \mathcal{E} \quad root \ u = root \ \ell}{\ell = r \in \mathcal{U}}$$

• observation whenever $t_i \sigma_i \stackrel{i}{\hookrightarrow} * s_{i+1} \sigma_{i+1}$ in chain, then only usable equations of $\{s_i \rightarrow t_i\}$ can be used RT (DCS @ UIBK) Part 4 - Checking Well-Definedness of Functional Programs 86/101

Applying Reduction Pairs with Usable Equations

• recall definition: *P*-chain is sequence

$$s_1\sigma_1 \to t_1\sigma_1 \stackrel{\iota}{\hookrightarrow} s_2\sigma_2 \to t_2\sigma_2 \stackrel{\iota}{\hookrightarrow} s_3\sigma_3 \to t_3\sigma_3 \stackrel{\iota}{\hookrightarrow} \dots$$

such that all $s_i \to t_i \in P$ and all $s_i \sigma \in NF(\hookrightarrow)$

- choose a symbol f^{\sharp} and define $P_{f^{\sharp}} = \{s \to t \in P \mid root \ s = f^{\sharp}\}$
- demand $s \succeq t$ for all $s \to t \in P_{f^{\sharp}}$
- demand $\ell \succeq r$ for all $l = r \in \mathcal{U}$ where \mathcal{U} are usable equations wrt. $P_{f^{\sharp}}$
- define $P_{\succ} = \{s \to t \in P_{f^{\sharp}} \mid s \succ t\}$
- effect: pairs in P_{\succ} cannot be applied infinitely often and can therefore be removed
- theorem: if there is an infinite P-chain, then there also is an infinite $P \setminus P_{\succ}$ -chain

Example with Usable Equations

• remaining termination problem

 $\begin{aligned} \minus(x, \operatorname{Zero}) &= x\\ \minus(\operatorname{Succ}(x), \operatorname{Succ}(y)) &= \minus(x, y)\\ \operatorname{div}(\operatorname{Zero}, \operatorname{Succ}(y)) &= \operatorname{Zero}\\ \operatorname{div}(\operatorname{Succ}(x), \operatorname{Succ}(y)) &= \operatorname{Succ}(\operatorname{div}(\minus(x, y), \operatorname{Succ}(y)))\\ \operatorname{div}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) &\to \operatorname{div}^{\sharp}(\minus(x, y), \operatorname{Succ}(y)) \end{aligned}$

constraints

$$\begin{split} \min & \mathsf{minus}(x,\mathsf{Zero}) \succsim x\\ \min & \mathsf{succ}(x), \mathsf{succ}(y)) \succsim \min & \mathsf{sucs}(x,y)\\ & \mathsf{div}^{\sharp}(\mathsf{succ}(x),\mathsf{succ}(y)) \succ \mathsf{div}^{\sharp}(\min & \mathsf{sucs}(x,y),\mathsf{succ}(y)) \end{split}$$

 because of usable equations, applying reduction pairs becomes incremental: new function definitions won't increase usable equations of DPs of previously defined equations
 RT (DCS @ UIBK)
 Part 4 - Checking Well-Definedness of Functional Programs
 88/101

Remaining Problem

• given constraints

```
\begin{split} \min & \mathsf{s}(x,\mathsf{Zero}) \succeq x\\ \min & \mathsf{s}(\mathsf{Succ}(x),\mathsf{Succ}(y)) \succeq \min & \mathsf{s}(x,y)\\ & \mathsf{div}^{\sharp}(\mathsf{Succ}(x),\mathsf{Succ}(y)) \succ \mathsf{div}^{\sharp}(\min & \mathsf{s}(x,y),\mathsf{Succ}(y)) \end{split}
```

find a suitable reduction pair such that these constraints are satisfied

- many such reductions pair are available (cf. term rewriting lecture)
 - Knuth-Bendix order (constraint solving is in P)
 - recursive path order (NP-complete)
 - polynomial interpretations (undecidable)
 - powerful
 - intuitive
 - automatable
 - matrix interpretations (undecidable)
 - weighted path order (undecidable)

Polynomial Interpretation

- interpret each *n*-ary symbol F as polynomial $p_F(x_1, \ldots, x_n)$
- polynomials are over ${\mathbb N}$ and have to be weakly monotone

$$x_i \ge y_i \longrightarrow p_F(x_1, \dots, x_i, \dots, x_n) \ge p_F(x_1, \dots, y_i, \dots, x_n)$$

sufficient criterion: forbid subtraction and negative numbers in p_F

• interpretation is lifted to terms by composing polynomials

$$\llbracket x \rrbracket = x$$

 $\llbracket F(t_1, \dots, t_n) \rrbracket = p_F(\llbracket t_1 \rrbracket, \dots, \llbracket t_n \rrbracket)$

• (\sim) is defined as

$$s \underset{(\sim)}{\succ} t \text{ iff } \forall \vec{x} \in \mathbb{N}^*. \llbracket s \rrbracket_{(\geq)} \llbracket t \rrbracket$$

- (\succ, \succeq) is a reduction pair, e.g.,
 - $SN(\succ)$ follows from strong-normalization of > on $\mathbb N$
 - \succsim is closed under contexts since each p_F is weakly monotone

Example – Polynomial Interpretation

• given constraints

$$\begin{split} \min & \mathsf{s}(x,\mathsf{Zero}) \succeq x\\ \min & \mathsf{s}(\mathsf{Succ}(x),\mathsf{Succ}(y)) \succeq \min & \mathsf{s}(x,y)\\ & \mathsf{div}^{\sharp}(\mathsf{Succ}(x),\mathsf{Succ}(y)) \succ \mathsf{div}^{\sharp}(\min & \mathsf{s}(x,y),\mathsf{Succ}(y)) \end{split}$$

and polynomial interpretation

 $p_{\min us}(x_1, x_2) = x_1$ $p_{\mathsf{Zero}} = 2$ $p_{\mathsf{Succ}}(x_1) = 1 + x_1$ $p_{\mathsf{div}^{\sharp}}(x_1, x_2) = x_1 + 3x_2$

we obtain polynomial constraints

 $\llbracket \min(x, \operatorname{Zero}) \rrbracket = x \ge x = \llbracket x \rrbracket$ $\llbracket \min(x, y) \rrbracket = 1 + x \ge x = \llbracket \min(x, y) \rrbracket$ $\llbracket \operatorname{div}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) \rrbracket = 4 + x + 3y > 3 + x + 3y = \llbracket \operatorname{div}^{\sharp}(\min(x, y)) \rrbracket$ Part 4 - Checking Well-Definedness of Functional Programs

RT (DCS @ UIBK)

Solving Polynomial Constraints

- each polynomial constraint over $\mathbb N$ can be brought into simple form " $p\geq 0$ " for some polynomial p
 - replace $p_1 > p_2$ by $p_1 \ge p_2 + 1$
 - replace $p_1 \ge p_2$ by $p_1 p_2 \ge 0$
- the question of " $p \ge 0$ " over $\mathbb N$ is undecidable (Hilbert's 10th problem)
- approximation via absolute positiveness: if all coefficients of p are non-negative, then $p\geq 0$ for all instances over $\mathbb N$
- division example has trivial constraints

original	simplified
$x \ge x$	$0 \ge 0$
$1+x \ge x$	$1 \ge 0$
4 + x + 3y > 3 + x + 3y	$0 \ge 0$

Finding Polynomial Interpretations

- in division example, interpretation was given on slides
- aim: search for suitable interpretation
- approach: perform everything symbolically

Symbolic Polynomial Interpretations

• fix shape of polynomial, e.g., linear

$$p_F(x_1,\ldots,x_n) = F_0 + F_1 x_1 + \cdots + F_n x_n$$

where the F_i are symbolic coefficients

$$p_{\minus}(x_1, x_2) = x_1$$

$$p_{Zero} = 2$$

$$p_{Succ}(x_1) = 1 + x_1$$

$$p_{div^{\sharp}}(x_1, x_2) = x_1 + 3x_2$$

concrete interpretation above becomes symbolic

$$\begin{split} p_{\min us}(x_1, x_2) &= \mathsf{m}_0 + \mathsf{m}_1 x_1 + \mathsf{m}_2 x_2 \\ p_{\mathsf{Zero}} &= \mathsf{Z}_0 \\ p_{\mathsf{Succ}}(x_1) &= \mathsf{S}_0 + \mathsf{S}_1 x_1 \\ p_{\mathsf{div}^\sharp}(x_1, x_2) &= \mathsf{d}_0 + \mathsf{d}_1 x_1 + \mathsf{d}_2 x_2 \end{split}$$

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

Symbolic Polynomial Constraints

• given constraints

$$\begin{split} \min & \max(x, \mathsf{Zero}) \succeq x \\ \min & \max(\mathsf{Succ}(x), \mathsf{Succ}(y)) \succeq \min & \max(x, y) \\ & \mathsf{div}^{\sharp}(\mathsf{Succ}(x), \mathsf{Succ}(y)) \succ & \mathsf{div}^{\sharp}(\min & x, y), \mathsf{Succ}(y)) \end{split}$$

obtain symbolic polynomial constraints

• and simplify to

$$(\mathsf{m}_0 + \mathsf{m}_2\mathsf{Z}_0) + (\mathsf{m}_1 - 1)x \ge 0$$

$$(\mathsf{m}_1\mathsf{S}_0 + \mathsf{m}_2\mathsf{S}_0) + (\mathsf{m}_1\mathsf{S}_1 - \mathsf{m}_1)x + (\mathsf{m}_2\mathsf{S}_1 - \mathsf{m}_2)y \ge 0$$

$$(\mathsf{d}_1\mathsf{S}_0 - \mathsf{d}_1\mathsf{m}_0 - 1) + (\mathsf{d}_1\mathsf{S}_1 - \mathsf{d}_1\mathsf{m}_1)x + (-\mathsf{d}_1\mathsf{m}_2)y \ge 0$$

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

Absolute Positiveness – Symbolic Example

• on symbolic polynomial constraints

$$\begin{aligned} (\mathsf{m}_0 + \mathsf{m}_2 \mathsf{Z}_0) + (\mathsf{m}_1 - 1)x &\geq 0\\ (\mathsf{m}_1 \mathsf{S}_0 + \mathsf{m}_2 \mathsf{S}_0) + (\mathsf{m}_1 \mathsf{S}_1 - \mathsf{m}_1)x + (\mathsf{m}_2 \mathsf{S}_1 - \mathsf{m}_2)y &\geq 0\\ (\mathsf{d}_1 \mathsf{S}_0 - \mathsf{d}_1 \mathsf{m}_0 - 1) + (\mathsf{d}_1 \mathsf{S}_1 - \mathsf{d}_1 \mathsf{m}_1)x + (-\mathsf{d}_1 \mathsf{m}_2)y &\geq 0 \end{aligned}$$

absolute positiveness works as before; obtain constraints

$$\begin{array}{ll} \mathsf{m}_0 + \mathsf{m}_2 \mathsf{Z}_0 \geq 0 & \mathsf{m}_1 - 1 \geq 0 \\ \mathsf{m}_1 \mathsf{S}_0 + \mathsf{m}_2 \mathsf{S}_0 \geq 0 & \mathsf{m}_1 \mathsf{S}_1 - \mathsf{m}_1 \geq 0 \\ \mathsf{d}_1 \mathsf{S}_0 - \mathsf{d}_1 \mathsf{m}_0 - 1 \geq 0 & \mathsf{d}_1 \mathsf{S}_1 - \mathsf{d}_1 \mathsf{m}_1 \geq 0 \\ \end{array} \qquad \begin{array}{l} \mathsf{m}_2 \mathsf{S}_1 - \mathsf{m}_2 \geq 0 \\ \mathsf{d}_1 \mathsf{S}_1 - \mathsf{d}_1 \mathsf{m}_1 \geq 0 & -\mathsf{d}_1 \mathsf{m}_2 \geq 0 \end{array}$$

- at this point, use solver for integer arithmetic to find suitable coefficients (in \mathbb{N})
- popular choice: SMT solver for integer arithmetic where one has to add constraints $m_0 \ge 0, m_1 \ge 0, m_2 \ge 0, S_0 \ge 0, S_1 \ge 0, Z_0 \ge 0, \ldots$

RT (DCS @ UIBK)

Constraint Solving by Hand – Example

• original constraints

$$\begin{array}{ll} \mathsf{m}_0 + \mathsf{m}_2 \mathsf{Z}_0 \geq 0 & \mathsf{m}_1 - 1 \geq 0 \\ \mathsf{m}_1 \mathsf{S}_0 + \mathsf{m}_2 \mathsf{S}_0 \geq 0 & \mathsf{m}_1 \mathsf{S}_1 - \mathsf{m}_1 \geq 0 & \mathsf{m}_2 \mathsf{S}_1 - \mathsf{m}_2 \geq 0 \\ \mathsf{d}_1 \mathsf{S}_0 - \mathsf{d}_1 \mathsf{m}_0 - 1 \geq 0 & \mathsf{d}_1 \mathsf{S}_1 - \mathsf{d}_1 \mathsf{m}_1 \geq 0 & -\mathsf{d}_1 \mathsf{m}_2 \geq 0 \end{array}$$

• delete trivial constraints

$$\begin{array}{c} \mathsf{m}_1 - 1 \ge 0 \\ \mathsf{m}_1 \mathsf{S}_1 - \mathsf{m}_1 \ge 0 \\ \mathsf{d}_1 \mathsf{S}_0 - \mathsf{d}_1 \mathsf{m}_0 - 1 \ge 0 \end{array} \qquad \begin{array}{c} \mathsf{m}_2 \mathsf{S}_1 - \mathsf{m}_2 \ge 0 \\ \mathsf{d}_1 \mathsf{S}_1 - \mathsf{d}_1 \mathsf{m}_1 \ge 0 \\ -\mathsf{d}_1 \mathsf{m}_2 \ge 0 \end{array}$$

. . .

conclusions

$$\begin{array}{ll} \mathsf{m}_1 \geq 1 & \mathsf{d}_1 \geq 1 \\ \mathsf{S}_0 \geq 1 & \mathsf{S}_1 \geq 1 \\ \mathsf{m}_2 = 0 & \mathsf{S}_1 \geq \mathsf{m}_1 & \mathsf{m}_0 = 0 \end{array}$$

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

Constraint Solving by SMT-Solver – Example

• original constraints

 $\begin{array}{ll} \mathsf{m}_0 + \mathsf{m}_2 \mathsf{Z}_0 \geq 0 & \mathsf{m}_1 - 1 \geq 0 \\ \mathsf{m}_1 \mathsf{S}_0 + \mathsf{m}_2 \mathsf{S}_0 \geq 0 & \mathsf{m}_1 \mathsf{S}_1 - \mathsf{m}_1 \geq 0 & \mathsf{m}_2 \mathsf{S}_1 - \mathsf{m}_2 \geq 0 \\ \mathsf{d}_1 \mathsf{S}_0 - \mathsf{d}_1 \mathsf{m}_0 - 1 \geq 0 & \mathsf{d}_1 \mathsf{S}_1 - \mathsf{d}_1 \mathsf{m}_1 \geq 0 & -\mathsf{d}_1 \mathsf{m}_2 \geq 0 \end{array}$

• encode as SMT problem in file division.smt2

```
(set-logic QF_NIA)
(declare-fun m0 () Int) ... (declare-fun d2 () Int)
(assert (>= m0 0)) ... (assert (>= d2 0))
(assert (>= (+ m0 (* m2 Z0)) 0))
...
(assert (>= (* (- 1) d1 m2) 0))
(check-sat)
(get-model)
(exit)
```

Constraint Solving by SMT-Solver – Example Continued

- invoke SMT solver, e.g., Microsoft's open source solver $\ensuremath{\text{Z3}}$

```
cmd> z3 division.smt2
sat
(model
  (define-fun d1 () Int 8)
  (define-fun S1 () Int 15)
  (define-fun SO () Int 8)
  (define-fun ZO () Int O)
  (define-fun m2 () Int 0)
  (define-fun m1 () Int 12)
  (define-fun m0 () Int 4)
  (define-fun d2 () Int 0)
  (define-fun d0 () Int 0)
```

• parse result to obtain polynomial interpretation

Constraint Solving by SMT-Solver – Scepticism

- polynomial interpretation found by SMT solving approach is generated by complex (potentially buggy) tool
- however, termination is essential for well-defined programs, i.e., in particular to derive correct theorems
- solution: certification
 - search for interpretation can be done in arbitrary untrusted way
 - write simple trusted checker that certifies whether concrete interpretation indeed satisfies all constraints
 - like solving NP-complete problem: positive answer can easily be verified
- in fact, this approach is heavily used in termination proving
 - untrusted tools: AProVE, TTT2, Terminator, ...
 - trusted checker: CeTA; soundness formally proven in Isabelle/HOL

Summary

- pattern-completeness and pattern-disjointness are decidable
- termination proving can be done via
 - dependency pairs
 - subterm criterion
 - size-change termination
 - polynomial interpretation
- termination proving often performed with help of SMT solvers
- increase reliability via certification: checking of generated proofs